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Toward a Better Approach to Goodness:
Comments on Van der Helm and Leeuwenberg (1996)

Johan Wagemans
University of Leuven

Some regularities are more salient to the visual system than others. P. A. van der Helm and E. L. J.
Leeuwenberg (1996) have proposed a new approach that quantifies the goodness of a pattern’s regularity
as the number of holographic identities constituting the regulartiy, relative to the total amount of
information needed to describe the pattern. This holographic approach to goodness was compared with
previous approaches and was presented in relation to metatheoretical issues. These 3 aspects are
discussed further here. First, the theory is shown to contain implausible assumptions and unfortunate gaps
with respect to the required processing. Second, Van der Helm and Leeuwenberg’s critique on preceding
theories is refuted. Third, some metatheoretical issues need to be qualified or at least clarified. Together,
these concerns suggest that a better approach to goodness might result from a synthesis of the most useful

aspects of diverse theories of goodness.

In 1996, Van der Helm and Leeuwenberg presented a new
theory of goodness that helped researchers understand the percep-
tual salience of regularities such as repetition and mirror symmetry
in terms of properties of their mathematical representation. They
argued that preceding theories of goodness failed either because
they were process theories with contradictory ad hoc assumptions
or because they were representation theories taking a transforma-
tional approach to goodness. In contrast, their theory is represen-
tation based and nontransformational.

First, I summarize Van der Helm and Leeuwenberg’s (1996)
theory and discuss some problematic assumptions and unfortunate
gaps. Then, I demonstrate that their critique of preceding theories
such as the transformational approach and the bootstrap model is
not completely justified. Finally, I raise some concerns about the
metatheoretical framework within which their theory has been
presented. The major message is that a synthesis of the most
fruitful aspects of the new representation theory with those of
preceding process theories might lead toward a better approach to
goodness.

Van der Helm and Leeuwenberg’s (1996)
Theory of Goodness
Theory

Definition of goodness. In Van der Helm and Leeuwenberg
(1996, p. 444) they proposed the following as a theoretical defi-
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nition of goodness (because all quotes are from Van der Helm &
Leeuwenberg, 1996, I indicate the source by only the page number
in that article):

The goodness of a pattern is, in our view, determined by the
“strength” of the regularity described in the simplest description of the
pattern. By strength, we mean the amount of support, or “weight of
evidence” (McKay, 1969), for the existence of a regularity, as given
by the identities that constitute this regularity. Because a regularity is
always embedded in a pattern, we propose to quantify goodness by
W, = E/M, in which E is the number of holographic identities that
constitute the regularity, whereas M is the total information in the
pattern. (p. 444)

This conception of goodness, called the holographic approach to
goodness (which I will denote by HA), requires two pieces of
theoretical work for a further elaboration: (a) a tool to specify the
number of holographic identities in a regularity (E), and (b) a tool
to quantify the total information in the pattern (M). The latter is
provided by Leeuwenberg’s (1969, 1971) structural information
theory (SIT); the former builds on Van der Helm’s (1988) math-
ematical formalization of regularity (see also Van der Helm &
Leeuwenberg, 1991). This formalization has also led to a much
better justified coding system and complexity metric (e.g., Van der
Helm, Van Lier, & Leeuwenberg, 1992). Thus, both parts are
intrinsically connected and the HA to goodness is a natural devel-
opment of the authors’ previous theoretical work.

Pattern encoding. SIT is a pattern encoding model proceeding
in several steps. First, a pattern is represented by a symbol se-
quence. Next, a symbol sequence is encoded by coding rules,
describing regularity in terms of the identity of symbols in a
sequence. The most important rules are the so-called ISA-rules (for
iteration, symmetry, and alternation). By the iteration or I-rule, a
symbol sequence kkkk . .. k is coded as m * (k); by the symmetry
or S-rule, a symbol sequence kik, ... kpk, ... kyk, is coded as
S[(k)(ky) . . . (k),(p)]; and by the alternation or A-rule, symbol
sequences such as kx kx, . . . kx, and x,kx,k . . . x k are coded as <
(k) >/< (x)(x;) ... (x) > and < (x)(x). .. (x) >/< (k) >,
respectively. These coding rules are applied to all subsequences,
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yielding a combinatorially explosive number of possible codes. A
complexity metric is then used to select the simplest code, and the
simplest code is assumed to reflect the preferred pattern interpre-
tation. In this sense, SIT provides a synthesis of Hochberg and
McAlister’s (1953) minimum principle with Attneave’s (1954)
information-theoretic pattern descriptions.

Holographic regularity. Regularity is based on the identity of
symbols in symbol sequences, captured in so-called identity struc-
tures. In intuitive terms, an identity structure is said to describe a
holographic regularity if its substructures all describe the same
kind of regularity (for a more formal account, see pp. 437-440).
Straightforward analysis yields that there are only 20 holographic
kinds of regularity; among these are repetition and mirror symme-
try. The structure imposed by the I-rule yields the holographic
structure of repetition. Because a repetition substructure corre-
sponds to a subsequence, repetition is said to have a block structure
(see Figure 1A). Mirror symmetry is a holographic regularity
covered by the S-rule in SIT; it is said to have a point structure
because each symbol constitutes one substructure (see Figure 1B).

Transparent hierarchy. Holographic regularity concerns an
intrinsic character of a regularity. To specify the unique formal
status of repetition, mirror symmetry, and alternation, the extrinsic
compatibility of a regularity with other regularities must be con-
sidered. In Van der Helm and Leeuwenberg (1996), they distin-
guish between three types of compatibility: first, a trivial kind of
compatibility comprising nonoverlapping regularities and, second,
two types of hierarchical compatibility comprising overlapping
regularities in which the elimination of one regularity does affect
the other but not vice versa. When one regularity lies completely
inside a substructure of another regularity, one has so-called plain
hierarchy; when two regularities are nested in such a way that both
can be described only when one starts with one specific regularity
first, one has so-called transparent hierarchy. Only 4 of the 20
kinds of holographic regularity have the most intricate form of
compatibility, transparent hierarchy: bilateral symmetry as de-
scribed by the S-rule, repetition as described by the I-rule, alter-
nation as described by the A-rule, and different successive two-
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fold repetitions, also described by the I-rule. This is a solid
theoretical justification of the coding rules used in SIT.

