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The visua system groups close things together. Previous studies of grouping
by proximity have failed to measure grouping strength or to assess the effect of
configuration. We do both. We reanalyze data from an experiment by Kubovy and
Wagemans (1995) in which they briefly presented multi-stable dot patterns that can
be perceptually organized into alternative collections of parallel strips of dots, and in
which they parametrically varied the distances between dots and the angles between
alternative organizations. Our analysis shows that relative strength of grouping into
strips of dots of a particular orientation approximates a decreasing exponential func-
tion of the relative distance between dotsin that orientation. The configural or whol-
istic properties that were varied—such as angular separations of the aternative
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FIG. 1. Patterns A and B demonstrate grouping by proximity. Pattern C shows similarity
and proximity acting in concert, and pattern D shows them acting in opposition.

organizations and the symmetry properties of the dot pattern—do not matter. Addi-
tionally, this grouping function is robust under transformations of scale in space
(Experiment 1) and time (Experiment 2). Grouping of units which are themselves
the result of grouping (i.e., pairs of dots; Experiment 3) also follows our nonconfig-
ural rule. 1998 Academic Press

When we look at a collection, or whole, of discrete entities, or parts (dots,
for example) we often seeit partitioned, or organized, into subsets, or group-
ings, which in turn consist of the parts. For example, we usually see Figure
1A as alattice grouped into several rows or horizontal strips of dots, whereas
Figure 1B is usually perceived as several columns or vertical strips of dots.
Gestalt psychologists used phenomenological observations like this to infer
many grouping principles, of which grouping by proximity isthe most funda-
mental (Kubovy, 1981).
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The Gestalt psychologists did not produce a satisfactory theory of percep-
tual organization for two related reasons: they relied too heavily on phenom-
enology and did not sufficiently quantify their data. Consider Figure 1D, in
which the principle of proximity predicts grouping into columns, but the
principle of similarity predicts grouping into rows. Phenomenological obser-
vation tells us that the strength of the proximity principle decreases with
distance and the strength of the similarity principle decreases with dissimilar-
ity. However, for any given distance and dissimilarity values we do not know
which is stronger, so we cannot predict which principle will prevail. Indeed,
in Hochberg's opinion (1974) Gestalt psychology’s research program failed
because it was unable to predict perceptua grouping in such patterns. To do
so, it would have needed a metric function that relates grouping strength to
distance and dissimilarity. This function would allow the strength of group-
ing due to a given distance to be compared to that caused by a given degree
of dissimilarity, in order to determine which principle prevails. We need
such afunction to predict groupings in most displays because more than one
grouping principle is at work in most scenes. Our goal in this paper is to
take afirst step in this direction by measuring how grouping strength varies
with distance and further, how it is affected by spatia configuration.

First we review attempts to measure the strength of grouping. We then
show how the methods used in an experiment by Kubovy and Wagemans
(1995) represent an advance over previous work, and reanalyze their data.
Through this analysis we show that the probability distribution of different
groupings is accounted for by a simple rule of grouping by proximity. This
rule takes into account only the distance (relative to the scale of the lattice)
between dots in the grouping. We then present three new experiments which
show that the same grouping law explains grouping in different spatial and
temporal scales and in more complex patterns.

MEASURING GROUPING STRENGTH

Hochberg (1974) hoped that grouping in patterns governed by more than
one grouping principle could be predicted after measuring the relative
strength of grouping principles. So he and his associates tried to measure
grouping by similarity of figure-ground contrast by playing it off against
grouping by proximity in rectangular lattices of circular dots (Hochberg &
Hardy, 1960) and square dots (Hochberg & Silverstein, 1956). They deter-
mined which values of proximity and contrast are in equilibrium with respect
to their grouping strength. For instance, while the spacing between columns
remained constant, observers might be asked to adjust the spacing between
the rows of different brightness (e.g., Figure 1D) until they found the spacing
for which they thought they were equally likely; i.e., the strength of grouping
by brightness wasin equilibrium with the strength of grouping by proximity.
Using this equilibrium-point methodol ogy, Hochberg and Hardy (1960) plot-



74 KUBOVY, HOLCOMBE, AND WAGEMANS

brightness \
difference \
between \
rows N

indifference curve for

which the tendency ~ o indifference
to see rows is = - curve for
twice the tendency row/column
to see columns equilibrium
distance
between

rows

FIG.2. Twoindifference curves. Theindifference curvefor row/column equilibrium (rep-
resented by a solid line) can be observed using the transition-point methodology. Other indif-
ference curves (e.g., the one represented by a dashed line), although conceptually meaningful,
cannot be observed using this methodology.

ted an indifference curve (Krantz, Luce, Suppes, & Tversky, 1971): as they
reduced the brightness difference between the rows, the distance between
rows for which observers reported an equilibrium between rows and columns
increased (Figure 2). This is an indifference curve because the observer—
whose sole interest is finding the point of equilibrium between grouping
by rows and grouping by columns—is indifferent among the Chtightness-
difference, row-distance—pairs that lie on it.

The best Hochberg could have done with this single indifference curve is
to find what one already expects: atrade-off between contrast and proximity,
quantitatively unspecified. To measure the strength of each grouping factor
(in other words, to scale them), and to determine whether they affect group-
ing additively, one must observe at least two indifference curves, and test
their parallelism using additive conjoint measurement (Krantz et a., 1971,
Chapter 6; Mitchell, 1990). For instance, in addition to obtaining the indiffer-
ence curve on which al Chtightness-difference, row-distance—drdered pairs
represent lattices in row/column equilibrium, one would have to obtain, for
example, a second indifference curve for which the tendency to group by
rows was twice as strong as the tendency to group by columns (the dashed
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line in Figure 2). This cannot be done with an equilibrium-point methodol-
ogy, since no perceptible transition occurs at that point.

