ITEM METADATA RECORD
Title: Compact rational Krylov methods for nonlinear eigenvalue problems
Authors: Van Beeumen, Roel # ×
Meerbergen, Karl
Michiels, Wim #
Issue Date: 18-Jun-2015
Publisher: Society for Industrial and Applied Mathematics
Series Title: SIAM Journal on Matrix Analysis and Applications vol:36 issue:2 pages:820-838
Abstract: We propose a new uniform framework of compact rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems $A(\lambda) x = 0$. For many years, linearizations were used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, $A(\lambda)$ can first be approximated by a (rational) matrix polynomial and then a convenient linearization is used. However, the major disadvantage of linearization-based methods is the growing memory and orthogonalization costs with the iteration count, i.e., in general they are proportional to the degree of the polynomial. Therefore, the CORK family of rational Krylov methods exploits the structure of the linearization pencils by using a generalization of the compact Arnoldi decomposition. In this way, the extra memory and orthogonalization costs due to the linearization of the original eigenvalue problem are negligible for large-scale problems. Furthermore, we prove that each CORK step breaks down into an orthogonalization step of the original problem dimension and a rational Krylov step on small matrices. We also briefly discuss implicit restarting of the CORK method and how to exploit low rank structure. The CORK method is illustrated with two large-scale examples.
ISSN: 0895-4798
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Numerical Analysis and Applied Mathematics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
TW651.pdf Submitted 538KbAdobe PDFView/Open
vanbeeumen-simax-2015.pdf Published 595KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science