

���������	��

 �
 �
�������� �����
������ �����

De Causmaecker P. , Demeester P., De Pauw-Waterschoot Ph. and Vanden Berghe G.2
KaHo Sint-Lieven

Gebr. Desmetstraat 1
9000 Gent
Belgium

1 Part of a project supported by the IWT of the Flemish Government. Official title of the project: "Development of Object-Oriented Agents

for Distributed Planning Systems."
2 E-mail: { patdc, peterdm, phildp, greetvb}@kahosl.be

����� ���������
We describe how the use of agents in a lab planning application
can improve the satisfaction of the users (in this case teachers)
when a lab session has to be rescheduled. Regular lab planning
software only takes into account the so-called hard constraints
and sometimes proposes solutions that are not satisfactory to
the teachers involved.
 ��� !�" # $ %

: agents, dynamic lab session planning, contract net
protocol, blackboard mechanism.
&(')�*,+�-�.�/�0�*,' -�)
The goal of this paper is to show the usefulness of the intelligent
agent’s paradigm in the design and implementation of planning
systems, more specific the planning of lab sessions in a
polytechnic. Intelligent agents facilitate the formulation of the
problem and also help in finding more satisfactory solutions for
the parties involved. Agents are also tools that allow for the
building of flexible and user-friendly software systems. Agents
can represent the human users and defend their interests. They
can be configured manually or built on experience to negotiate
with other agents or users. In this way, sensitive information
about the user’s availability, willingness, feelings… need not be
published at system level to be useful. The use of agents in a
planning application can enable the system to use hidden and
non-explicit information. The framework which has been
developed will allow for agents to build a model of its user and of
the system in which it is functioning. This model can evolve with
time, and include former decisions and their evaluation. The
model need not to be explicit, it can be represented by hidden
variables and constraints, only to be interpreted by the agent
himself.
132�4�5 6�7�8 9 :,8 ;�<=;�>�:,?�4�5 @�AB9 C�4D9 7�;�E,C�4 A
1 F G39 H I J K L M�N O P O L MQL R O

The example we have chosen to demonstrate the above-
mentioned characteristics of agents is the dynamic planning of
lab sessions in a polytechnic. It exhibits the possibilities of an
agent approach in situations where negotiations between users
are necessary. Anybody working at a university or a polytechnic
has encountered the problem: the central scheduler carefully
constructs a schedule for the lab sessions, however now and then
during the academic year it happens that a session cannot take
place (due to unforeseeable events such as illness of a teacher,
unavailability of a lab room), and this session has to be
rescheduled. The adaptive planning of lab sessions is a hard
problem in the sense that it needs fast decision taking, involving
many parties that cannot be contacted immediately. The central
(human) scheduler knows from experience how (some of) the

teachers will react on a rescheduling of the lab sessions and he
can anticipate their reactions. He typically will select those
possibilities with which he makes a chance of success when he
starts negotiating with the teachers involved. When trying to
automate this process one can incorporate agents in different
ways. S T SVU�W X Y Z Y [Y \ Z] \ X [W ^ _`] a] W b�Y Z�[c W�W d e _`f g W

To avoid confusion we first give our definition of the terms used
in this article. Most of them are quite obvious, but some can have
ambiguous meanings. hji�k l`k l m n	o p�n l q m r s tQl u s is the person responsible for the

daily operation of the department. One of his tasks is to
make sure that the students can attend the lab sessions in
optimal conditions. vjw�x y{z y | } ~ � ��� z x y � � � y ~ is the person responsible for
constructing the lab session schedule: quite often this is
done during the holidays. ����� � �Q� � � � is a room where a lab session can be held. One
lab room can hold a maximum number of students and has
specific facilities. ����� � �`�Q� � � � is a morning or an afternoon of a school day
where one can hold a lab session. ���{� � �B� � � � � ¡ is a time slot with practical exercises on a
specific subject. ¢�£�¤ ¥ ¦ § § is a group of students who attend a lab session
together.

