Polyhedral Process Networks

Sven Verdoolaege

Abstract Reference implementations of signal processing appticatare often

written in a sequential language that does not reveal thidahlea parallelism in

the application. However, if an application satisfies soomstraints then a parallel
specification can be derived automatically. In particulathe application can be
represented in the polyhedral model, thgyoéyhedral process netwodan be con-

structed from the application. After introducing the reqdi polyhedral tools, this
chapter details the construction of the processes and thenooication channels in
such a network. Special attention is given to various priggenf the communica-
tion channels including their buffer sizes.

1 Introduction

Signal processing applications are prime candidates farallpl implementation.
As we have seen in previous chapters, there are severalgbanadels of com-
putations that can be used for specifying such applicatibiosvever, many pro-
grammers are unfamiliar with these parallel models of camin. Writing parallel
specifications can therefore be a difficult, time consumimg) @ror prone process.
For this reason, many application developers still predesgecify an application
as a sequential program, even though such a specificatiomatde suitable for a
direct mapping onto a parallel multiprocessor platform.

In this chapter, we present a technique for automaticaltyaeiing a parallel
specification from a sequential program, provided thesaeesgtpl programs satisfy
some conditions. In particular, the control flow of thesegpams needs to be static
meaning that the control flow should not depend on the sigoeilsg processed.
Furthermore, all loop bounds, conditions and array indgxessions need to be
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such that they can be expressed using affine constraintBirgtions called should
be pure. In particular, they should not change the valuesay Iterators or arrays
other than their output arguments. These requirementsetizat we can represent
all relevant information about the program using mathecaatibjects called poly-
hedra. The resulting parallel model, a variation on Kahrcess networks [8], can
then also be described using such polyhedra, whence the palgteedral process
networks

The concept of a polyhedral process network was developéakeirtontext of
the Compaan project [11, 16]. The exposition in this chaplesely follows that

of [19].

2 Overview

This section presents a high-level overview of the procésxwacting a process
network from a sequential program. The extracted procesgonle represents the
task-level parallelism that is available in the programe Tiiput program is assumed
to consist of a sequence of nested loops performing variopsrations”. These op-
erations may be calls to functions that can be arbitrariipglicated. The operations
are performed on data that has been computed in some itecditmother operation

or in a previous iteration of the same operation. The outpotgss network con-

sists of a set of processes, each encapsulating all itesatiica given operation, and
communication channels connecting the processes andsesyiieg the dataflow.

The processes in the network can be executed independért#icio other, as long

as data is available from the channels from which the proessss and as long as
buffer space is available in the channels to which the peeages. That is, the

communication primitives implement blocking reads anctkiog writes.

for (i =0; i <K, i++)
j =0, ) <N j++)
a[i]l[j] = Readlmage();
=1, i < K1; i++4)
i =1, ] < N1 j++) {
Sbi[i][j] = Sobel(a[i-1][j-1], a[ill[j-1], a[i+1][j-1],

afi-1][ jl, a[ill jl, a[i+1][ j],
a[i-1][j+1], a[i][j+1], a[i+1][j+1]);
Witel mage(Sbl[i1[j]);

}

Fig. 1 Source code of a Sobel edge detection program

Example 1As a simple example, consider the code for performing Sothgé ele-
tection in Figure 1. The first loop of this program reads thmitrimage, while the
second loop performs the actual edge detection and writethewutput image. A
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Fig. 2 A process network corresponding to the sequential prograngim&il

process network that corresponds to this program is shovifigre 2. There are
three processes in the network, each corresponding to dhe ttiree “operations”
performed by the program, i.e., reading, edge detectiomaiticig. Data flows from
the reading process to the edge detection process and feedte detection pro-
cess to the writing process, resulting in the communicatizemnels shown in the
figure. The annotations on the edges will be explained later.

The extraction of a polyhedral process network consistewéml steps summa-
rized below and explained in more detail in the followingtgsts:

e In afirst step, a model is extracted from the input program bickvall further
analysis will be performed. In particular, the program igresented by @oly-
hedral model This model allows for an efficient analysis, but imposes soea
strictions on the input programs. The polyhedral model [ga&red in Section|3,
while some basic components for the analysis of polyhedoalets are explained
in/Section 4.

e Dataflow analysis is performed to determine which processesnunicate with
which other processes and how, i.e., to determine the coneation channels.
For example, the results of the call Readl nage in[Line 3 of|Figure 1 are
stored in thea array, which is read by the call @obel inlLine 6. Dataflow anal-
ysis therefore results in one or more communication chanfnein the reading
process to the edge detection process. Dataflow analysiglai®ed in Section|s.