Goodness in 2-D dot patterns. The same formalization is used
to explain at a more concrete level why certain regularities are
“better” than others, in the sense of being “faster detected, more
easily discriminated, and less sensitive to noise” (p. 429). A few
additional steps must be taken and a few assumptions must be
made before this formal framework can be applied to explain the
goodness of regularities in dot patterns. First,

[A]ln n-dot pattern can be constructed on the basis of the symbolic
recipe p, *p,* ... p,*, which prescribes that there is a dot ( - ) at each
position p; (1 = i = n). This symbolic recipe forms a 1-D symbol
sequence containing the “first-order” structure of a pattern consisting
of identical dots. This first-order structure can be extracted from that
symbolic sequence by applying the A-rule, yielding the A-form <
(P(p2) ... (py) >/<(-) >, which expresses the identity of all the
dots. The dot positions can be specified in one way or another,
codepending on “second-order” regularity like mirror symmetry or
repetition. (p. 443)

However, the 1-D transparency of alternation pertains to 2-D
patterns only if every 1-D subsequence represents a spatially
contiguous 2-D subpattern. In other words, in the symbolic recipe,
the dots should be given in a spatially contiguous order.

Furthermore, in order that a 2-D mirror symmetry can be described as
a 1-D mirror symmetry in the sequence of dot positions, first the dots
in one symmetry half should be given in a spatially contiguous order,
and then the dots in the other symmetry half should be given in the
reversed order. (p. 443)

In addition, “for practical reasons, and nearly without loss of
generality” (p. 443), the dot patterns must satisfy the following
restrictions: They must have homogeneous dot density and con-
stant pattern size; all dots must be identical and nonoverlapping,
and no dots should lie on the axis.

Next, the holographic quantification W = E/M can be evaluated
for a variety of goodness phenomena. Because all dots are identical
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Figure 1.

A: Tllustration of the holographic nature of repetition. To the left is a 1-D symbol sequence with the

arcs indicating identities between substructures. In the middle is a 2-D dot pattern with threefold repetition. To

the right, the block structure of repetition is indicated

by rectangles drawn around each repeated random-dot

pattern. B: Tllustration of the holographic nature of mirror symmetry. To the left is a 1-D symbol sequence with
the arcs indicating identities between substructures. In the middle is a 2-D dot pattern with mirror symmetry. To
the right, the point structure of mirror symmetry is indicated by rectangles drawn around each dot (i.e., each dot
constitutes a substructure). Adapted from “Goodness of Visual Regularities: A Nontransformational Approach,”
by P. A. van der Helm and E. L. J. Leeuwenberg, 1996, Psychological Review, 103, p. 441. Copyright 1996 by
the American Psychological Association. Adapted with permission of the authors.
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and nonoverlapping and dot density and pattern size are kept
constant, M = n (i.e., the number of dots). Because the first-order
regularity is described by the A-form < (p,)}(p,)...(p,) >/<
() >, constituted by n — 1 identities, it has a weight of evidence
W = (n — 1)/n. W approximates 1 if the number of dots n is
sufficiently large; in that case, the first-order structure common to
all dot patterns can be neglected such that the focus can be on the
higher-order regularities.

Finally, the goodness of higher-order regularities such as repe-
tition and mirror symmetry can be quantified as follows:

In the case of an otherwise-random m-fold repetition pattern consist-
ing of n dots, the repetition is constituted by E = m — 1 identities, so
it has a weight of evidence of W = E/n = (m — 1)/n. .. . In the case
of an otherwise-random mirror-symmetric pattern consisting of n dots,
the mirror symmetry is constituted by E = n/2 identities, so it has a
weight of evidence W = E/n = (n/2)/n = Y2. (p. 445)

Thus, repetition is predicted to get better if n decreases and if m
increases, whereas mirror symmetry is predicted to be equally
good with varying n. Not all of these predictions have been tested
but some empirical results are certainly consistent with them. For
example, Baylis and Driver (1994) have demonstrated with block
patterns consisting of several steps (for ns = 4, 8, and 16) that
response times for detection of repetition increase linearly with n,
whereas they remain essentially flat for mirror symmetry. With
large ns (from about 20 to 5,000), Tapiovaara (1990) found that
detectability of mirror symmetry remains constant. The variable W
for repetition and the constant W for mirror symmetry imply a
variable goodness difference between these two regularities. For
example, an m-fold repetition with m > 2 can be better than mirror
symmetry [if n is chosen to be appropriately small, i.e.,n <2 (m —
1)], whereas a twofold repetition with n > 2 is generally worse
than mirror symmetry. These goodness differences are confirmed
by convincing demonstrations in Van der Helm and Leeuwen-
berg’s (1996) article (see also the present Figure 2).

The same formal principles are also used to explain why adding
extra regularity enhances the goodness of twofold repetition more
than it does for the goodness of mirror symmetry. Because of the
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Figure 2. An increasing number of dots leads to an increasing goodness
of twofold repetition (from A to C), whereas it hardly affects the goodness
of mirror symmetry (from A’ to C'). Adapted from “Goodness of Visual
Regularities: A Nontrasformation Approach,” by P. A. van der Helm and
E. L. J. Leeuwenberg, 1996, Psychological Review, 103, p. 445. Copyright
1996 by the American Psychological Association. Adapted with permis-
sion of the authors.

block structure of repetition, extra regularity in each repetition
substructure reflects plain hierarchy, whereas extra regularity in
each symmetry half reflects transparent hierarchy because of the
point structure of mirror symmetry. As a result, extra regularity in
each pattern half counts twice in the case of twofold repetition and
only once in the case of mirror symmetry (see pp. 446—447).
Moreover, the HA can also explain why threefold mirror symmetry
is worse than twofold symmetry (pp. 447-448), how noise affects
repetition and mirror symmetry (pp. 449—450), and some results
concerning so-called Glass patterns, which are created by super-
imposing a random dot pattern on a copy of itself, after rotation or
translation (pp. 450-451).

Evaluation

On the one hand, the HA has considerable explanatory power,
unifying a large number of empirical results under a single theo-
retical umbrella. In addition, it leads to interesting new predictions
that are specific enough to be testable by future empirical research.
For example, concrete predictions are made about so-called broken
symmetry (p. 440), about interactions between regularities (pp.
441-442), and about the effect of the location of noise (p. 449),
although it is not immediately clear how the HA can deal with
noisy symmetries without incorporating metric aspects (see later).
On the other hand, the theoretical constructions themselves are
quite elaborate and complex, and many of the preliminary steps
that must be taken and assumptions that must be made make it
somewhat less appealing as a psychological theory of how pattern
goodness arises for human perceivers.

