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Abstract

We propose a new uniform framework of Compact Rational Krylov (CORK)
methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For
many years, linearizations are used for solving polynomial and rational eigen-
value problems. On the other hand, for the general nonlinear case, A(λ) can
first be approximated by a (rational) matrix polynomial and then a convenient
linearization is used. However, the major disadvantage of linearization based
methods is the growing memory and orthogonalization costs with the iteration
count, i.e., in general they are proportional to the degree of the polynomial.
Therefore, the CORK family of rational Krylov methods exploits the structure
of the linearization pencils by using a generalization of the compact Arnoldi de-
composition. In this way, the extra memory and orthogonalization costs due to
the linearization of the original eigenvalue problem are negligible for large-scale
problems. Furthermore, we prove that each CORK step breaks down into an
orthogonalization step of the original problem dimension and a rational Krylov
step on small matrices. We also briefly discuss implicit restarting of the CORK
method and how to exploit low rank structure. The CORK method is illustrated
with two large-scale examples.
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Abstract. We propose a new uniform framework of Compact Rational Krylov (CORK) meth-
ods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations
are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general
nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a conve-
nient linearization is used. However, the major disadvantage of linearization based methods is the
growing memory and orthogonalization costs with the iteration count, i.e., in general they are pro-
portional to the degree of the polynomial. Therefore, the CORK family of rational Krylov methods
exploits the structure of the linearization pencils by using a generalization of the compact Arnoldi
decomposition. In this way, the extra memory and orthogonalization costs due to the linearization of
the original eigenvalue problem are negligible for large-scale problems. Furthermore, we prove that
each CORK step breaks down into an orthogonalization step of the original problem dimension and
a rational Krylov step on small matrices. We also briefly discuss implicit restarting of the CORK
method and how to exploit low rank structure. The CORK method is illustrated with two large-scale
examples.
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1. Introduction. We present a new framework of Compact Rational Krylov
(CORK) methods for solving the nonlinear eigenvalue problem (NLEP):

(1.1) A(λ)x = 0,

where λ ∈ Ω ⊆ C and A : Ω → Cn×n is analytic on Ω. We call λ an eigenvalue
and x ∈ Cn \ {0} the corresponding eigenvector. Linearizations are already for many
years the classical and most widely used approach to solving polynomial eigenvalue
problems [8, 15, 1]. The matrix polynomial P (λ) =

∑d
i=0 λ

iPi, with Pi ∈ Cn×n, is
transformed into a linear pencil L(λ) = X− λY, with X,Y ∈ Cdn×dn, so that there
is a one-to-one correspondence between the eigenvalues of P (λ)x = 0 and L(λ)x = 0.

For the general nonlinear case, i.e., nonpolynomial eigenvalue problem, A(λ) is
first approximated by a matrix polynomial [6, 11, 21] or rational matrix polynomial
[9, 17] before a convenient linearization is applied. Most linearizations used in the
literature can be written in a similar form, i.e., L(λ) = A−λB, where the parts below
the first block rows of A and B have the following Kronecker structure: M ⊗ In and
N ⊗ In, respectively. Note that the pencil (A,B) also covers the dynamically grow-
ing linearization pencils used in [10, 11, 21, 9]. The construction of the polynomial
or rational approximation of A(λ) can be obtained using results on approximation
theory or can be constructed dynamically during the solution process [21, 9]. Also
note that Fiedler linearizations do, in general, not satisfy this structure [7, 5]. Next
to the classical companion linearizations, this structure can be found in linearizations
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for degree-graded polynomials, e.g., Newton and Chebyshev polynomials [1], for La-
grange polynomials [22], and also for rational approximations such as rational Newton
polynomials [9], and the spectral discretization [10].

The major difficulty of (rational) Krylov methods using linearizations for large
n is the growing memory and orthogonalization costs with the iteration count. In
general, they are proportional to the degree of the polynomial. That is, at iteration
j, the storage cost of the iteration vectors is of order d · j vectors of size n and the
orthogonalization cost is of order d · j2 scalar products of size n. However, we can
exploit the Kronecker structure, mentioned higher, such that the memory cost is only
of order d+j vectors of size n and the orthogonalization cost is of order (d+j)j scalar
products of size n.

The CORK family of rational Krylov methods, presented in this paper, use a
generalization of the compact Arnoldi decomposition, proposed in [20]. This family
of methods construct a subspace V ∈ Cdn×j , represented in factored form

V = (Id ⊗Q)U,

where Q ∈ Cn×r and U ∈ Cdr×j are matrices with orthonormal columns. The rank r
is bounded from above by d + j, which is typically much lower than d · j. Note that
the idea of a compact representation of Arnoldi vectors was presented for Chebyshev
basis in [12, 23].

We present in this paper a generic but simple framework for solving eigenvalue
problems represented by a linearization satisfying the Kronecker structure mentioned
higher. This includes locking, purging and implicit restarting. We observe that,
after implicit restarting r is often smaller than d + j, which reduces the storage and
orthogonalization costs even further. This interesting observation appears to be useful
for the dynamical approaches where the degree d is not determined before the start
of the algorithm. In addition, we show how to exploit low rank matrices in the
polynomial expansion of A(λ) in combination with small r.