e In the next step, the type of each communication channel tisrdned. For
example, the channel may be a FIFO, in which case the pracessaected to
the channel simply need to write to and read from the chaonémay not be a
FIFO, in which case additional processing will be requirBEae classification of
channels is discussed/in Sectidn 6.

e The communication channels may need to buffer some datatoea deadlock-
free execution of the network. Especially for a hardwarel@mgntation of pro-
cess networks, it is important to know how large these bsiffiesly need to grow.
The computation of buffer sizes is the subject of Section 8.

e The number of processes in the network may exceed the nunfilppcess-
ing elements available. Some processes may therefore adedirherged. This




4 Sven Verdoolaege

merging requires the construction of a combined schedut&hnis the subject

of|Section 7. Depending on the kind of dataflow analysis theg performed in

constructing the network, some of this analysis may need tgolated or redone
based on the merging decisions.

e Finally, code needs to be written out for each of the proceissthe network. This
code needs to execute all iterations of the single or mel{jipl case of merging)
operations and needs to read from and write to the apprep@hmunication
channels at the appropriate times. The main difficulty is #tep is writing out
code to scan overlapping polyhedral domains, which is dised in Section 4.5.

The buffer size computation itself (Section 8) consistssvksal substeps. First a
global schedule is computed (Sectidn 7), assigning a gltrhalpoint to each itera-
tion of each process. This global schedule is only used dtiia buffer size compu-
tation and not during the actual execution. For each chaamkéach time point, the
number of tokens in the channel at that time point is then edetp(Section 4.3).
Finally, for each channel, an upper bound is computed fonthgimal number of
tokens in the channel throughout the whole execution (Seeti4).

3 Polyhedral Concepts

The key to an efficient transformation from sequential carla process network
is the polyhedral model used to represent the sequentigtgomoand the resulting
process network. This section defines both models and detatecepts.

3.1 Polyhedral Sets and Relations

Each statement inside a loop nest is executed many times thbesequential pro-
gram is run. Each of these executions can be represente@ byltes of the itera-
tors in the loops enclosing the statement. This sequenderator values is called
theiteration vectorassociated to a given execution of the statement. The sdit of a
such iteration vectors is called tiieration domainof the statement. Assuming that
each iterator is an integer that is incremented by one in gaction of the loop,
this iteration domain can be represented very succinctlgitnply collecting the
lower and upper bounds of each of the enclosing loops.

Example 2The iteration domain associated to fRead| nage statement in Line 3

of|[Figure 1is

D1 ={(i,j) €Z?|0<i <KAO<j <N} (1)

The extraction of a process network requires several métipas of iteration
domains and related sets. To ensure that these manipslaéorbe performed effi-
ciently or even performed at all, we need to impose someictstrs on how these
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sets are represented. In particular, we require that tiseasetdescribed by integer
affineinequalities and equalities over integer variables. Amafinequality is an
inequality of the formagxy +axXz + ... +agxq + ¢ > 0, i.e., it expresses that some
degree-1 polynomial over the variables is greater than valeq zero. When deal-
ing with several such inequalities in general, it will be genient to represent them
using a matrix notatio’x +c > 0.

Sets ofrational values described by affine inequalities have been the sutjec
extensive research and are calpedyhedra

Definition 1 (Rational Polyhedron). A rational polyhedron Hs a subspace dp¢
bounded by a finite number of hyperplanes.

P={xecQ|Ax>c}, ()

with A € Z™d andc e ZM.

The sequential code from which we want to extract a procetsgonke may contain
parameters such as the number of révand the number of colummsin|Figure 1.
In such cases, we do not want to extract a distinct procesgriefor each value
of the parameters, but instead a single parametric proessrk that is valid for
all values of the parameters. We therefore also need thespbio¢ aparametric
polyhedron

Definition 2 (Parametric Rational Polyhedron). A parametric rational polyhe-
dron P(s) is a family of rational polyhedra i parametrized by parameters Q".

P:Q"— 2% s P(s) = {x € Q| Ax+Bs > c}, 3)

with A € Z™d, B e ZmN ¢ zM and 2 the power set of)d, i.e., the set of
all subsets ofQ". The parameter domain B= pdomP of a parametric polyhedron
P.:Q"— 2% s a (non-parametric) polyhedrdd C Q" containing all parameter
valuess for which P(s) is non-empty,

pdomP = {s€ Q" | P(s) #0}.