¨ª©�«�¬ ­�®�©�¯�°�±�² ®�¬,°�®,³�¯�¬
¨ ´ µ¶©B·�¸ ¹ º`» ¼ ¸ ½ ¾ » ¿ À Á ¾ Â

It is not a simple task to explain the agent concept. There are as
many definitions of what agents are as there are agent
researchers. Most agent researchers agree that software agents
(minimally) have the following properties: Ã they act autonomously; Ä they are reactive; Å they are pro-active; Æ they run continuously.
In [1] there is comprehensive list of the properties that relate to
agents: autonomous, interactive, adaptive, sociable, mobile,
proxy, pro-active, intelligent, rational, unpredictable, temporally
continuous, character, transparent and accountable, coordinative,
cooperative, competitive, rugged and trustworthy. In the same
green paper [1] the authors give a possible definition of a
software agent: "a software agent is defined as an autonomous
software entity that can interact with its environment".
Some researchers even discriminate between intelligent and truly
intelligent agents when they have some of the above properties
and some additional ones, like the possibility to learn,

communicate through a natural language, … For a comparison
between the different definitions of agents, see [2]. In this paper
we use a notion of software agents as programs that act (or do
something) on behalf of their human operators. Ç È ÉËÊ Ì Í Î Ï Ð Ñ Ò Ó Î Ô Õ Ï

Most agent-oriented approaches focus on an interface agent: a
simple agent with simple knowledge and problem solving
capabilities, which has information filtering as primary task
Centralised approaches like this have some shortcomings. Such a
global agent quickly accumulates an enormous amount of
knowledge needed to execute its tasks. It becomes a bottleneck,
and supplementary tasks will require a lot of programming work,
bypassing one real reason of existence of agents.
To overcome this problem researchers from the Carnegie Mellon
University developed Retsina [3]. They introduce three types of
agents: interface, task and information agents. Ö × Ø × Ù�Ú�Û Ü Û Ý Þ ß à Û á â Ü â ã â ä Ü
åjæ ç è é ê ë ì í é�ì î é ç è ï receive input from the user and

display the results. These agents obtain and use the
preferences of the user to represent him in the system. ðjñ�ò ó ôõò ö ÷ ø ù ó can execute a task: results are
communicated with interface agents or with other task
agents. Information that is needed can be found through
an information agent. újû ü ý þ ÿ ��� � � þ ü�� � � ü � � provide an intelligent access to
sets of information. They assist in searching
information. The information agents search information
for interface agents as well as for task agents. 	 We now introduce these agents in our problem domain.
 � � � ��
 � � � � � � � � � ��� ��� � � � � � � � � � � � � � � � � � � ��� ��� � � ��� � � � !

"$# % & ' () * + ',* - ' % & . are the closest to the user. They
interact with the user. They need a model and use the
preferences of the user to take decisions on his behalf in
the system. These agents can be seen as the
representatives of the user in the system. An example of
an interface agent is an agent that represents the teacher
in the system: only the agent knows the correct user
preferences and tries to take them into account when
negotiating about rescheduling a lab session. /$021 3 451 6 7 8 9 3 formulate plans and execute them. They
have some knowledge about the task domain. For
example, a task agent tries to find an available lab room
to accommodate a lab session. :$; < = > ? @�A B C > <DA E F < B G give intelligent access to a
heterogeneous set of information sources. They find
information to respond to queries. For example, an
information agent searches through the existing lab
session planning.

