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The formation of manufacturing batches, given @mgvorders, is a general problem in practice. Isesse, it
constitutes a optimization problem. The goal fds foroblem however, may differ from perspective.d¥loommonly
this problem is viewed from a cost-based perspectivhere minimizing costs is the goal. Other viesas include
minimizing overall batch lead times or the deviatfoom an optimal batch size derived from an opena performance
perspective. This paper presents and compares difésent approaches to this problem. Startingrfra basic model,
extensions will be proposed that incorporate opmrat performance measures as well. Both an intpgegramming
model, and an dynamic programming model are digcliss
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1. Introduction

Any real-life production environment faces stocltagirocesses on any level. The typical
stochastic sources are demand and service proceBsms variability tends to be positively
correlated with product variety and process flditibiA typical job-shop environment faces both a
large variety of products, with complex routing pibdities, and a high level of flexibility.
However, the impact on efficiency can be devaggatin

Operational mathematical models exist which deteeman optimal value for a controllable
variable, which is the result of minimizing or mamking certain operational performance
measures. Typically, this controllable variable tie lot size. Commonly used operational
performance measures are lead times, WIP, waitimgst throughput. In literature, a large variety
of lot sizing models and algorithms can be fourek &arimi et al. (2003) or Buschkihl et al.
(2008). Incorporating operational based models geeatly improve performance, and lower
related costs, which can be observed in Vandaelk €000).

The starting point for this work will be the mathatcal model used in Lambrecht et al. (1998),
where a manufacturing system is modeled on theeggtg level using a queueing network. The
resulting parameters of this aggregate model vwellused as input for the different short term
batching approaches. Figure 1 illustrates this ephcwhere aggregate planning (stochastic lot
sizing) and detailed scheduling (order grouping manufacturing batches) interact.
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Figure 1: General Approach

First, an IP based approach will be formulated.o8dly, a dynamic programming approach is
discussed. Extensions can be made, and intelldg=ign is mandatory to simplify and enhance the
computational aspects of the algorithm.

In a last section, these approaches are compadeatanlts are presented.

2. Modeling the manufacturing environment

The setting is a multi-operation job shop, whemmake-to-order policy dictates production. The
model described hereafter is this proposed in Lawtiiret al. (1998).

This highly dynamic environment faces variability different areas. Being an order driven
environment, where individual customers place @ dier a large variety of products independently
from each other, the resulting interarrival procéssstochastic. These individual orders are
aggregated on a product level. Furthermore, eadivitlual order for a given product requires
processing through different machines, following tbuting as described in the bill of processes.
Multiple routings are possible for all products. ®@machine level, both processing and setup times
are assumed stochastic and sometimes subjecturefiquality problems and other disruptions.

In the queueing model proposed in Lambrecht €t1808) all relevant parameters are written as a
function of the lot size. A resulting optimal laze can be found, which minimizes the average
product lead time. The main advantage of this aggrdies in the incorporation of the convex
relationship between lot size and average lead disngescribed by Karmarkar (1987).

The required input parameters for the model areagheinservice times and shop parameters. For
each product, an aggregate arrival process is cieaized by expected demand and the distribution

parameters of the order interarrival time. This edher be an estimation based on demand forecast
or confirmed orders. See table 1 for the definittbthe operational variables.



Indices:
Product index £ ranging from 1 to K
Machine index m ranging from 1 to M
Operation index o ranging from 1 to O

Order arrival variables:

pigt = order interarrival time of product &

i = average order interarrival time of product &

c, = squared coefficient of the order interarrival time of product &
Ak = arrival rate for product &

00: = average order quantity

Q~ = multiplier of the average order quantity

Batch arrival variables:

A = batch arrival rate for product &
I = aggregate batch arrival rate at machine m
L = aggregate batch anival rate of product & at machine m

Processing and set-up variables:

T s = variable for the setup time for operation o of product &

T = average setup time for operation o of product &

52 = variance of the setup time for operation ¢ of product &

Ys = variable for the unit processing time for operation ¢ of product &
Yo = average unit processing time for operation o of product &

5‘) = variance of the unit processing time for operation o of product &
& joom =1 if operation 0 for product & on machine m . 0 otherwise

Table 1: Operational Variables

For every produck, individual orders are aggregated in the arriedééAx . These are transformed

into batches of sizéDQk *Q,, which have an aggregate batch arrival ratedsf. For the first
machine on the routing of product Ry equalsAk / Q.

