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Abstract Reference implementations of signal processing applications are often
written in a sequential language that does not reveal the available parallelism in
the application. However, if an application satisfies some constraints then a parallel
specification can be derived automatically. In particular,if the application can be
represented in the polyhedral model, then apolyhedral process networkcan be con-
structed from the application. After introducing the required polyhedral tools, this
chapter details the construction of the processes and the communication channels in
such a network. Special attention is given to various properties of the communica-
tion channels including their buffer sizes.

1 Introduction

Signal processing applications are prime candidates for a parallel implementation.
As we have seen in previous chapters, there are several parallel models of com-
putations that can be used for specifying such applications. However, many pro-
grammers are unfamiliar with these parallel models of computation. Writing parallel
specifications can therefore be a difficult, time consuming and error prone process.
For this reason, many application developers still prefer to specify an application
as a sequential program, even though such a specification maynot be suitable for a
direct mapping onto a parallel multiprocessor platform.

In this chapter, we present a technique for automatically extracting a parallel
specification from a sequential program, provided these sequential programs satisfy
some conditions. In particular, the control flow of these programs needs to be static,
meaning that the control flow should not depend on the signalsbeing processed.
Furthermore, all loop bounds, conditions and array index expressions need to be
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such that they can be expressed using affine constraints. Allfunctions called should
be pure. In particular, they should not change the values of loop iterators or arrays
other than their output arguments. These requirements ensure that we can represent
all relevant information about the program using mathematical objects called poly-
hedra. The resulting parallel model, a variation on Kahn process networks [8], can
then also be described using such polyhedra, whence the namepolyhedral process
networks.

The concept of a polyhedral process network was developed inthe context of
the Compaan project [11, 16]. The exposition in this chapterclosely follows that
of [19].

2 Overview

This section presents a high-level overview of the process of extracting a process
network from a sequential program. The extracted process network represents the
task-level parallelism that is available in the program. The input program is assumed
to consist of a sequence of nested loops performing various “operations”. These op-
erations may be calls to functions that can be arbitrarily complicated. The operations
are performed on data that has been computed in some iteration of another operation
or in a previous iteration of the same operation. The output process network con-
sists of a set of processes, each encapsulating all iterations of a given operation, and
communication channels connecting the processes and representing the dataflow.
The processes in the network can be executed independently of each other, as long
as data is available from the channels from which the processreads and as long as
buffer space is available in the channels to which the process writes. That is, the
communication primitives implement blocking reads and blocking writes.

1 for (i = 0; i < K; i++)
2 for (j = 0; j < N; j++)
3 a[i][j] = ReadImage();
4 for (i = 1; i < K-1; i++)
5 for (j = 1; j < N-1; j++) {
6 Sbl[i][j] = Sobel(a[i-1][j-1], a[i][j-1], a[i+1][j-1],
7 a[i-1][ j], a[i][ j], a[i+1][ j],
8 a[i-1][j+1], a[i][j+1], a[i+1][j+1]);
9 WriteImage(Sbl[i][j]);
10 }

Fig. 1 Source code of a Sobel edge detection program

Example 1.As a simple example, consider the code for performing Sobel edge de-
tection in Figure 1. The first loop of this program reads the input image, while the
second loop performs the actual edge detection and writes out the output image. A
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Fig. 2 A process network corresponding to the sequential program in Figure 1

process network that corresponds to this program is shown inFigure 2. There are
three processes in the network, each corresponding to one ofthe three “operations”
performed by the program, i.e., reading, edge detection andwriting. Data flows from
the reading process to the edge detection process and from the edge detection pro-
cess to the writing process, resulting in the communicationchannels shown in the
figure. The annotations on the edges will be explained later.

The extraction of a polyhedral process network consists of several steps summa-
rized below and explained in more detail in the following sections:

• In a first step, a model is extracted from the input program on which all further
analysis will be performed. In particular, the program is represented by apoly-
hedral model. This model allows for an efficient analysis, but imposes some re-
strictions on the input programs. The polyhedral model is explained in Section 3,
while some basic components for the analysis of polyhedral models are explained
in Section 4.

• Dataflow analysis is performed to determine which processescommunicate with
which other processes and how, i.e., to determine the communication channels.
For example, the results of the call toReadImage in Line 3 of Figure 1 are
stored in thea array, which is read by the call toSobel in Line 6. Dataflow anal-
ysis therefore results in one or more communication channels from the reading
process to the edge detection process. Dataflow analysis is explained in Section 5.

• In the next step, the type of each communication channel is determined. For
example, the channel may be a FIFO, in which case the processes connected to
the channel simply need to write to and read from the channel,or it may not be a
FIFO, in which case additional processing will be required.The classification of
channels is discussed in Section 6.

• The communication channels may need to buffer some data to ensure a deadlock-
free execution of the network. Especially for a hardware implementation of pro-
cess networks, it is important to know how large these buffers may need to grow.
The computation of buffer sizes is the subject of Section 8.

• The number of processes in the network may exceed the number of process-
ing elements available. Some processes may therefore need to be merged. This



4 Sven Verdoolaege

merging requires the construction of a combined schedule, which is the subject
of Section 7. Depending on the kind of dataflow analysis that was performed in
constructing the network, some of this analysis may need to be updated or redone
based on the merging decisions.

• Finally, code needs to be written out for each of the processes in the network. This
code needs to execute all iterations of the single or multiple (in case of merging)
operations and needs to read from and write to the appropriate communication
channels at the appropriate times. The main difficulty in this step is writing out
code to scan overlapping polyhedral domains, which is discussed in Section 4.5.

The buffer size computation itself (Section 8) consists of several substeps. First a
global schedule is computed (Section 7), assigning a globaltime point to each itera-
tion of each process. This global schedule is only used during the buffer size compu-
tation and not during the actual execution. For each channeland each time point, the
number of tokens in the channel at that time point is then computed (Section 4.3).
Finally, for each channel, an upper bound is computed for themaximal number of
tokens in the channel throughout the whole execution (Section 4.4).

3 Polyhedral Concepts

The key to an efficient transformation from sequential code to a process network
is the polyhedral model used to represent the sequential program and the resulting
process network. This section defines both models and related concepts.

3.1 Polyhedral Sets and Relations

Each statement inside a loop nest is executed many times whenthe sequential pro-
gram is run. Each of these executions can be represented by the values of the itera-
tors in the loops enclosing the statement. This sequence of iterator values is called
the iteration vectorassociated to a given execution of the statement. The set of all
such iteration vectors is called theiteration domainof the statement. Assuming that
each iterator is an integer that is incremented by one in eachiteration of the loop,
this iteration domain can be represented very succinctly bysimply collecting the
lower and upper bounds of each of the enclosing loops.

Example 2.The iteration domain associated to theReadImage statement in Line 3
of Figure 1 is

D1 = {(i, j) ∈ Z2 | 0≤ i < K∧0≤ j < N}. (1)

The extraction of a process network requires several manipulations of iteration
domains and related sets. To ensure that these manipulations can be performed effi-
ciently or even performed at all, we need to impose some restrictions on how these
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sets are represented. In particular, we require that the sets are described by integer
affine inequalities and equalities over integer variables. An affine inequality is an
inequality of the forma1x1 +a2x2 + . . .+adxd + c≥ 0, i.e., it expresses that some
degree-1 polynomial over the variables is greater than or equal to zero. When deal-
ing with several such inequalities in general, it will be convenient to represent them
using a matrix notationAx+c≥ 0.

Sets ofrational values described by affine inequalities have been the subject of
extensive research and are calledpolyhedra.

Definition 1 (Rational Polyhedron).A rational polyhedron Pis a subspace ofQd

bounded by a finite number of hyperplanes.

P = {x ∈ Qd | Ax ≥ c}, (2)

with A∈ Zm×d andc∈ Zm.

The sequential code from which we want to extract a process network may contain
parameters such as the number of rowsK and the number of columnsN in Figure 1.
In such cases, we do not want to extract a distinct process network for each value
of the parameters, but instead a single parametric process network that is valid for
all values of the parameters. We therefore also need the concept of aparametric
polyhedron.

Definition 2 (Parametric Rational Polyhedron). A parametric rational polyhe-
dron P(s) is a family of rational polyhedra inQd parametrized by parameterss∈Qn.

P : Qn → 2Qd
: s 7→ P(s) = {x ∈ Qd | Ax+Bs≥ c}, (3)

with A ∈ Zm×d, B ∈ Zm×n, c ∈ Zm and 2Q
d

the power set ofQd, i.e., the set of
all subsets ofQd. Theparameter domain D= pdomP of a parametric polyhedron
P : Qn → 2Qd

is a (non-parametric) polyhedronD ⊆ Qn containing all parameter
valuess for whichP(s) is non-empty,

pdomP = {s∈ Qn | P(s) 6= /0}.

Bounded polyhedra are calledpolytopes. In case of parametric polytopes, this means
that each polyhedron in the family is a polytope, i.e., thatP(s) is a polytope for each
value of the parameterss.

