Towards a Transformation Chain Modeling Language*

Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan,
Wouter Joosen, and Yolande Berbers

Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
{bert .vanhooff, Stefan.VanBaelen, Aram.Hovsepyan, Wouter.Joosen,
Yolande.Berbers}@cs.kuleuven.be

Abstract. The Model Driven Development (MDD) paradigm stimulates the use
of models as the main artifacts for software development. These models can be
situated at high levels of abstraction, close to the application’s business domain.
Many consecutive automatic transformations (a transformation chain) can be ap-
plied to these models to add the necessary details in order to generate a concrete
implementation. This means that a large part of the total development effort is
relocated to the development of transformations and hence we should have the
necessary tooling support for designing transformation chains. In this paper we
propose a metamodel for a transformation chain modeling language that enables
implementation independent composition of transformations. We also propose a
concrete syntax for this language that is based on UML activity diagrams.

1 Introduction

Model Driven Development (MDD) is an approach to developing software that proposes
using machine-readable models as its main artifacts. These models can be constructed
with domain specific modeling languages (DSMLs), which are tailored to a specific type
of applications and often have arich visual syntax that hides implementation-level details.
These highly abstract models can then be (semi-)automatically transformed to lower-
level models by filling in missing details, which eventually makes its straightforward to
generate a concrete implementation.

The Object Management Group (OMG) is one of the major endorsers of MDD.
Their specific approach is well-known as the Model Driven Architecture (MDA), which
is both a specific vision on MDD as well as a collection of technology specifications
that support this vision. These specifications include a metamodeling language (MOF)
[L], a generic software modeling language (UML) [2], a (not yet fully standardized)
transformation specification language (QVT) [3] and many more.

Because the MDD philosophy relocates much of the development effort to transfor-
mations it is important to take up the transformation development task with care. In this
paper we argue for the need of multiple transformations to get from the highest level
models (possibly DSMLs) to the lowest level models (section 2)). This requires config-
uring many transformations in a certain sequence in order to address the concerns of

* The described work is part of the EUREKA-ITEA MARTES project, and partly funded by the
Flemish government institution IWT (Institute for the Promotion of Innovation by Science and
Technology in Flanders).

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 39-E8] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

40 B. Vanhooff et al.

a specific type of application. Such a transformation sequence is referred to as a trans-
formation chain. We propose a first step towards a modeling language for specifying
transformation chains that is based on UML Activity Diagrams. To accomplish this, we
provide a metamodel for this language in section [3| and map this to a UML profile in
section 4l We wrap up this paper by drawing conclusions and indicating future work in
section 3 Related work will be discussed throughout the paper when appropriate.

2 Multiple Transformations

Many papers concerning MDD use the notions of PIM (Platform Independent Model) and
PSM (Platform Specific Model), which were introduced by MDA. A PIM is a model of a
system that contains no technical details while a PSM is a representation of the same sys-
tem containing all technical details that are needed to realize it on a concrete technology
platform. The mapping between PIM and PSM is realized using an automatic transfor-
mation. Such a single-level transformation process allows us to capitalize on the stable
platform independent matters and generate PSMs for a range of different technology
platforms (figure[T)). The platform specific knowledge is moved to the transformations,
effectively separating those concerns from the main application model.

PSM
Platform A
Transformation A
PSM
PIM ‘ Transformation B -
Platform B
Transformation C —
PSM
Platform C

Fig. 1. Single-level transformation (PIM to PSM)

We believe that single-level transformations are not the best way to fully exploit the
MDD opportunities. The use of transformations can provide a more elaborate sense of
separation of concerns than just pure technical concerns (as in the single PIM/PSM case).
Other concerns can be functional, non-functional or just convenience-related such as pre-
venting manual modeling inconsistencies or offering rich domain specific modeling en-
vironments. It would be hard and impractical to integrate all these concerns into one big
do-it-all transformation. Therefore we argue that it is better to feed a model to a chain of
many (small) transformations that each manipulate the model with regard to one specific
concern. This would allow us to better modularize the transformations themselves and
as a consequence make individual transformations easier to implement and reuse.