Each machinan has to process batches from various productsltiresun an aggregate batch
K Ok

arrival ratel, equalingZZ)lbké_kom. This can be seen as the sum of the individuahbatrival
k=1 o=1

rates for all productk that are being processed on machimé-or the resulting variance, we refer

to Lambrecht et al. (1998).

When batches are ready for production, they fadb ketup and processing times. For each
machine m, an aggregate batch processing lifgen can be defined as

i — z |Imkz Atxa—kom(_l_ko_'_ QkOQ« X(o)

where% is the probability that product in front of machimes of product typd, andMﬁ

m mk
is the weighted average of the operatiorm machinem for the same produét For the resulting
variance, we refer to Lambrecht et al. (1998).

An adapted traffic intensityo is proposed, which includes utilization due to bpthcessing and
setups For each machinethis equals to

= ﬂ_ = Z Zabkdkon(T wt Q1OQKXK.



As batches of different producksarrive at a given machin®, a queue is formed, resulting in
waiting times. This adapted traffic intensity isdsn determininge(Waqn) , the expected value of

the aggregate waiting time in front of machime The aggregate waiting timde(Waqy) is

approximated using the Kraemer and Lagenbach-Bgbroaimation (1976), although any good
approximation can easily be accommodated.

Note that on an aggregate level a critical lot siae be found that produces infinite expected
waiting times. ThisQ, is the lowest possible value for the lot size ofieen productk, and
equals the asymptotic left side of the expected teme function. As batch sizes become smaller,
and|_increases, the adapted traffic intengityaises, but cannot exceed Q;, provides a lower
bound for this problem.

The resulting objective function of the aggregatpested lead time in function of the lot size
becomes

K iA k@dkom
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being the sum of aggregate waiting time, waitingatch time and setup and processing time.

Note that the weight AOQ«  demonstrates the relative importance of produaiver all
K

z A0Q

k=1

products.

An optimal lot sizeQ; can be found, which minimiz&W) The minimization problem involves

a non-linear objective function and constraints] aan be solved using a dedicated optimization
routine as described by Vandaele (1996).

A lognormal distribution is assumed for the leaddidistribution, which is used to derive lead
time percentiles for the corresponding customerisetevels.

The main focus here lies with the optimal batcleq produced by the model. This parameter is

the longer term aggregate benchmark for groupinigrarinto manufacturing batches. Within any
real production environment however, orders dodeshonstrate this average behavior, but rather
vary in size and due dates, resulting in deviatimosn this optimal batch size. These deviations
can be optimized, using different methods, and ddferent standards. From a financial
perspective, one can look to minimize related cd3t3m an operational perspective, one can look
to minimize total expected lead times. In addititthre formation of manufacturing batches is a key
input parameter for any short term scheduling syste



3. An IP approach

In this section, an integer programming approadhhbei used to produce an optimal solution for
the grouping problem. Starting from a descriptidrih@ problem, a basic IP formulation will be

given. This general formulation focuses mainly animizing the total number of inventory-days.

The result is a basic formulation, which can beseded to incorporate more information. Related
costs will be briefly discussed. Extensions, whidlcorporate expected lead times, will be
presented.

Let N denote the number of orders that have to be gobuge manufacturing batches. Each of
these orders has a given due dafe, and a given customer order quant®... Another
important input parameter is the required numbesetfipsS.. This parameter can be derived from
the results obtained from the queueing model presiyodescribed.

a:{{ioqﬁ @

k n=1

Rounding down to the closest lower integer valueniebtes infeasible solutions. Table 2
summarizes the calculations using the metal shample. Detailed customer order information
underlying the parameters in table 2 can be foardble 3, section 5.

Product P Product S
Sum of Customer Order Quantities 15 30
Optimal Batch Size Q* 4 6
Real Value of Fraction 3,75 5
Rounding down =S, 3 5

Table 2: Required number of setups for the metap sh

An inventory-day matrix of size (N x N) can be cdited. Note that when speaking of days, this
can be generalized towards any usable time unitcldenote the number of inventory-days that
results from grouping order j with order Kjj), so that

¢ = (DD -DD).0Q @3

Grouping orders takes place on a product levelthsd the indexk can be omitted from (3).
Clearly, when i equals f; will be 0, as the batch will be completed on itedlate, causing no
inventory.

This inventory-day matrix is symmetrical, all cdbtied values can be transposed, sodhatjuals
c; for all sets of (i,j). The objective is to chodbese values of i and j which minimizg given a

fixed number of batches, equalling 8 decision variable matrix; of size (n x n) is formulated.