Black box. Most important, it seems quite problematic to
assume that the symbols must be in the correct order for the formal
machinery to work appropriately on the symbolic sequences. For
mirror symmetry, for example, it is essential that the dots are
encoded in reversed order for both pattern halves. What are the
processing assumptions that must be made for the visual system to
get the symbols in the correct order? Does it have to process all
dots sequentially according to strict rules of precedence (which
would then be reversed for mirror symmetric pattern halves)?
Perhaps it does not matter how dots are processed and the visual
system has a hitherto undiscovered mechanism for reshuffling dot
positions into the intermediate representations? Questions like
these remain unanswered in the current version of the theory. The
authors might argue that the encoding of a 2-D pattern in a 1-D
symbol sequence is only a theoretical steppingstone without any
psychological relevance: It need not be assumed that a symbol
sequence precedes (in process terms) a particular end code with
possible holographic and transparent properties. Although this may
salvage the theoretical constructions, it puts many interesting psy-
chological aspects into a black box by refusing to answer impor-
tant questions regarding the processing that is needed to get the
representations.

The problem of simultaneous or successive order in the visual
stimulation seems related to age-old problems such as local sign or
“Localzeichen” as introduced by Lotze (1884; see also Koen-
derink, 1984; Schwartz, 1980) and serial order as introduced by
Lashley (1951; see also D. Bruce, 1994; Lewandowsky & Mur-
dock, 1989) as well as current hot topics regarding the spatiotem-
poral encoding characteristics of the visual system (e.g., Gilbert,
1995; Kovics, 1996; Singer, 1995). Because the assumption of
correct order is so critical for the theory to be able to start working,
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and existent work on related problems contains some interesting
suggestions, I believe that this part of the theory should not be left
unspecified (or should not be left to other scientists to fill them in).
Nevertheless, this seems to be implied by Van der Helm and
Leeuwenberg (1996, p. 443) when they said that “the theory does
not prescribe in detail how the raw 1-D symbolic representations
are to be obtained (which stresses that it is a representation theory
and not a process theory).” An account of goodness with such large
unresolved questions is not good enough yet.

Salient substructures. Another unfortunate assumption is that
dot density must be homogeneous. This assumption is probably
needed to avoid problems with perceptually salient substructures.
If so, the restriction is all the more disappointing because substruc-
tures are really at the heart of important theoretical notions such as
holographic regularity, and much of the attraction of the HA
depends on its claim that it deals satisfactorily with interactions
among regularities. Grouping by proximity, curvilinearity, or col-
linearity often creates salient substructures such as clusters of dots,
strings of dots, or isolated “anchors” (e.g., Compton & Logan,
1993; Feldman, 1997; Smits, Vos, & Van Oeffelen, 1985; Van
Oeffelen & Vos, 1983). When present, these structures make the
detection of repetition and mirror symmetry easier. Hence, the
influence of semilocal grouping factors creating salient substruc-
tures on the detection of more global regularities such as repetition
and mirror symmetry appears a prototypical case of interactions
among regularities.

Examples of the role of perceptually salient substructures are
present in one of the few instances where Van der Helm and
Leeuwenberg (1996) failed to draw homogeneous dot patterns. In
Figure 2C, the most salient substructure is a vertically reflected
C-like curve segment formed by six dots. It is probable that the
repetition of this substructure helps to see the repetition of the
whole dot pattern. In Figure 2C’, the same substructure is present,
and now also a few small substructures get more salient because
they bridge the axis (e.g., one at the pattern’s top and one near the
pattern’s center). Perhaps the goodness of mirror symmetry is
generally higher than that of repetition because there is an in-
creased likelihood that salient substructures occur near the pat-
tern’s midline. This will play a role especially when patterns are
flashed briefly. Recent experimental research has already demon-
strated the role of clustering in symmetry detection (e.g., Dakin &
Watt, 1994; Labonté, Shapira, Cohen, & Faubert, 1995; Locher &
Wagemans, 1993; Wenderoth, 1995). In sum, patterns with salient
substructures are better patterns, and an account of pattern good-
ness that does not incorporate this effect is not good enough yet.

Van der Helm and Leeuwenberg’s (1996) Critique of
Preceding Theories of Goodness

In addition to presenting their own theory, Van der Helm and
Leeuwenberg (1996) also offered a critique of preceding theories
of goodness. They distinguished between representation theories,
which “aim at explaining visual phenomena primarily in terms of
static qualities of the representations that result from the perceptual
process,” and “process theories, which aim at explaining visual
phenomena primarily in terms of dynamic qualities of the percep-
tual process itself” (p. 430). Van der Helm and Leeuwenberg
further claimed that all preceding representation theories of regu-
larity have taken a transformational approach (which I denote by
TA), which implies a block structure for mirror symmetry as well

as for repetition, and they present the so-called bootstrap model
(which I denote by BM) as “one of the most elaborate and
promising process models” (p. 432), although “it does . . . not (yet)
provide a comprehensive understanding of goodness” (p. 433). In
this section, I restrict the discussion to Van der Helm and Leeu-
wenberg’s critique of TA’s block structure representation of mirror
symmetry and their diagnosis of BM’s defects.

Transformational Approach (TA)

The TA starts from a mathematical definition of symmetry as a
transformation that leaves its object invariant. This notion has had
a large impact on the field of symmetry detection as evidenced by
the changed names of different regularities: reflectional symmetry
instead of mirror or bilateral symmetry, translational symmetry
instead of repetition, and rotational symmetry instead of centric
symmetry. Because the HA agrees with the TA of repetition in that
both imply a block structure representation of the repeated sub-
patterns (i.e., pattern halves in the case of twofold repetition), Van
der Helm and Leeuwenberg (1996) did not criticize the TA of
repetition, except for noting that “a repetition pattern is invariant
under a group of translations, only if the pattern is extended
infinitely such that the pattern contains an infinite number of
identical subpatterns, and the group an infinite number of transla-
tions” (p. 434), a point that is all too often overlooked in previous
work on translational symmetry or repetition. However, they did
criticize the TA of mirror symmetry, and they took Palmer’s
(1982, 1983, 1991) approach as the standard TA. (Note that the TA
can also be translated into a process model in which the mecha-
nisms for detecting transformational invariances can be specified;
see Palmer, 1985.)

To describe mirror symmetry, Palmer used the flip or reflection,
that is, an operation that interchanges all mirror-symmetric point
pairs simultaneously (i.e., a holistic transformation that works on
the global pattern, not a pattern half, as often assumed by Van der
Helm & Leeuwenberg, 1996). Together with the trivial identity
transformation, one such transformation already forms a group (so
that it does not suffer from the same problem as TA’s approach of
repetition). I will call this the global TA of mirror symmetry. Van
der Helm and Leeuwenberg (1996) acknowledged that another TA
of mirror symmetry is possible (which I define as the local TA):
One can use the set @ of all transformations that each interchange
only one mirror-symmetric point pair. To be a group (i.e., to obey
the requirement of closure), this set should be expanded to the set
G(®) to contain every composite of the transformations in ® (i.e.,
every transformation that interchanges a subset of those point pairs
simultaneously). In Van der Helm and Leeuwenberg (1996, p.
435), they continued as follows:

Both the reflection and the flip imply that mirror symmetry gets a
block structure: Each symmetry half becomes one substructure. (Sub-
structures are subpatterns identified with each other subpattern by a
single transformation.) This block structure implies an all-or-nothing
relationship between the two symmetry halves: Even the slightest
noise in the mirror symmetry destroys the transformational invariance
relationship between the two symmetry haives. In contrast, the earlier
mentioned set & would imply that each point in each symmetry half
becomes one substructure, so that mirror symmetry would get a point
structure implying a graded relationship between the two symmetry
halves. The set & is, however, neither before nor after closure taken
as a transformational descriptor of mirror symmetry. It is true that
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before closure the set @ is not a group and that after closure the group
G(®) is perceptually irrelevant.