Besides iterators and parameters, we may also need additional variables to accu-
rately describe an iteration domain. These variables are not used to identify a given
iteration, but rather to restrict the possible values of theiterators. This means that
we do not care about the values of these variables, but ratherthatsomeinteger value
exists for these variables that satisfies the constraints. These variables may there-
fore be existentially quantified. The need for such variables arises especially when
loop bounds or guards contain modulos or integer divisions.Expressions that con-
tain such constructs but that can still be expressed using affine constraints are called
quasi-affine.
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Fig. 3 Source code of a loop
nest with iteration domains
requiring existentially quanti-
fied variables to represent

1 for (i = 0; i < N; i++)
2 if (i % 3 == 0)
3 a[i] = f1();
4 else
5 a[i] = f2();

Example 3.Consider the program in Figure 3. The modulo constraint “i % 3== 0”
is not in itself an affine constraint, but it can be represented as an affine constraint
i = 3α by introducing an extra integer variableα ∈ Z. The iteration domain of the
statement in Line 3 can therefore be represented as

D1 = { i ∈ Z | ∃α ∈ Z : 0≤ i < N∧ i = 3α }. (4)

Similarly, the iteration domain of the statement in Line 5 can be represented as

D2 = { i ∈ Z | ∃α ∈ Z : 0≤ i < N∧1≤ i −3α ≤ 2}.

In general then, the “polyhedral sets” such asD1 andD2 that are used in the poly-
hedral representation of both the input program and the resulting process network,
are defined as follows.

Definition 3 (Polyhedral Set).A polyhedral set Sis a finite union of basic sets
S=

⋃

i Si , each of which can be represented using affine constraints

Si : Qn → 2Qd
: s 7→ Si(s) = {x ∈ Zd | ∃z∈ Ze : Ax+Bs+Dz≥ c},

with A∈ Zm×d, B∈ Zm×n, D ∈ Zm×e andc∈ Zm. Theparameter domainof S is the
(non-parametric) polyhedral set pdomS= {s∈ Zn | S(s) 6= /0}.

Note that any polyhedral set can be represented in infinitelymany ways. When talk-
ing about polyhedral sets, we will usually have a specific representation in mind. In
a similar fashion, we can define “polyhedral relations” over pairs of sets.

Definition 4 (Polyhedral Relation). A polyhedral relation Ris a finite union of
basic relationsR=

⋃

i Ri of typeQn → 2Qd1+d2 , each of which can be represented
using affine constraints

Ri = s 7→ Ri(s) = {(x1,x2) ∈ Zd1 ×Zd2 | ∃z∈ Ze : A1x1 +A2x2 +Bs+Dz≥ c},

with Ai ∈Zm×di , B∈Zm×n, D∈Zm×e andc∈Zm. Theparameter domainof R is the
(non-parametric) polyhedral set pdomR= {s∈ Zn | R(s) 6= /0} = {s∈ Zn | ∃x1 ∈
Zd1,x2 ∈ Zd2 : (x1,x2) ∈ R(s)}. Thedomainof R is the polyhedral set domR= s 7→
{x1 ∈ Zd1 | ∃x2 ∈ Zd2 : (x1,x2) ∈ R(s)}, while therangeof R is the polyhedral set
ranR= s 7→ {x2 ∈ Zd2 | ∃x1 ∈ Zd1 : (x1,x2) ∈ R(s)}. The polyhedral relationRcan

also be interpreted as being of typeQn → Qd1 → 2Qd2 . Supplying two arguments
then yields theimageof an elementt ∈ domR(s), i.e.,

R(s, t) = {x2 ∈ Zd2 | (t,x2) ∈ R(s)}.
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Polyhedral sets and polyhedral relations have essentiallythe same type if we setd =
d1 +d2. The difference is mainly a matter of interpretation. In polyhedral relations,
we make a distinction between two sets of variables, whereasin polyhedral sets,
there is no such distinction. Any polyhedral set can also be treated as a polyhedral
relation with a zero-dimensional domain, i.e., by settingd1 = 0, d2 = d andA2 = A.
Any statement about polyhedral relations will therefore also hold for polyhedral
sets. We will usually only treat the general case of polyhedral relations.

3.2 Lexicographic Order

For a proper analysis of a sequential program, we not only need to know for which
iterator values a given statement is executed, but also in which order these instances
are executed. A given instance is executed before another instance if they are exe-
cuted in the same iteration of zero or more outermost loops and if the second in-
stance is executed in a later iteration of the next outermostloop. In other words, the
execution order corresponds to thelexicographic orderon iteration vectors.

Definition 5 (Lexicographic order). A vectora∈Zn is said to belexicographically
smallerthanb ∈Zn if for the first positioni in whicha andb differ, we haveai < bi ,
or, equivalently,

a≺ b ≡
n
∨

i=1

(

ai < bi ∧
i−1
∧

j=1

a j = b j

)

. (5)

Note that the lexicographic order can be represented as a polyhedral relation

Ln = {(a,b) ∈ Zn×Zn | a≺ b} (6)

=
n
⋃

i=1

{(a,b) ∈ Zn×Zn | ai < bi ∧
i−1
∧

j=1

a j = b j }. (7)

3.3 Polyhedral Models

The polyhedral model of a sequential program mainly consists of the iteration do-
mains of the statements (as explained in Section 3.1), andaccess relations. An ac-
cess relation is a polyhedral relationR⊆ Zd ×Za that maps the iteration vector of
the corresponding statement to an array element. Here,d is the dimension of the
iteration domain anda is the dimension of the array. A scalar can be considered as a
zero-dimensional array. The access relation of an access toa scalar is therefore sim-
ply the Cartesian product of the iteration domain and the whole zero-dimensional
space.

Example 4.The access relation of the first argument to the call toSobel in Line 6
of Figure 1 is
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{(i, j) → (a,b) | 1≤ i < K−1∧1≤ j < N−1∧a = i −1∧b = j −1}. (8)

Finally, the model should contain information about the relative execution order
of any pair of statements in order to determine whether an iteration of one statement
precedes or follows an iteration of another statement. One way of representing this
relative position is to keep for each pair of statements the number of enclosing loops
that they have in common and the relative ordering of the two statements in the
program text.

Example 5.In Figure 1,ReadImage precedesSobel in the program text, which
in turn precedesWriteImage. ReadImage shares no enclosing loops with either
of the other two statements, whileSobel andWriteImage share two enclosing
loops.

Another way of representing the relative order is to record for each statement
the position of the statement itself and each of its enclosing loops in the program
text. That is, for a statement withdi enclosing loops, we keep a vector ofdi + 1
“positions”, e.g., line numbers, ordered from outermost toinnermost. We call this
vector thestatement location.

Example 6.In Figure 1,ReadImage has statement location(1,2,3), Sobel has
statement location(4,5,6) andWriteImage has statement location(4,5,9).

Note that the first representation can easily be derived fromthe second representa-
tion.

Combining all this information, we have the following definition.

Definition 6 (Polyhedral Model). The polyhedral modelof a sequential program
consists of a list of statements, where each statement is in turn represented by

• an identifier,
• a dimensiondi ,
• an iteration domain (a polyhedral set)Di ⊆ Zdi ,
• a list of accesses and
• a statement location.

Finally, each array access is represented by an identifier, an access relation (a poly-
hedral relation) and a type (read or write).

The use of a polyhedral model imposes the following restrictions on the input
program:

• static control flow,
• pure functions and
• loop bounds, conditions and index expressions are quasi-affine expressions in the

parameters and the iterators of enclosing loops.

The extraction of a polyhedral model from a sequential program is available in sev-
eral modern industrial and research compilers, e.g., [13, 15, 1].
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3.4 Piecewise Quasi-Polynomials

As explained in Section 2, each channel in the process network has a buffer of a
bounded size. If the network is parametric, then this bound will in general not simply
be a number, but rather an expression in the parameters. Someof the intermediate
steps in computing these bounds may also result in expressions involving both the
parameters and the iterators, or just the iterators if the network is non-parametric. In
both cases the expressions will bepiecewise quasi-polynomials. Quasi-polynomials
are polynomial expressions that may involve integer divisions of affine expressions
in the variables. Piecewise quasi-polynomials are quasi-polynomials defined over
polyhedral pieces of the domain. More formally, they can be defined as follows.

Definition 7 (Quasi-polynomial).A quasi-polynomial q(x) in the integer variables
x is a polynomial expression in greatest integer parts of affine expressions in the
variables, i.e.,q(x) ∈ Q [⌊Q[x]≤1⌋].

Definition 8 (Piecewise Quasi-polynomial).A piecewise quasi-polynomial q(x),
with x∈Zd consists of a finite set of pairwise disjoint polyhedraKi ⊆Qd, each with
an associated quasi-polynomialqi(x). The value of the piecewise quasi-polynomial
atx is the value ofqi(x) with Ki the polyhedron containingx, i.e.,

q(x) =

{

qi(x) if x ∈ Ki

0 otherwise.

Note that the usual polynomials are special cases of quasi-polynomials as
⌊

x j
⌋

= x j

for x j integer.

Example 7.Consider the statement in Line 3 of Figure 3. The number of times this
statement is executed can be represented by the piecewise quasi-polynomial

{

⌊

N
3

⌋

if N ≥ 0.

Note that there is only one polyhedral “piece” in this example.