The objective function becomes:

MinZN:ZN:QJ X% 4

i=1 j=1



with all xj [0{0,1} .

A number of constraints have to be added. A vafuefor x; translates that order i will be ready at
due date j. The starting point for every manufangutatch will be a diagonal element of the
decision matrixx;. Hence, a first constraint will be a restrictiandqual the number of diagonal
elements to S

Every order can only be batched once, resultirggsecond constraint.

Yxi=1 Oi=1,...,n (¢
j=1

The remaining constraints ensure that orders haan Igrouped into manufacturing batches
correctly, this is, chronology is assured. Becatlge inventory-day matrixg; is symmetric by
construction, only one half is needed. For thesestraints, we choose the lower half as basis for
the formulation, while the elements above the diafji@lements are being equaled to 0, resulting
in a lower triangular matrix. An equivalent constian can be formulated when solving the
problem, resulting in an upper triangular matrix.

Furthermore, an order can only be assigned totaisdvatch if the diagonal elemeqtequals 1.
This results in

Yx=0 0Oj> Oj=1.n
= )

i<y Oi,j=1,..n

The result of this basic formulation is a minimieat problem, delivering the lowest possible
object value, given the order parameters and thapeu of batches required.

Related cost levels will not influence the groupprgblem. The number of setups determines the
level of fixed costs, which are equal for all fddsisolutions for each produkt Any feasible
solution will have a total number & batches, resulting iIg*Cg for the fixed setup costs,
however,C will differ between productk. Variable costs@,) such as inventory holding costs
also do not influence the problem at hand, wheaorasgy a linear function. The IP problem which
minimizesCi*(Cix;) + S*CsWill forward an identical optimal solution for tHB problem which
minimizes (cjx;), when Cy, Csc and S are considered fixed or linear for every prodkcthis
conclusion does not hold when assuming a non-lifigaction for the inventory holding costs.
Other functions, such as step-wise increasing bkrieost function cannot readily be solved using
IP.

Because of this cost-independency, the resultihgevaf the object function can be viewed as the
amount of days needed to deplete all manufactupaighes. This optimal solution yields the
lowest cost level, and minimizes stock cycle time.



Although the optimal batch size produced by theugireg network is incorporated into this
approach by means &, any deviation from this is not taken into accolNh guarantees can be
made to ensure the manufacturing batch sizes peddoy this approach have a minimal deviation
from S.. The resulting average value of the manufactubiaigh size will be close or equal @,
however, deviations can be substantial. Small leatehill be equaled out by large batches, but
deviation is not punished, the resulting variaree loe large.

At an aggregate level, this approach can even pmthfeasible batch sizes, which viola@éﬁ ,
being the lowest possible batch size at an aggrdgae!.

This problem can be addressed by incorporating at&gelead times for every produktin the
formulation. Choosing a batch size which deviatesaty from Q,: will result in longer expected

lead times. To ensure identical dimensions, thersibn must be formulated in inventory-days.
This can be observed in figure 2. Here the progséssmanufacturing batch, which combines four
orders, while facing three operations can be siete that the black surfaces represent expected
waiting times prior to any operation.

Units

DD:  DD: DDs DDs  pays
f |

Batch setup and processing Batch depletion

Figure 2: Processing and depletion of a manufagjuratch

As the dimension is inventory-days, the observedev&quals the surface of the above figure,
which multiplies days by units. This can be dividet two separate sections. The batch setup and
processing section constitutes of the rectangldigare 1. This surface is the size of the
manufacturing batch times the lead time of the rfasturing batch. The batch depletion equals

|
the total number of inventory-days needed to depdetmanufacturing batch of sizE OQxn,

given the corresponding due dates of the orders.

Incorporating the lead time poses different prolslerihe main problem can be found when
observing the aggregate expected lead time, wheomex relationship can be seen, as described
by Lambrecht and Vandaele (1996). This non-linescfion cannot be dealt when using an IP
approach. The problem, however, is quite diffex@mén observing the function on a product level,
given expected waiting time restrictions. Let thxpexted lead time for a manufacturing batch of

J
size ZOQm, which groups orders i through j, be written as

n=i

EW)s =Y. BWa( Q)diont T,+(3 0®) X ®



For every operation in the routing of produdt, the sum is made of the waiting time, setup time
and processing time. A first extension will use #@ggregate optimal lot siZ@" in regard with the

J

aggregate expected waiting time, rather than theahbatch sizez 0Q,,. A constant term will
i=1

be added for all manufacturing batch sizes.