Bounded polyhedra are callpdlytopesin case of parametric polytopes, this means
that each polyhedron in the family is a polytope, i.e., ®@) is a polytope for each
value of the parametess

Besides iterators and parameters, we may also need addlimables to accu-
rately describe an iteration domain. These variables arased to identify a given
iteration, but rather to restrict the possible values ofiteetors. This means that
we do not care about the values of these variables, but rditaesomeinteger value
exists for these variables that satisfies the constraittesd variables may there-
fore be existentially quantified. The need for such varisialeses especially when
loop bounds or guards contain modulos or integer divisi&xpressions that con-
tain such constructs but that can still be expressed usfimg @onstraints are called
quasi-affine
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for (i =0; i <N 1i++)
if (i %3 ==0)
afi] = f1();
el se
afi] = f2();

Fig. 3 Source code of a loop
nest with iteration domains
requiring existentially quanti-
fied variables to represent

o s W N e

Example 3Consider the program n Figure 3. The modulo constraint “i &=3”"

is not in itself an affine constraint, but it can be represgi® an affine constraint
i = 3a by introducing an extra integer variabdec Z. The iteration domain of the
statement in Line|3 can therefore be represented as

Di={i€Z|3aecZ:0<i<NAi=30}. 4)
Similarly, the iteration domain of the statement in Line b & represented as
D;={i€Z|3a€Z:0<i<NA1l<i—3a<2}.

In general then, thegblyhedral setssuch asD; andD; that are used in the poly-
hedral representation of both the input program and thdthegyprocess network,
are defined as follows.

Definition 3 (Polyhedral Set). A polyhedral set Ss a finite union of basic sets
S=J; S, each of which can be represented using affine constraints

S1Qn—>2Qd15'—>S(S):{erd|HzeZe:Ax+Bs+Dzzc},

with Ae Z™d B e Z™" D e Z™€ andc € Z™. Theparameter domainf Sis the
(non-parametric) polyhedral set pd&# {s€ Z" | (s) # 0}.

Note that any polyhedral set can be represented in infinitalgy ways. When talk-
ing about polyhedral sets, we will usually have a specificesentation in mind. In
a similar fashion, we can defin@6lyhedral relation$over pairs of sets.

Definition 4 (Polyhedral Relation). A polyhedral relation Ris a finite union of

basic relationfR = | J; R of type Q" — 2Qd1+d2, each of which can be represented
using affine constraints

R =5— Ri(S) = { (x1,X2) € Z% x Z% | 3z € 72 : Ajx1 + Apxo + Bs+Dz > ¢},

with A € Z™4 B e Z™N D e Z™¢€andc € Z™. Theparameter domaiof Ris the
(non-parametric) polyhedral set pd&a- {s€ Z" | R(s) #0} = {s€ Z" | Ix1 €
7% x; € 7% : (x1,%2) € R(S) }. Thedomainof Ris the polyhedral set doR= s+
{xg € 2% | 3 € Z% : (x1,X2) € R(s) }, while therangeof Ris the polyhedral set
ranR= s {xp € Z% | Ix; € Z% : (x1,%2) € R(s) }. The polyhedral relatioR can
also be interpreted as being of tyfl® — Q% — 20% Supplying two arguments
then yields themageof an element € domR(s), i.e.,

R(s,t) = {x2 € Z% | (t,x2) € R(s) }.
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Polyhedral sets and polyhedral relations have essentiedlgame type if we selt=
di + dy. The difference is mainly a matter of interpretation. Inybadral relations,
we make a distinction between two sets of variables, wharegslyhedral sets,
there is no such distinction. Any polyhedral set can alsadatéd as a polyhedral
relation with a zero-dimensional domain, i.e., by setting- 0, d, = d andA; = A.
Any statement about polyhedral relations will thereforgoahold for polyhedral
sets. We will usually only treat the general case of polyakgiations.

3.2 Lexicographic Order

For a proper analysis of a sequential program, we not onlg te&now for which
iterator values a given statement is executed, but also ichidrder these instances
are executed. A given instance is executed before anotkimice if they are exe-
cuted in the same iteration of zero or more outermost loopsifatme second in-
stance is executed in a later iteration of the next outerfogt In other words, the
execution order corresponds to fle@icographic ordeion iteration vectors.