I think that Van der Helm and Leeuwenberg (1996) dismissed
the local TA of mirror symmetry too easily, especially if one
considers how strongly their attack on the TA depends on its
representation of mirror symmetry as a block structure. In my
view, the local TA of mirror symmetry becomes perceptually
relevant in patterns in which points are not spaced evenly (i.e.,
when the earlier mentioned assumption of homogeneous dot den-
sity is violated). In that case, one gets substructures on the basis of
grouping by proximity or collinearity (or some other grouping
factor), which then become the elements to be matched (i.e., to be
transformed into one another) to establish the mirror symmetry. In
other words, if one is willing to go one step further on the road
from mathematics to psychology, one could say that the set of
transformations must be complete (or have closure), from a math-
ematical point of view, but that only some sets of transformations
have perceptual relevance, namely those that operate on structures
created by other grouping processes (i.e., some of them work on
points, and some on small blocks). In this sense, all structures
yielded by other grouping processes are anchors to establish and
detect reflection (or any other regularity for that matter). As
mentioned earlier, Figure 2C and C’ contain some interesting
examples to illustrate that substructures are important from a
processing point of view in both repetition and mirror symmetry.
In fact, even Palmer’s TA has this flexibility to capture both global
(or block) structure and local (or pointwise) structure by varying
the size of the receptive field of individual analyzers (see Palmer,
1985).

I am not inclined to defend the TA by insisting on this escape
from Van der Helm and Leeuwenberg’s (1996) criticism, but I do
think it has some appeal as an alternative TA. In Van der Helm and
Leeuwenberg (1996), their rejection of it is only based on their
insistence on mathematical rigor (in their requiring of closure of
set ®) and their neglect of processing aspects (in their dismissal of
the psychological relevance of substructures, that is, composites of
point pairs). A considerable advantage of this local TA is that it is
compatible with recent process models such as Dakin and Watt’s
(1994) filter model. At the same time, such filter models allow for
bottom-up extraction of salient substructures so that they go be-
yond the ad hoc nature of the classic Gestalt laws of grouping. By
setting the spatial filters at different scales, one can obtain sub-
structures as small as single elements or as large as a few blobs for
the whole dot pattern, with the intermediate range as the best
possible range to extract salient substructures that span the pat-
tern’s midline (see also Dakin, 1997; Dakin & Hess, 1997). More-
over, corresponding to this spatial scale parameter, one can have a
process that either establishes the correlation between two pattern
halves on a point-by-point basis or computes a more global mea-
sure of blob alignment. Computer simulations have demonstrated
that the best possible fit with human symmetry detection data (by
Barlow & Reeves, 1979, and by Jenkins, 1983) is obtained with the
rough blob-alignment measure (indicating the psychological plau-
sibility of medium-scale clusters or substructures, as in the local
TA).

Bootstrap Model (BM)

Before presenting Van der Helm and Leeuwenberg’s critique on
the BM and my rebuttal, I briefly summarize the model’s princi-

ples (for more details, see Wagemans, Van Gool, & d’Ydewalle,
1991; Wagemans, Van Gool, Swinnen, & Van Horebeek, 1993).

Summary of the BM. The BM is a process model that starts
from the available information in a dot pattern (i.e., the locations
of the dots). Dots are grouped in pairs by using a virtual line to
establish a connection. Initially, pairwise groupings are random,
although the grouping process has some built-in preferences (e.g.,
it starts in the middle of a pattern and it has a preference for short,
horizontal virtual lines). Virtual lines connecting symmetrically
positioned dots have uniform orientations and collinear midpoints,
two properties that were found useful in symmetry detection
(Jenkins, 1983). In perfect mirror symmetry, a pair of virtual lines
connecting symmetrically positioned dots also establishes a virtual
quadrangle with correlated angles (called a correlation quadran-
gle; see Figure 3A). The basic assumption of the BM is that these
correlation quadrangles facilitate the propagation of local pairwise
groupings because they specify a reference frame that suggests a
unique direction within which other correspondences are much
more likely to be found. In other words, the initial randomness in
pairing elements within some local neighborhood converges to
systematicity much more easily, establishing a coherent global
structure more rapidly and more efficiently. This automatic spread-
out of correspondences is called bootstrapping.

When mirror symmetric dot patterns are viewed from aside, one
has so-called skewed symmetry (see Figure 3B). As a result of
skewing, the first-order regularities of the virtual lines (i.e., orien-
tational uniformity and midpoint collinearity) are still preserved
but the second-order regularities of the virtual quadrangles are
destroyed (i.e., the angles in the virtual quadrangles are no longer
pairwise correlated). Thus, bootstrapping is not possible anymore.
These properties of the BM allow an explanation of the superior
detectability of orthofrontal mirror symmetry as compared with
skewed symmetry (Wagemans et al., 1991; Wagemans, Van Gool,
& d’Ydewalle, 1992), of double mirror symmetry as compared
with single mirror symmetry (Palmer & Hemenway, 1978; Wage-
mans et al.,, 1991) and of the smaller effect of skewing with
multiple symmetries (Wagemans et al., 1991). Similar goodness
differences in other types of dot patterns (e.g., with translational or
rotational symmetry) can also be attributed to the presence or
absence of higher-order regularity in correlation quadrangles such
as trapezoids and parallelograms (see Wagemans et al., 1993).