Using this constant expected waiting time for atdhn sizes, a linearly evolving function can be
approximated. Incorporating this additional paramerimarily discourages the use of small
manufacturing batch sizes, or encourages the usgantifacturing batch sizes equal to or higher
than the average vali@. As the number of batch& is a hard constraint, one-sided elimination
of extreme manufacturing batch sizes (either lowigh, as compared to the aggregate optimal lot
sizeQ’) will result in a decreased manufacturing batce siariance. The formulation is expressed
in the main decision parameters of the IP formaigti and j. Using this formulation, a nearly
linear evolution can be observed for the batch psetind processing surface, equaling

|
(z OQu)* HW) ij, expressed in inventory-days.

n=i

The new objective function becomes

Min3’ >’ [(DDi-DD) . 0Q,+(Y, 0Q)* KW X (9)

i=1 j=1

Although E(W)ij is an additional input parameter, it varies withues of i and j, and can be found

by using the model described in section 1. The tcaims remain identical as in the basic
formulation. It has to be noted that (9) again ésjaamatrix of size (N x N). It is the sum of two
different matrices of sizes (N x N), first the HBatepletion matrix; from the basic IP formulation
and secondly the average lead time matrix.

This extension produces the total amount of inugndays that are needed to setup, process and
deplete all customer orders, giving a fixed numbérmanufacturing. Using this extended
formulation results in an improved solution for ttpe@uping problem, as the total manufacturing
batch size variance is reduced. This lower varidrargslates as a reduction in total aggregate lead
time for all orders, given tha* minimizes expected lead time. Results will be uised in
section 5.

A second extension on the basic model uses vagppgcted waiting times rather than a constant
term, as in the first extension. As this would tesua non-linear function, IP cannot be used. The
main problem when using IP formulations remains, ithpracticability of using parameters that
display a non linear function, a problem which baraddressed using dynamic programming.

4. A dynamic programming approach
Dynamic programming algorithms can deliver an optisolution if properly formulated, while
taking much less computational time. Therefore, gheblem more often lies in formulating the

different stages, state and decision spaces, rdtherthe complexity of the problem itself. Perhaps

8



the biggest advantage for this setting is the ipo@tion of non-linearly evolving parameters. In a
first section, a basic formulation is given, simit@ the basis IP formulation. Extensions are
possible, and follow a similar structure as theféPmulation. Both the constant and varying
expected waiting time extensions will be discussed.

Dynamic programming breaks up an optimization pFoblof a sequential decision process into
smaller and better manageable sub-problems, whiehliaked through the formulation and
recursion, and have to obey Bellman’s Principl®©ptimality (1957). The batch grouping problem

has a total number (ETN -1} feasible solutions.
S -1

Recursion links the different decisions to be maate] is realized by implementing forward or
backward procedures. Due to the nature of the prnopéither of these can have advantages over
the other. When considering the grouping problefmaaitd, forward and backward recursion result
in equivalent formulations and identical computa#ib time needed. For this work, forward
recursion is chosen.

Definition of the stages and states is needed régfesenting a formulation. Stages represent the
batches that are formed, and will equal the totahlmer of batches needed, hence equding
When stages are represented this way, the diffetatés a stage can assume represents the choice
what orders have to be grouped into a manufactusaigh. Chronology must at all times be
maintained, this is, the batch that groups oraeesd n+2 must also include ordar+1. When
entering a new stage, this requires knowledge @fipus decisions, this is, what orders have been
grouped so far. A stage will be represented bybaets, whereS is the set of the orders that have
been grouped after having reached a decision &gesf so thaS, I N. Because of chronology,

the sequence of orders must be respected, hencéset& can be identified by one single
parameter, being the last orderAs more batches are formed, and s incre&easeadily grows to

eventually coincideBl when the last stage has been decided upon, s6§khat N.

The basis for calculations is identical to the dRvfulation, but will be formulated &g rather then

cj. It remains the difference in due dates, multgply the order quantity of ordgrAs stated, the
formulation uses forward recursion, and a distorcthas to be made between the first stage, and
stage2 to S..