3.5 Polyhedral Process Networks

Now we can finally define the structure of a polyhedral processnetwork. For sim-
plicity we assume that no merging of processes has been performed, i.e., that each
process corresponds to a statement in the polyhedral model of the input.

Definition 9 (Polyhedral Process Network).A polyhedral process networkis a
directed graph with as vertices a set ofprocessesP and as edgescommunication
channelsC . Each processPi ∈ P has the following characteristics

• a statement identifiersi ,
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• a dimensiondi ,
• an iteration domainDi ⊆ Zdi .

Each channelCi ∈ C has the following characteristics

• a source processSi ∈ P,
• a target processTi ∈ P,
• a source access identifier corresponding to one of the accesses in the state-

mentsSi ,
• a target access identifier corresponding to one of the accesses in the statementsTi ,
• a polyhedral relationMi ⊆ DSi ×DTi mapping iterations from the source domain

to the target domain,
• a type (e.g., FIFO),
• a piecewise quasi-polynomial buffer size.

The identifiers in the process network can be used to obtain more information about
the statements and the accesses when constructing a hardware or software realiza-
tion of the network. The mappingMi identifies which iterations of the source process
write to the channel, which iterations of the target processread from the channel and
how these iterations are related. The buffer sizes are such that the network can be
executed without deadlocks.

Example 8.Consider the network in Figure 2, derived from the code in Figure 1.
All processes have dimensiondi = 2. The iteration domainD1 of the ReadImage
process was given in Example 2. The iteration domains of the other two processes
are

D2 = D3 = {(i, j) ∈ Z2 | 1≤ i < K−1∧1≤ j < N−1}. (9)

There are nine communication channels between the first and the second process and
one communication channel between the second and the third.All communication
channels in this network are FIFOs. How these communicationchannels are con-
structed is explained in Section 5.1 and how their types are determined is explained
in Section 6. The arrows in Figure 2 representing the communication channels are
annotated with the name of the array that has given rise to thechannel and the buffer
size. These buffer sizes are computed in Section 8.

4 Polyhedral Analysis Tools

The construction of a polyhedral process network relies on anumber of fundamen-
tal polyhedral operations. This section provides an overview of these operations. In
each case, one or more tools are mentioned with which the operation can be per-
formed. This list of tools is not exhaustive.
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4.1 Parametric Integer Programming

By far the most fundamental step in the construction of a process network is figuring
out which processes communicate data with each other and in what way. At the
level of the input source program, this means figuring out foreach value read in
the program where the value was written. That is, for each read access to an array
element, we need to know what was the last write access to the same array element
that occurred before the given read access. In particular, if many iterations of the
same statement write to the same array element, we need the (lexicographically)
last iteration of that statement. Computing such a lexicographically maximal (or
minimal) element of a polyhedral set can be performed usingparametric integer
programming.

Let us first define a lexmax operator on polyhedral relations.

Definition 10 (Lexicographic Maximum). Given a polyhedral relationR, thelexi-
cographic maximumof R is a polyhedral relation with the same parameter domain
and the same domain asR that maps each elementi of the domain to the unique
lexicographically maximal element that corresponds toi in R, i.e.,

lexmaxR= {(i, j) ∈ R⊆ Zd1 ×Zd2 | ¬(∃j ′ ∈ Zd2 : (i, j ′) ∈ R∧ j ≺ j ′)}. (10)

Now we can define an operation for computing lexmaxRas a polyhedral relation.

Operation 1 (Lexicographic Maximum).
Input: • a basic polyhedral relation R: Zn → Zd1 ×Zd2

• a basic polyhedral set S: Zn → Zd1

Output: • a polyhedral relation M= lexmax(R∩ (S×Zd2))
• a polyhedral set E= S\domR

The polyhedral relation M satisfies the following additional conditions:

• every existentially quantified variable in M is explicitly represented as the great-
est integer part of an affine expression in the parameters andthe domain vari-
ables,

• every variable in the range of M is explicitly represented asan affine expres-
sions in the parameters, the domain variables and the existentially quantified
variables.

Operation 1 can be performed usingisl [17],1 or, with some additional trans-
formations, usingpiplib [6].2 The use of the output setE will become clear in
Section 5.

Example 9.Let us compute the lexicographically maximal element of thepolyhe-
dral setD1 (4) from Example 3. Recall that a polyhedral set can be treated as a
polyhedral relation with zero-dimensional domain. The input to Operation 1 is then
R= N 7→ Z0×D1(N). S may be taken as the universal zero-dimensional set with

1 http://freshmeat.net/projects/isl/
2 http://www.piplib.org/

http://freshmeat.net/projects/isl/
http://www.piplib.org/
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universal parameter domain, i.e.,S= N 7→ Z0. The output is the lexicographically
maximal element of the setD1:

M = N 7→ Z0× lexmaxD1(N) = { i ∈ Z | ∃α =

⌊

N+2
3

⌋

: i = 3α −3∧N ≥ 1}.

The setE describes the (parameter) values for which there is no element in the set
D1, i.e.,E = N 7→ {() | N ≤ 0}, with () the single element ofZ0.

Using Operation 1, we can also compute the domain of a polyhedral relation as
a polyhedral set. We simply compute the lexicographic maximum relation of each
basic relation and then drop the range variables and the equalities that define them.
Similarly, the range of a relation can be computed as the domain of the inverse
relation.

Alternatively, the lexicographic maximum can be computed usingOmega [9],3

by expressing the lexicographic order in (10) using linear constraints, as in (7).
However, the result will not necessarily satisfy the two conditions of Operation 1.
On the other hand, theOmega library provides built-in operations for computing
domains and ranges of relations.

4.2 Emptiness Check

A very basic and frequently used operation is that of checking whether a given
polyhedral set or relation contains any elements for any value of the parameters.

Operation 2 (Emptiness Check).
Input: a polyhedral relation R: Zn → Zd1 ×Zd2

Output: true if ∀s∈ Zn : R(s) = /0 andfalse otherwise

Operation 2 can be performed by applying Operation 1 (Lexicographic Maxi-
mum) on each of the basic polyhedral sets in a polyhedral setS∈ Zn+d1+d2 with
the same description asR, but where all parameters and input variables are treated
as set variables. The relationR is empty iff S is empty iff in turn none of the basic
polyhedral sets has a lexicographically maximal element. Since S is (a union of)
Integer Linear Programming (ILP) problem(s), any other algorithm for testing the
feasibility of an ILP problem will work as well.

4.3 Parametric Counting

An important step in the buffer size computation is the computation of the number
of elements in the buffer before a given read. We will be able to reduce this com-

3 http://www.cs.umd.edu/projects/omega/

http://www.cs.umd.edu/projects/omega/
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putation to that of counting of the number of elements in the image of a polyhedral
relationR(s), denoted #R(s, t), for which we will use the following operation.

Operation 3 (Number of Image Elements).
Input: a polyhedral relation R: Zn → Zd1 ×Zd2

Output: a piecewise quasi-polynomial q: Zn×Zd1 → Q : (s, t) 7→ q(s, t) = #R(s, t)

We already performed Operation 3 on a polyhedral set in Example 7.
Operation 3 can be performed usingbarvinok [20, 18].4 Note that this library

takes a basic polyhedral set as input, but it can be made to handle basic polyhe-
dral relations by treating the domain variables as extra parameters. Unions can be
handled by first computing a disjoint union representation and then summing the
number of elements in each of the individual basic sets in this representation.

4.4 Computing Parametric Upper Bounds

As explained in the previous section, Operation 3 can be usedto compute the num-
ber of elements in a buffer at any given time. When allocating memory for this
buffer, we need to know the maximal number of elements that will ever have to re-
side in the buffer. As usual, we want to perform this computation parametrically. In
general, computing the actual maximum may be too difficult, however. We therefore
settle for computing an upper bound that is reasonably closeto the maximum.

Operation 4 (Upper Bound on a Quasi-polynomial).
Input: • a piecewise quasi-polynomial q: Zn×Zd → Q

• a bounded polyhedral set S: Zn → Zd, the domain over which to
compute the upper bound

Output: a piecewise quasi-polynomial u: Zn → Q such that

u(s) ≥ max
t∈S(s)

q(s, t) ∀s∈ pdomS

Operation 4 can be performed usingbernstein [3].5 Although the basic tech-
nique only applies to polynomials, extensions to quasi-polynomials are also avail-
able [5]. Alternatively, the quasi-polynomials, which areusually the result of a
counting problem such as Operation 3, can be approximated bya polynomial during
the counting process [12].

Combining Operation 3 and Operation 4 results in the following operation, by
takingS= domR.

Operation 5 (Upper Bound on the Number of Image Elements).
Input: a polyhedral relation R: Zn → Zd1 ×Zd2

Output: a piecewise quasi-polynomial u: Zn → Q such that

4 http://freshmeat.net/projects/barvinok/
5 http://icps.u-strasbg.fr/pco/bernstein.htm

http://freshmeat.net/projects/barvinok/
http://icps.u-strasbg.fr/pco/bernstein.htm
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u(s) ≥ max
t∈domR(s)

#R(s, t) ∀s∈ pdomR

Fig. 4 A simple program
reading the same array ele-
ments several times

1 for (i = 0; i < N; ++i)
2 for (j = 0; j < i; ++j)
3 b[i][j] = f(a[i + j]);

Example 10.Consider the program in Figure 4 and assume we want to know the
maximal number of times an unspecified element of array a is read. This number is
the maximal number of domain elements in the access relationthat map to the same
array element. In terms of the operations we have defined above, it is the maximal
number of image elements in the inverse of the access relation. The access relation
is

A = {(i, j) → a | 0≤ i < N∧0≤ j < i ∧a = i + j }.