Oyama (1961) devel oped a better method than the equilibrium-point meth-
odology, which enabled him to quantify the strength of grouping by proxim-
ity: he obtained a function that assigns a grouping strength to each proximity
value. To measure grouping strength as afunction of proximity, Oyamaused
an imbalance methodol ogy which pits proximity in one orientation of rectan-
gular lattices against proximity in another. From tria to trial he varied the
vertical distances between the dots. He presented each | attice for two minutes
and asked observers to press one key while they saw columns and another
while they saw rows. As arelative measure of strength of grouping he took
the log-ratio of the cumulative durations, log(t,. /t.ns), fOr seeing the two
organizations of the lattice. This he plotted against the log-ratio of the corre-
sponding separations, 1og(d../dxng), and obtained an excellent linear fit,
showing that the relative duration of a perceptual grouping varies as a power
function of relative spatial separation. Oyama’'s method, for the first time,
generated a function that describes grouping by proximity without reference
to other grouping tendencies.

Oyama's imbalance methodology was felicitous, but his procedure had
some weaknesses. First, his procedure is susceptible to demand characteris-
tics: if you ask an observer to press a different key every time she sees the
perceptual organization of the stimulus change, this may suggest to her that
she is expected to see changes. Rock and his co-workers (Girgus, Rock, &
Egatz, 1974; Rock & Mitchener, 1992) have shown that observers who were
not informed about the reversibility of figures saw reversals on about one-
third of the presentations; when they were informed, they saw twenty-fold
more reversals. Thus the true function may be different from the one Oyama
obtained. Second, all Oyama's dot lattices were rectangular with vertically
and horizontally aligned dots. Since these orientations coincide with many
frames of reference his results may not generalize to other orientations. For
instance, he himself observed an effect of overestimation of vertical dis-
tances.

THE KUBOVY AND WAGEMANS EXPERIMENT

Wewill use the data obtained in the Kubovy and Wagemans (1995) exper-
iment to develop a model of grouping by proximity. They collected the data
to measure the ambiguity of lattices in information-theoretic terms, which
required estimating the probabilities of seeing the different organizations of
the lattices. So instead of investigating the instability of lattices by observing
their reversibility over arelatively long time-interval (as did Oyama), they
measured the instability of initial percepts. To do so, on each tria they pre-
sented alattice for 300 ms, and asked observersto notice in which orientation
the lattice grouped. At the end of each trial they asked observers to decide
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FIG.3. Thesixteendot lattices used by Kubovy and Wagemans (1995). The lines connect-
ing dots create the shape the lattice contains which gives the lattice its name. h, hexagond;
cr, centered rectangular; rh, rhombic; o, oblique; s, square; r, rectangular.

which of four orientations corresponded to the organization of the lattice
they had seen. To manipulate the degree of ambiguity, they used sixteen
different dot lattices (Figure 3). They found that the hexagonal lattice (Figure
3, upper left-hand corner) was the most ambiguous, and the most elongated
rectangular lattice (Figure 3, lower right-hand corner) was the most stable.

In the past, experimenters only manipulated inter-dot distancesin the rows
and columns of rectangular lattices. But rectangular lattices are just one of
16 different types of lattices used by Kubovy and Wagemans, and the differ-
ent types look different. The 16 different types of dot lattices have different
global structures which determine how the lattices look. Lattices ook differ-
ent from each other because their symmetries are different (and they are
easy to detect: Wagemans, 1995; Wagemans, Van Gool, Swinnen, & Van
Horebeek, 1993). Imagine a hexagonal dot lattice drawn on a plane, and a
mirror standing on its edge, perpendicular to the plane. There are six essen-
tially different ways to stand a mirror on the surface so that the reflection
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FIG. 4. The mirror symmetry of a hexagonal lattice. We arbitrarily chose a dot and indi-
cated the six axes of reflection that pass through it.

of the lattice will be a perfect continuation of the lattice itself (Figure 4). In
other words, a hexagonal lattice has six axes of reflection-symmetry. In con-
trast, a rectangular lattice has only two (Table 1).

Kubovy and Wagemans also minimized the effect of frames of reference.
They achieved thisin two ways: (i) they minimized the effects of field shape,
by presenting the lattices as if seen through a circular aperture; (ii) they
minimized the effects of environmental frames of reference by randomly
rotating the lattices on each trial.

Describing Dot Lattices

Dot lattices vary in a space that is geometrically well-understood; they
are determined by continuous metric parameters. A dot lattice is a collection

TABLE 1
The Symmetries That Differentiate Dot Lattices

Reflection Glide reflection

Lattice (number of mirrors) Rotation (angle) (number of axes)
Oblique 0 Twofold, 180° 0
Rectangular 2 Twofold, 180° 0
Centered rectangular 2 Twofold, 180° 2

and rhombic

Square 4 Fourfold, 90° 0
Hexagonal 6 Sixfold, 60° 3




78 KUBOVY, HOLCOMBE, AND WAGEMANS
o o o o o
fg D D C
b a+b bﬂ_b
Y é—a%
A B

C

A B A B
C D D
o s

C
Jb,/gg
y
O a
A B A B

FIG.5. Vectorsaandb arethe basisof (i.e., they are the translation vectors that generate)
the lattice, they define the lattice’s basic (or principal) parallelogram ABCD. For all lattices,
60° = BAC = 90°; 45° = ACB = 90°; 0° = ABC = 60° (Bravais, 1949).

of dotsin the plane that isinvariant under two translations. A lattice is speci-
fied by its two shortest translations in the orientations and AB, i.e., a pair of
tranglation vectors a and b (Figure 5). Bravais (1850/1949) showed that the
basic paralelogram of all lattices, ABCD, whose two sides are the vec-
torsa (AB) and b (AC), is limited by the following conditions: |a] = |b|] =
[a—b]=|a+ b|] (AB = AC = BC = AD).

