Download PDF

Inorganic Chemistry

Publication date: 2017-09-01
Volume: 56 Pages: 10681 - 10690
Publisher: American Chemical Society

Author:

Hallaert, Simon D
Bols, Max L ; Vanelderen, Pieter ; Schoonheydt, Robert A ; Sels, Bert F ; Pierloot, Kristine

Keywords:

Science & Technology, Physical Sciences, Chemistry, Inorganic & Nuclear, Chemistry, PENTASIL-CONTAINING ZEOLITES, ZETA-VALENCE QUALITY, GAUSSIAN-BASIS SETS, CO2+ ION SITES, PERTURBATION-THEORY, METHANE HYDROXYLATION, N2O DECOMPOSITION, FE-ZSM-5 ZEOLITE, IRON SITES, SQUARE, 0302 Inorganic Chemistry, 0306 Physical Chemistry (incl. Structural), 0399 Other Chemical Sciences, Inorganic & Nuclear Chemistry, 3402 Inorganic chemistry, 3403 Macromolecular and materials chemistry

Abstract:

α-Fe is the precursor of the reactive FeIV=O core responsible for methane oxidation in Fe-containing zeolites. To get more insight into the nature and stability of α-Fe in different zeolites, the binding of Fe(II) at six-membered-ring cation exchange sites (6MR) in ZSM-5, zeolite beta, and ferrierite was investigated using DFT and multireference ab initio methods (CASSCF/CASPT2). CASPT2 ligand field (LF) excitation energies of all sites were compared with the experimental DR-UV−vis spectra reported by Snyder et al. From this comparison it is concluded that the 16000 cm−1 band of α-Fe, observed in all three zeolites, can uniquely be assigned to a high-spin square-planar (SP) Fe(II) located at a 6MR with an Al−Si−Si−Al sequence, where the Al atoms are positioned opposite in the ring and as close to each other as possible. The stability of such conformations is also confirmed by the binding energies obtained from DFT. The bands at 10000 cm−1 in the experimental spectra, assigned to spectator Fe(II), are attributed to six-coordinated trigonal-prismatic Fe(II) species, as calculated for the γ-site in ZSM-5. The entatic effect of the zeolite lattice on the stability of the SP sites was investigated by making use of the unconstrained Fe(II) model complex FeL2 (with L = [Al(OH)4]−). The SP conformer is approximately 2 kcal/mol more stable than the tetrahedral form, indicating that the SP coordination environment of α-Fe is not imposed by the zeolite lattice but rather electronically preferred by Fe(II) in the environment of four O ligands. A significant contribution to the stability of the SP conformer is provided by mixing of the doubly occupied 3dz2 orbital with the higher lying 4s.