Its inverse is

A−1 = {a→ (i, j) | 0≤ i < N∧0≤ j < i ∧a = i + j }.

Applying Operation 3 yields the number of times a given arrayelement is read:

#A−1(N,a) =

{

a−
⌊

a
2

⌋

if 0 ≤ a < N

N−
⌊

a
2

⌋

−1 if N ≤ a≤ 2N−3.

An upper bound on this number can then be computed using Operation 4, yielding,

max
a∈domA−1

#A−1(N,a) ≤ u(N) =
{

N
2 if N ≥ 2.

4.5 Polyhedral Scanning

When writing out code for a process in a process network, we notonly need to make
sure that an operation is performed for each element of its iteration domain, but we
also need to insert the appropriate reading and writing primitives in the appropriate
places. In particular, ifCi is a communication channel with the given process as its
source, then a write to the communication channel needs to beinserted in each ele-
ment of the domain of its mapping relationMi . Similarly, if Cj is a communication
channel with the given process as its target, then a read fromthe communication
channel needs to be inserted in each element of the range of its mapping relation
M j . Each of these domains and ranges is a polyhedral set and we see that we need to
generate code for visiting each element of these sets. That is, we need the following
operation.
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Operation 6 (Code Generation).
Input: A set of polyhedral sets{Si }
Output: Code for visiting each element of each Si in lexicographic order

Operation 6 can be performed usingCLooG [2]6 or CodeGen [10] (part of the
Omega library).

Note that when generating code for a process, we cannot simply apply Operation 6
on the iteration domains and the domains and ranges of the communication channel
mappings, as the lexicographic order does not make a distinction between several
occurrences of the same element in two or more of these sets. Rather, we need to
ensure that the reads happenbeforethe actual operation and that the writes happen
after the operation. To enforce this extra ordering constraint, we introduce an extra
innermost dimension, assigning it the value 0 for reads, 1 for the iteration domain
and 2 for writes.

Example 11.Consider a process with a one-dimensional iteration domain

D = { i | 0≤ i < N}

that reads a value from some other process in its first iteration

M1 = {() → i | i = 0},

propagates a value from one iteration to the next

M2 = { i → i′ | 0≤ i < N−1∧ i′ = i +1}

and then sends a value to some other process in its last iteration

M3 = { i → () | i = N−1}.

The process is shown in Figure 5. The code that results from scanningD×{1},
ranM1×{0}, domM2×{2}, ranM2×{0} and domM3×{2} is shown schemati-
cally in Figure 6.

Fig. 5 A process with a one-
dimensional iteration domain

• • • • • •

2 2 2 2 2

1 3

1 3

2

6 http://www.cloog.org/

http://www.cloog.org/
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Fig. 6 Code generated for the
process in Figure 5

1 for (i = 0; i < N; i++) {
2 if (i == 0)
3 Read(1);
4 if (i >= 1)
5 Read(2);
6 f();
7 if (i < N - 1)
8 Write(2);
9 if (i == N - 1)
10 Write(3);
11 }

5 Dataflow Analysis

This section describes how the communication channels in the process network are
constructed using exact dataflow analysis [7]. We first discuss the standard dataflow
analysis and then explain how some inter-process communication can be avoided
by considering reuse.

5.1 Standard Dataflow Analysis

Standard exact dataflow analysis [7] is concerned with finding for each read of a
value from an array element in the program, the write operation that wrote that
value to that array element. By replacing the write to the array by a write to one or
more communication channels (as many as there are accesses in the program where
the value is read) and the read from the array to a read from theappropriate commu-
nication channel, we will have essentially constructed thecommunication channels.
The effect of dataflow analysis can be described as the following operation.

Operation 7 (Dataflow Analysis).
Input: • a read access relation R⊆ Zd ×Za

• a list of [write] access relations Wi ⊆ Zdi ×Za

Output: • a list of polyhedral relations Mi ⊆ Zdi ×Zd

• a polyhedral set S⊆ Zd

The output satisfies the following constraints

• each element in the domain of R is an element either of S or of the range of
exactly one of the mappings Mi , i.e.,{ ranMi }i ∪{S} partitionsdomR,

• if a particular element in the domain of R is in the range of oneof the map-
pings, i.e.,j ∈ domR∩ ranMk, then the corresponding [write] iteration of Wk,
i.e., M−1

k (j), was the last iteration in any of the domains of the input access rela-
tions Wi that accessed the same array element asj , [i.e., it wrote the value read
by j ] and was executed beforej ,
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• if a read iteration belongs to S, i.e.,j ∈ domR∩S, then this iteration accesses an
array element that was not accessed by any of the Wi , [i.e., this iteration reads
an uninitialized value].

Operation 7 is applied for each read access in the program. The list of access rela-
tions required in the input is constructed from all write accesses in the program that
access the same array. For eachMi 6= /0, a communication channel is created from
the process corresponding to the writing statement to the process corresponding to
the reading statement, with the givenMi as mapping. The type and buffer size are
defined in the following sections. The setS in the output is assumed to be empty.

Below, we briefly sketch how Operation 7 can be implemented using Operation 1,
but first we define a global order on all iterations of all statements in the input
program. Recall from Section 3.2 that within a single iteration domain, the execution
order corresponds to the lexicographic order. In Section 3.3 we explained that the
relative order of different statements can be expressed using statement locations.
A global order can be obtained by combining these two pieces of information. In
particular, letd = maxi di . We define a (2d+1)-dimensional space where the even
dimensions (0 to 2d) correspond to the elements of the statement locations (in order)
and the odd dimensions (1 to 2d−1) correspond to the dimensions of the iteration
domains (in order). We can map each iteration domain in this way to the (2d+1)-
dimensional space and we call the result theextended iteration domain. For iteration
domains withdi < d, the remaining dimensions can be assigned an arbitrary value,
say zero. The lexicographic order on this space correspondsto the execution order
of the input program. In particular, if the first dimension inwhich two extended
iteration vectors differ is 2n, then the two corresponding statements sharen loops,
the iterators of thesen loops have the same value in both vectors and the statements
have a different location inside thenth loop. If the first dimension in which two
extended iteration vectors differ is 2n+ 1, then the two corresponding statements
share at leastn+ 1 loops, the iterators of firstn loops have the same value in both
vectors, but the iterator of the next loop has a different value in the two vectors. The
access relations can similarly be extended by extending their domains.

Example 12.From Example 2, we know that the iteration domain associatedto the
ReadImage statement in Line 3 of Figure 1 is{(i, j) ∈ Z2 | 0≤ i < K ∧0≤ j <

N} (1), while from Example 6, we know that its statement location is (1,2,3). The
corresponding extended iteration domain is therefore

{(1, i,2, j,3) ∈ Z2 | 0≤ i < K∧0≤ j < N}.

Let us now assume that the input to Operation 7 contains a single (extended) write
access relationW. The composition of the read access relation with the inverse of
the write access relation yields a mapping from read iterations to write iterations
that wrote to the array element accessed by the read. The one that actually wrote
the value that is read, is the one that was the (lexicographically) last to write to the
element before the read. That is, we want to compute

lexmax
(

(W−1◦R)∩L−1
2d+1

)

,
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with L2d+1 the lexicographically smaller relation from (7). The result of this com-
putation is the inverse of the relationM in the output.

Unfortunately, we cannot directly apply Operation 1 to compute this lexico-
graphic maximum becauseL2d+1 (7) is a union of basic relations as soon asd ≥ 1.
(If W or Rare unions then the basic relations in these unions can be treated as sepa-
rate writes or reads, so we need not worry about unions in thispart of the equation.)
However, an extended write iteration that sharesi1 iterator values with the extended
read iteration will always be executed after an extended write iteration that only
sharesi2 < i1 iterator values with the extended read iteration. We can therefore first
apply Operation 1 to the writes that share 2d iterator values and withSset to the do-
main of the access relation. If the resulting setE is not empty then we can continue
with the writes that share 2d−1 iterator values, withSset to each of the basic sets
in E. This process continues until all the resulting setsE are empty or until we have
finished the case of 0 common iterator values.

Example 13.Consider once more the access relation (8) of the first argument to the
call toSobel in Line 6 of Figure 1 from Example 4, but now in its extended form,

R= {(4, i,5, j,6) → (a,b) | 1≤ i < K−1∧1≤ j < N−1∧a = i−1∧b = j −1}.

The only write to the a array occurs in Line 3, with extended access relation

W = {(1, i,2, j,3) → (a,b) | 0≤ i < K∧0≤ j < N∧a = i ∧b = j }.