Van der Helm and Leeuwenberg’s critique on the BM. First,
the BM is said not to offer a sufficient explanation of the
goodness difference between repetition and mirror symmetry. I
have argued previously (Wagemans, 1995) that mirror symme-
try is more salient than twofold repetition because parallelo-
grams do not allow the same degree of bootstrapping as trap-
ezoids; there is no single direction of propagation. Van der
Helm and Leeuwenberg doubted that this difference was strong
enough to explain the goodness difference (p. 433): “In repe-
tition, one additional parallelogram already disambiguates the
propagation direction while, moreover, the virtual-line length is
fixed (in mirror symmetry, it is variable).” Second, the BM is
said to predict that translational Glass patterns are as good as
twofold repetition, although, in fact, they are as good as mirror
symmetry (thus, better than twofold repetition). Third, Van der
Helm and Leeuwenberg “do not see how the [BM] may explain
that extra regularity in each half of a twofold repetition has a
stronger effect than extra regularity in each half of a mirror
symmetry” (p. 433).
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Figure 3. A: Perfect mirror symmetry in a dot pattern (left) with an indication of the first-order regularity in
terms of the virtual lines (middle) and the second-order regularity in terms of the virtual correlation quadrangles
(right). B: Skewed symmetry in a dot pattern (left) with an indication of the first-order regularity in terms of the
virtual lines (middle) and the absence of second-order regularity in terms of the virtual quadrangles (right).

Adapted from Wagemans (1995, Figure 2, p. 24).

Rebuttal 1. 1 agree with Van der Helm and Leeuwenberg
(1996)’s first point that our bootstrapping account of the superior
goodness of mirror symmetry over repetition may not seem con-
vincing if one considers only the number of propagation directions
(1 in mirror symmetry vs. 2 in repetition) or the number of equal
virtual-line lengths. However, it must be stressed that the BM is a
process model: Our model does not count regular structures in
some sort of intermediate representation (as would the HA);
it groups dots in a dot pattern automatically, and local pair-
wise groupings get propagated more quickly when additional
regularities such as repetition or mirror symmetry are present
(i.e., they affect the process itself rather than yielding a better
representation).

Moreover, one should not forget the critical role of distance in
the initial stages of this grouping process. In a computer simulation
with an algorithm implementing the most essential ideas of the BM
(Wagemans et al., 1993), the detectability of translational symme-
try (or twofold repetition) declined significantly with increasing
length of the translation vector (although we did not increase
length to the extent where the two pattern halves would suddenly
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become two clearly separated blocks, where repetition may again
be rather salient). In many dot patterns with mirror symmetry, one
has a few point pairs near the axis of symmetry. I claim that these
are very instrumental in the increased salience of mirror symmetry
(and I am not the only one to claim this; see, e.g., V. G. Bruce &
Morgan, 1975; Jenkins, 1983).

Rebuttal 2. The same holds for the second criticism: If one
assumes that a process of regularity detection starts with strong
local groupings (i.e., small, short-length correlation quadrangles),
then it becomes obvious why translational Glass patterns (as in
Figure 4A) are as good as dot patterns with mirror symmetry (as in
Figure 4B) and, indeed, better than twofold repetitions with a
larger translation vector (as in Figure 4C). It is not by accident that
the filter model, discussed earlier, has recently been applied to the
detection of structure in Glass patterns (Dakin, 1997) just as easily
as to the detection of mirror symmetry (Dakin & Hess, 1997
Dakin & Watt, 1994).

Perhaps Van der Helm and Leeuwenberg (1996) would counter
this argument by calling it a metrical pattern aspect (such as dot
density and pattern size, which they prefer to put in brackets) or by
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Figure 4. Translational Glass patterns (A) are as good as dot patterns with mirror symmetry (B) and better than
twofold repetitions with a larger translation vector (C). In contrast to what Van der Helm and Leeuwenberg
(1996) claimed, this can be explained easily in terms of the BM (see text). Adapted from “Goodness of Visual
Regularities: A Nontransformational Approach,” by P. A. van der Helm and E. L. J. Leeuwenberg, 1996,
Psychological Review, 103, p. 433. Copyright 1996 by the American Psychological Association. Adapted with

permission of the authors. (1996, Figure 5, p. 433).
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calling it a process bias that is said to contradict other process
biases or to be just arbitrary. However, this processing assumption
does not violate any other processing assumptions. The idea is
simply to start grouping elements in the pattern’s center first and
to group elements that are close together first (which is in line with
the Gestalt rule that grouping strength declines with increasing
distance; see Kubovy, Holcombe, & Wagemans, 1998; Kubovy &
Wagemans, 1995). Moreover, this processing assumption is not
arbitrary. On the contrary, it is related in an essential way to the
neuroanatomy of the visual system: The visual acuity is much
better near fixation than in the periphery. In addition, the visual
system’s bilateral symmetry may enhance the detectability of
vertical mirror symmetry presented to the eye’s fovea (see Herbert
& Humphrey, 1996, for a review and some recent findings, and
Julesz, 1971, for an early account).

Together with the orientation effect (which is related to the
tuning function of the visual system’s orientation-sensitive units
and, accidentally, also beyond the HA’s limits), the important role
of the central area around the axis is one of the best established
findings in the domain of symmetry detection (Barlow & Reeves,
1979; Jenkins, 1983; Julesz, 1971; Wenderoth, 1995). T suggest
that a process theory that makes use of what researchers know
about the visual system’s hardware properties (but in a manner that
is flexible enough to allow for modulations by psychological
influences; see later) may help to develop a better approach to
goodness.

Van der Helm and Leeuwenberg (1996, pp. 445-446) have
briefly touched on the role of the central area around the axis of
symmetry. When they developed their account of goodness in
terms of weight of evidence and specified that the goodness of
mirror symmetry does not depend on the number of dots (for n >
20), they deduced that this may be the reason why only a restricted
number of dots may be used by the visual system (i.e., because no
additional weight of evidence is gained by taking more dots into
account). Moreover, Van der Helm and Leeuwenberg related this
to the point structure in the representation of mirror symmetry and
the holographic accessibility of visual regularity: When a mirror
symmetry is holographically constituted by many identities be-
tween their substructures, it can also be accessed easily through
any of its subsymmetries. However, as long as it is not specified
from which area a restricted number of dot positions is sampled or
which of the many substructures are used to access its holographic
representation, this account remains, in a sense, arbitrary. By
making use of some of the best-established facts on symmetry
detection and, more generally, by relying on knowledge about the
visual system’s hardware properties, a process account can specify
why the area around the axis is most important. Together, these
processing and representation accounts could be developed into a
more principled and thus better approach to goodness (see later).

Rebuttal 3. Finally, a few comments with respect to the third
criticism. To explain that extra regularity has a stronger effect in
dot patterns with repetition than with mirror symmetry, we could
argue that the extra regularity merely strengthens the unit of
translation (i.e., the subpattern that is translated) and thus makes it
possible to avoid a pointwise matching process. In a sense, this
account is related to the mechanism of establishing substructures
outlined earlier (with respect to the role of additional groupings).
Moreover, this advantage for larger substructures would not only
work for dot patterns with repetition (as argued in the HA) but also
for dot patterns with mirror symmetry. The reason that repetition

seems to profit more from additional regularity is that mirror
symmetry generally does not need it because short-distance point
pairs are often present in the zone around the symmetry axis. This
clarifies once again that the average distance between correspond-
ing points (which may be the same for mirror symmetry and
repetition) is less important than a few extra short point-pair
distances.