For s=1:
f.(t) ={c, }
Where t = ,N-S 1
with subset §— 11t
(10)
For 2<s< §:
fs(t) = rnin{Cu+1,t + fs—l(ts—l)}
Where u+1<t<N - § + s, U being the last order in subsg S
with subset S={1, }t



This approach of course renders identical resudtsthe IP formulation. The computational
complexity equal©(N’S). The curse of dimensionality remains. The numligrogsible states for
every stage grows rapidly, reducing the usabilftyhes formulation. This problem can be tackled
using different methods which will be discussedéugtion 5.

This basic formulation can be extended to incorf@oaay parameter. Restrictions on the function
of included variables do not impose for dynamicgpaonming formulations. Introducing step-wise
variable inventory holding costs can be realizagedr setup cost remain the same for all feasible
solutions and can be left out.

Identical extensions can be realized to incorpaaaerage lead times. The formulation becomes
For s=1:

f,(1)= {q,t +(2 00" BW) }

Wheret=1,...,.N-S§ 1
with subset S={1, }t

(11)
For 2<s< §:

fs(t) = min{|:cu+l,t + (i_ OQ(n)* H V\o ij):| + i—l( E—l)}

Where u+1<t<N — § + s, u being the last order in subsg S
with subset S={1, }t

Using the IP formulation, the expected waiting timas reduced to an aggregate constant term,
using the waiting time at optimal batch siQe to ensure linear behavior. This requirement does
not hold when using dynamic programming. A morefquod extension allows the expected
waiting time to evolve with the manufacturing basike, corresponding to the original convex
function with a minimum aQ*. As the average must be maintained, and the cofwsction
discourages use of extreme batch sizes, the efitdie stronger then the linear average lead time
function. We refer to section 6, where results dldiscussed. The formulation of (1) becomes:

E(W); =Z_k; E(Wq(zj_; OQ))5k0m+_g;+(2 0Q) % (12

5. Algorithm improvements

Using dynamic programming can lead to reduced ceatjomal efforts. Much however depends

on incorporating the problem specific charactassstising the solution procedure. In this section a
short description is given of the algorithm implenaion. Furthermore, some add-ons will be

discussed which will not only enhance the algorittbut also reduce the computational time

needed to solve the problem at hand, by dominadionihating excessive feasible sets. Finally, the
impact of these add-ons on the efficiency of tlypalhm will be presented and discussed.

10



Although this problem can be coded in different syag short description may prove useful in
helping to understand the discussed add-ons. Folipthe problem formulation, two main
features can be identified. A first feature sténes algorithm, and produces all possible setsier t
first manufacturing batch, being the first stageré{ grouping of ordersthroughN — S, + 1 can
take place. Within this feature the actual recurgart is called. This recursion feature is basical

a selection routine. Depending on the values ofrtbeming parameters, a distinction can be made

between a normal stagsm{Z; S —]} ) recursion, which performs all necessary caloutast and

recalls the recursion using increased parametezdast stageg= S) recursion, which performs
all necessary calculations and compares the cédculabjective function value to the current
minimum, and an abortion routine, which ends tleirgon when an infeasible set of parameters
has been detected. The used parameters are tlerdersi andj that are being grouped, the stage
number and the value of the objective functionhé$ point in the recursion. A normal stage
recursion typically consists of a loop, which réxahe recursion for all possible sets that group
ordersu + 1 throughN - S + s.

Infeasible sets are produced by a combination fd#agible parameters. Two extremes can be
identified here. Either the last stage has beechesh but does not group all orders, or all orders
have been grouped prior to the last stage decigiom.second extreme is countered by restrictions
in the loop of a normal stage recursion, whichvediall possible sets up té— S + s. The first
extreme parameter set is dealt with by the abontmrine. However, by including a selection
within the normal stage recursion routine, it ceralboided to reach the last stage prior to allrsrde
being grouped, basically rendering the abortiorineuobsolete. This selection makes a distinction
between stage® throughS, — 2, which functions as described above, and sg&gd, which will
forward the manufacturing bat¢h+1, N), u being the last order batched in st&el, as the last
stage decision. This will exclude all recursiorat thre caused by infeasible sets.

Many feasible solutions will produce an object ealfiar greater than the optimal solution. A
simple example would be batches of one order, dimhbbatch that groups ordelks- S through

N. Although feasible, this set will produce a lakggiance, given its extreme manufacturing batch
sizes. Typically, any dynamic programming routimdyoverifies the calculated object value after
all stages have been decided. A selection routitledetermine if the object value of the last
feasible set is lower than this of the current Istvebject value, given a minimization problem.
Incorporating this current lowest object valuethie recursion will eliminate a great deal of these
extreme feasible sets. As the recursion routineeigges a loop consisting of the possible states
within a stage, it can be stated to allow furtregursion only if the object value of the subset at
this point is lower than the object value of therent optimal set. When this condition is falsesit
stated that all feasible sets that incorporatecthieent subset are dominated by the current optimal
set. No feasible set that consists of this subdepmduce an object value lower than this of the
current optimal set, and therefore is excessive.