Composition of these two relations yields

W−1◦R= {(4, i,5, j,6) → (1, i′,2, j ′,3) | 1≤ i < K−1∧1≤ j < N−1∧

i′ = i −1∧ j ′ = j −1}.

We see that the range iterators are uniquely defined in terms of the domain iter-
ators, so in this case there is no need to compute the lexicographic maximum as
lexmaxW−1◦Rwould be identical toW−1◦R. However, let us consider what would
happen if we were to apply the above algorithm anyway. Since the first iterators in
domain and range are distinct constants, the two iteration vectors never share any
initial iterator values. The first 2d = 4 applications of Operation 1 therefore operate
on an empty basic polyhedral relationR′ and simply return the input basic poly-
hedral setS= domR asE. The final application returnsM−1

1 = R′ = W−1 ◦R and
E = /0. Dropping the extra iterators again, we obtain

M1 = {(i′, j ′)→ (i, j) | 1≤ i < K−1∧1≤ j < N−1∧ i′ = i−1∧ j ′ = j−1}. (11)

If there is more than one write access relation in the input ofOperation 7, then the
computation is a little bit more complicated. After computing the lexicographically
maximal element of a write that sharesi iterator values with the read, we still need
to check that there is no other write in between. That is, we need to check if there is
a write from a different write access that also sharesi iterator values with the read,
also occurs before the read, but occurs after the already found write. Again we have



Polyhedral Process Networks 19

to consider all possible cases of shared iterator values between the two writes, now
from i to 2d + 1, as a write that occursafter a given iteration and that has fewer
iterator values in common with the given iteration will be executed after an iteration
that has more iterator values in common.

The above sketch of an algorithm can still be significantly improved by checking
the write access relations in the appropriate order and by taking into account the fact
that the dimensions that correspond to the statement locations have fixed values. For
a more detailed description, we refer to [7], where a variantof the above algorithm
is applied directly on “quasts”, the output structure ofpiplib which we will not
explain here.

5.2 Reuse

A process network constructed using the standard dataflow analysis of the previous
section will always send data from the process that corresponds to the statement
that wrote a given value in the sequential program to the process that corresponds
to the statement that read the given value, even if the same value is read multiple
times from the same process. Now, in practically any form of implementation of
process networks, sending data from a process to itself (or simply keeping it) is
much cheaper than sending data to another process. It is therefore better to only
transmit data from one process to another the first time it is needed.

Obtaining a network that only transmits data to a given process once is actu-
ally fairly simple. When applying Operation 7 from the previous section, instead
of only supplying a list of write accesses to the array read bythe read accessR,
we extend the list with all read accesses to the given array (includingR itself) from
the same statement. Any value that was already read by the given process will then
be obtained from the last of those reads from the same processinstead of from the
process that actually wrote the value.

ReadImage

Sobel

a: 7.0 a: N-2 a: N-2

a: 1 a: 1a:  N-4.0a: 1a: 1a: N-4a: 1a: 1a: 1a: 1a: 1a: 1a: 1a: 1a: 1a: 1

WriteImage

Sbl: 1

Fig. 7 A process network corresponding to the sequential program in Figure 1 exploiting reuse
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Example 14.In Example 1, we have shown a process network (Figure 2) derived
from the code in Figure 1 without exploiting reuse inside theSobel process. Figure 7
shows a process network derived from the same code, but in this case with reuse.
The first network was created by only considering the write toarray a in Line 3 of
Figure 1 as a possible source for the reads in Line 6, while thesecond was created by
also considering all the reads in Line 6 as possible sources.It is clear from the figures
that in the first network the Sobel process does not communicate with itself, while
in the second network it does. What may not be apparent, however, is that in both
networks there are 9 channels from the ReadImage process to the Sobel process.
The second figure only shows 3 channels because the software used to generate
these process networks automatically combines some communication channels if
this combination does not affect the type of the channels, asexplained at the end
of Section 6.1. The number of channels from the first process to the second has not
changed because each read in Line 6 reads at least one value that is not read by
any of the other reads. However, even though the number of channels may not have
changed, the number of values transmitted over these channels has been drastically
reduced. In particular, the image read by the ReadImage process is now transmitted
only once, instead of nearly 9 times.

6 Channel Types

In the previous section, we showed how to determine the communication channels
between the processes in the network. The practical implementation of these chan-
nels in hardware depends on certain properties that may or may not hold for the
channels. In particular, it will be important to know if a communication channel can
be implemented as a FIFO. Other properties include multiplicity and special kinds
of internal channels. In this section, we describe how to check these properties.

6.1 FIFOs and Reordering Channels

The communication channels derived in Section 5 are characterized by a mappingM
(see Definition 9) relating write iterations in one process to the corresponding read
iterations in the same or another process. The channel needsto ensure that when
the second process reads from the channel it is given the correct value and therefore
needs to keep track of which iteration in the first process wrote a given value. There
is, however, no need to keep track of this extra information if it can be shown that
the values will always be read in the same order as that in which they were written.
In such cases, the communication channel can simply be implemented as a FIFO.

To check if the writes and reads are performed in the same order, we consider
what happens when the order is not the same, i.e., when reordering occurs on the
channel. In this case, there is a pair of writes(w1,w2) such that the corresponding
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reads(r1, r2) are executed in the opposite order, i.e.,w1 ≻ w2 while r1 ≺ r2. That
is, reordering occurs if the relation

T = {w1 → w2 | ∃r1, r2 : (w1, r1),(w2, r2) ∈ M∧w1 ≻ w2∧ r1 ≺ r2} (12)

is non-empty, which can be verified by applying Operation 2 (Emptiness Check).
Note thatT will only be considered empty if there is no reordering for any value of
the parameters. Also note that we only need the lexicographic order within iteration
domains and not across iteration domains, as we only comparereads to other reads
and writes to other writes. If we identify two (or more) communication channels
C1 andC2 as FIFOs, we can check if we can combine them into a single FIFO
by performing two emptiness check on a relationT as in (12), except that in one
relation(w1, r1) is taken fromM1 and(w2, r2) is taken fromM2 and vice versa in
the other relation.

Fig. 8 A program resulting in
a network with a reordering
channel

1 for (i = 0; i <= N; i++)
2 a[i] = g(i);
3 for (i = 0; i <= N; i++)
4 b[i] = f(a[N-i]);

Example 15.Consider the program in Figure 8. The corresponding processnetwork
has two processes and one communication channel connectingthem. The mapping
on the channel is

M = {w→ r | 0≤ w≤ N∧ r = N−w}

and we have

T = {w1 → w2 | ∃r1, r2 : (w1, r1),(w2, r2) ∈ M∧w1 > w2∧ r1 < r2}

= {w1 → w2 | 0≤ w1,w2 ≤ N∧w1 > w2∧N−w1 < N−w2}

= {w1 → w2 | 0≤ w2 < w1 ≤ N}.

For N > 0, this relation is clearly non-empty. We conclude that we are dealing with
a reordering channel. See Example 20 for a variation on this example where we find
a FIFO.

6.2 Multiplicity

The standard dataflow analysis from Section 5.1 may result incommunication chan-
nels that are read more often than they are written to when thesame value is used in
multiple iterations of the reading process. Such channels require special treatment
and this multiplicity condition should therefore be detected by checking whether
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there is any write iterationw that is mapped to multiple read iterations through the
mappingM. In particular, letT be the relation

T = {w1 → w2 | ∃r1, r2 : (w1, r1),(w2, r2) ∈ M∧w1 = w2∧ r1 ≺ r2}.

This relation contains all pairs of identical write iterations that correspond to a pair
of distinct read iterations. If this relation is non-empty,then multiplicity occurs. As
in the previous section, we can check the emptiness using Operation 2 (Emptiness
Check).

It should be noted that if we use the dataflow analysis from Section 5.2, i.e.,
taking into account possible reuse, then the resulting communication channels will
never exhibit multiplicity. Instead, two channels would beconstructed, one for the
first time a value is read and one for propagating the value read to later iterations. In
general, it is preferable to detect reuse rather than multiplicity, because the analysis
results in fewer types of channels and because taking advantage of reuse may split
channels that are both reordering and with multiplicity into a pair of FIFOs.

Fig. 9 Outer product source
code.

1 for (i = 0; i < N; ++i)
2 a[i] = A(i);
3 for (j = 0; j < N; ++j)
4 b[j] = B(j);
5 for (i = 0; i < N; ++i)
6 for (j = 0; j < N; ++j)
7 c[i][j] = a[i] * b[j];
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Fig. 10 Outer product network with multi-
plicity

Fig. 11 Outer product network without mul-
tiplicity

Example 16.Consider the code for computing the outer product of two vectors
shown in Figure 9. Figures 10 and 11 show the results of applying standard dataflow
analysis (Section 5.1) and dataflow analysis with reuse (Section 5.2) respectively.
Each figure shows the network on the left and the dataflow between the individ-
ual iterations of the processes on the right. The iterationsare executed top-down,
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left-to-right. In the first network, the channel betweenb andc has mapping

Mb→c = {w→ (r1, r2) | 0≤ r1, r2 < N∧w = r2}.