This paper is organized as follows. Section 2 introduces a uniform framework
for representing linearization pencils. Section 3 reviews the standard rational Krylov
method for the generalized eigenvalue problem. Section 4 proposes the compact ra-
tional Krylov decomposition which is used to introduce the compact rational Krylov
method in Section 5. Section 6 discusses implicit restarting of the CORK method.
Section 7 shows how to exploit low rank matrices. Section 8 illustrates the proposed
CORK method with two large-scale numerical examples. Finally, the main conclu-
sions are summarized in Section 9.

Throughout the paper, we denote vectors v by lowercase Roman characters and
matrices A by capital Roman characters. For block vectors and block matrices we
use v and A, respectively, and a superscripts as in v[i] denotes the i-th block of the
block vector v. The conjugate transpose of a matrix A is denoted by A∗. Ii×j is the
identity matrix of dimensions i× j and in case i = j, we use Ii. Vj denotes a matrix
with j columns and the ith column is denoted by vi. We omit subscripts when the
dimensions of the matrices are clear from the context. If not stated otherwise, we
denote with ‖ · ‖ the 2-norm.

2. Linearization. Linearization is a classical approach for solving polynomial
and rational eigenvalue problems. In this case, matrix polynomials are transformed
into linear pencils with the same eigenvalues [8, 15, 1]. Therefore, unimodular matrix
polynomials are used, i.e., matrix polynomials E(λ) such that detE(λ) is a nonzero



CORK METHODS FOR NLEPS 3

constant and independent of λ. The pencil L(λ) = A − λB is called a linearization
of P (λ) if there exist unimodal matrix polynomials E(λ), F (λ) such that [8]

[
P (λ) 0

0 I

]
= E(λ)(A− λB)F (λ).

Definition 2.1 (Structured linearization pencil). Let the dn × dn linear pencil
L(λ) be defined as

(2.1) L(λ) = A− λB,

where

(2.2) A =

[
A0 A1 · · · Ad−1

M ⊗ In

]
, B =

[
B0 B1 · · · Bd−1

N ⊗ In

]
,

with Ai, Bi ∈ Cn×n, i = 0, 1, . . . , d − 1 and M,N ∈ C(d−1)×d. We assume that L(λ)
is regular, i.e., detL(λ) does not vanish identically and that the matrix M −λN is of
rank d− 1 for all λ. Next, by using the notation of [15], we also assume that

(2.3) (A− λB) · (f(λ)⊗ In) = e1 ⊗ P (λ).

where f : C→ Cd and e1 is the first unit vector.
Note that Definition 2.1 covers many of the linearizations used in the literature:

polynomial bases such as the monomial basis [15], the Chebyshev basis [1], the La-
grange basis [22], the Newton basis [1], etc.; linear rational bases, e.g., the rational
monomial basis [17], the rational Newton basis [9], etc. Moreover, the spectral dis-
cretization used in [10] also fits in the pencil (2.1)–(2.2).

In these linearizations, the square matrices Ai and Bi appearing on the first block
rows in (2.2) are related to the matrices of the original polynomial, rational, or nonlin-
ear eigenvalue problem. The remaining parts of A and B, i.e., the Kronecker products
with the rectangular matrices M and N , correspond to the linear relations between
the basis functions used in the representation of the (rational) matrix polynomial.

Theorem 2.2 (Structured eigenvectors). Let L(λ) be defined by Definition 2.1
and let (λ?,x) be an eigenpair of L(λ). Then, the eigenvector x has the following
structure

x = f(λ?)⊗ x,

where x ∈ Cn is the corresponding eigenvector of P (λ).
Proof. The proof follows immediately by taking λ = λ? in (2.3) and by multiplying

from the right with x.
The Kronecker structure of the linearization matrices A and B, defined in (2.2),

can be exploited for efficiently solving linear systems originating from the shift-and-
invert step in Krylov methods. Therefore, we introduce the following block ULP
factorization.

Theorem 2.3 (Block ULP decomposition). Let A and B be defined by (2.2).
Then, for every λ ∈ C there exists a permutation matrix P ∈ Cd×d such that the
matrix (M1 − λN1) ∈ C(d−1)×(d−1) is invertible with

M =:
[
m0 M1

]
P, N =:

[
n0 N1

]
P.
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Moreover, the pencil L(λ) can be factorized as follows

L(λ) = A− λB = U(λ)L(λ)(P ⊗ In),

where

L(λ) =

[
P (λ) 0

(m0 − λn0)⊗ In (M1 − λN1)⊗ In

]
,

U(λ) =

[
In (Ā1 − λB̄1)

(
(M1 − λN1)−1 ⊗ In

)

0 I(d−1)n

]
,

with
[
A0 A1 · · · Ad−1

]
=:
[
Ā0 Ā1

]
(P ⊗ In),

[
B0 B1 · · · Bd−1

]
=:
[
B̄0 B̄1

]
(P ⊗ In).

Proof. Firstly, since rank(M − λN) = d − 1 for all λ by Definition 2.1, we can
always find a permutation matrix P such that M1 − λN1 is invertible. Next, except
for the top left block, all blocks of L(λ)(PT ⊗ In) = U(λ)L(λ) follow immediately
from Definition 2.1. Thus, we only need to proof that

(2.4) Ā0 − λB̄0
?
= P (λ) + (Ā1 − λB̄1)

(
(M1 − λN1)−1(m0 − λn0)⊗ In

)
.