Another aspect of intelligent design lies in themrmé&ation. Calculations made on all batches
throughj are written in a map. Prior to any calculations timap is investigated, and results in the
elimination of recalculations. All subsequent calls not need to be recalculated, but are taken
from this memory. Introducing this aspect in thatiees will greatly reduce computational efforts,
as some batches demonstrate a high call rate.

11



The combination of these above steps result insteffasolution procedure, that arrives at the
optimal value without having to calculate all fddsisets. Table 3 summarizes the results. The
three major add-ons that were discussed will bermedl to as (a) making the abortion routine
excessive, (b) including the object value of theirogl solution in the normal stage recursion
routine and (c) the memoization. For reasons ofpaoison, a basic model was formulated, which
allows all possible values for the parameters. iBlessalues here refers to all values betwéen
and (N — last order batched +)swithin the normal stage recursion routine, asgribed by the
formulation. This will be the benchmark. Teller idnles were added to the different routines in
the recursion, and will be used to discuss the anpé the add-ons. The extended formulation
including the varying aggregate expected waitingetivas used.

Basic Model (a) (a) +(b) (a) +(b)+(c)

Number of 19 15 13 13

called recursions 4367 2365 995 995

Number of 4 0 0 0

recursions aborted 2002 0 0 0

Number of last 5 3

stage calculations 1001 1001 387 11

Total times

v v v v v v v o
@
@

memory accessed

Table 3: Impact of add-ons

It is clear that the impact of minor changes of #hgorithm on a coding level can enhance the
operation of the solution procedure greatly. Baethgnd (b) allow for a reduction in computational
effort by reducing excessive feasible sets. Theachpf (c) lies in the reduction of the amount of
calculations. The impact of these enhancementssajgickly with values o andS,, being low

for small sized problems, and high for moderatediproblems. For product P, small sized
problem (N = 5, S = 3), a reduction in computational effort was fdusf 30%. For product S, a
moderate sized problenN(= 15, S = 5), a reduction of close to 80% was obtained by
implementing these add-ons. Note that the final nowable 5 shows the number of times the
memory is accessed by both the last stage and hatege recursion steps. The number of
calculations made in the last stage recursion, whgnducing all three changes is an absolute
minimum. For any problem wheid¢ orders have to be groupedSamanufacturing batches, there
existN — & + 1 feasible solutions for the last manufacturing batc

6. Results

After having presented the used data, an overviéiwbe given of the result for the different
approaches, both IP and DP. Finally, results ottting add-ons will be presented.

The data used in this paper originates from Laniiiret al. (1998). Here, the mathematical
queueing model is implemented on an example, alsnethl shop, for numerical illustration of
the different steps within their proposed procedAsestated in the above, input parameters consist
of demand, service times and shop parameters. tft®rpaper, only the demand in terms of
customer orders is relevant. The example is basednmo products, P and S, and the order
information can be found in table 4. All other pagders are implied by the optimal lot siQe,
which minimizes the aggregate lead time, as cdledlay the queueing model in Lambrecht et al.
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(1998). Indices for the metal shop use P and Sadupt indices. The machine index ranges from
1to 3, @ranges from 1 to 3, &anges from 1 to 2.

Product Q’ Booked orders
Order number 1 2 3 4 5
P 4 Quantities 1 5 3 2 4
Due dates (days) 22 28 37 41 44
Order number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S 6 Quantities i3 2 3 1 1 3 2 3 1 2 3 3 1 1

Due dates (days) 17 18 19 22 24 26 27 30 33 34 35 36 39 42 44

Table 4: Demand characteristics of products P and S

Order numbers will be used to indicate what ordhenge been grouped. E.g. manufacturing batch
(1,4) equals the batching of orders 1 through 4calculations of;;, used in both the IP and DP
approaches, can be made based on information fauatle 4.

For both extensions using the expected lead tinoee nmformation is needed. Routing information
is needed, along with setup and processing tineestable 5.