For testing multiplicity, we have the relation

T = { r1,2→ r2,2 | ∃r1,1, r2,1∈Z : 0≤ r1,1, r1,2, r2,1, r2,2 < N∧r1,2 = r2,2∧r1,1 < r2,1},

which is clearly non-empty, while for testing reordering weuse the relation

T ′ = { r1,2→ r2,2 | ∃r1,1, r2,1∈Z : 0≤ r1,1, r1,2, r2,1, r2,2 < N∧r1,2 > r2,2∧r1,1 < r2,1},

which is also non-empty. In the second network, the channel betweenb andc has
mapping

Mb→c = {w→ (r1, r2) | 0≤ r2 < N∧ r1 = 0∧w = r2}. (13)

There is no multiplicity since each write corresponds to exactly one read. There is
also no reordering, since the writes and reads occur for increasing values ofw = r2

in both processes.

6.3 Internal Channels

Internal channels, i.e., channels from a process to itself,can typically be imple-
mented more efficiently than external channels. In particular, since processes are
scheduled independently there is no guarantee that when a value is read, it is al-
ready available, or that when a value is written, there is still enough room in the
channel to hold the data. The external channels therefore need to implement both
blocking on read and blocking on write. For internal channels, there is no need for
blocking. In fact, blocking would only lead to deadlocks. Besides the blocking is-
sue, there are some special cases that allow for a more efficient implementation than
a general FIFO buffer.

6.3.1 Registers

The first special case is that where the FIFO buffer holds at most one value. The
FIFO buffer can then be replaced by a register. In Section 8 wewill see how to
compute a bound on a FIFO buffer in general, but the case wherethis bound is one
can be detected in a simpler way. If each writew1 to a channel is followed by the
corresponding readr1, without any other read occurring in between, then we indeed
only need room for one value. On the other hand, if thereis an intervening read,
w1 ≺ r2 ≺ r1, then we will need more storage space. As usual, we can detectthis
situation by performing an emptiness check. Consider the set
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T = {w1 | ∃r1, r2 : (w1, r1) ∈ M∧ r2 ∈ ranM∧w1 ≺ r2 ≺ r1}.

This set contains all writesw1 such that there exists a readr2 that occurs before
the readr1 that corresponds to the writew1. Note that it is legitimate to compare
read and write iterations because we are dealing with internal channels and so these
iterations belong to the same iteration domain.

6.3.2 Shift Registers

Another special case occurs when the number of iterations between a write to an
internal channel and the corresponding read from the channel is constant. If so, the
FIFO can be replaced by a shift register, shifting the data inthe channel by one
in every iteration, independently of whether any data was read or written in that
iteration. Such shift registers can be implemented more efficiently than FIFOs in
hardware.

Checking whether we can use a shift register is as easy as writing down the
relation

R= {(w, i) ∈ Zd ×Zd | ∃r ∈ Zd : (w, r) ∈ M∧ i ∈ D∧w ≺ i ≺ r },

whereM is the mapping on the channel andD is the iteration domain of the process,
and applying Operation 3 (Number of Image Elements). The result is a piecewise
quasi-polynomialq of typeZn×Zd → Q, wheren is the number of parameters. If
the expression is independent of the lastd variables, i.e., ifq is defined purely in
terms of the parameters and not in terms of the write iterators, then we can use a
shift register. Note that we also count iterations in which no value is read from or
written to the channel. This means that the size of the shift register may be larger
than the buffer size of the FIFO, as computed in Section 8.

7 Scheduling

Although the processes in a process network are scheduled independently during
their execution, there are two occasions where we may want tocompute a common
schedule for two or more processes. The first such occasion iswhen there are more
processes in the network than there are processing elementsto run them on. The sec-
ond is when we want to compute safe buffer sizes as will be explained in Section 8.
In principle, we could use the extended iteration domains from Section 5.1 as the
common schedule, resulting in the same execution order as that of the input sequen-
tial program. This schedule may lead to very high overestimates of the buffer sizes,
however, and we therefore prefer constructing a schedule that is more suited for the
buffer size computation. There are many ways of obtaining such a schedule. Below
we discuss a simple incremental technique.
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7.1 Two Processes

Let us first consider the case where there are only two processes,P1 andP2, that
moreover have the same dimensiond = d1 = d2. We will relax these conditions in
Section 7.2 and Section 7.4. Since the two iteration domainshave the same dimen-
sion, we can consider the two iteration domains as being partof the same iteration
space. However, if there are any communication channels between the two pro-
cesses, then we need to make sure that that the second does notread a value from
any channel before it has been written. LetMi ⊆ DP1 ×DP2 be the mapping of one
of these channels and consider the delays between a write to the channel and the
corresponding read

∆i = { t ∈ Zd | ∃(w, r) ∈ Mi : t = r −w}.

Note that the concept of a delay, in particular the subtraction r −w, is only valid
because we now consider both iteration domains as being partof the same iteration
space. If any of these delays is lexicographically negative, i.e., if the smallest delay

δ i = lexmin∆i (14)

is lexicographically negative, then some reads do occur before the corresponding
writes and the schedule would be invalid. The solution is to delay the whole second
process by just enough to make all the delays over the communication channels
lexicographically non-negative. In particular, let

δ 1→2 = lexmin{δ i }i , (15)

with i ranging over all communication channels between processesP1 andP2. Then,
replacing the iteration domainD2 of P2 by D2− δ 1→2 (and adapting all mappings
Mi accordingly) will ensure that all delays over channels are lexicographically non-
negative.

In principle, we could choose any delay on the second iteration domain that is
lexicographically larger than−δ 1→2. However, delaying the reads more than strictly
necessary would only increase the time the values stay inside the communication
channel and could therefore only increase the buffer size needed on the channel.
Furthermore, if there are also communication channels fromP2 to P1, then we need
to make sure the delays on these channels are also non-negative. Fortunately, ifδ 2→1

is the minimal delay over any such channel, then

δ 1→2 +δ 2→1 ≻ 0. (16)

Otherwise there would be a read operation in processP1 that indirectly depends on
a write operation from the same process that occurs later or at the same time, which
is clearly impossible if the process network was derived from a sequential program.
By choosing a delay on processP2 of −δ 1→2, the minimal delay on any channel
from P2 to P1 becomes exactlyδ 1→2 +δ 2→1 and is therefore safe.
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There are still some details we glanced over in the discussion above. First, it
should be clear thatδ i (14) can be computed using a variation of Operation 1
(Lexicographic Maximum) or even directly as− lexmax(−∆i). The minimal delay
over all communication channelsδ 1→2 (15) can be computed as

lexmin{δ i }i =
⋃

i

{δ i | δi ≺ δ j for all j < i andδi 4 δ j for all j > i },

where bothi and j range over all communication channels between the two pro-
cesses. That is, we selectδ i for the values of the parameters where it is strictly
smaller than all previousδ j and smaller than or equal to all subsequentδ j . The re-
sult is a polyhedral set that contains a single vector for each value of the parameters.

Finally, we need to deal with the fact that the above procedure can set the delay
over a channel to zero, which means that the write and corresponding read would
happen simultaneously. The solution is to assign an order ofexecution to the state-
mentswithin a given iteration by introducing an extra innermost dimension as we
did in Section 4.5. The values for the extra dimension can be set based on a topo-
logical sort of a direct graph with as only edges those communication channels with
a zero delay. The absence of cycles in this graph is guaranteed by (16).

Example 17.Consider a network composed of the first two processes in Figure 2.
There are nine channels between the two processes. For one ofthese channels, we
computed the mappingM1 (11) in Example 13. The delay between writes and reads
on this channel is constant and we obtain{δ 1}= ∆1 = {(1,1)}. The other channels
also have constant delays and the smallest of these yieldsδ 1→2 = (−1,−1). We
therefore replace the second iteration domainD2 (9) by D2 +(1,1), resulting in a
newδ 1→2 of (0,0). To make this delay lexicographically positive (rather than just
non-negative), we introduce an extra dimension and assign it the value 0 inP1 and
1 in P2. The new iteration domains are therefore

D1 = {(i, j,0) ∈ Z3 | 0≤ i < K∧0≤ j < N},

D2 = {(i, j,1) ∈ Z3 | 2≤ i < K∧2≤ j < N}.

7.2 More than Two Processes

If there are more than two processes in the network, then we can still apply essen-
tially the same technique as that of the previous section, but we need to be careful
about how we define the minimal delayδ 1→2 (15) between two processesP1 and
P2. It will not be sufficient to consider only the communicationchannels between
P1 andP2 themselves. Instead, we need to consider all paths in the process network
from P1 to P2, compute the sum of the minimal delays on the communication chan-
nels in each path and then take the minimum over all paths. In effect, this is just the
shortest path betweenP1 andP2 in the process network with as weights the minimal
delays on the communication channels. As in the case of a two process network



Polyhedral Process Networks 27

(16), the minimal delay over a cycle is always (lexicographically) positive. We can
therefore apply the Bellman-Ford algorithm (see, e.g., [14, Section 8.3]) to compute
this shortest path.

If the network not only contains more than two processes, butwe also want to
combine more that two processes, then we can apply the above procedure incremen-
tally, in each step combining two processes into one processuntil we have performed
all the required combinations. If many or all processes needto be combined, it may
be more efficient to compute the all-pairs shortest paths using the Floyd-Warshall
algorithm [14, Section 8.4] and then to update the minimal delays in each combina-
tion step.