The distances of a dot from its eight nearest neighbors are |a|, |b|, |a —
b|, and |]a + b]. From now on, we will denote these distances a, b, ¢, and
d, respectively. Kubovy (1994) showed that any lattice is specified by three
parameters: a, b, and y = O(a, b). Hence if a is held constant, any lattice
can be located in a two-parameter space whose coordinates are b and y =
O(a, b). These coordinates are given in Figure 3 to specify each of the lattices
used in the experiment. He also showed that the lattices fall into six classes
whose abbreviations are given in parentheses and |abel each of the 16 lattices
in Figure 3: hexagonal (h), rhombic (rh), square (s), rectangular (r), centered
rectangular (cr), and oblique (0). Changing y always changes the spatial con-
figuration of the dots and often the symmetries of the lattice.

The Experiment

We omit details of the experiment that are not essential to understanding
the present analysis, and refer the interested reader to the origina article
(Kubovy & Wagemans, 1995).

1 We denote the magnitude (or length) of a vector x by [x|. Henceforth, we will simplify
our notation, and write x for [x|. The symbols ‘+’ and ‘—’ represent vector addition and
subtraction.
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Seven observers participated. On each trial, Kubovy and Wagemans
showed them alattice for 300 ms. The screen contained a blue disk (subtend-
ing 12.6°) in the center of the screen and a black region around it. The lat-
tices, which consisted of a large number of yellow dots (subtending about
0.125°, no less than 1.5° apart), were superimposed on the blue region of
the screen. After removing the lattice, they showed the observer a four-
aternative response screen. Each alternative consisted of a circle and one
of its diameters. The orientation of the diameter corresponded to the orienta-
tion of one of the four vectors of the lattice just presented.

All the lattices had the same shortest inter-dot distance, a = 60 pixels.
The second-longest inter-dot distance, b, varied from lato 2a (seethe labels
above the columns of panels in Figure 3). The angle y is constrained, for
geometric reasons (see Kubovy, 1994), by the inequality cos™ [1/(2b)] =
y = 10/2. The measures of y for the sixteen lattices are given in the lower
left-hand corner of each panel in Figure 3.

The Pure Distance Model

Kubovy and Wagemans proposed a model of grouping by proximity,
which we will call the Pure Distance model with which they predicted the
ambiguity of thelattices. LetV = {a, b, ¢, d} be the sides and the diagonals
of alattice’ sbasic paralelogram, and let V = {a, b, ¢, d} be the correspond-
ing magnitudes of these vectors. Grouping by proximity implies that the
probability of seeing the lattice organized in the orientation of v O V, p(v),
is a decreasing function f(v) of v(v O V). We will call f(v) the attraction
function, because it determines how the attraction between two dots dimin-
ishes as the distance between them grows. The Pure Distance model assumes
that all distances are scaled to the shortest distance in thelattice, a. It assumes
that the form of the attraction function is a decaying exponential function:

f (V) = g aWa-l) ( 1)

(which is similar to the function proposed by Shepard, 1987, as a universal
law of generalization).

To obtain the probabilities of each of the perceptual organizations, p(a),
p(b), p(c), and p(d), the Pure Distance model makes two assumptions: (i)
the four perceptual organizations are collectively exhaustive and mutually
exclusive, from which it follows that

p(@) + p(b) + p(c) + p(d) =1 &)

and (ii) that the attraction function is:
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f(v) = AV, 3
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From Equations 1, 2, and 3 it follows that
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Response errors. The Pure Distance model needs to be modified. We con-
ducted a small experiment to assess whether our observers could reliably
choose the correct response icon when we knew what they had seen. Asone
might expect, we found that observers made errors.

We recruited three of the observers from the Kubovy and Wagemans
(1995) experiment. Trials were identical to the origina experiment, except
for the response screen. We offered observers three response icons: (i) the
orientation of vector a, (ii) another orientation (the *‘lure’’), and (iii) a*‘ nei-
ther’” choice. The lure was a line segment representing an orientation that
did not correspond to a vector of the lattice. It deviated from the orientation
of a by 15° to 65° in 10° steps. We chose lattices in which a was by far the
shortest vector and the lure would not be closeto b, ¢, or d. From experience,
we knew that this would cause the | attice to almost always be seen organized
in the orientation of a, and the proximity of the lure to a insured that essen-
tially all lure responses would result from perceiving a but responding with
the wrong orientation. When observers chose the lure, they could not be
veridically reporting what they perceived because the lures did not corre-
spond to any grouping that anyone ever claims to see. The results of the
experiment are plotted in Figure 6.