From definition Definition 2.1, we have that ∃a ∈ Cd \{0} : (M −λN)a = 0. Further-
more, from the second till the last block row of (2.3), we have (M − λN)f(λ) = 0.
By using PPT = PTP = Id and multiplying from the left with (M1 − λN1)−1 yields

[
(M1 − λN1)−1(m0 − λn0) I(d−1)

]
Pf(λ) = 0.

Next, solving this linear system results in

(2.5) f(λ) = PT
[

1
−(M1 − λN1)−1(m0 − λn0)

]
.

Now, substituting (2.5) into (2.3) and only considering the first block row proofs the
equality in (2.4).

Remark 2.4. For almost all λ, the same permutation matrix P can be taken, since
the proof only relies on the invertibility of M1− λN1. In all papers mentioned higher
[15, 1, 22, 17, 9, 10], P is chosen equal to the identity matrix. However, it may happen
that by an unlucky choice of λ permutation might be necessary.

3. Rational Krylov method. The rational Krylov method [18, 19] is a gener-
alization of the shifted and inverted Arnoldi method. There are two main differences
between the two methods. First, instead of a fixed shift for the Arnoldi method, the
rational Krylov method allows to change the shift (or pole) at every iteration. Second,
the rational Krylov method collects the information about the eigenvalues in a pair of
Hessenberg matrices (K,H). The standard rational Krylov algorithm [19] is outlined
in Algorithm 1.

The rational Krylov algorithm builds a subspace spanned by

v1, (A− σ1B)−1Bv1, (A− σ2B)−1Bv2, · · ·

and by eliminating v̂ and ṽ in the jth iteration in Algorithm 1 we get the relation

(3.1) (A− σjB)−1Bvj = Vj+1hj ,
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Algorithm 1: Rational Krylov method

1 Choose vector v1, where ‖v1‖ = 1.
for j = 1, 2, . . . do

2 Choose shift: σj .
3 Compute: v̂ := (A− σjB)−1Bvj .
4 Orthogonalize: ṽ := v̂ −Vjhj , where hj = V∗

j v̂.

5 Get new vector: vj+1 = ṽ/hj+1,j , where hj+1,j = ‖ṽ‖.
6 Compute eigenpairs: (λi, si) and test for convergence.

end
7 Compute eigenvectors: xi = Vj+1Hjsi.

where hj =
[
h∗j h∗j+1,j

]∗
. Combining all the previous iterations, we arrive at the

recurrence relation of the rational Krylov method

(3.2) AVj+1Hj = BVj+1Kj ,

where Hj and Kj are two (j + 1) × j upper Hessenberg matrices. The matrix Hj

contains the coefficients of the Gram–Schmidt orthogonalization process and

Kj = Hj diag(σ1, . . . , σj) + I(j+1)×j .

For the orthogonalization in step 4 of Algorithm 1, iterative Gram–Schmidt with
reorthogonalization is used. In each iteration step j, we assume that hj+1,j 6= 0.
Then, we call Hj unreduced. If hj+1,j = 0, the Range(Vj) is an invariant subspace
and

AVjHj = BVjKj ,

where Hj and Kj are the j× j upper parts of Hj and Kj , respectively. At this point,
the Gram–Schmidt orthogonalization process fails.

Approximations for the eigenvalues and corresponding eigenvectors of the matrix
pencil (A,B) can, in each iteration j of Algorithm 1, be obtained from the j×j upper
parts of the two Hessenberg matrices Hj and Kj

Kjsi = λiHjsi, si 6= 0.

Then, we call (λi,xi := Vj+1Hjsi) a Ritz pair of (A,B).

4. A compact rational Krylov decomposition. Consider the standard ra-
tional Krylov recurrence relation (3.2) with the matrices A and B as defined by (2.1).
Then, we can subdivide Vj+1 ∈ Cdn×(j+1) as follows

Vj+1 =
[
Vj vj+1

]
=




V
[1]
j v

[1]
j+1

...
...

V
[d]
j v

[d]
j+1


 ,

where V
[i]
j ∈ Cn×j and v

[i]
j+1 ∈ Cn for i = 1, . . . , d.

Definition 4.1. The columns of the matrix Qj ∈ Cn×rj are defined to form an

orthonormal basis of the matrix
[
V

[1]
j · · · V

[d]
j

]
with rj the rank of Qj, i.e.,

span {Qj} = span
{[
V

[1]
j · · · V

[d]
j

]}
, and rj = rank (Qj) .
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Using Definition 4.1, we can express V
[i]
j as

V
[i]
j = QjU

[i]
j , i = 1, . . . , d,

where U
[i]
j ∈ Crj×j . Thus, we have

(4.1) Vj =



Qj

. . .

Qj







U
[1]
j
...

U
[d]
j


 = (Id ⊗Qj)Uj ,

where Id ⊗Qj is a compact notation for diag(Qj , . . . , Qj) and

(4.2) Uj =




U
[1]
j
...

U
[d]
j


 ∈ Cdrj×j .

Since both Vj and Id ⊗ Qj are matrices with orthonormal columns, Uj also has
orthonormal columns. Using the compact representation of Vj (4.1), the rational
Krylov recurrence relation (3.2) yields the following compact rational Krylov recur-
rence relation

(4.3) A(Id ⊗Qj+1)Uj+1Hj = B(Id ⊗Qj+1)Uj+1Kj .

In order to refer to the compact rational Krylov (CORK) decomposition (4.3), we
introduce the CORK quadruple.

