Download PDF

Physical Review X

Publication date: 2017-01-01
Publisher: American Physical Society

Author:

Abel, C
Ayres, NJ ; Ban, G ; Bison, G ; Bodek, K ; Bondar, V ; Daum, M ; Fairbairn, M ; Flambaum, VV ; Geltenbort, P ; Green, K ; Griffith, WC ; van der Grinten, M ; Grujic, ZD ; Harris, PG ; Hild, N ; Iaydjiev, P ; Ivanov, SN ; Kasprzak, Malgorzata ; Kermaidic, Y ; Kirch, K ; Koch, H-C ; Komposch, S ; Koss, PA ; Kozela, A ; Krempel, J ; Lauss, B ; Lefort, T ; Lemiere, Y ; Marsh, DJE ; Mohanmurthy, P ; Mtchedlishvili, A ; Musgrave, M ; Piegsa, FM ; Pignol, G ; Rawlik, M ; Rebreyend, D ; Ries, D ; Roccia, S ; Rozpedzik, D ; Schmidt-Wellenburg, P ; Severijns, Nathal ; Shiers, D ; Stadnik, YV ; Weis, A ; Wursten, Elise ; Zejma, J ; Zsigmond, G

Keywords:

dark matter, axions, neutron electric dipole moment, spin precession, Science & Technology, Physical Sciences, Physics, Multidisciplinary, Physics, DIPOLE MOMENT, CP CONSERVATION, NEUTRON, COLD, CONSTRAINTS, INVARIANCE, 0201 Astronomical and Space Sciences, 0204 Condensed Matter Physics, 0206 Quantum Physics, 51 Physical sciences

Abstract:

We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24 ≤ ma ≤ 10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.