The BM is a general grouping mechanism that starts off
locally (by default, near fixation). In the absence of additional
groupings, it establishes pairwise groupings at first, then it
builds larger structures such as correlation quadrangles. In
contrast, when additional groupings are present (such as in
Figures 2C and C’), it may avoid some of the pairwise group-
ings and work with larger-scale structures immediately (as in
Dakin & Watt’s, 1994, filter model; see earlier). To be honest,
I must say that the currently implemented version of the BM
does not yet have this property. However, as argued elsewhere
(Wagemans, 1995, 1997), there is nothing in the BM that
prevents the addition of a filter stage before bootstrapping
operates (on the perceived location of blobs rather than exact
coordinates of all individual points) or the addition of other
grouping algorithms that extract salient substructures such as
curvilinearities (e.g., Compton & Logan, 1993; Feldman, 1997).
As long as these plug-in modules work automatically, there is
nothing arbitrary or ad hoc to their effect on regularity detec-
tion. One could denote this extended version of the model by
BM'. Thus, the BM can be developed into a general mode] that
works with some default settings (such as horizontal pairings
near the pattern’s center first) but that can just as easily work
with some preconditions that depend on the pattern itself (e.g.,
additional structures) or on the context of presentation (e.g., all
trials in a block having a certain orientation; see Wenderoth,
1994). I believe that this quality of the BM turns it into the
flexible mechanism that Van der Helm and Leeuwenberg
(1996) claimed to be missing in the literature on process
models.

Previously, we have demonstrated (Wagemans et al., 1993) that
the BM also explains findings in other areas than regularity de-
tection where a local grouping mechanism operates (e.g., in vector
patterns, optic flow, and stereo). In light of this empirical evidence
and the present reply to Van der Helm and Leeuwenberg’s criti-
cisms, I propose that the BM is a serious candidate for being the
single explanatory scheme for many or all of the available data,
which was also the ambition of the HA.

Van der Helm and Leeuwenberg’s (1996)
Metatheoretical Framework

Before presenting their own goodness theory, Van der Helm and
Leeuwenberg (1996) discussed the broader context within which
to regard their theory. They distinguished between process and
representation theories (as outlined earlier in this article) and they
criticized previous accounts of goodness (as discussed in the
preceding section). In their discussion of the relation between
process and representation theories of goodness, Van der Helm and
Leeuwenberg also touched on certain evolutionary considerations.
I argue that some of their arguments on this issue are unjustified,
whereas others remain unclear.
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Evolutionary Considerations

Metatheoretical rationale of evolutionary adaptation. Van der
Helm and Leeuwenberg (1996, p. 430) started this discussion as
follows:

Many process theorists adhere to the metatheoretic rationale that the
perceptual sensitivity for certain regularities is the result of a gradual
evolutionary adaptation to the presence of those regularities in this
world. . . . According to this rationale, mirror symmetry is better than
repetition because, within objects, mirror symmetry occurs more often
than repetition.

Although I do not want to enter the discussion.on the role of
simplicity versus likelihood principles in perceptual organization
(Chater, 1996; Pomerantz & Kubovy, 1986), it is important that
Van der Helm and Leeuwenberg’s arguments are put in the proper
context.

Much empirical work is being done in relation to process
models of regularity detection that is completely neutral to evolu-
tionary considerations and, if evolutionary adaptation is brought
up, it is usually done in a general way to argue for the relevance
of research on all sorts of symmetry (e.g., Tyler, 1996, pp. 4-11).
When evolutionary adaptation is used as an argument for the
superior goodness of mirror symmetry over repetition, the argu-
ment usually does not refer to its more frequent occurrence but to
its biological significance (e.g., faces viewed head-on afford social
communication; see Tyler, 1996, p. 8).

Doubts about this rationale. In Van der Helm and Leeuwen-
berg (1996, p. 430), they continued as follows:

We have doubts about this rationale. First, it suggests a diverging
development towards various distinct and more or less fixed sensitiv-
ities. This does not seem able to account for goodness phenomena
which involve interacting regularities. . . . Second, the assumption
that external evolutionary pressure is the origin of the various sensi-
tivities does not seem to hold for Glass patterns and skewed mirror
symmetry. . . . The typically human-made Glass patterns are remark-
ably good . .. but seem hardly evolutionary relevant. Inversely, de-
tection of skewed mirror symmetry is evolutionary more relevant but
yet more difficult than detection of orthofrontal mirror symmetry.

Several qualifications are in order. First, evolutionary pressure
does not necessarily lead to multiple mechanisms and fixed sen-
sitivities instead of a single, flexible mechanism. We have argued
previously (Wagemans et al., 1993) for a single, general grouping
mechanism (with special properties for mirror symmetry), both on
empirical grounds and on the basis of evolutionary considerations.
A similar position is taken by Dakin and Watt (1994), whose
process model is also surprisingly general (in being able to process
all sorts of images while using the same filter operations) and at
the same time leading to a very high proficiency in detecting
foveally presented mirror symmetry at vertical orientations (by
setting some default values for orientation and size of the spatial
filters). The BM and this filter model are both able to handle
interacting regularities.

Second, the arguments with regard to Glass patterns and skewed
symmetry must be qualified, too. Glass patterns are indeed human-
made but, in fact, they can be regarded as the superimposed
time-frozen equivalents of two snapshots from an optic-flow se-
quence. As argued previously (Wagemans et al., 1993), Glass
patterns with translation correspond to two superimposed time

frames from an observer—object relative displacement, whereas
Glass patterns with rotation could result from rotation of object or
observer (e.g., head rotation). Combined or other more compli-
cated optic-flow patterns may occur more frequently, but it is not
illogical to assume that the visual system has developed mecha-
nisms that are attuned to their component transformational flows
as well (e.g., Lappin, Norman, & Mowafy, 1991).

Detection of skewed mirror symmetry in dot patterns is indeed
deteriorated compared with their orthofrontal counterparts (Wage-
mans et al., 1991, 1992), but this result may be partly due to the
particular experimental conditions (dot patterns with affine skew-
ing). Casual observations with polygons (Stevens, 1980), as well
as a few experimental results (Wagemans, 1993), suggest that
polygons (which are more representative for object contours than
dot patterns) may be less affected by skewing. Surface contours
embedded in 3-D objects may even be less affected, as seems to be
implied by our recent finding that the skewed symmetry of top and
side surfaces of cubes affects the perceived global object structure
(Van Lier & Wagemans, in press). Van der Helm and Leeuwen-
berg (1996) restricted their application of the HA to the goodness
in 2-D dot patterns, although SIT can also handle polygons and
even 3-D objects (e.g., Lecuwenberg, 1971; Van Lier & Wage-
mans, in press). In a similar manner, the BM was implemented to
work with dot patterns only, but its principles can be extended to
polygons as well (e.g., Wagemans, 1995, 1997).