Model of response errors. We denote the four responses offered the ob-
servers in the Kubovy and Wagemans experiment A, B, C, and D, which
correspond to percepts a, b, ¢, and d, respectively. We assume that the only
response errors observers make are choices of the two orientations closest
to the perceived orientation. As is evident from Figure 7, our assumption
implies p(Alb) = p(Bla) = p(C|d) = p(D|c) = 0. Furthermore we assume
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FIG. 6. The natura logarithm of the probability of choosing the lure as a function of the
angular disparity between the orientation of a and the lure, for three observers. The approxi-
mate linearity of the functions, with an intercept of O (i.e., 100% errors when the angular
disparity is 0°) allows useful approximation with an exponential function of angular disparity.

that error probabilities are symmetric; for example, p(Clb) = p(B|c). The
model is summarized in Figure 8.
It is easy to derive the following response probabilities:

P(A) = p(@)[1 — p(Cla) — p(Dla)] + p(c)p(Cla) + p(d)p(Dla), (8)

p(B) = p()[1 — p(Clb) — p(DIb)] + p(c)p(Clo) + p(d)p(Dlb),  (9)

p(C) = p(Q)[1 — p(Cla) — p(Clo)] + p(@)p(Cla) + p(b)p(Clb),  (10)

p(D) = p(d)[1 — p(Dla) — p(DIb)] + p(a)p(Dla) + p(b)p(Dlb).  (11)
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FIG.7. Theanglesy,; andy, diminish asd grows, increasing the probability of erroneously
responding D when a or b were seen (or erroneously responding A or B when d was seen).
Similarly, the angles &, and &, grow as ¢ grows, increasing the probability of erroneously
responding C when a or b were seen (or erroneously responding A or B when ¢ was seen).

Analysis. The Kubovy and Wagemans data provide us with 16 multi-
nomial distributions of p(A), p(B), p(C), and p(D)—one for each lattice.
For each observer, we produced an initial estimate of the slope of the error
function (by using one of the slopes obtained in the response error experi-
ment, Figure 6), from which we computed values for the conditional proba
bilities that appear in Equations (8) through (11). We did this by solving
this system of linear equations for the four variables, p(a), p(b), p(c), and
p(d). The solutions proved to be computationally tractable, if complicated,
expressions.

For each observer we also produced an initial estimate of the slope a of the
attraction function and substituted it into Equations (4) through (7), giving us
a second set of estimates of the latent probabilities, p(a), p(b), p(c), and
p(d). We transformed these two sets of probability estimates into two sets
of frequencies (by multiplying them by the number of times each observer
saw each lattice), and calculated x2 as a measure of badness of fit. For each
observer, we then varied the slope of the error function and the slope of the
attraction function until we found values that jointly minimized x2

Results. The average response error function slope found by the minimiza-
tion procedure was close to the observed average error function slope. The
fit of the data to the model is shown in Figure 9 and Figure 10. In Figure
9 we show the left-hand panel of the fifth row of Figure 10 depicting the
data of observer jw. In this figure we show the 16 predicted values (one for
each lattice) of p(a) based on the Pure Distance model [Equations (4) through
(7)] as solid lines, and compare them to data points that represent the ob-
served p(a), corrected for response errors [Equations (8) through (11)]. The
independent variable is the length of the long diagonal of the lattices basic
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FIG. 8. Model of response errors due to orientation confusion. The symbols a, b, ¢, and
d represent perceptual states of the observer. A, B, C, and D represent the response chosen
by the observer. Thus whenever an observer chooses a response represented by a different
letter than the one representing her perceptua state, she is making an error.

paralelogram, d. The data are divided into four groups determined by the
length of the long side of the lattices’ basic paralelogram, b. In Figure 10,
each row represents the data of one observer, and each column represents
the observed and predicted probability for one of the vectors. In this figure,
we seethat the probabilities corrected for errors (data points) faithfully repro-
duce the patterns predicted by the Pure Distance model (solid lines). Further-
more, as Table 2 shows, the model accounts for the data well, except for
p(d). Thisis not surprising: as Figure 10 shows, the corrected probabilities
of D choices do not vary much, and are often close to 0, that is, we have a
floor effect because the number of trials per observer was not large enough
for the frequencies to express these small probabilities.

Is the function exponential? The preceding analysis relies on the Pure
Distance model’s use of the decaying exponentia function. One could also
use a power function. However, there is no point in doing so. To see why,
let us take an exponential function with a slope of —6.6, a representative
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FIG. 9. Predicted value of p(a) based on the Pure Distance model compared to data cor-
rected for response errors due to orientation confusion, as a function of the length of the long
diagonal of the lattices' basic parallelogram, d, for observer jw. The solid lines represent the
predictions based on the Pure Distance model—Equations (4) through (7)—whereas the dots
represent the data corrected for response errors as formulated in Equations (8) through (11).
The data are partitioned into four groups dependent on the length of the long side of the
lattices' basic parallelogram, b.

slope for our observers. We find that a power function with power —7.33
(rounded to two digits) best fits the exponential for the domain we are inter-
ested in: 1 = v/a = 2.5. For this domain, the root-mean-square difference
between the power function and the exponential is less than 0.01, which
means that we cannot hope to distinguish between them. So, until we find
grounds for rejecting the exponential, we will assume it to model our data.
Does lattice configuration affect grouping? In the experiment, two con-
figurational propertieswere varied: symmetries of the pattern and y, the angle
between dot strips. These two properties are highly correlated in the case of
dot lattices. The attraction function of the Pure Distance model uses the
length of the vector of interest relative to the shortest distance in the lattice
and disregards y. However, the final expression for the probabilities includes
all four vector lengths. Because the four vectors together determine the exact
lattice, thus encompassing y, one might claim that the grouping probabilities
are determined by the configuration of the lattice. However, the probability
expressions only contain all four vector lengths by virtue of the response
error model and the constraint that the probabilities must add up to one. Thus
the presence of al the vector lengths in each probability expression does not
mean that the groupings are determined by y nor by the lattice symmetries.
To determine whether inclusion of y can significantly improve on the Pure
Distance model, we regressed the observed probabilities (corrected for er-
rors) on two variables: (i) the probabilities predicted by the Pure Distance
model and (ii) y. The median proportion of variance unaccounted for by the
Pure Distance model that is accounted for by adding y is only 3.92%. Since
y contributes little to the success of the Pure Distance model, we draw the
conclusion that grouping by proximity shows no effect of configuration.
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The attraction function. The heart of the Kubovy and Wagemans model
is Equation (3), which we can now verify empirically. In Figure 11, for each
of our observers, we compare the predicted values (solid lin€) obtained from
Equations (4) through (7) and the observed probahilities (data points) cor-
rected for discrimination errors with Equations (8) through (11). In these
graphs we do not present the full range of the data because of the phenome-
non we discussed earlier—the floor effect (see the caption to Figure 11 for
an explanation).