Definition 4.2 (CORK quadruple). The quadruple
(
Qj+1,Uj+1, Hj ,Kj

)
with

Qj+1 ∈ Cn×rj+1 , Uj+1 ∈ Crj+1×(j+1), and Hj ,Kj ∈ C(j+1)×j is called a CORK
quadruple of order j for (A,B), defined by (2.2), iff

1. it satisfies the CORK recurrence relation (4.3),
2. Qj+1 has full rank and orthogonal columns and Uj+1 has orthogonal columns,
3. Kj and Hj are upper Hessenberg matrices with Hj unreduced, and
4. none of the σi = ki+1,i/hi+1,i, i = 1, . . . , j is an eigenvalue of (A,B).

Lemma 4.3. Let A and B be defined by (2.2). Then, by solving the linear system

(4.4) (A− σB)x = By,

one block of x, say x[p], is obtained from a system solve with P (σ), while the other
blocks of x are obtained as linear combinations of x[p] and the blocks of the right hand
side By.

Proof. The proof follows from the block ULP decomposition (Theorem 2.3) of
L(σ) = A−σB. The index p corresponds to the block column index of A and B that
is permuted to the first block column of U(σ)L(σ) by the permutation matrix P ⊗ In.
From the UL factorization it can indeed be seen that the other blocks of x are linear
combinations of blocks of By and x[p]. This completes the proof.

Lemma 4.3 now gives rise to Algorithm 2, where we use the block ULP decom-
position in order to solve (4.4). This results in 1 matrix-vector operation followed by
2 block triangular system solves and a permutation.
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Algorithm 2: System solve: x = (A− σB)−1By

1 Compute the right hand side of (4.4): z = By.
2 Solve the block upper triangular system:

z[1] = z[1] − (Ā1 − λB̄1)
(
(M1 − λN1)−1 ⊗ I

)
z[2,...,d].

3 Solve block lower triangular system:

z[1] = P (σ)−1z[1],(a)

z[2,...,d] =
(
(M1 − σN1)−1 ⊗ I

)
z[2,...,d] − ((m0 − σn0)⊗ I) z[1].(b)

4 Permute the blocks of z:

x = (PT ⊗ I)z.

The following theorems summarize how the matrices Qj and Uj can easily be
extended into Qj+1 and Uj+1, respectively. The Kronecker structure of the pencil
(A,B), defined in (2.2), also provides an upper bound for the rank rj of Qj .

Theorem 4.4. Let Qj be defined by Definition 4.1. Then,

span {Qj+1} = span
{
Qj , v

[p]
j+1

}
,

where v
[p]
j+1 is the pth block in Lemma 4.3.

Proof. By using Definition 4.1 and Lemma 4.3, we have

span {Qj+1} = span
{[
V

[1]
j+1 · · · V

[d]
j+1

]}
,

= span
{
Qj , v

[1]
j+1, . . . , v

[d]
j+1

}
,

= span
{
Qj , v

[p]
j+1

}
,

which completes the proof.
Theorem 4.5. Let Qj be defined by Definition 4.1. Then, we have

rj < d+ j.

Proof. By Definition 4.1, we have span {Q1} = span {v[1]1 , . . . , v
[d]
1 }. Then, from

Theorem 4.4 follows immediately that rj = rank (Qj) < d + j, which concludes the
proof.

Theorem 4.6. Let Uj ∈ Cdrj×j be defined by (4.2). Then, Uj+1 ∈ Cdrj+1×(j+1)

takes the following form

Uj+1 =
[
(Id ⊗ Irj+1×rj )Uj uj+1

]
,

where uj+1 ∈ Cdrj+1 , or when rj+1 > rj

U
[i]
j+1 =

[
U

[i]
j

01×j
u
[i]
j+1

]
, i = 1, . . . , d.

Proof. The proof follows immediately from the definition.
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5. Compact rational Krylov method. In this section, we introduce the fam-
ily of compact rational Krylov methods applied to the linearization matrices A and
B defined in (2.2).

In these methods, we use the standard rational Krylov process to generate vj+1

in its compact representation. We start with expressing the starting vector v1 in a
compact form, i.e.,

v1 = (Id ⊗Q1)U1,

where Q1 ∈ Cn×r1 and U1 ∈ Cdr1 , with r1 = rank
([
v
[1]
1 · · · v

[d]
1

])
. This results

in a CORK quadruple of order 0. Next, given a CORK quadruple of order j − 1, we
compute the CORK quadruple of order j. This results in a two level orthogonalization
process. Firstly, Qj is expanded into Qj+1 (first level orthogonalization). Secondly,
Uj is expanded into Uj+1 and the Hessenberg matrices are updated to Hj and Kj

(second level orthogonalization).
Before presenting the algorithm in Section 5.3, we describe the two levels of

orthogonalization which are needed to expand the matrices Q and U. Section 5.1 dis-
cusses the first level orthogonalization and Section 5.2 the second level orthogonaliza-
tion. Next, we discuss in Section 5.4 how the orthogonalization cost can significantly
be reduced.