Transformation reuse will be most clear in product-line oriented development, as
is the case for many embedded applications. Product-lines share a common set of con-
cerns that have to be included or excluded depending on the specific product. If we
can encode each of those concerns in a separate transformation, we can more easily

Towards a Transformation Chain Modeling Language 41

leave out unwanted stuff and incorporate new things without having to redo the whole
application.

Figure 2] shows an abstract example of composing transformations into a transfor-
mation chain. This chain could be the replacement of one of the paths in figure[Tl

If multiple transformations are in place, each intermediate model can be seen as
being specific to a virtual intermediate platform while being independent of platforms
further up the transformation chain. The notion of such a platform is introduced in [4]
as abstract platform and is defined as “an acceptable or, to some extent, ideal platform
from an application developer’s point of view”. Abstract platforms not only allow the
developer to model an application using appropriate concepts but also allow intermedi-
ate transformation developers to create mappings between models using concepts that
make sense at their particular level. We could for example treat distribution at one level
and timing constraints at another. We consider abstract platforms an integral part of a
transformation chain and consequently they are also represented in the model (figure 2).

If we use multiple transformations, the design of their composition (the transfor-
mation chain) becomes important next to their implementation. A transformation chain
model specifies the composition of many transformations by describing their sequence,
input and output model types, dependencies among transformations (such as traceabil-
ity), platforms etc. Such a model can serve as a construction plan for implementation or
as an execution plan after implementation.

Mind that we should very carefully consider how we distribute concerns over trans-
formations. Even though a specific concern can be tackled during one transformation
step, it is not always that obvious how all these concerns can be integrated in the overall
system. This is especially true for non-functional concerns since they often have subtle
effects on one another. A same type of problem arises in the Aspect Oriented Program-
ming (AOP) community, where the application of several aspects on top of each other
can produce undesired effects. Our approach to transformation chain modeling does not
specifically address these problems.

output
Model s
input intermediate
horizontal vertical — e 5
Model Model T fo B
& % dabils intermediate . output
vertical
Platform Q I Model r Transformation C Model u
[Piatform R’ ' i
" 7] Abstract platform Jput
[] Concrete platform Model t

Fig.2. Multi-level transformation showing intermediate platforms, multi-in/output transforma-
tions and vertical/horizontal transformations (respectively between platforms or within a single
platform)

42 B. Vanhooff et al.

In the next section we provide a metamodel that contains the necessary concepts to
model transformation chains.

3 Transformation Chain Modeling

In this section we identify the basic requirements of a transformation chain specification
language and we present the metamodel that we have conceived to answer to these
requirements.

3.1 Requirements

We did not start from scratch in defining a transformation chain specification language.
The ORMSC proposal for an MDA Foundation Model [5] gives a good starting point. It
consists of a metamodel that defines and relates basic transformation concepts, but does
not include concepts specific to composing transformations in transformation chains.
We identified the following shortcomings:

1. No specific support for connecting several transformations together.

2. No notion of (abstract) platform; the only typing of models is done through meta-
models.

3. No notion of composite transformations, which are reusable transformations that
are defined as a chain of lower level transformations themselves.

4. No support for input/output model constraints (pre/post conditions) other than those
enforced by the metamodel.

5. No technical considerations — each transformation is assumed to produce models
in compatible formats. In real life, even compatible metamodels can be expressed
in incompatible formats.

At the same time the MDA Foundation Model proposal contains some concepts that are
not that important for defining transformation chains or that are too MDA specific. We
consider the listed shortcomings as the additional requirements that our model has to
address. In the next subsection we present a metamodel that specifically addresses the
shortcomings.

3.2 Transformation Chain Metamodel

In order to adhere to good MDD practice, we define the abstract syntax of the transfor-
mation chain by using a metamodel (figure [3).