The good fit of the attraction function tells us that, in a dot lattice, the
ratio of the probability p(v), of seeing the lattice group in direction v (with
dots v apart) and p(a), the probability of seeing the lattice group in direction
a (with dots a apart, the shortest distance between dots), is a negatively
accelerated function of the ratio of the distances v and a. It aso reinforces
the claim, made in the preceding section, that no other factor, such as the
angley, affectsthe grouping probabilities. In the rest of this paper we demon-
strate the robustness of our theory in three more experiments. In the first
two experiments we show that the Pure Distance model holds under transfor-
mations of scale in space and time. In the third we show that the Pure Dis-
tance model holds for units that are themselves the result of grouping.

EXPERIMENT 1: SPATIAL SCALING

The strength of the grouping of dot lattices into strips is a function of the
distance between the dots in the lattice. We have expressed inter-dot dis-
tances in terms of the shortest distance in the lattice, i.e., v/a. Up to this
point thiswas a convenience of no conseguence, because we held the shortest
distance, a, constant. We now turn to the question of scale invariance: are
the distances that govern the grouping probabilities relative or absolute? To
this end, we take a set of five lattices and present them at three different
densities, so that the relative inter-dot distances are the same, but the absolute
distances are different.

Method

Observers. Ten undergraduate students at the University of Virginia participated in this
experiment for credit in an introductory psychology course. They were naive about the purpose
of the experiment and had normal or corrected-to-normal vision.

Simuli. We used fifteen different lattices: five lattice types at three densities. The five lattice
types (see Figure 3) were: hexagonal (b/a = 1,y = 60°), square (1, 90°), oblique (1.26, 70.3°),
centered rectangular (1.59, 71.6°), and rectangular (1.59, 90°). The densities, as specified by
the length of the shortest vector, a, were: a = 40 pixels (= 1°), a = 60 pixels (= 1.5°), and
a = 90 pixels (= 2.25°). The mean number of dots displayed varied with lattice type and
density: about 358 dots for a = 40 pixels, about 190 for a = 60 pixels, and about 84 for
a = 90 pixels.

The lattices were presented at a random orientation for 300 ms followed by a dynamic mask
consisting of a sequence of three 200-ms random dot patterns, each of which contained as
many dots as the average lattice at the same scale as the current lattice. Following Kubovy
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ment. The dependent variable is different in each column of graphs: from left to right, the
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TABLE 2
Coefficients of Determination (R?) for the Data Shown in Fig. 10
Observer p(a) p(b) p(c) p(d)
jbs 93.3% 95.1% 94.1% —
ng 98.7% 98.4% 92.3% 0.0%
ech 96.4% 95.0% 89.2% 81.5%
jah 98.0% 98.8% 95.7% 18.4%
jw 98.9% 99.0% 91.9% 70.4%
jbr 92.0% 91.9% 82.2% 65.5%
ty 98.3% 99.1% 94.4% 71.7%

and Wagemans (1995), we ended each trial with a response screen containing four circular
response fields with a tilted diameter, and observers used a mouse to indicate which they
perceived.

Procedure. Each observer participated in two 600-trial sessions, during which we presented
the 15 lattices in random order. Fifteen practice trials preceded the experimental trials of each
session. A session was divided in three blocks of 200 trials by amandatory 20-s break. Sessions
were separated by at least 1 h. Each session took about 50 min.

Results

We compared the values of for each density and found no effect. We
took several precautions before performing this analysis. First, we excluded
responses to vectors whose length was equal to the length of a (v/a = 1).
These responses are uninteresting because when a, b, and ¢ are indistinguish-
able they are not subject to an effect of density. Second, we excluded re-
sponses to vectors for which v/a = 1.59. We had observed in the data of
Kubovy and Wagemans that the floor effect began to influence the data be-
yond that value. Had we included these data we would have biased the analy-
sis against finding an effect of density; at the extreme, if al our data were
at floor, there could not be an effect of density.

The differences between the values of In [p(v)/p(a)] for the three densities
and the overall mean of In[p(v)/p(a)] = —2.687 (which correspondsto p(v)/
p(a) = 0.0681) were well within the standard error of 0.077, so the differ-
ences were insignificant. Nor were these values significantly affected by vy.