5.1. First level orthogonalization. From Theorem 4.4, we know that for ex-

panding Qj into Qj+1, we need to compute v
[p]
j+1 and orthogonalize this vector against

Qj . Furthermore, the shift-and-invert step (Algorithm 1, step 3)

(5.1) v̂ := (A− σjB)−1Bvj = (A− σjB)−1B(Id ⊗Qj)uj ,
can easily be solved by Algorithm 2 . However, since

span {Qj+1} = span
{
Qj , v

[p]
j+1

}
= span

{
Qj , v̂

[p]
}
,

we only need to compute v̂[p]. Therefore, step 3(a) in Algorithm 2 can be saved. Next,
we orthogonalize v̂[p] against Qj . Thus, let denote

q̃ := v̂[p] −QjQ∗
j v̂

[p], and δ = ‖q̃‖.
Suppose first that δ 6= 0, then we use qj+1 = q̃/δ to expand Qj into

Qj+1 =
[
Qj qj+1

]
,

and where rj+1 = rj + 1. On the other hand, δ = 0 implies that v̂[p] lies in the
subspace spanned by Qj . This situation is called deflation in SOAR [2]. In this case,
we take Qj+1 = Qj and rj+1 = rj .

5.2. Second level orthogonalization. Once Qj+1 is known, we still have to
compute uj+1. We will show that uj+1, Hj , and Kj can be computed from a rational
Krylov step on small matrices. To see this, we need the following lemma.

Lemma 5.1. Let A and B be defined by (2.2) and define Ãj+1 and B̃j+1 as
follows

Ãj+1 = (Id ⊗Q∗
j+1)

[
P (σj)

−1 0
0 I(d−1)n

]
A(Id ⊗Qj+1),

B̃j+1 = (Id ⊗Q∗
j+1)

[
P (σj)

−1 0
0 I(d−1)n

]
B(Id ⊗Qj+1).
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Then, the shift-and-invert rational Krylov relation (3.1) is equivalent with

(
Ãj+1 − σjB̃j+1

)−1

B̃j+1uj = Uj+1hj ,

where uj is such that (Id ⊗Qj)uj = (Id ⊗Qj+1)uj.
Proof. Firstly, note that by using the block ULP decomposition of Theorem 2.3,

we have that

Ãj+1 − σjB̃j+1 =

[
I ?
0 I

] [
I 0
? (M1 − σjN1)⊗ I

]
(P ⊗ In),

is always nonsingular. Next, let û such that v̂ = (Id ⊗ Qj+1)û. Then, from the
shift-and-invert step (5.1), we have

v̂ = (Id ⊗Qj+1)û = (A− σjB)−1B(Id ⊗Qj)uj .

Since

[
(A− σjB)(Id ⊗Qj+1)

]
û =

[
B(Id ⊗Qj+1)

]
uj ,

is an overdetermined system with solution

û =
(
Ãj+1 − σjB̃j+1

)−1

B̃j+1uj ,

we have

(
Ãj+1 − σjB̃j+1

)−1

B̃j+1 = (Id ⊗Q∗
j+1)(A− σjB)−1B(Id ⊗Qj+1).

Then, substituting Vj+1 = (Id ⊗Qj+1)Uj+1 and vj = (Id ⊗Qj+1)uj in (3.1) yields

Uj+1hj = (Id ⊗Q∗
j+1)(A− σjB)−1B(Id ⊗Qj+1)uj =

(
Ãj+1 − σjB̃j+1

)−1

B̃j+1uj ,

which completes the proof.
As a consequence of Lemma 5.1, uj+1 satisfies the following standard rational

Krylov recurrence relation

(5.2) Ãj+1Uj+1Hj = B̃j+1Uj+1Kj ,

where the Hessenberg matrices Hj and Kj are the same as in the original CORK
recurrence relation (4.3). Hence, the second level orthogonalization in each iteration
of the CORK algorithm can be seen as a standard rational Krylov step (5.2) with

the small matrices Ãj+1 and B̃j+1. Note that these matrices might change in every

iteration. However, it will not be necessary to construct Ãj+1 and B̃j+1 explicitly, as
we will explain in Section 5.4.

5.3. Algorithm. Based on Lemma 4.3 and Theorems 4.4–4.6, the two levels of
orthogonalization, explained in Sections 5.1 and 5.2, can efficiently be implemented.
The corresponding CORK algorithm is outlined in Algorithm 3.

Before starting the rational Krylov iteration in Algorithm 3, we need to choose
a starting vector (step 1). A first possibility is taking a randomly generated vector



10 R. VAN BEEUMEN, K. MEERBERGEN, AND W. MICHIELS

Algorithm 3: Compact rational Krylov method

1 Choose Q1 and U1, where Q∗
1Q1 = Ir1 and U∗

1U1 = 1.
for j = 1, 2, . . . do

2 Choose shift: σj .

First level orthogonalization:

3 Compute: v̂[p] via Algorithm 2.

4 Orthogonalize: q̃ := v̂[p] −QjQ∗
j v̂

[p].

5 Next vector: qj+1 = q̃/‖q̃‖.
Second level orthogonalization:

6 Update matrices: U
[i]
j =

[
U

[i]
j

0

]
for i = 1, . . . , d.

7 Compute: û via Algorithm 2.
8 Orthogonalize: ũ := û−UjU

∗
j û.