The model can be divided in two parts: a specification part (TransformationSpecifi-
cation) and an executional part (TransformationExecution). The TransformationSpecifi-
cation has two orthogonal specializations: Atomic or Composite and Directed and con-
tains one or more TransformationFormalParameters. Such parameters are typed by an
abstract Platform, which is in turn characterized by a Metamodel, optional ModelCon-
straints on that metamodel and possibly additional functionality offered by a ModelLi-
brary. A TransformationFormalParameter can also have specific ParameterConstraints
with which we can enforce additional pre- and postconditions.

43

Towards a Transformation Chain Modeling Language

sureyd uonewojsuer) £J103ds 0y [opowrejowr Y, *¢ ‘S

19po 19)oweled biyuon
) uolneuuojsuel |
uondo | *
* * L
L
indui L x Jndjno w *
sojoweredienioy | @l emoisuedy | Y
10}09uUUO0DId}WeIRd ndno A uonewousuel) |, ndu B Juon 3 1
* * * *..—‘
L uoljew.ojsuel | gns
ABojouyosy | | b
3 uonesyioadg uonesyioadg uonesyioadg
3 Uoneonoads uoljeuniojsuel | :o:a::%hmcﬂ._. uoljeuniojsuel |
ABojouysa pajoasqg aysodwo) olo}yY
» ABojouyos |
s|qejene
Aieiqiq9poiN |apowelsi\ 29
Kesqy | * * adA} [indino | ndul 19
. L [- M
x L & l adfy
adhy * |1ejoweledjeuno | Jejeweled g :
jutesysuodjopon uuoje|d A — Lioieayvadsuoneuuosuely |

*

juresysuoguajaweled

44 B. Vanhooff et al.

A TransformationExecution is always directed (an undirected TransformationSpec-
ification becomes directed when it is executed) and has a number of TransformationAc-
tualParameters, typed by the TransformationFormalParameters of the related
TransformationSpecification. The Model, referred to by the actual parameter must ad-
here to platform of the formal parameter. Each TransformationActualParameter in the
role of output can be connected to one or more other TransformationActualParameters
in the role of input through a ParameterConnector.

The TechnologySpecification element is in place to be able to define technical spec-
ifications of transformation in- and outputs besides their types of metamodels. This is
needed because even if two models adhere to the same metamodel, they can be ex-
pressed using a number of different technologies (e.g. XMI v1.x, HUTN — Human
Useable Textual Notation, JMI — Java Metadata Interface). Each TransformationAc-
tualParameter belongs to a concrete implemented transformation so it has to specify
a technology for its model. In case of a CompositeTransformationSpecification the
TechnologySpecifications of the containing TransformationActualParameters will be
propagated to the TransformationFormalParameters (hence the association between
TransformationFormalParameter and TechnologySpecification).

The issue of specifying type (Platform and ParameterConstraint) and technology
(Technology) of transformation parameters is related to interoperability between trans-
formations. This subject is extensively addressed in [6], where a distinction is made
between functional (types) and protocol (technology) connectivity.

To make the metamodel complete we need to add some additional constraints, for
example to ensure that a Model bound to a TransformationActualParameter is compli-
ant with the Metamodel that can be reached though the associated TransformationFro-
malParameter. We do not show these constraints due to space restrictions.

In the following section we attach a concrete syntax to our conceptual metamodel.

4 Transformation Chain Profile

A metamodel is worth little without an accompanying concrete modeling language to
specify its models. There are roughly two options to specify a concrete syntax:

— A heavyweight approach: define a completely new language with its own symbols
(DSML) or extend an existing language (e.g. UML) at the meta level. This approach
allows the most freedom in tailoring the language to your own taste.

— A lightweight approach: adapt an existing language to your needs. In this case
the base language needs to support a kind of extension mechanism. The UML is
probably the most well-known language that allows such adaption in the form of
UML profiles (stereotypes, tagged values and constraints).