We can conclude that an agent comes in three flavours: interface,
task and information agents. These agents inherit from a super

class Agent and can make other agents (see Figure 1). H I HKJML N O L P L Q R S R T U Q�U V S W R U O P X YZS [L Q R P
In this sample problem, the actors are: the central scheduler, the
head of department and the teaching staff. We provide each of
them with an interface agent that can be configured, on the one
hand to defend their personal interests as good as possible, on the
other hand to make the system function better. When involved in
decision-making, these agents first try to contact their actor and
if this does not succeed they decide autonomously. When an
actor is in front of his monitor his agent first tries to contact him
with a pop-up window that appears on the actor's screen. The
agent can ask the user to assist him in making a decision. If the
actor however is not at his monitor since he has to teach a lab
session for example his agent can decide autonomously.
Autonomous decision-making is subject to configuration by the
actor.
\^] _a`Zb�`Zb c�] dfeMd�gad�h2`Z] ijd k�b
\ l monMp q rZs t q u v r q w q x y z {�q u v p y | v }�s ~ q
The program is developed in CORRELATE [4], which is short
for Concurrent object-ORiented REflective LAnguage
TEchnology. It offers extensions of C++ and Java for distributed
applications. It was developed at KU Leuven (Belgium) as an
academic study object: it supports autonomous objects and a
metalevel architecture. CORRELATE emphasizes a complete
separation between the functional and the non-functional
demands of an application. Functional demands describe what
the application has to do to solve the problem. Non-functional
demands are characteristics that an application has to have but
that do not belong to the problem domain: these involve for
example distribution, fault tolerance and security.
A CORRELATE application consists of a set of concurrent,
interacting, active autonomous objects. The CORRELATE
Object Model offers a logic view on a CORRELATE application
and consists of five concepts: � Active objects � Autonomous behaviour � Synchronisation � Object interaction � Object creation and destruction � � �K�Z� �2� � � � �
With this project we tried to reach the following goals: � demonstrating the use of agent technology in a scheduling

environment. Agents can be used to represent the teachers
in a lab session schedule: these agents try to take into
account the teacher's preferences as good as possible. To
obtain the same result in a classical scheduling program you
probably would have to introduce some strange parameters. � developing a test case for CORRELATE. The
CORRELATE environment itself is an academic (non-
commercial) prototype and this project was a test case for

Interface Agent

Agent

Task Agent Information Agent

Figure 1: UML representation of an agency

the developed software to see if it would give good results
in bigger multi-agent applications. � showing that agents can be useful in software engineering.
We also wanted to proof that agents provide a good model
for larger software engineering projects.

�^�M���a���2�Z� ���5���a�5� �M� � � ����� �a�� Z�M�M¡
� ¢ £o��¤ ¥ ¦�§ ¨ ©
Let us start with a situation from real life: teacher A, who is ill,
phones on a Wednesday morning the department’s head (DH)
and tells him that he can not teach his lab session. This means
that the lab session that this teacher was going to teach that
afternoon has to be rescheduled to another (later) date. It is the
responsibility of the DH to find a solution for this problem. The
DH informs the central scheduler who collects some alternatives.
This central scheduler works basically in two steps. First he
searches for possible solutions to the problem, i.e. solutions that
satisfy the hard constraints (see further). In a second phase, he
filters out the solutions, of which he knows in advance (from
years of experience) that they will not make a chance of success
when proposed to the teachers involved. This means for example
that, if the central scheduler has a possible solution that involves
teacher A and a teacher B, but if he knows (from experience) that
teacher B cannot stand teacher A, he can predict that teacher B
will refuse to switch with teacher A and this solution will thus
not be selected. The teachers evaluate the alternatives that
concern them, and tell the central scheduler whether they want to
co-operate or not. They will base their decision on essentially
private grounds. A teacher C who is asked to switch his lab
session of Friday morning with the lab session of teacher A on
Wednesday afternoon can tell the central scheduler that this is
impossible since he promised his wife to take care of the kids. So
the interpersonal relations play an important role. It takes a rather
experienced central scheduler to adjust the lab planning in such a
case.
 ª
« ¬K­ ® ¯ ° ® ± ²,³ ´ µ ´ ¶ ¯ · ²�´ ¸ ¹