9 Next vector: uj+1 = ũ/hj+1,j , where hj+1,1 = ‖ũ‖.
10 Compute eigenpairs: (λi, si) and test for convergence.

end
11 Compute eigenvectors: xi = (Id ⊗Qj+1)Uj+1Hjsi.

v0 ∈ Cnd. Then, using the economy-size QR decomposition of
[
v
[1]
0 · · · v

[d]
0

]
= QR

yields

Q1 = Q ∈ Cn×d, U1 = vec(R) ∈ Cd
2

,

and r1 = d. On the other hand, from Theorem 2.2 we know that the eigenvectors have
a Kronecker structure. Therefore, we can also start Algorithm 3 with v0 = f ⊗ q0,
where q0 ∈ Cn and f ∈ Cd. Consequently, this results in

(5.3) Q1 = q0/‖q0‖ ∈ Cn, U1 = ‖q0‖f ∈ Cd,

and r1 = 1.
For methods with dynamically growing linearizations, such as the infinite Arnoldi

method [11] and the Newton rational Krylov method [21], the structured starting
vector (5.3) corresponds to take f := e1, with e1 the first unit vector. Also in cases
where it is inappropriate to choose f as an unit vector, i.e., in Lagrange basis, the
structured starting vector (5.3) is advantageous, since we only need to store one vector
of dimension n instead of d vectors of dimension n.

In each iteration step j of Algorithm 3 we start with choosing a shift σj (step 2).
Next, the two levels of orthogonalization are performed in steps 3–5 and steps 6–9,
respectively. In the first level, we compute the pth block v̂[p] of the next rational
Krylov vector v̂ by Algorithm 2. Note that, for only computing v̂[p], we can skip
step 3(b). Next, we orthogonalize this vector v̂[p] against Qj in order to obtain qj+1.
Thereafter, in the second level, we perform a standard rational Krylov step with
the projected matrices Ãj+1 and B̃j+1 in order to obtain uj+1 and to expand the
Hessenberg matrices. However, in practice, it is not necessary to form the matrices
Ãj+1 and B̃j+1, since the pth block of û can be computed as follows

û[p] = Q∗
j+1v̂

[p],
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where Q∗
j v̂

[p] is already computed during the first level orthogonalization. Then, the
other blocks of û can be computed by Algorithm 2 where we skip steps 2 and 3(a).
Finally, in step 10 of Algorithm 3, we compute the Ritz pairs (λi, si) and test for
convergence.

Remark also that, from the definition of U (4.2), it is natural to represent U as a
tensor. Therefore, in the implementation of Algorithm 3, we have stacked the blocks
U [i] for i = 1, . . . , d behind each other.

5.4. Orthogonalization cost. The CORK method not only results in a much
lower memory cost, but also the orthogonalization cost can be significantly be reduced.
In particular, we do not need to explicitly compute the other blocks than v̂[p] in (5.1),
since the orthogonalization process in the second level only uses small matrices.

As mentioned before, the second level orthogonalization involves only 1 extra
scalar product between vectors of size n for computing û[p]. The other blocks of û
can be computed as linear combinations of the blocks of uj and û[p]. This means, we
only have to deal with vectors of length rj+1 in the second level orthogonalization.
Therefore, the dominant orthogonalization cost takes place in the first level orthog-
onalization where the vector v̂[p] ∈ Cn is orthogonalized against q1, . . . , qrj . In the
second level orthogonalization we only have to deal with short vectors.

Table 5.1 gives an overview of the number of scalar products between vectors of
size n in the orthogonalization process of the standard rational Krylov method and
the CORK method. For dynamically growing linearization, such as in the infinite
Arnoldi method [10] and the Newton rational Krylov method [21], this number is of
order O(j3). However, by using the CORK method with v1 = 1⊗x as starting vector,
it reduces to O(j2). On the other hand, this number in the standard rational Krylov
method for fixed size linearizations is of order O(dj2). Using the CORK method with
a full starting vector v1 it reduces to O(j(d + j)) and by using a structured starting
vector v1 = f ⊗ q0 it further reduces to O(j2). Note that this is the same order of
magnitude as for the CORK method for dynamically growing linearizations.

Table 5.1
Number of scalar products between vectors of size n in the standard rational Krylov method and

the CORK methods.

Linearization Rat. Krylov
CORK

full v1 v1 = f ⊗ q0
dynamically growing O(j3) - O(j2)

fixed size O(dj2) O(j(d+ j)) O(j2)

6. Implicit restarting. Since the CORK method a special variant is of the ra-
tional Krylov method, we can also perform implicit restarting [13, 16] on Algorithm 3.
Therefore, we first apply a transformation on the Hessenberg matricesH andK, which
allows to reorder and lock Ritz values. Next, representing the new subspace in its
compact form, completes the restart of the compact rational Krylov process. Note
that the restarting techniques explained in this section are a kind of generalization
of the ones in [12] to rational Krylov and also to structured linearizations pencils in
different bases.

Suppose that after m iterations of the CORK algorithm, we have the CORK
quadruple (Qm+1,Um+1, Hm,Km) which we want to reduce to a smaller CORK
quadruple (Qk+1,Uk+1, Hk,Kk) with k < m. Therefore, we start with defining the
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following matrices

H+ = Y ∗HmZ,

K+ = Y ∗KmZ,

where Y ∈ C(m+1)×(k+1) and Z ∈ Cm×k have unitary columns. With a proper choice
of Y and Z (see [4, 19]), we have that

(6.1) A(Id ⊗Qm+1)WH+ = B(Id ⊗Qm+1)WK+,

where W := Um+1Y .
Next, note that in (6.1) the matrix Q remains the same, although the unwanted

Ritz values are removed from the pencil (K,H). However, from Definition 4.2 and
Theorem 4.5 we know that the rank of Q is bounded, also after restarting. Therefore,
suppose the economy size singular value decomposition of

(6.2)
[
W [1] · · · W [d]

]
= US

[
V [1] · · · V [d]

]
,

where U ∈ Crm+1×r, S ∈ Cr×r, and V [i] ∈ Cr×(k+1) for i = 1, . . . , d. By definition of
W, we have r ≤ d+ k. Then, by substituting (6.2) into (6.1), we obtain

(6.3) A(Id ⊗Q+)U+H+ = B(Id ⊗Q+)U+K+,

where

Q+ := Qm+1U , U+ :=



SV [1]

...
SV [d]


 .