Discussion

The result validates the use of v/a in the Pure Distance model. Although
previous experiments have not investigated the effect of scale on grouping
per se, Zucker and Davis (1988) discovered that dense dot patterns give
rise to Kanizsa subjective edges, whereas sparse patterns do not. From these
data and other considerations, they inferred that grouping by proximity is
performed by at least two mechanisms. Patterns composed of dense dotted
lines—Ilines for which the ratio of dot diameter to dot separation (center to
center), which we denote d:s, is greater than 1:5—give rise to the same
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FIG.11. Thenatural logarithm of probability ratios predicted by the Pure Distance model
(solid line) compared to the natural logarithm of the observed probability ratios corrected for
response errors (data points). For this graph, we constrained the variation of the dependent
variable so that its predicted value would never fall below the In [ p(v)/p(a)] value that corre-
sponds to a single observation. For instance, if an observer received 300 trials for each type
of lattice, then In [p(v)/p(a)] = In (1/300) = —5.7.

perceptual response as solid lines. If the dotted lines are sparse—d:s =
1:5—the response is weaker, and gives rise to qualitatively different per-
cepts. We should emphasi ze that Zucker and Davis do not deny that grouping
occurs in sparse lines. It is possible however that the laws of grouping by
proximity differ for sparse and dense lines.
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Our experiment tested whether Zucker and Davis's observation on the
qualitative difference between the behavior of sparse and dense lines applies
to grouping by proximity, because we had lattices for which d:s = 1:5 for
the shortest vector (a) as well as lattices of higher density (d:s = 1:3) and
lattices of lower density (d:s = 1:7). We have shown that the observations
of Zucker and Davis on the difference between dense (solid-like) lines and
sparse (dotted-appearing) lines do not generalize to grouping by proximity.

EXPERIMENT 2: DURATION

Kubovy and Wagemans (1995) and we (in Experiment 1) presented the
dot lattices for 300 ms. The Pure Distance model, or its parameters, may not
be invariant with exposure duration. Suppose we briefly present the observer
adot lattice. If time-consuming processes—such as mutual facilitation and
inhibition among receptive fiel ds—precede grouping, then the eventual orga
nization of the pattern may not have the time to make itself evident to the
observer if the exposure was brief. Faced with a yet-unorganized stimulus
and a forced-choice among definite groupings the observer is likely to re-
spond randomly, or according to some response bias (which amounts to the
same, since we randomized stimulus orientations and response screens).

Methods

The same methods were used here as in Experiment 1, except for the differences noted
below.

Observers. The observers were 9 undergraduates at the University of Virginiawho partici-
pated for pay.

Apparatus and stimuli. We used eight lattice types (see Figure 3): hexagona (b/a = 1,y
= 60°), rhombic (1, 75°), square (1, 90°), centered rectangular (1.26, 66.6°), oblique (1.26,
78.3°), rectangular (1.26, 90°), centered rectangular (1.59, 71.6°), and rectangular (1.59, 90°).
To allow the computer to speed up stimulus presentation, and hence shorten exposure dura-
tions, we changed the stimuli in two ways: (i) the dots werefilled nonagonsinstead of decagons
(with no noticeable loss in dot quality), (ii) we chose a = 1.875° to reduce the number of
dots in the display to an average of 123. We know from Experiment 1 that such a scale
difference makes no difference to the results. In this way, we were able to present the dot
lattices for 100 msand 200 ms, except for 67 of the 16,000 presentations, which were discarded
from the analysis. Each presentation of a dot lattice was followed by a mask, consisting of
three different random dot patterns of 123 dots each.

Procedure. Each observer participated in two sessions of 800 experimental trials. Each
session began with 16 practice trials, in which the eight lattices were presented twice, in
random order. A session was divided into four blocks of 200 trials, separated by 20-s breaks.
Each session consisted of 25 random permutations of the 32 lattice-exposure combinations
(16 lattices X 2 durations). Sessions were separated by no less than one hour.

Results

We analyzed the effect of duration of In [p(v)/p(a)]. We took the follow-
ing precautions in our data analysis. To minimize the likelihood that we
would find an effect of duration where none exists, we disregarded the re-
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sponses to ¢ and d, thereby avoiding the errors we observed in the Kubovy
and Wagemans data, which could be aggravated under conditions of brief
exposure. To increase the chances that we would find a true effect of dura-
tion, we disregarded (i) the responses to b/a = 1, because absol ute distance
is not likely to have an effect on the relative probabilities of choosing two
vectors of equal length, and (ii) the responses to values of b longer than
1.59, because they are vulnerable to floor effects.

For 100 ms exposure p(v)/p(a) = 0.053, whereas for 200 ms exposure
p(v)/p(a) = 0.0316 (In [p(v)/p(a)] = —2.937 vs. —3.455). The difference
in In [ p(b)/p(a)] between the two durations (based on a repeated measures
ANOVA, in which the factors were: duration, 100 vs. 200 ms; session, first
vs. second; b/a, 1.25 vs. 1.59; and observer, 1 through 9) was marginally
significant: F(1, 8) = 4.9, p = 0.058.

Discussion

Thedirection of thiseffect is consistent with aweaker perceptual organiza-
tion at shorter exposure durations. At the limit, if a certain exposure duration
were too short for any grouping to occur, then observers would choose their
responses randomly, regardless of dot proximity. If the likelihood of such a
state increases as exposure durations are reduced, we would observe the pat-
tern that we have: the shorter the exposure duration, the higher the values
of p(b)/p(a). Nevertheless, the present experiment suggests that little, if any,
change in perceptual organization happens between 100 and 200 ms of expo-
sure duration.

EXPERIMENT 3: GENERALIZING THE PURE DISTANCE MODEL

Palmer and Rock (1994) have suggested that the visual processing of
an image starts with edge detection, which partitions the image into non-
overlapping, relatively uniform, connected regions. After this partition is
achieved, a figure-ground process specifies which regions are ‘‘ objects’’ (or
“*figures’’) and which form the * * background.”” These objects, which Palmer
and Rock call basic-level units, are then parsed into parts and grouped into
groupings, forming a part-whole hierarchy (Figure 12).