The lab session program that we worked out tries to take into
account that teachers have their own preferences about the time
slot they want to teach. For example there are not many people
who want to teach on Friday afternoon or on Monday morning.
Each teacher has his own agent (this is the so-called interface
agent) who represents him in the system, only this agent knows
about the preferences of his owner.
Since we have agents that have to communicate with other
agents and users, we experimented with two kinds of negotiating
protocols. In the first possibility we used the blackboard
mechanism, this mechanism mimics what happens in real life,
and as a second possibility we tried the Contract Net Protocol
(abbreviated to CNP). º » ¼ » ½¿¾MÀ Á Â Ã Ä Å Á Æ Ç�È�É Â Ê Á Ë Ì Í È

We can use the above example to show how the first version of
the developed lab session program works. When the ill teacher
warns the DH that he is unable to give his lab session, the central
scheduler looks for a solution. He starts the search algorithm that
only takes the hard constraints into account. This results in
‘correct’ solutions generated by the algorithm, but not all
teachers involved in a particular solution are equally pleased.
This is due to the fact that the solution doesn’t take into account
the soft constraints - the personal preferences of each teacher.
Hence the two steps are: first the search algorithm generates
some solutions and afterwards the teacher agents involved
discuss about those solutions. Î Ï Ð Ï Ñ Ï ÑfÒZÓ Ô Õ�Ó Ö Õ�× Ø Ù Ú Û Ø Ö × Ú Ô Ó Ü Ö Ú ×
The hard constraints must be fulfilled. Our hard constraints are: Ý One teacher can only be in one lab at the same time. Þ In a lab only one lab session can take place at a time. ß A student can attend only one lab session at a time. à Each lab room has a limited capacity. á Lab rooms are in general not equipped to accommodate all

kinds of lab sessions (we call this equivalence, E). Every
lab session X has an ideal lab room Y where a lab session
can be held in ideal circumstances without making any
adjustments. Other lab rooms Z are totally incompatible to
accommodate a lab session X. We visualised this in some
kind of matrix (see figure 2), which we called the
equivalence matrix. The rows represent the lab sessions and
the columns represent the lab rooms of one department in
our polytechnic. The couple (lab session, lab room) that is
preferable is on the diagonal of the matrix. This is an ideal
couple and no changes are necessary to accommodate the
session in the lab room. Lab rooms which are totally
unsuitable are indicated by a high cost (default is 1000).

The algorithm will impose these hard constraints.

Our soft constraints come in two classes. â ã ä ã å ã å ã å�æ2ç�è éMê ç�ë ì é í î ï ë é ìaç�è2ê ð î ì ìMñ
ò Every teacher has his own preferences about the time

slot he wants to teach a lab session. ó A teacher will not be equally prepared to concessions to
all colleagues.

This first set of soft constraints has everything to do with the
negotiation between the agents. ô õ ö õ ÷ õ ÷ õ öMø2ù�ú ûMü ù�ý þ û ÿ � � ý û þaù�ú2ü � � þ þ��
� Of those lab rooms that are equipped some are more

appropriate than others. Some lab rooms are appropriate
to accommodate a session but it takes time or money to
fit the room. A few lab sessions can be held in another
lab room if an adaptation is made. In our example only
the computer science sessions turned out to be
interchangeable between rooms. This lab session is

� � � � � 	
 � � 	 	
 � � � ��� � � ����� � ����� � ����� � ����� � ����� � ����� � ��� � � ����� � � ! "
0 1000 1000 1000 1000 1000 1000 1000 1000 1000# $ %

1000 0 1000 1000 1000 1000 1000 1000 1000 1000& ')(* + , -
1000 1000 0 1000 1000 1000 1000 1000 1000 1000.�/ / 0
1000 1000 1000 0 1000 1000 1000 1000 1000 10001 2 3 4
1000 1000 1000 1000 0 1000 1000 1000 1000 10005 6 7 8
1000 1000 1000 1000 1000 0 1000 1000 1000 10009 : ;
1000 1000 1000 1000 1000 1000 0 1000 1000 1000< = >
1000 1000 1000 1000 1000 1000 40 0 1000 1000? @ ACB D E F G H I J F K I F
1000 1000 1000 1000 60 1000 1000 20 0 1000L�M N
1000 1000 1000 1000 1000 1000 1000 1000 1000 0