The first approach is conceptually the best but it has some practical drawbacks. Having
to precisely define semantics besides abstract and concrete syntax from the ground up
together with the need for custom tool support kept us from applying this approach.
The UML on the contrary contains the Activity package that is used to model actions
executed against a flow of objects, which is similar to transformations and models flow-
ing between them. Therefore we chose to define a UML profile that tailors the stan-
dard activity diagrams to our specific needs. Also, both the MEDAL [7] and VMT

Towards a Transformation Chain Modeling Language 45

[8] approaches to MDD make use of activity diagrams to specify transformations but
they operate at the transformation implementation level instead of at the transformation
chaining level.

In figure] we show a mapping of the transformation concepts from the metamodel
of figure[3lto stereotypes and tagged values. The figure is only shown as an illustration
and does certainly not contain the complete mapping, which would take too much space.
We also do not show constraints to prevent the use of unwanted activity elements such
as ControlFlow and CentralBufferNode.

«metaclass» «metaclass» «metaclass» «metaclass» «metaclass» «metaclass»
Activity CallBehavior Activity Pin Constraint Classifier
Action ParameterNode
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
TFSpecification | | TFExecution TFParameter Technology TFParameter Platform
description protocol Constraint | [metamodel
format modelConstraints
modelLibraries
(Transformation (Transformation (TransformationFormal-
Specification) Execution) and ActualParameter) (Technology) (Parameter
Constraint) (Platform)

Fig. 4. Partial mapping of the metamodel elements (in italic) to a UML profile; only the most
important stereotypes and tagged values are shown, constraints are omitted

The figure shows the UML metaclasses that are specialized using stereotypes and
refers to the original metamodel element. The mapping specializes the Activity meta-
class with the TFSpecification stereotype. A TFSpecification is atomic, if it does not con-
tain any TFExecutions (a specialization of CallBehaviorAction) or is composite when it
does. ActivityParameterNodes as well as Pins must be stereotyped with TFParameter,
respectively indicating a formal or an actual parameter. Two types of Constraints are in-
troduced: Technology and TF ParameterConstraint. Finally a Platform is a specialization
of the Classifier element. Besides these, many other UML Activity elements need to be
specialized or excluded from the model in order to make the mapping complete.

Because the metamodel-profile mapping still leaves much to the imagination, we
give some examples using the concrete activity diagram notation in the next subsection.

4.1 Example of a Transformation Chain Model

Comprehending a modeling language is the easiest when looking at examples of its
concrete syntax. We therefore provide two examples.

Our first example is shown in figure [3l It specifies a transformation component
that transforms between domain specific models of cellphone applications and UML
component models.

We can see that the Phone2UML TFSpecification contains two parameters and has
a description, which should be more detailed in a real situation. The TFParameters are

46 B. Vanhooff et al.

TFSpecificati << Platform >>
<<TFSpecification>>
Phone2UML <<TFSpecification>> ComponentUML
description="Takes the static structure of

a CellPhoneDSL model and transforms it

into an equivalent UML component model"

1

<< TFParameter >> 1
1

1

phone:CellphoneDSL << TFParameter >>
. comps:ComponentUML|
\ <<Platform>>
metamodel="UML"
<<TFParameterConstraint>> modelConstraints="Components
{"Only the static structure is considered"} Package, level 3"
modellLibraries="GSM, UMTS, GPRS, keypad"

Fig. 5. Example of an atomic transformation specification (on the left) and an accompanying
platform specification (on the right)

typed by a platform, specified by the Platform classifier. The ComponentUML platform
on the right is given as an example. It is based on the UML metamodel, constrained to
use component package at compliance level 3 (modelConstraints) and includes some
cellphone specific modelLibraries. The input parameter has an additional TFParame-
terConstraint saying that only the static structure of our cellphone model will be taken
into account.

