Title: The convergence of zero sequences in the indeterminate rational Stieltjes moment problem
Authors: Bultheel, Adhemar ×
González-Vera, Pablo
Hendriksen, Erik
Njåstad, Olav #
Issue Date: Jul-2010
Host Document: Book of Abstracts I Jaen Conference on Approximation pages:38-40
Conference: I Jaen Conference on Approximation location:Ubeda, Spain date:4-9 July 2010
Abstract: In the strong or two-point Stieltjes moment problem, one has to find a positive measure on [0;1) for which infinitely many moments are prescribed at the origin and at infinity. Here we consider a multipoint version in which the origin and the point at infinity are replaced by sequences of points that may or may not coincide. In the indeterminate case, two natural solutions μ_0 and μ_∞ exist that can be constructed by a limiting process of approximating quadrature formulas. The supports of these natural solutions are disjoint (with possible exception of the origin). The support points are accumulation points of sequences of zeros of even and odd indexed orthogonal rational functions. These functions are recursively computed and appear as denominators in approximants of continued fractions. They replace the orthogonal Laurent polynomials that appear in the two-point case. In this paper we consider the properties of these natural solutions and analyse the precise behaviour of which zero sequences converge to which support points. This generalizes results that were obtained for the strong Stieltjes moment problem.
Publication status: published
KU Leuven publication type: IMa
Appears in Collections:Numerical Analysis and Applied Mathematics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
slides.pdfslides Published 475KbAdobe PDFView/Open
abstract.pdfabstract Published 89KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.