Can the Pure Distance model be generalized beyond basic-level units? If
s0, the model’ s usefulness would be enhanced. Here we study groupings of
units which are themselves the result of grouping. Such hierarchical group-
ings occur in patterns we call split lattices, which can be investigated using
the same methods we have used for regular dot lattices. Split lattices differ
from regular dot lattices in that the distance between adjacent dots in one
orientation is not uniform. Figure 13 is arectangular split lattice, created by
tranglating every other dot in the a orientation of arectangular lattice (Figure
3). The separations in the b orientation remain uniform, whereas the a orien-
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FIG. 12. Pamer and Rock’s description of the part-whole hierarchy. The nodes in the
network, B, represent units involved in the perception of the six elements shown in A. These
elements can be parsed into subordinate units (parts) or grouped into superordinate units

(groupings).

tation consists of two aternating vectors, a; and a, We adopt the convention
that a, = a;

Consider the **split’” orientation (a) in Figure 13: dots separated by the
shorter component of the split orientation (a,) form pairs. These pair-Gestalts
participate in a further grouping process which organizes the lattice either
into strips in the split orientation, a, or the unsplit orientation, b. A careful
examination of Figure 13 suggests that proximity behaves differently in the
context of two different distances. In this dot pattern, it so happens that
a, = b. We normally see Figure 13 as organized in vertical columns. The
description of this organization is ambiguous; some describe it as *‘ pairs of

60 —-1a40
OO0 OO O Oy
o 00 oot
OO0 OO0 0O
OO0 OO0 0O

OO OO OO0

FIG. 13. Ana-split rectangular lattice. v; = 40, v, = 60, w = 53, \,/v; = 1.5, av(vy, V,)/
w = 0.94 (this lattice is a-split because the average of the inter-dot distances in the split
orientation is smaller than the inter-dot distances in the unsplit orientation; see ‘X’ in Fig. 14).
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columns of dots’ and others as ** columns of dot-pairs.”’ Nevertheless the
predominant impression is one of columns rather than rows.

To measure the interaction of the different distances in the split lattices,
we used some lattices split in the a orientation and some split in the b orien-
tation, and we compared observers tendency to see grouping in the non-
split orientation rather than the split orientation. We require a generalization
of our vector notation to express the a-split case and the b-split case with
the same dependent measure. We call the two vectors in the split orienta-
tion v, and v, (v, = v;) and we denote the non-split orientation (be it a or
b), w. Split lattices are defined by three parameters: v,/vy, av(v; + V,)/w,
and y. v,/v; measures the amount of split in the shortest split orientation;
av(v; + w)/w is the ratio of the length of the split orientation to the length
of the non-split orientation, and y is the angle between v and w. Split lattices
for which av(v, + v,)/w = 1 are ordinary dot lattices. The relative strength
of grouping in the split orientation relative to grouping in the non-split orien-
tation is then p(v)/p(w).

Method

Observers. Eighteen University of Virginiastudents participated in thisexperiment for credit
in an introductory psychology course. They were naive about the purpose of the experiment
and had normal or corrected-to-normal vision.

Apparatus and stimuli. The apparatus and display were similar to those used in the Kubovy
and Wagemans experiment.

We sampled the split lattices from the three-dimensional (v./vy, av(vi + Vo)/w, Y) space.
Figure 14 is a two-dimensiona projection of the sampling, collapsing over the y dimension.
Three values of y—74°, 82°, and 90°—were crossed with 38 v,/v; = av(v; + V,)/w combina-
tions. These combinations were chosen to obtain a range of parameter values, yet minimize
thefloor effect. Theav(v; + v,)/w valueswere sampled logarithmically (but constraints such as
the discrete nature of computer screens prevented the logarithmic spacing from being perfect).

We chose y values so that the distance of dots from their nearest neighbors in orientations
other than v and w would be relatively long. Therefore, only the v and w (a and b) alternatives
were provided to the observers. This change virtually eliminates response errors due to orienta-
tion confusion. The angle between v and w was always greater than 73°, which would cause
confusion errors on only 0.1% of the trials by the least accurate observer in the memory
experiment. An effect of configuration in split lattices can revea itself in an effect of y. In
the dot lattice experiments, an effect of y was not found, but it is possible that the pairing
may change this. For example, suppose we perceive the dots in the split v orientation as a
collection of dot pairs. Isthisorganization reinforced when y = 90°, causing the w organization
to be columnar and perpendicular to the axis of the pairs?

Procedure. Each trial consisted of a dot pattern presented for 300 msfollowed by 2 random-
dot patterns presented for 300 ms. Immediately following was a two-aternative response
screen. Each observer participated in one session of 912 trias, divided into eight blocks in
which arandom permutation of the 114 lattices was presented. Sessions were broken by two
30-s rest breaks into three sets of 304 trials. Each session (including instructions and de-
briefing) took about 70 min.