The second example (figure [6) shows a composite transformation that has two in-
puts and one output and is specified by an internal structure of two TFExecutions.
The top one (Phone2UML) is reused from figure [l The TFExecution at the bottom

<<TFSpecification>> <<TFSpecification>>

PhoneDeployment description="takes a logical and a hardware model of a phone

and creates a deployment model in UML based on the best component
allocation opportunities”

1 <<TechnologySpecification>>
protocol=JMI

<< TFParameter >>
phone:CellPhoneDSL

<< TFParameter >>|
hw:HardwareDSL

<< TFParameter >>

uml:DeploymentUML

<<TechnologySpecification>> 7
format=XMI 1.4

Fig. 6. Example of a composite TransformationSpecification

Towards a Transformation Chain Modeling Language 47

(PhoneComponentDeployment) takes the UML component model (output from
Phone2UML) together with a hardware model for a specific type of phone and gen-
erates the most optimal UML deployment model. We can further see that two Tech-
nologySpecifications are given: the output of Phone2UML is accessible through a Java
Metadata Interface (JMI), while the second input of the PhoneComponentDeployment
is required to be given in XMI format.

The given examples just give a flavor of what can be specified in a transformation
chain model. Real world models will need to be more detailed in many ways, for ex-
ample in the specification of metamodel and parameter technology. More formal spec-
ification of constraints on input/output parameters can be done using the OCL-based
approach of [9].

5 Conclusions and Future Work

An important part of the effort in an MDD-based project lies in the development of
an appropriate transformation chain, which in turn eases the construction of the appli-
cation(s) described in the project. Having multiple levels of transformations facilitates
transformation reuse, especially in product-line oriented development, which is often
the case for embedded systems.

Being faithful to the MDD philosophy, transformation chains also have to be de-
signed and modeled before implementation. We have proposed a transformation chain
modeling language of which we defined the abstract syntax using a metamodel. This
metamodel is an elaboration of the MDA Foundation Model proposal. We then mapped
the metamodel’s elements onto UML’s Activity Diagrams, which are well-suited, though
not ideal, to model transformation chains.

The design of a transformation chain is only part of a project-specific MDD in-
frastructure. In order to support the concrete realization of transformation chains we
will design and implement a transformation chaining framework that uses the proposed
language to allow easy concatenation of transformation components that may be im-
plemented in different transformation languages. The results of experimenting with this
infrastructure will be used to refine the proposed transformation language. We are also
developing a design process to guide the development of transformation chains [10].
This process should help MDD developers in identifying the correct transformation
components, platforms, etc.

References

1. Object Management Group: Meta object facility 2.0 core specification. Misc (2004)

2. Object Management Group: Uml 2.0 superstructure conv. document. Misc (2004)

3. Object Management Group: Qvt-merge group submission for mof 2.0
query/view/transformation. Misc (2005)

4. Almeida, J.P., Dijkman, R.M., van Sinderen, M., Pires, L.F.: On the notion of abstract plat-
form in mda development. In: EDOC. (2004) 253-263

5. Object Management Group ORMSC: A proposal for an mda foundation model, white paper
(2005)

48

10.

B. Vanhooff et al.

Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus: Towards the interoperability of modelling
tools. In: MDAFA. (2004) 17-32

Guelfi, N., Ries, B., Sterges, P.. MEDAL: A CASE Tool Extension for Model-Driven Soft-
ware Engineering. In: SWSTE ’03: Proceedings of the IEEE International Conference on
Software-Science, Technology & Engineering, Washington, DC, USA, IEEE Computer So-
ciety (2003) 33

Sendall, S., Perrouin, G., Guelfi, N., Biberstein, O.: Supporting model-to-model transforma-
tions: The vmt approach. Technical report (2003)

Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: Ocl for the specification of model trans-
formation contracts. In Patrascoiu, O., ed.: OCL and Model Driven Engineering, UML 2004
Conference Workshop, October 12, 2004, Lisbon, Portugal, University of Kent (2004) 69-83
Vanhooff, B., Ayed, D., Berbers, Y.: Towards a Transformation Chain Design Process. (2006)

	Introduction
	Multiple Transformations
	Transformation Chain Modeling
	Requirements
	Transformation Chain Metamodel

	Transformation Chain Profile
	Example of a Transformation Chain Model

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