Finally, note that the recurrence relation (6.3) is a standard CORK recurrence
relation of order k with Qk+1 := Q+, Uk+1 := U+, Hk := H+, and Kk := K+.

7. Low rank exploitation. In several applications many of the blocks Ai and
Bi in (2.2) are of low rank. Therefore, we generalize in this section the low rank
structure exploitation proposed in [21].

Suppose that for d̃ ≤ i < d the blocks Ai and Bi in (2.2) are of low rank.
Furthermore, we assume that by using the rank-revealing decompositions, we have

Ai = ÃiZ̃
∗, Bi = B̃iZ̃

∗, i = d̃, . . . , d− 1,

where Ãi, B̃i, Z̃ ∈ Cn×ñ, Z̃ has orthonormal columns, and ñ � n. Then, we can
transform (2.2) into a linear companion pencil of dimension d̃n+ (d− d̃)ñ

(7.1) L̃(λ) = Ã− λB̃,

where

Ã =



A0 · · · Ad̃−1 Ãd̃ · · · Ãd−1

M11 ⊗ In 0

M21 ⊗ Z̃∗ M22 ⊗ Iñ


 ,(7.2)

B̃ =



B0 · · · Bd̃−1 B̃d̃ · · · B̃d−1

N11 ⊗ In 0

N21 ⊗ Z̃∗ N22 ⊗ Iñ


 ,(7.3)
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with the assumption that M12 = N12 = 0. This is the case for many of the bases
used in the literature, e.g., degree-graded polynomial bases, Lagrange basis, rational
Newton basis, etc. Similar to Theorem 2.2, the linearization (7.1)–(7.3) yields the
following structured eigenvector

ỹ =

[
f1 ⊗ x
f2 ⊗ Z̃∗x

]
,

which is the motivation to subdivide V as follows

V =




V [1]

...

V [d̃]

Ṽ [d̃+1]

...

Ṽ [d]




=




Q
. . .

Q

Q̃
. . .

Q̃







U [1]

...

U [d̃]

Ũ [d̃+1]

...

Ũ [d]




,

where

V [1,...,d̃] ∈ Cn×j , Q ∈ Cn×r, U ∈ Cr×j ,

V [d̃+1,...,d] ∈ Cñ×j , Q̃ ∈ Cñ×r̃, Ũ ∈ Cr̃×j .

In applications where d̃ is relatively small compared to d, the memory cost can
significantly be reduced since r ≤ d̃ + j. Note that, due to the appearance of Z̃∗ in
(7.2) and (7.3), r̃ is not bounded any more by Theorem 4.5. However, for large n the

memory cost for storing Q̃ (involving ñ and r̃) is almost negligible compared to the
one for Q (involving n and r). Furthermore, as we will illustrate in the numerical
experiments in Section 8.2, r̃ also remains bounded in practice.

8. Numerical examples. We now illustrate the CORK method (Algorithm 3)
with two large-scale examples. In the first example, we consider a delay eigenvalue
problem [10] for which we used a dynamically growing linearization based on spectral
discretization. In this example, we compare the memory usage and the orthogonal-
ization cost for the standard rational Krylov method with the CORK method. We
show results for both without and with the implicit restarting technique explained
in Section 6. In the second example, we consider the ‘gun’ problem of the NLEVP
collection [3] for which we used a rational Newton linearization of fixed degree. Here,
we also use the CORK method with the low rank exploitation of Section 7.

All numerical experiments are performed in Matlab version 7.14.0 (R2012a) on
a Dell Latitude notebook running an Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz
quad core processor with 8 GB RAM. Our experiments can be reproduced with the
CORK code available from

http://twr.cs.kuleuven.be/research/software/nleps/cork.html

8.1. Delay problem. We start with a delay eigenvalue problem [10] correspond-
ing to the delay differential equation

(8.1)
∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
+ a0(x)v(x, t) + a1(x)v(π − x, t− 1),
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where a0(x) = −2 sin(x), a1(x) = 2 sin(x), and vx(0, t) = vx(π, t) = 0. We discretize
(8.1) by approximating the second derivative in space with central differences and
obtain the following NLEP

(8.2) A(λ)x = (A0 − λI +A1e
−τλ)x = 0,

where A0, A1 ∈ R5000×5000 and τ = 1. By using a spectral dicretization, the lineariza-
tion matrices have a companion-type structure [10, Theorem 2.1]. The goal in this
experiment is to compute the 20 eigenvalues closest to the origin. For measuring the
convergence of an approximate eigenpair (λ, x), we used the following relative residual
norm

E(λ, x) =
‖A(λ)x‖2

/
‖x‖2

‖A0‖1 + |λ|+ |e−τλ|‖A1‖1
.