Figure 2

normally held in the C1T1 lab room, but if some
adaptations (for example: installing new software on the
existing computers) are done, it can also be held in lab
rooms G106 or G201 (see figure 2). O The closer in time a lab session can be rescheduled to
the original lab session, the better the solution will be
(Time Constraint, Ti) P Number of agents involved in a solution (indicated by
A)

The second set of constraints concerns the infrastructure and
organisation of a polytechnic.
The above-mentioned soft constraints (class A and class B) can
be violated but if they are not, the quality of the system will be
higher. This will be reflected in e.g. a higher satisfaction for the
teachers (class A) or a more appropriate usage of infrastructure
(class B). These soft constraints are implemented through a
global cost function and negotiated over by the agents. Q R S R T R SVU W X Y Z [\X] ^ _ Y ` a [b
This algorithm solves the hard constraints mentioned above and
at the same time filters on excessive violation on part of the soft
constraints. When the central scheduler starts the algorithm, a
task agent is created who has the responsibility to find solutions
for the problem. The algorithm this agent uses is based on an
iterative deepening search. The algorithm recursively searches
for alternatives for the session α to be displaced. It selects a room
and a time slot, empty or not, satisfying the hard constraints for
the teacher, the session and the students. If a session β has been
scheduled in this same slot, thus violating the constraints on
simultaneous occupation, the session β becomes the new session
to be displaced. This process recourses c d e f g times, depth being
a parameter fixed in advance. When eventually the last level is
reached, only free room-time slot combinations are considered.
With depth=3, this algorithm can generate displacements of the
forms:

A→B
A→B→C
A→B→C→D

Majuscules A,B,C and D represent room-time slot combinations.
The arrow h →i means that the session taking place in A is
moved to B. The last room-time slot combination in a chain must
of course be empty previous to the displacement.
The algorithm takes into account all hard constraints, especially
the session - lab room compatibility and the time constraints.
The solutions generated by the algorithm are those where the
sum of the above costs is less than a certain upper limit (we have
chosen the ad hoc value 1000 as an upper limit) and from this set
we choose the 10 best solutions, again in terms of the costs
mentioned above. j k l k m k npo)q r s\t)u v u w s x y z { x u y\{ r | } y x ~ � r
The solutions generated with respect to the hard constraints by
the search algorithm (which was started by the central scheduler)
are then put on the blackboard [5]. The teacher agents involved
in a solution evaluate this plan and return a cost on the basis of
the preferences of their operators (time slot and colleague, the so-
called class A soft constraints) to the DH agent. If the DH is not
physically present then his agent chooses the solution with the
lowest cost.
The introduction of a co-ordination mechanism gives our agents
room for intelligent applications of their users preferences. The
agents can negotiate about the plans, which are generated by the
search algorithm. To make this negotiation possible we introduce
the term �)� � � � . We use money as a metaphor for the amount of
resources available to a teacher. Each teacher has a so-called
"bank account", which in fact is a measure for the resources that

the user has requested in the past and the assistance he has given
to the other teachers.
As mentioned in the introduction we differentiate between two
cases: a lab room that is unavailable and a teacher who is
unavailable. � � � � � � � � ����� � � � � � � �
We use the following principle: “he who causes trouble has to
pay for it” : the teacher, who is unavailable (for whatever reason:
illness, holiday, attending a conference…) pays the costs to
reschedule a session. Initially every teacher gets an amount of
money on his bank account that is proportional to the number of
hours he teaches. Someone who gives a lot of lab sessions will
more likely be unable to do all the scheduled lab sessions than
someone who only teaches one session a week.
There is one exception to this rule: the case where a lab room is
unavailable. This problem has to be solved by the DH, who has
however no money. When he has to solve a problem (in this
case: find a suitable lab room) the other teachers have to pay for
it. This can be seen as a kind of uniform tax that the teachers
have to pay to the DH, because they can use services offered by
him. � � � � � � � � ����� � ��� � ��� � C¡ ¢C£ ¤ � ¥ � ¡ � � � ¦
This problem is for the DH to solve, but all teachers pay the
costs. The DH starts the search algorithm, which generates a few
plans (solutions) involving some teachers. These teachers
compute their cost to participate in a proposed plan and inform
the DH agent. The agent chooses the plan with the lowest cost.
This cost is then divided by the total number of teachers and this
amount is charged from the account of each teacher. After this
has happened each agent § , who has co-operated in the accepted