Results

To determine whether y affects the rel ative grouping strength, we analyzed
the effects of av(v; + v,)/w, w,/v;, and y (discrete unordered fixed factors),
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FIG. 14. The space of split lattices. The ‘X’ represents the pattern of Fig. 13.

and observer (random factor) on In [p(v)/p(w)]. The differential effects of
three levels of y were minuscule: for y = 74°: In [p(v)/p(w)] = —1.428
(p(v)/p(w) = 0.2398), for y = 82°: In [ p(v)/p(w)] = —1.432 (p(v)/p(w) =
0.2388), for y = 90°: In [p(V)/p(w)] = —21.417 (p(v)/p(w) = 0.2424). We
confirmed that this effect is statistically undetectable by arepeated-measures
ANOVA: F(2, 34) = 1

After aggregating the data across observers (which was necessary because
we only have eight trials per observer for each data point), we plot In [ p(v)/
p(w)] against av(v; + v,)/w (Figure 15, left panel). For each value of v,/v;
we fit alinear regression (Figure 15, right panel). That these linear functions
fit well suggests that for each value of v,/vy, p(v)/p(w) is an exponentially
decreasing function of av(v; + v,)/w. Since they do not fall on the same
curve, the average distance in the split orientation is not the only characteris-
tic that determines grouping: indeed, as v,/v; increases, the split orientation
is less likely to be reported.

If the split | attices are grouped into pairs before the split | attice is organized
by strips, then the competition that determines the latter organization may
not be between w and the average of v, and v,, but rather between v, and w.
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FIG. 15. Left panel: The natural logarithm of the ratio of p(v), the probability of seeing
the dot pattern grouped into strips along the split orientation, and p(w), the probability of
seeing the dot pattern grouped into strips along the non-split orientation, as a function of the
ratio of the average length of inter-dot distances along the split orientation and the length of
the inter-dot distance aong the non-split orientation. Right panel: The best-fitting linear
functions for different degrees of heterogeneity in the split orientation. The parameter is
Vol V.

We therefore plot In [p(v)/p(w)] as a function of in Figure 16. This comes
much closer to collecting the data onto one line. Indeed, the regression of
In [ p(v)/p(w)] on v,/w accounts for (an adjusted) 92.4% of the variance. As
we would expect, when v,/w = 1, In [p(v)/p(w)] = O (actually 0.026 =
0.035). Furthermore the heterogeneity expressed by v,/v; does not affect the
organization: if we regress In [p(v)/p(w)] on v,/w and v,/v;, while con-
straining In [ p(v)/p(w)] = 0 when v,/v; = 1, then the coefficient of v,/v; =
1is —0.008 = 0.025 (it adds only 0.3% to the variance accounted for by
Vo/W).
Discussion

The results of this experiment show that the grouping of split lattices is
unaffected by the extent of the split, ranging from patterns with a splitting
ratio v,/vy = 1 (i.e, regular dot lattices) to patterns with v,/v; = 2 (our most

extreme split lattices). Our data show that observers organize the heteroge-
neous strips of dots into pairs, which become units whose separation v, com-
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FIG. 16. Regression of In [p(v)/p(w)] on v,/w through (O, 1).

petes with the separation w as if these pairs were mere dots in a dot lattice.
Thus our theory of grouping by proximity holds even when the elements
that are grouped are the result of another grouping operation.

GENERAL DISCUSSION

For the periodic dot patterns we have explored, we have remedied the
shortcomings of previous approaches to perceptual organization by success-
fully measuring grouping strength and the effect of varying spatia configu-
ration. Some may object that the dot patterns we used are not seen in the
real world, but we required stimuli in which we could isolate and systemati-
cally vary proximity as well as configural properties.

In the case of relative grouping strength, our experiments and analyses
show that it isanegatively accelerated decreasing function of distance, which
we model as a decaying exponential function. To predict grouping in more
complex patterns we need to discover the strength function for other princi-
ples, such as similarity, as well as rules for the interaction of the grouping
principles. Therefore the current effort is only the beginning; more recent
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experimentsin our laboratory have measured the effect of luminance contrast
(Kubovy, Holcombe, & Friedenberg, 1995).

Grouping in the dot patterns was not affected by the configural property
we varied, y, which changes the lattice type. We have seen earlier that differ-
ent lattice types differ in their symmetry. From the point of view of Gestalt
psychology, a pattern with greater symmetry is simpler, *‘better,”” or more
pragnant. So we have shown that the goodness of a multistable pattern does
not directly affect the distribution of the probabilities of its different interpre-
tations.

However, we should recall that the Gestalt psychologists used pattern
goodness, or pragnanz, to explain a different phenomenon. When we ook
at a multistable pattern, whose multiple interpretations differ in simplicity,
we are more likely to see the simple interpretation than the others. The multi-
ple interpretations of our patterns are al collections of strips of dots, and
therefore do not differ in goodness or simplicity.

Furthermore, we cannot infer that grouping in the dot patterns is noncon-
figural or can aways be accounted for by proximity alone. The tendency for
dot lattices to group into parallel strips is in itself a configural effect: for
instance, lattices are always perceived as coherent collections of strips, and
are never seen organized in a piece-meal fashion. In addition, the Pure Dis-
tance model does not address important global properties such as dot colin-
earity, which is held constant in our experiments.

But surprisingly, the configural properties we varied did not affect group-
ing. We will continue this enterprise by investigating more and more com-
plex dot patterns until we find the simplest case for which we can vary and
understand the effect of spatial configuration, for we believe our method has
the best chance of recognizing such a pattern and determining exactly what
isgoing oninit. In alecture delivered in 1924, Wertheimer pointed out that

There are contexts [Zusammenhange] where the behaviour of the wholeis not deter-
minated by the nature and combination of the individual pieces, but in contrast
where, in the pregnant case, that which happensin a part of this whole is determined
by inner structural laws of this whole. (Quoted in Smith, 1988, p. 464)

A concrete and compl ete understanding of this phenomenon has been along
time coming.
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