Implicit view on process—representation relations. One final
statement by Van der Helm and Leeuwenberg (1996, p. 430) on
this topic needs clarification: “Evolutionary, the quality of the
result of the process is more important than the quality of the
process itself. (An inetficient process with useful results has more
survival value than an efficient process with useless results.)”
Because this statement seems to be presented as an argument for
the priority of a representation account over a process account (see
the following section), it is important that we understand it prop-
erly. Underlying this proposition is, I think, a view on the relation
between processes and representations as typically held by Marr
(1982) and others within the computational approach: Represen-
tations are, literally, re-presentations of a state of affairs or an
event in the physical world as presented to us through our senses.
Some of these are close to the original input, whereas others have
been processed more deeply in the sense of implying more sub-
stantial transformations or abstractions. For example, in Marr’s
theory of object perception, the 2-D array of grey-level intensity
values is taken as input to derive more abstract representations
such as the primal sketch or the 3-D object model by filtering out
gradual intensity changes or the viewer’s position, respectively. In
such a computational approach, it is quite logical that the quality
of the representation is more important than the quality of the
process: Certain representations are needed to achieve a particular
computational goal; the intermediate representations are useful
only if they succeed in representing the information that is needed
at the subsequent level.

However, in biological vision (including human perception),
such goal-driven arguments may become less important. Evolu-
tionary pressures never worked in a vacuum but had to interact
with the machinery that was already available (e.g., Cosmides &
Tooby, 1995; Kaas, 1989; Tooby & Cosmides, 1995). The result
may be that information about the environment is processed in a
certain way, depending on the available processing system at a
certain point in evolution, whereas this manner may change grad-



618 THEORETICAL NOTES

ually as a result of a modified diet of visual inputs due to a certain
change in the environment (e.g., more sunlight, or more vegeta-
tion) or a change in the animal’s behavioral repertoire (e.g., the
need for fine depth-perception mechanisms such as stereo when
monkeys started to live in treetops).

From a computationally less clean but more realistic neural-
network point of view, a representation is simply a pattern of
activation (i.e., a way of processing) that has occurred often
enough to leave its trace in the system (e.g., by means of increased
synaptic strength). In current vision research, this neurobiological
view on perception (e.g., Ramachandran, 1985) has become the
more dominant metatheoretical approach compared with Marr’s
(1982) strict computational view. Within this approach, the view
on evolutionary adaptation may have quite different implications
on the process-representation relationship than the implicit view
that Van der Helm and Leeuwenberg (1996) may have had in mind
when they wrote their statement.

Relation Between Process- and Representation-Based
Theories

Another metatheoretical position that is not sufficiently clear is
Van der Helm and Leeuwenberg’s (1996) view on the relation
between process- and representation-based theories of goodness.
In the initial sections of the original article, the authors opposed
process- and representation-based theories of goodness and argued
that a representation-based account is superior, first on metatheo-
retical grounds and then on empirical grounds (i.e., by demonstrat-
ing that contradictory process assumptions have been made and by
identifying problems with the BM as the best possible process
model). In the final sections of their article, Van der Helm and
Leeuwenberg adopted a more moderate position: “Several aspects
of ... the ... holographic approach are probably transferable to
process models for 2-D pattern perception” (p. 442) and “there is
not necessarily opposition between representation theories and
process theories” (p. 443).

How does one reconcile these two positions with respect to the
relation between process- and representation-based theories of
goodness? In Van der Helm and Leeuwenberg (1996, p. 433-434),
they offered a way out: “We do not oppose process theories as
such but we think it is more expedient to develop a comprehensive
representation theory first.” Compatibility between process and
representation theories is essential indeed (see later). The two will
have to meet if the goal is a complete theory of goodness. The
major issue is where to place one’s bets first. This may be a matter
of taste, although I continue to believe that processes have some
logical priority over representations (i.e., processes precede repre-
sentations; see earlier). Another essential issue is how predictive
both of the approaches are. For the time being, it seems like a good
research strategy to let both approaches do what they can and
decide on the basis of their empirical success.

Van der Helm and Leeuwenberg (1996) appeared well aware of
the fact that process- and representation-based theories may be
complementary and that both may be needed to achieve a full-
blown theory of goodness. However, they are not clear about how
the two approaches would have to be united. Indeed, there is a
wide gap between their theoretical building blocks (i.e., symbolic
1-D sequences represented mathematically in terms of identity
chains and identity structures) and those of typical process models
(i.e., intrinsically spatial, thus 2-D, relationships between positions

of discrete elements or neurally filtered blob positions, or percep-
tually grouped clusters).

The few occasions in which they provided hints toward a certain
compatibility of viewpoints are rather superficial. One such occa-
sion has been alluded to before, when I summarized Van der Helm
and Leeuwenberg’s discussion of the role of the zone around the
midline of a mirror-symmetric pattern: They argued that the ho-
lographic nature of the representation of mirror symmetry made it
possible to access it easily through any of its subsymmetries (e.g.,
those around the midline), and they concluded (p. 446): “This
accessibility through subsymmetries agrees with Wagemans et
al.’s (1991, 1993) [BM] and with Palmer’s (1982, 1983) process
model based on ‘local spatial analyzers.”” As indicated before,
this does not yet explain why the particular zone around the axis of
symmetry would be the preferred subsymmetries to access the
global symmetry of the whole pattern. It is only through some
reasonable process assumptions that this becomes theoretically
justified. In that sense, a particular process account complements a
theoretical gap left by the representation account offered in the
HA.

A second allusion to a metatheoretical compatibility is more
misleading. When Van der Helm and Leeuwenberg (1996, p. 443)
defended the (questionable) assumption of spatially contiguous
encoding order, they did so in the following way:

The position of each dot can be given relative to the axis, as suggested
by Attneave (1954), or it can be given relative to the preceding dot.
The latter way exhibits a striking correspondence [italics added] with
Wagemans et al.’s (1991, 1993) [BM]: A pair of mirror-symmetric
relative dot positions corresponds to the mirror-symmetric sides of a
bootstrapping trapezoid. Moreover, the process of bootstrapping
agrees with a spatially contiguous order.