plan, gets an amount ¨©ª . It is possible that a certain agent is

first charged money and later credited money, if the agent is
involved in the accepted plan. « ¬ ­ ¬ ® ¬ ¯ ¬ ¯�°�± ² ³�´�µ ¶\· ¸ ¶ ¹ º ¸ »C¼ ½C¾ ¿ ¶ À ¶ ¼ Á ¶ Â Á ¸
The unavailable teacher pays all the costs. He asks the help of the
DH agent to solve this problem. The latter one starts the search
algorithm, puts the plans on the blackboard, every involved
teacher computes the cost to join the plan, and the DH agent
takes the plan with minimal cost. The DH agent informs the
agent of the unavailable teacher the Ã Ä Ã Å Æ cost of the plan and this
agent pays the DH agent. The DH agent then pays every teacher
agent involved in the accepted plan. This is done to increase the
privacy of each agent. Only the DH agent can deduce the
preferences of each individual agent. Ç È É È Ê È Ë È Ì�Í�Î Ï Ð Ñ Ò
Teachers who are willing to co-operate to solve a problem see
their bank account increase slowly while teachers who refuse to
co-operate see their account decrease slowly. However, if their
bank account becomes too low they are not able to make changes
at the lab session planning, because they can not pay the other
agents anymore. In the real world, this corresponds to a teacher
who asks a lot of favours from his colleagues but refuses to co-
operate when they ask him a favour. After a while his colleagues
will refuse to do something for him. Ó Ô Õ Ô Ö Ô × Ô Ó�Ø Ù Ú Û Ü�Ý�Þ�ß à á â ã ã)âCã ä å æ�à ä�ç ã æ è â é ç æ ã ê ë ì í î í
To evaluate how much a co-operation to a plan costs, a teacher
computes the sum of the following three (soft constraints) costs: ïñð�ò ó ô õ öø÷ ò ù ò ö ÷ ò ö ú�û õ ô ú�ü ý�þ ÿ : proportional to the reason a

cost is defined, for example: the cost for being ill is 10 and
the cost for taking a holiday is 30, this is a higher cost than
the former because normally a teacher only goes on holiday
when he does not have to teach.

����� � ��� ��� 	
 � �
�
��
 � � � � ��� ��� � : this is the cost to swap a

session with a colleague. This cost is computed with respect
to the preferences of each teacher. ����� � � � ����� � � ��� � � � ! � "�# ��$ % : this is the cost to move a lab
session to either an empty slot in the planning (this means
that the students, the room and the teacher are all free) or to
a slot that is already taken, this slot on its turn has to be
moved. This cost is also computed with respect to the
preferences of each teacher. &�'�() * * (�+)) ,) * +-) . / 0 , 1 , 0�* / + 0 2 / 3�4 '�5 6 7 : this is an extra cost
a teacher asks to co-operate with a specific colleague, the
higher the cost, the more this teacher dislikes his colleague. 8 9 : 9 ; 9 < 9 =->@? A B-C D E F G H I J F K DLI

With the help of the above types of (class A and class B) costs
derived from the hard as well as the soft constraints, we can
compute the total cost for a teacher agent (CT) who is asked to
co-operate to a plan: M N O�PLQ R�S T�U�VLW XLY�Z [�\�] ^ _�` a b
The total cost of one solution (plan) is:

∑
=

+=
c
dfege h i j
kkk

1

,

with n the total number of agents.