Product Operations Machine  Setup Average Processing Average
Cutter 20 30
P 3 Grinder 20 10
Lathe 24 12
Sum 64
) 2 Lathe 16 8
Grinder 20 10

Sum 36

Table 5: Production characteristics of productsi®® @ (in hours)

The information found in the table above is usedalzulate average setup and processing times
for every manufacturing batch size, as stated jn @ average, a batch of product P needs 64
hours for setup, and a batch of product S need®86s for setup, as setup times remain constant
through all manufacturing batch sizes. Processingd increases linearly with batch size.

A first extension incorporates a fixed waiting timey adding a constant term (equal to the
expected waiting times at optimal batch size lefet)all manufacturing batch sizes. A second
extension uses waiting times that vary with the uf@acturing batch size.

For this purpose, waiting times were derived fromuauing model that uses approximations as
described by Whitt (1993) in order to obtain aggtegexpected waiting times for every machine,
given batch arrivals. To obtain waiting times pesdact, these have to be redistributed towards all
products that face the machine on their routingights used for this redistribution to the product

level are those proposed in Lambrecht et al. (1,998ng % the probability that a randomly

m
picked product in front of machina is of product typek. This weight is derived from the batch
sizes, and will be constant, as here the optim#&thbaize is assumed throughout all possible
manufacturing batch sizes. Results for this cafobad in table 6. The aggregate batch arrival rate

on machinem for productk, |, equals; for product P andifor product S.
144*Qp 48*Qs
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Machine Expected Waiting Time 1 mp 1 s ' Waiting Time Product P Waiting Time Product S
Cutter 4,24 0,0017361 0,0034722 0,0052083 4,24

Grinder 110,93 0,0017361 0,0034722 0,0052083 36,98 73,95

Lathe 46,15 0,0017361 0,0034722 0,0052083 15,38 30,77

Table 6: Fixed Waiting Time Redistribution (in heyr

Waiting times for product P add up to a total ofébBours, or 2,36 days, and for product S to a
total of 104,72 hours, or 4,36 days. This fractialgpng with setup times, remains constant
throughout all manufacturing batch sizes, as tlegyasent waiting times at optimal conditions, and
iIs independent of the batch sizes of both produciarfd S. The resulting function of

J
(ZOQm)* HW) i can be viewed in graph 1, which is the produdinaf linear functions. Note

n=i
that in graph 1 all batch sizes are possible. Alghoexpected lead time is viewed on a product
level rather than an aggregate level, this doesalatys hold. Basic restrictions such as machine
occupation still apply, and may result in a loweubd on the product level. In general, the lower
bound will shift towards the vertical axis, whenmgmaring expected lead times between aggregate
and product level, resulting in a higher numbepos$sible manufacturing batch sizes. However,
this does not consolidate the statement that atlufaeturing batch sizes are possible.

Product P Product S
w300 £ 200
g 9
2 * 2 175 *
= 250 =
g . § 150 *
g 200 - £ 125 *
= £ *
150 r 100 *
75 L
100 * *
* 50 >
50 # s ®
25 &
* * * *
0 * 0
0 2 4 6 8 10 0 2 4 6 8 10 12
Batch Size Batch Size

Graph 1: [Expected Lead Time x Batch Size] for jpcid P and S

A similar approach is used when facing waiting sntieat vary with the manufacturing batch size.
However, when using this approach, expected watimgs have to be viewed on an aggregate
level, resulting in the typical convex relationshimd a minimum a®™™. On an aggregate level
waiting times are the result of the interferenceuwiving batches of all producksfacing machine

m on their routing. In order to deduct the influermrethe aggregate waiting time of one product,
we let the manufacturing batch size (and the cpareding batch arrival rate) of this product vary,
while keeping the manufacturing batch size of alleo products fixed at their respectiGe.
Weights used to redistribute the aggregate waitimg are identical to the fixed waiting time
approach. The results can be viewed in graph 2doying values of the batch size for product P,
and graph 3 for varying values of the batch sizepfoduct S. Note that in these gragfé' is the
lower bound on the horizontal axis, resulting inaasymptotic behavior on the vertical axis. Graph
4 demonstrates the resulting values of the produExpected Lead Time x Batch Size] for both
products.
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Waiting times for product P, varying P, constants Waiting times for product §, varying P, constant s
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Graph 2: Varying waiting times for products P anith 8inction of batch size of product P

. Waiting times for product P, constant P, varying S . Waiting times for product S, constant P, varyings
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Graph 3: Varying waiting times for products P anith 8inction of batch size of product S