We first solved the NLEP (8.1) by Algorithm 3 without using restart and chose
a short starting vector v0 ∈ R5000 such that r1 = rank(Q1) = 1. The eigenvalues and
results of this experiment are shown in Figure 8.1(a) and Figure 8.1(b), respectively.
The convergence histories of the eigenpairs are given in the top figure, from which
we see that after 119 iterations we found the 20 smallest eigenvalues in magnitude
up to a tolerance of 10−12. Since we did not allow restart, we see in the middle
figure that the rank of Q, r, and the dimension of the the subspace, j, increases with
the iteration count i. The bottom figure shows the memory usage for storing the
subspace in the standard rational Krylov method (Algorithm 1) and in the CORK
method (Algorithm 3). From this figure, we see that we get a gain factor of 25 since
the standard rational Krylov method requires O(n · i2/2) to store the subspace and
the CORK method only O(n · r), where r = i+ 1.

Next, we solved (8.1) by Algorithm 3 combined with the implicit restarting tech-
nique explained in Section 6. Here, we chose the maximum dimension of the subspace,
m = 50, and the number of selected Ritz values, p = 30. The results are shown in
Figure 8.1(c). This figure shows again the convergence histories of the eigenpairs at
the top. We see that the method requires 4 restarts (indicated by the vertical green
dashed lines) and 123 iterations before finding the 20 smallest eigenvalues in mag-
nitude up to the tolerance. In theory the rank of Q is unbounded, since we used
a dynamically growing linearization and thus r ≤ i + 1 with i the iteration count.
However, we notice in the middle figure that in practice r stagnates in the course of
the algorithm. Consequently, it has also a positive effect on the memory requirements
as illustrated in the bottom figure. By using a restarted CORK method, we were able
to reduce the memory cost for this delay problem by a factor 50.

8.2. Gun problem. We consider the ‘gun’ problem of the NLEVP collec-
tion [3]. This is a large-scale problem that models a radio-frequency gun cavity and
is of the form [14]

(8.3) A(λ)x =
(
K − λM + i

√
λ− σ2

1 W1 + i
√
λ− σ2

2 W2

)
x = 0,

where M , K, W1 and W2 are real symmetric matrices of size 9956×9956, K is positive
semidefinite, M is positive definite, and rank(W1) + rank(W2) = 84. The complex
square root

√· corresponds to the principal branch and as in [3], we take σ1 = 0 and
σ2 = 108.8774. The goal in this experiment is to compute the 20 eigenvalues closest
to 2502. For measuring the convergence of an approximate eigenpair (λ, x), we used
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the relative residual norm E(λ, x) defined in [14]. Similarly as in [9], we approximate
A(λ) in (8.3) by an interpolating rational Newton polynomial on the upper half disk
with centre 2502 and radius 3002−2002. This results in a fixed linearization of degree
d = 36. For more information on how to construct this linearization pencil, we refer
to [9, Section 7.1.2].

In a first experiment, the NLEP (8.3) is solved by Algorithm 3 with maximum
subspace dimension m = 50 and p = 35 selected Ritz values in every restart. We
also used cyclically repeated shifts in the rational Krylov steps, indicated by “×”
in Figure 8.2(a). The computed eigenvalues and the results of this experiment are
shown in Figures 8.2(a) and 8.2(b), respectively. From the convergence histories of
the eigenpairs in the top figure, we see that we needed 91 iterations to compute the
20 eigenvalues closest to 2502 up to a tolerance of 10−10. In the middle figure, we see
that the rank of Q, r, stagnates again in practice and remains significantly below the
theoretical upper bound r ≤ m + d. Next, comparing the subspace memory cost of
the CORK method with the one of the standard rational Krylov method results in a
reduction with a factor of more than 20.

In a final experiment, we solve (8.3) by Algorithm 3 and use the low rank ex-

ploitation of Section 7. Note that in this case, the blocks Ai and Bi for i ≥ d̃ = 2 in
the linearization pencil have only ñ = 84 columns. For this experiment, we chose all
parameters equal to the ones in the previous experiment. The corresponding results
are shown in Figure 8.2(c). In the top figure with the convergence histories of the
eigenpairs, we see that now only 79 iterations are needed to compute the 20 eigen-
values closest to 2502. In the middle figure, we see that the rank of Q, r, is now
bounded by the upper bound r ≤ m + d̃ with d̃ < d. Note also that the rank of
Q̃, r̃, is small. Consequently, since in the CORK method with low rank exploitation
the memory cost is dominated by Q with r ≤ m + d̃ compared to r ≤ m + d for the
standard CORK method, we notice in the bottom figure that the subspace memory
cost is even further reduced.

9. Conclusions. In this paper, we have proposed a uniform framework of com-
pact rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue
problems. We also introduced a generic but simple representation of structured lin-
earization pencils. The family of CORK methods is most applicable in cases where
d � n and d � m, with d the degree of the (rational) matrix polynomial, n the
original problem dimension, and m the maximum dimension of the subspace.

By representing the subspace V in a compact form with V = (I⊗Q)U, we are able
to both reduce the memory cost as well as the orthogonalization cost. We also proved
that the rank of Q, where Q forms an approximation of the eigenspace, is bounded
by m + d. Therefore, the memory cost reduced from O(dn · m) to O(n · (d + m))
and the orthogonalization process only involves O((d+m)m) scalar products of size
n instead of O(dm2). The numerical experiments showed that in practice we often
get a further reduction when the upper bound m+d on the rank of Q is not attained.
We also briefly discussed implicit restarting of the CORK method and how to exploit
low rank structure in the linearization pencil.

Acknowledgement. The authors are grateful to Laurent Sorber for the useful
discussions about the tensor implementation of the Matlab code.
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