The co-ordination here is rather primitive, every agent involved
puts his cost to join a plan on the blackboard and the agent of the
DH chooses the plan with the lowest cost. l m n m npoLq r s t u v s w�x s yLt q s q v q z
The Contract Net Protocol is a classic coordination technique
which is used for task and resource allocation between agents
[5]. In this protocol, agents can play two different roles: { A |�} ~ } � � � divides a problem in sub problems and searches

for contractors who can execute these problems, and keeps
also an eye on the global solution; � A � � � � � � � � � � executes a sub task. A contractor however
can also become a manager who divides the subtask and
contract it out to other contractors.

A manager can find a contractor through a bid process that goes
like this: � a task is announced by a manager; � the contractors evaluate the task with respect to their own

possibilities and commitments; � the contractors make a bid that they send to the manager; � the manager evaluates the received bids, chooses a
contractor and gives him the contract; � the manager awaits the result of the contract.

� � � � � � ���-� � � � � � � � � ��� � � �-� � ��� � � � � �

� � � � � � � L¡�¢ £L¤ ¥�¥ ¦ ¤ §�¨ ¦ ¢ © ª « £L¬ ¤ ­ ® ¯ ° ± ² ³ ´ ² ³ ±L®-µ ¶ µ · ¯
Our agents have two possible conditions: the asking and the
listening condition. An unsatisfied agent goes into the asking
condition; this means that this agent will try to find a solution to
improve its situation. Agents that are pleased enter a listening
condition: these agents are satisfied with the proposed solution.
Agents that are in the listening condition are possible candidate-
contractors. An unsatisfied agent becomes a manager and tries to
find contractors to improve its situation. After announcing a task
the manager gets bids from the contractors (these are agents that
are satisfied). It is possible that when the manager grants a
contract to a contractor that this previous satisfied agent (the
contractor) becomes unsatisfied. This agent goes into the asking
condition and becomes in this way on his turn a manager. ¸ ¹ º ¹ º ¹ » ¹ º-¼ ½L¾ ¿�À Á Â Ã�Ä Á Å Æ Ç È ½LÉ Â Ê Ë Ì Í@Î Ï Ð Ñ Ì
An agent in the listening condition will, while evaluating a
question, not only take into account the change of cost that the
move of a session will bring but also the sympathy he feels for
the agent that started the negotiation. We introduced sympathy to
optimise the long term behaviour of the agents. Agents
remember who helped them in the past. The following example
will make things clear: Agent A asks agent B to move or switch
his lab session. Some time ago however agent A did agent B a
favour by moving his own lab session to a bad time slot just to
help out agent B. Agent B will remember this and will easier
allow the change.
Up to now the function we used consisted of the cost (see
above). From this cost we subtract the ‘sympathy’ : Ò Ó Ô Õ Ö × Õ Ø Ù Ú Û Ù Ü Ý Ò Þ Ú ß Ü
Every agent must remember how its relationship with the other
agents is. This happens through the use of sympathy points. If the
number of sympathy points of agent A with respect to agent B is
positive then agent A knows that it has to do agent B a favour,
and agent B knows also that it can expect a favour from agent A,
since the sympathy points of agent B with respect to agent A will
be negative. Total sympathy is in other words a conserved
quantity in the system, which we arbitrarily fix to zero.
When the program runs for the first time the sympathy for every
agent is zero. When the manager announces a task, the
contractors begin to bid. This bid process takes 10 rounds in our
implementation. After each bid round the manager informs every
contractor (except the contractor who did the best bid in that
particular round) that there is a contractor who offers a solution
for a lower price. They have the opportunity to make a better
offer. To do this, they need to lower their price, but since their
cost is fixed they can only play with the sympathy they are
offering to the manager. The contractor who has, the best bid
after ten rounds, receives the contract. At the same time the
sympathy matrix is updated with the new data. The original