Example 18.Consider once more the network in Figure 2. There are three processes,
so we will need two combination steps. Let us for illustration purposes combine
the first and the last process first, even though there is no direct edge between
these two processes. (Normally, we would only combine processes that are directly
connected.) The delay betweenP2 andP3 is constant and equal toδ 2→3 = (0,0),
while the minimal delay betweenP1 andP2, as computed in Example 17, isδ 1→2 =
(−1,−1). The minimal delay betweenP1 andP3 is thereforeδ 1→3 = δ 1→2+δ 2→3 =
(−1,−1). We therefore replace the third iteration domainD3 by D3 +(1,1), result-
ing in a newδ 1→3 of (0,0). δ 1→2 remains unchanged, butδ 2→3 changes to(1,1).
In the next combination step,D2 is again replaced byD2 + (1,1) and δ 1→2 and
δ 2→3 both become(0,0). There are now two edges with a zero minimal delay, so
we assign the processes an increasing value in a new innermost dimension. The final
iteration domains of the first two processes are as in Example17, while that of the
third process is

D3 = {(i, j,2) ∈ Z3 | 2≤ i < K∧2≤ j < N}.

Figure 12 shows the code for the completely merged process. For simplicity,
we have written out this code in terms of the original statements and their origi-
nal accesses rather than using read and writes to communication channels. If we
were to compute buffer sizes based on the original schedule (Figure 1), then each
channel between the first and the second process would get assigned a buffer size
of (K −2)(N−2) because in this original schedule the ReadImage process runs to
completion before the Sobel process starts running. The significantly smaller buffer
sizes that we obtain using the procedure of Section 8 based onthe schedule com-
puted here are shown in Figure 2.

7.3 Blocking Writes

In deriving combined schedules, we have so far only been interested in avoiding
deadlocks. When merging several processes into a single process this is indeed all
we need to worry about. However, when using a global schedulein the computation
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1 for (i = 0; i < K; i++)
2 for (j = 0; j < N; j++) {
3 a[i][j] = ReadImage();
4 if (i >= 2 && j >= 2) {
5 Sbl[i-1][j-1] = Sobel(a[i-2][j-2], a[i-1][j-2], a[i][j-2],
6 a[i-2][j-1], a[i-1][j-1], a[i][j-1],
7 a[i-2][ j], a[i-1][ j], a[i][ j]);
8 WriteImage(Sbl[i-1][j-1]);
9 }
10 }

Fig. 12 Merged code for the process network of Figure 2

of valid buffer sizes, we may end up with buffer sizes that, while not introducing any
deadlocks, may impose blocking writes, impacting negatively on the throughput of
the network. In particular, iterations of different processes that are mapped onto the
same iteration in the global schedule (ignoring the extra innermost dimension), can
usually be executed in a pipelined fashion, except when non-adjacent processes in
this pipeline communicate with each other. In this case, thecomputed buffer sizes
may be so small that the first of these non-adjacent processesneeds to wait until
the second reads from the communication channel before proceeding onto the next
iteration.

The solution is to enforce a delay between a writing process and the correspond-
ing reading process that is equal to one iteration of the writing process. This delay
ensures that the delay between non-adjacent processes in a pipeline will be large
enough to avoid blocking writes that hamper the throughput.The required delay is
the smallest variation in the iteration domainD of a process. LetP be the relation
that maps a given iteration ofD to the previous iteration ofD, i.e.,

P(D) = lexmax{ i → i′ | i, i′ ∈ D∧ i′ ≺ i }. (17)

The relationP(D) can be computed using Operation 1 (Lexicographic Maximum).
The required delayη is then the smallest difference between two subsequent itera-
tions, i.e.,

η = lexmin{ t | ∃(i, i′) ∈ P(D)∧ t = i− i′ }.

The delay is enforced by subtracting theη corresponding to the writing process
from each channel delayδi (14). Note, however, that in the presences of cycles, we
may not always be able to enforce this extra delay. In particular, subtracting theη ’s
may result in negative total delays over these cycles. If this happens, we have to
resort to the scheduling of Section 7.2, without the additional delays.

Example 19.Consider the code in Figure 13. There are three statements,f , g, andh
with three FIFO communication channels between them: one from f to g, one from
g to h and one fromf to h. The delays on these channels are all zero. The scheduling
of Section 7.2 therefore leaves everything in place and the resulting code is identical
to the original. It is clear that in this schedule the size of each of the FIFOs can
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Fig. 13 A program illustrat-
ing blocking writes

1 for (i = 0; i < N; ++i) {
2 a[i] = f(i);
3 b[i] = g(a[i]);
4 c[i] = h(a[i], b[i]);
5 }

be set to 1. However, if we try to run the resulting process network, then we see
that the second iteration of processf needs to wait for the first iteration ofh to
empty the FIFO before it can write to the FIFO of size 1. Because of this blocking
write, the three processes cannot be fully pipelined, as illustrated in Figure 14. Since
all domains are 1-dimensional, the internal delay in each process is 1. Subtracting
this internal delay from each channel delay, we see that the minimal delay between
processf andh is (−1)+(−1) =−2. Processh is therefore scheduled at position 2
relative to processf . This means that the channel between these two process needs
to be of size at least 2. This size in turn then allows a fully pipelined execution of
the three processes, as illustrated in Figure 15.

f

g

h

f

g

h

f

g

h

f

g

h

f

Fig. 14 Time diagram with blocking Fig. 15 Time diagram without blocking

7.4 Linear Transformations

The schedules that we have seen so far are all of the formθ(j) = Id+1,dj +b, where
Id+1,d is (d+1)×d matrix with ik,k = 1 andik,l = 0 for k 6= l , andb ∈ Zd+1. That
is, we add an extra dimension (Id+1,dj ) and apply a shift (b). Note that we have also
assumed so far that all iteration domains have the same dimension. In principle, we
could apply more general affine schedulesθ(j) = Aj +b, i.e., including an arbitrary
linear transformationAj . Not only would this allow us to compute potentially tighter
bounds on the buffer sizes, but it may even change the types ofthe communication
channels.

Example 20.Consider once more the program in Figure 8. In Example 15 we have
shown that the only channel in the corresponding network hasreordering. If we
reverse the second loop, however, i.e., if we apply the transformation−j +N, then
the mapping on the channel becomes

M = {w→ r | 0≤ w≤ N∧ r = w}
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and we have

T = {w1 → w2 | 0≤ w1,w2 ≤ N∧w1 > w2∧w1 < w2}.

This set is clearly empty and so the communication channel has become a FIFO.

The example shows that if we were to apply general linear transformations, then
we would need to do this before the detection of channel typesof Section 6. In
fact, if we want to detect reuse, as we did in Section 5.2, thenwe would need to
do this reuse detectionafter any linear transformation. The reason is that a linear
transformation may change the internal order inside an iteration domain, meaning
that what used to be a previous iteration, from which we couldreuse data, may have
become a later iteration. On the other hand, the dataflow in the sequential program
imposes some restrictions on which linear transformationsare valid, so we need to
perform dataflow analysis (Section 5)beforeany linear transformation. The solu-
tion is to first apply standard dataflow analysis (Section 5.1), then to perform linear
transformations and finally to detect reuse inside the communication channels that
were constructed in the first step. A full discussion of general linear transformations
is beyond the scope of this chapter.

There is however one case where we are forced to apply a lineartransformation,
and that is the case where not all iteration domains have the same dimension. Be-
fore we can merge two iteration domains, they have to reside in the same space. In
particular, they need to have the same dimension. Letd be the maximal dimension
of any iteration domain, then we could could expand adi-dimensional iteration do-
main withdi ≤ d using the transformationId,di . This transformation effectively pads
the iteration vectors with zeros at the end. This may, however, not be the best place
to insert the zeros. A simple heuristic to arrive at better positions for the zeros is
to look at the communication channels between a lower-dimensional domain and a
full-dimensional domain and to insert the zeros such that iterators that are related
to each other through the communication channels are aligned. Note that inserting
zeros does not change the internal order inside the iteration domain. The same holds
for any scaling that we may want to apply based on essentiallythe same heuristic.

Example 21.Consider the communication channel between processesb andc in
the network of Figure 11 (see Example 16). The first process has a one-dimensional
iteration domain, while the second process has a two-dimensional iteration domain.
The mapping on the channel (13) shows that there is a relationw = r2 between the
single iterator of the writing process and the second iterator of the reading process.
We therefore insert a zero before the iteration vectors of the writing process such
that the original iterator ends up in the second position. For the channel between
a andc the relation isw = r1, so in this case we insert a zeroafter the original
iterator. These choices are reflected by the orientations ofthese two one-dimensional
iteration domains in Figure 11. With these orientations, the writes may be moved on
top of the corresponding reads by simply shifting the iteration domains, meaning
that a buffer size of at most 1 is needed. Had we chosen a different orientation for
the two one-dimensional iteration domains, then this wouldnot have been possible.
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8 Buffer Size Computation

This section describes how to compute valid buffer sizes forall communication
channels. The buffer sizes are valid in the sense that imposing them does not cause
deadlocks. The first step is to compute a global schedule for all processes in the
network, e.g., using the techniques of Section 7. This scheduling step effectively
makes all communication channels internal (to the single combined process). We
then compute buffer sizes for this particular schedule. Theschedule itself is not
used during the actual execution of the network. However, weknow that there is
at least one schedule for which the buffer sizes are valid. The blocking reads and
writes on the communication channels will therefore not introduce any deadlocks.