Product P Product S
300 130
160 $
250 *
140 &
200 * 120 ry
* 100 L ]
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Graph 4: [Expected Lead Time x Batch Size] for jpcid P and S

The convex relationship can clearly be seen in godiphs 2 and 3, for the product with the fixed
batch size. As waiting times are much higher fomlérbatches, the trend will shift towards
choosing batch sizes close to the average valuehws a hard constraint incorporates the optimal
batch size. The final result is a decreased matwfag batch size variance. The impact of
including varying waiting times rather than a fixediting time for all batches, can be seen when
observing graphs 1 and 4, which represent the dinst second extensions of the basic model.
When observing the difference in inventory-daysais value) for all batch sizes between these
graphs, it is noted that this difference is neblgiaround the optimal batch size for both products
but increases when observing manufacturing batets $ower tha® .

The results for all approaches can be found iretdbModel (1) is the basic formulation, model (2)
the fixed waiting time formulation and model (3gtharying waiting time formulation.
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Model  Approach used Grouped Orders Corresponding Batch Sizes = Q . Resulting Variance
(1) IP, DP Product P: (1) (2) (3,5)
Product S: (1,3) (4,6) (7,8) (9,12) (13,15) 6,

9 35
2) IP, DP Product P: (1,2) (3,4) (5)

Product 5:(1,3) (4,6) (7,8) (9,12) (13,15) 6
(3) DP Product P: (1,2) (3,4) (5)

Product 5: (1,3) (4,6) (7,8) (9,11) (12,15) 6

Table 7: Results of the different approaches
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As can be observed, the basic model can proposelasye or very small manufacturing batch
sizes, resulting in a large variance. Improving ttmodel by incorporating the expected lead time
greatly improves the quality of the provided salati Including varying waiting times further
reduces variance, and manufacturing batches aeénebtthat proximate the optimal batch size,
resulting in the lowest possible expected lead.time

7. Future research

In this, a model and extensions were proposed ghatp realistic orders into manufacturing
batches, given certain requirements based on épeahstandards. The main contribution lies in
the incorporation of aggregate operational perforteameasures to ensure optimal grouping on a
product level. However, using the DP approach, resites can also be made to incorporate
different costs, using the dynamic programming fihancial aspects. Any cost function can be
added to produce an optimal solution that rendeesldowest cost level. An ideal solution will
combine both the operational and financial aspect.

Customer order information was at the basis of calculations. In any realistic planning
environment, timelines are often divided into pdsioHere, only one period was assumed. A next
step would involve a multi-period grouping problenhere orders at the start and the end of any
period can be shifted to a previous or sequentebg, if total variance of the manufacturing batch
size over all periods is reduced, on a productleve

References

Bellman, R. E. 195™ynamic ProgrammingPrinceton University Press.

Bellman, R. E., S. E. Dreyfus. 1971. Applieghamic programmingPrinceton University Press.

Buschkihl L., F. Sahling, S. Helber, H. Tempelme@ynamic capacitated lot-sizing problems: a clésaiifon and
review of solution approache®R Spectruml0.1007/s00291-008-0150-7.

Karimi B., S.M.T. Fatemi Ghomi, J.M. Wilson. 2003hd capacitated lot sizing problem: a review of nedmnd
algorithms.Omega 31:365-378.

Karmarkar U., Lot sizes, lead times and in-prodegsntoriesManagement Science. 33, 409-423.

Kraemer W., M. Lagenbach-Belz. 1976. Approximatenfolae for the delay in the queueing system. GLGI/
CongresshoagkEight International Teletraffic Congress, Melbaa285-1/8.

16



Lambrecht M., N. Vandaele. 1996. A general appration for the single product lot sizing model witjueueing
delays.European Journal of Operational Research, 95 (Nay, J{3-88.

Lambrecht M., P. Ivens, N. Vandaele. 1998. ACLIPScapacity and lead time integrated procedure foedaling.
Management Science, 44(11 — Partl), 1548-1561.

Vandaele N. J. 1996 he impact of lot sizing on queueing delays: nuitiduct, multi machine modelBh.D. thesis,
Department of Applied Economics, Katholieke Univieis Leuven, Belgium.

Vandaele N., M. Lambrecht, N. De Schuyter, R. Cremym2000. Improved lead time performance at Spic#r O
Highway.Interfaces30(1), 83-95.

Whitt W. (1993). Approximations for the GI/G/m que&roduction and Operations Management, 2, 114-161.

17



	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	Grouping of customer orders into manufacturing batches