Task announcement

manager

à á
âã ä åæ
ã áä ç

bids

manager

co
nt

ra
ct

or
s

Grants contract

Figure 3

manager

co
nt

ra
ct

or
s

sympathy that the manager felt for the (winning) contractor is
increased by the number of sympathy points that the contractor
showed for the manager and the original sympathy that the
contractor felt for the manager is decreased by the number of
sympathy points that the contractor showed for the manager. è é ê é ê é ë é ì�í@î ï ð î�ñ òLó ô õ î õ òLó-òLö@î ÷ ø-ó ø ù ò î õ ï î õ òLó
The CNP is engaged whenever a lab session of a certain teacher
(for example represented by agent A) cannot take place. Agent A
is in this case the manager and is in the asking condition. The
other (pleased) agents are in the listening condition and can make

a bid on Agent A’s task announcement. This bid depends on the
cost and also on the sympathy that an agent feels (or does not
feel) for agent A (see Figure 4). The bids that are sent to the
manager by the involved agents are actually possible solutions
for the problem
úüû�ý-þ-û@ÿ���� � ý-þ���þ��
	 ������
���� ÿ�� þ��
We implemented a prototype of the two above possibilities and
used an existing database as a starting point. The database
consists of all the teachers that give lab sessions in one particular
department of our polytechnic. We started from an existing lab
session plan and each time a session could not take place, we
tried to solve the problem, keeping in mind that each teacher had
his own peculiar preferences regarding a particular time slot in
the plan. Both implementations lead to the same solutions, but
we remarked that the CNP was generally faster than the
blackboard principle.
In the near future we plan a test day where the human central
scheduler and our prototype will ’compete’ against each other.
The real test lies however in the fact that we will have to
persuade the teachers to trust their interface agents.
The model showed that this kind of software development can be
based on agents. As a test case, we actually applied our agent
model to a dynamic scheduling problem in transportation. The
analysis turned out to be a straightforward job, strengthening our
belief in the model.
In a new project called COALA (http://coala.tsx.org), which
started in November 1999, we will develop agents that learn. The
goal of the project is to develop agents that can model their
environment and their users. To bring this to a good end, the
agents will need to have learning capabilities. An interface agent
for example has to learn what the preferences of the teacher it
represents are. In the current program the teacher explicitly needs
to inform the interface agent about his teaching preferences. The
DH agent could also learn the preferences of the teachers, so that
he can make predictions about who will co-operate and who will
not.

��� � � � � � � � �

1. Agent Technology, Green Paper. Agent Working Group,

OMG Document ec/2000-03-01, version 0.91.
2. Is it an Agent, or just a Program?:A Taxonomy for

Autonomous Agents
(http://www.msci.memphis.edu/~franklin/AgentProg.html).
Stan Franklin and Art Graesser. Proceedings of the Third
International Workshop on Agent Theories, Architectures,
and Languages, Springer-Verlag, 1996.

3. Multi-agent Integration of Information Gathering and

Decision Support. Katia Sycara and Dajun Zeng. ECAI 96.
12th European Conference on Artificial Intelligence.

4. Language Technology and meta-level architectures for
distributed objects
(http://www.cs.kuleuven.ac.be/~xenoops/CORRELATE/P
UBLICATIONS/phd.ps.gz). Bert Robben. PhD thesis.
1999.

5. Issues in Multiagent Design Systems. Susan E. Lander,
Blackboard Technology. IEEE Expert, March-April 1997,
p18-26.

6. Coordination in Software Agents Systems. Hyancinth
Nwana, Lyndon Lee & Nick Jennings. BT Technology
Journal, 14(4), 1996.

��� � � ���
Agent b

Agent c Agent d

Task announcement

Task announcement

T
as

k
an

no
un

ce
m

en
t

1
1

1

price = cost - sympathy 1

Figure 4