Once more, they neglected an essential aspect of the BM, namely
that bootstrapping works automatically, which means that initially
the pairwise groupings are random and need not establish the
mirror-symmetric correspondences: Once a small number of “cor-
rect” correspondences are found, bootstrapping will indeed con-
nect spatially contiguous dot positions but only as a result of an
initially random process, not as an a priori requirement to get the
process going (as seems implied in the HA). The corresponding
elements need not be in a corresponding order in the initial
representation, as in the HA.

Summary

Table 1 contains a systematic comparison of the most important
aspects of the three major theoretical approaches to goodness that
have been discussed by Van der Helm and Leeuwenberg (1996)
and in my article: the Holographic Approach, the Transformational
Approach, and the Bootstrap Model.

Holographic Approach

In the HA, the goodness of regularity in a pattern is quantified
as the number of holographic identities that constitute the regular-
ity, relative to the total amount of information needed to describe
the pattern. The theoretical building blocks to elaborate this notion
include the iteration, symmetry, and alternation rules, holographic
regularity captured by the identity structure of substructures in
symbol sequences, and transparent hierarchy that is based on how
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Table 1

Systematic Comparison of the Three Major Theoretical Approaches to Goodness:
the Holographic Approach, the Transformational Approach, and the Bootstrap Model

Holographic approach

Transformational approach

Bootstrap model

Goodness

Number of holographic identities
relative to the total amount of

Related to transformation
that has created the

Based on efficiency of process to
extract structure from pattern

information symmetry
Theoretical building blocks
ISA-rules Groups of transformations Pairwise grouping

Holographic regularity
Transparent hierarchy

(in global TA)
Sets of transformations
(in local TA)

Correlation quadrangles
Bootstrapping

Typical domain of application

1-D symbol sequences 3-D objects

2-D dot patterns

Repetition vs. mirror symmetry

Block structure vs. point structure

Translation vs. reflection

Parallelograms vs. trapezoids

Evaluation

+ Explanatory power

+ Representations are well-
elaborated

— Processing = black box

— No role for salient
substructures

*+ (Local TA holds promise)

+ Explanatory power
? Resulting representations

+ Processing is made explicit
* Substructures could be captured
(i.e., BM could be extended to BM")

Note. ISA-rules = iteration, symmetry, and alternation rules. TA = transformational approach; BM =
bootstrap model. + = a positive aspect of an approach. — = a negative aspect of an approach. = = an aspect
that could be captured by an approach (if intended). ? = an open issue.

different regularities are related. This theoretical machinery is
most easily applied to 1-D symbol sequences; several assumptions
must be made to extend it to 2-D dot patterns (e.g., the substruc-
tures in the 1-D sequence must correspond to spatially contiguous
2-D subpatterns). Moreover, to avoid metric side effects, the dot
patterns must have homogeneous dot density. The goodness dif-
ference between twofold repetition and mirror symmetry arises
because twofold repetition is holographically constituted by only
one identity between two substructures (i.e., the pattern halves
yield a block structure), whereas mirror symmetry is holographi-
cally constituted by many identities between very simple substruc-
tures (i.e., the dots yield a point structure).

The HA is able to capture a large number of empirical
findings within a unified framework that is completely repre-
sentation based. As a result, the processing aspects are put in a
black box, which leaves many open questions regarding the
processes that are needed to get the appropriate representations.
One of the most important theoretical gaps is the neglect of the
role of salient substructures. In the ideal case of perfectly
homogeneous dot patterns, perhaps the representations of two-
fold repetitions consist of two blocks and those of mirror
symmetry leave all individual dots ungrouped. However, as
soon as interdot distances vary enough to give rise to perceptual
grouping of dots in salient substructures such as pairs, clusters,
collinearities, and curvilinearities, the clean representational
difference may collapse.

Transformational Approach

The TA is also a representational approach. It was originally
formulated to deal with 3-D objects, but it can easily be applied to
2-D pattemns too (e.g., even smooth 2-D curves, not just polygonal
shapes obtained by successively joining dots in a pattern). Detec-
tion of regularities such as twofold repetition and mirror symmetry
is said to be based on the representation of the two random-dot
pattern halves together with the transformational operator (i.e.,
translation and reflection or flip, respectively). Because all pattern
elements are interchanged together by one single operation, this
global TA uses a block structure representation for both twofold
repetition and mirror symmetry and thus cannot explain the good-
ness difference very well. However, an alternative TA is possible
in which only certain substructures are interchanged. This local TA
violates the mathematical requirement of closure to form a group
of transformations, but it may be more psychologically plausibie if
it used the outputs of processing mechanisms that yield perceptu-
ally salient substructures.

Bootstrap Model

The BM is clearly different from these other two approaches. It
is a model of the way 2-D dot patterns are processed: Initially, dots
are grouped quasi-randomly (with a preference for short dis-
tances); as soon as a few regular substructures such as trapezoids
arise, a local reference frame is established that causes grouping to
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propagate more easily throughout the pattern (i.e., bootstrapping).
Mirror symmetry is more salient than twofold repetition because
trapezoids allow more bootstrapping than parallelograms and be-
cause short pairwise distances (which are critical in the initial
stages) are more likely near the axis. This processing account uses
well-known facts about the visual system, such as acuity and
orientation effects, to explain empirical findings about regularity
detection that remain outside the scope of the HA (e.g., importance
of zone around the axis, importance of central presentation, and
salience of vertical and horizontal orientations). Although the
currently implemented version of the BM does not have a mech-
anism to extract salient substructures or to operate at different
spatial scales, there is nothing in the model that prevents such
modules to be plugged in (into BM’). Little attention is paid in this
theory to the representations resulting from this type of processing.

Conclusion

The summary may give the impression that the BM is superior
to the HA. Nevertheless, the HA has very interesting implications
for certain types of regularities that have been almost completely
neglected (e.g., broken symmetry) or for certain effects that should
be studied more systematically (e.g., the location of noise). This
suggests that it would be wise to continue working within these
two traditions (process- and representation-based) and to system-
atically compare their empirical success.

In addition, it seems desirable that the complementarity of the
two approaches be studied more thoroughly. On the one hand, one
could say that the BM, with its focus on psychophysically and
neurally plausible process mechanisms (e.g., grouping by proxim-
ity and orientation effects), is filling in the black box left by the
HA, whereas the HA is very explicit about the representations of
visual regularities that may result from this processing. On the
other hand, many questions remain as to the details of how the two
approaches should be integrated: Is it essential for the HA that 2-D
patterns are encoded as 1-D symbol sequences? Does the HA work
only because perceptually salient substructures are excluded, or
would it be possible to add this important factor in determining
goodness? How much of the goodness difference between twofold
repetition and mirror symmetry, as explained by the HA in terms
of block versus point structure, would remain when the door is set
open to substructures other than complete pattern halves or single
elements? Clear answers to these questions would help to integrate
the BM and the HA into a better approach (BA) to goodness.
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