8.1 FIFOs

We are given an internal communication channel that has beenidentified as a FIFO
using the technique of Section 6.1 and we want to know how muchbuffer space
is needed on the FIFO. Recall that any channel may be considered internal after a
global scheduling step that maps all iteration domains to a common iteration space.
The buffer should be large enough to hold the number of tokensthat are in transit
between a write and a read at any point during the execution. We therefore first
count this number of tokens in terms of an arbitrary iteration and then compute an
upper bound over all iterations.

Let us look at these steps in a bit more detail. The communication channel is
described by a mappingM from the write iteration domainDw to the read iteration
domainDr. The maximal number of tokens in the buffer will occur after some write
to the buffer and before the first subsequent read from the buffer. It is therefore
sufficient to investigate what happens right before a token is read from the buffer.
Let W be the relation mapping any read iterationr to all write iterations that occur
before this read and letR be the relation mapping the same read iteration to all
previous read iterations, i.e.,

W = { r → w′ | r ∈ ranM∧w′ ∈ domM∧w′ ≺ r } (18)

R = { r → r ′ | r , r ′ ∈ ranM∧ r ′ ≺ r }. (19)

Then the numbern(s, r) of elements in the buffer right before the execution of readr
is the number of writes to the buffer before the read, i.e., #W(s, r), minus the num-
ber of reads from the buffer before the given read, i.e., #R(s, r), where as usual,s
are the parameters. Both of these computation can be performed using Operation 3
(Number of Image Elements). Finally, we apply Operation 4 (Upper Bound on a
Quasi-polynomial) to the piecewise quasi-polynomialn(s, r) = #W(s, r)−#R(s, r)
and the polyhedral set ranM, resulting in a piecewise quasi-polynomialu(s) that is
an upper bound on the number of elements in the FIFO channel during the whole
execution.
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Example 22.Consider once more the network in Figure 2. A global schedulefor this
network was derived in Examples 17 and 18, and code corresponding to this sched-
ule is shown in Figure 12. Writing the mapping (11) on the channel constructed
from the first argument to the call toSobel in Line 6 of Figure 1 in Example 13 in
terms of the new iterators, we obtain

M = {(i′, j ′,0) → (i, j,1) | 2≤ i < K∧2≤ j < N∧ i′ = i −2∧ j ′ = j −2}.

From this relation we derive,

W = {(i, j,1) → (i′, j ′,0) | 2≤ i < K∧2≤ j < N∧

0≤ i′ < K−2∧0≤ j ′ < N−2∧

((i′ < i)∨ (i′ = i ∧ j ′ ≤ j))}.

The number of image elements of this relation can be computedas

#W(K,N, i, j) =











i(N−2)+ j +1 if (i, j,1) ∈ ranM∧ i < K−2∧ j < N−2

(i +1)(N−2) if (i, j,1) ∈ ranM∧ i < K−2∧ j ≥ N−2

(K−2)(N−2) if (i, j,1) ∈ ranM∧ i ≥ K−2.

For the number of reads before a given read(i, j,1), we similarly find

#R(K,N, i, j) =
{

(i −2)(N−2)+ j −2 if (i, j,1) ∈ ranM.

Taking the difference yields

n(K,N, i, j)=











2(N−2)+3 if (i, j,1) ∈ ranM∧ i < K−2∧ j < N−2

3(N−2)− j +2 if (i, j,1) ∈ ranM∧ i < K−2∧ j ≥ N−2

(K− i)(N−2)− j +2 if (i, j,1) ∈ ranM∧ i ≥ K−2.

The maximum over all reads in ranM occurs in the first domain and is equal to
2(N−2)+3 = 2N−1, which is the value shown on the first edge in Figure 2.

8.2 Reordering Channels

For channels that have been identified as exhibiting reordering using the technique
of Section 6.1, we need to choose where we want to perform the reordering of the
tokens. One option is to perform the reordering inside the channel itself. In this
case we can apply essentially the same technique as that of the previous section to
compute an upper bound on the minimal number of locations needed to store all
elements in the buffer at any given time. However, since the tokens now have to
be reordered, we need to be able to address them somehow. An efficient mapping
from read or write iterators to the internal buffer of the channel may require more
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space than strictly necessary. We refer to [4] for an overview and a mathematical
framework for finding good memory mappings.

Another option is to perform the reordering inside the reading process. In this
case, a process wanting to read a value from the reordering channel first looks in its
internal buffer associated with the channel. If the value isnot in the buffer, it reads
values from the channel in the order in which they were written, storing all values it
does not need yet in the local buffer until it has read the value it is actually looking
for. In other words, the original reordering channel is split into a FIFO channel and a
local reordering buffer. There are therefore two buffer sizes to compute in this case.

Before embarking upon the computation of these buffer sizes, it should be noted
that nothing really interesting happens to the buffers during iterations that do not
read from the FIFO. In particular, the maximal number of elements in the FIFO
buffer will be reached right before a read from the FIFO and the maximal number
of elements in the reordering buffer will be reached right before the read of the value
from the FIFO that the process is actually interested in, i.e., after it has copied all
intermediate data to the reordering buffer. The uninteresting iterationsU are those
readsr for which there is an earlier readr ′ that reads something that was written
after the value read byr . This latter value will have been put in the reordering
buffer at or perhaps even before readr ′. That is,

U = { r | ∃w, r ′,w′ : (w, r) ∈ M∧ (w′
, r ′) ∈ M∧w ≺ w′∧ r ′ ≺ r }

and
S= ranM \U

is the set of “interesting” iterations.
For the first of these interesting iteration, i.e., the first readr ∗ of a value from the

FIFO, the number of tokens in the FIFO is equal to the number ofwrites that have
occurred before that read, i.e., #W(s, r∗), whereW is as defined in (18). For any
other readr ∈ S, we will also have read some values from the FIFO. In particular,
we will have read all values that were written up to and including the value that we
needed in the previous readr ′. LetW′ map a given readr to all these previously read
values. Then the number of tokens in the FIFO right beforer is #W(s, r)−#W′(s, r).
The relationW′ can be computed as

W′ = { r → w′′ | ∃r ′ : r ∈ S∧ (r , r ′) ∈ P∧ (r ′,w′) ∈ M∧w′′
4 w′ },

whereP = P(S) is the relation that maps a read inS to the previous read inS,
as defined in (17). As before, the relationP can be computed using Operation 1
(Lexicographic Maximum). As a side effect, we obtain a polyhedral setE containing
the first readr ∗. The counts can be computed using Operation 3 (Number of Image
Elements) and finally Operation 4 (Upper Bound on a Quasi-polynomial) needs to
be applied to obtain a bound on the FIFO buffer size that is valid for all reads.

As for the internal buffer, the number of tokens in this buffer after a readr from
the FIFO is equal to the number of subsequent reads that read something (from the
internal buffer) that was written (to the FIFO) before the token that was actually
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needed byr , i.e.,

#{ r → r ′ | ∃w,w′ : (w, r),(w′
, r ′) ∈ M∧w′ ≺ w∧ r ≺ r ′ }.

Again, this number can be computed using Operation 3 and a bound on the buffer
size can then be computed using Operation 4.

8.3 Accuracy of the Buffer Sizes

Although the buffer sizes computed using the methods described above are usually
fairly close to the actual minimal buffer sizes, there are some possible sources of in-
accuracies that we want to highlight in this section. These inaccuracies will always
lead to over-approximations. That is, the computed bounds will always be safe.
For internal channels, the only operation that can lead to over-approximations is
Operation 4 (Upper Bound on a Quasi-polynomial). There are three causes for inac-
curacies in this operation: the underlying technique [3] isdefined over the rationals
rather than the integers; in its basic form it only handles polynomials and not quasi-
polynomials; and the technique itself will only return the actual maximum (rather
than just an upper bound) if the maximum occurs at one of the extremal points of
the domain. For external channels, we rely on a scheduling step to effectively make
them internal. Since we only consider a limited set of possible schedulings, the de-
rived buffer sizes may in principle be much larger than the absolute minimal buffer
sizes that still allow for a deadlock-free schedule.

9 Summary

In this chapter we have seen how to automatically construct apolyhedral process
network from a sequential program that can be represented inthe polyhedral model.
The basic polyhedral tools used in this construction are parametric integer program-
ming, emptiness check, parametric counting, computing parametric upper bounds
and polyhedral scanning. The processes in the network correspond to the statements
in the program, while the communication channels are computed using dependence
analysis. Several types of channels can be identified by solving a number of empti-
ness checks and/or counting problems. Safe buffer sizes forthe channels can be
obtained by first computing a global schedule and then computing an upper bound
on the number of elements in each channel at each iteration ofthis schedule.
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