Definition 5 (Lexicographic order). A vectora € Z" is said to béexicographically
smallerthanb € Z" if for the first positioni in whicha andb differ, we haveg; < by,
or, equivalently,

n i—1
a<bz\/<a4<bi/\/\aj:bj>. (5)
i—1 =1

Note that the lexicographic order can be represented ag/bgurial relation

Lh={(ab)eZ"xZ"|a<b} (6)
n i—1

= J{(ab)eZ"xZ" |a <bin \ aj=b;}. (7)
i=1 j=1

3.3 Polyhedral Models

The polyhedral model of a sequential program mainly cosgiéthe iteration do-
mains of the statements (as explained in Sectioh 3.1)aaness relationsAn ac-

cess relation is a polyhedral relati®C Z9 x Z2 that maps the iteration vector of
the corresponding statement to an array element. Heigthe dimension of the
iteration domain and is the dimension of the array. A scalar can be considered as a
zero-dimensional array. The access relation of an accessdalar is therefore sim-

ply the Cartesian product of the iteration domain and thelevzero-dimensional
space.

Example 4The access relation of the first argument to the caidbel in|Line 6

of|[Figure 1is
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{(,))—(ab)|1<i<K—-1A1<j<N-1lpa=i—1Ab=j—1}. (8)

Finally, the model should contain information about thetige execution order
of any pair of statements in order to determine whether aatite of one statement
precedes or follows an iteration of another statement. Cmeafirepresenting this
relative position is to keep for each pair of statements threlver of enclosing loops
that they have in common and the relative ordering of the timtements in the
program text.

Example 5In|Figure 1,Readl nage precedesSobel in the program text, which
inturn precede®V i t el mage. Readl nage shares no enclosing loops with either
of the other two statements, whiiobel andW i t el nage share two enclosing
loops.

Another way of representing the relative order is to recamdefach statement
the position of the statement itself and each of its encip&ops in the program
text. That is, for a statement witth enclosing loops, we keep a vector &+ 1
“positions”, e.g., line numbers, ordered from outermosinteermost. We call this
vector thestatement location

Example 6In|Figure 1,Readl mage has statement locatiofi, 2,3), Sobel has
statement locatiofé,5,6) andW i t el mage has statement locatigqd, 5, 9).

Note that the first representation can easily be derived ff@second representa-
tion.
Combining all this information, we have the following defian.

Definition 6 (Polyhedral Model). The polyhedral modebf a sequential program
consists of a list of statements, where each statementusnnépresented by

an identifier,

a dimensiord;,

an iteration domain (a polyhedral s&) C 7%,
a list of accesses and

a statement location.

Finally, each array access is represented by an identifierceess relation (a poly-
hedral relation) and a type (read or write).

The use of a polyhedral model imposes the following restmst on the input
program;

e static control flow,

e pure functions and

e loop bounds, conditions and index expressions are quiise@ixpressions in the
parameters and the iterators of enclosing loops.

The extraction of a polyhedral model from a sequential paogis available in sev-
eral modern industrial and research compilers, e.g., [331]1L
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3.4 Piecewise Quasi-Polynomials

As explained in _Section|2, each channel in the process nkthas a buffer of a
bounded size. If the network is parametric, then this bouifidnigeneral not simply
be a number, but rather an expression in the parameters. &otime intermediate
steps in computing these bounds may also result in expresgigolving both the
parameters and the iterators, or just the iterators if thward is non-parametric. In
both cases the expressions willfiecewise quasi-polynomialQuasi-polynomials
are polynomial expressions that may involve integer divisiof affine expressions
in the variables. Piecewise quasi-polynomials are qualsinomials defined over
polyhedral pieces of the domain. More formally, they can &ingd as follows.

Definition 7 (Quasi-polynomial). A quasi-polynomial ¢x) in the integer variables
X is a polynomial expression in greatest integer parts of @ffixpressions in the
variables, i.e.q(x) € Q[|Q[x]<1]]-

Definition 8 (Piecewise Quasi-polynomial)A piecewise quasi-polynomial(x),
with x € Z9 consists of a finite set of pairwise disjoint polyhe#ta_ Q9, each with

an associated quasi-polynomgpi{x). The value of the piecewise quasi-polynomial
atx is the value ofy (x) with K; the polyhedron containing, i.e.,

4(x) = {qi(x) if x € K;

0 otherwise.

Note that the usual polynomials are special cases of qugiqmials as[ij =X
for x; integer.

Example 7 Consider the statement|in Line 3|of Figurie 3. The number ofsithis
statement is executed can be represented by the piecevesieplynomial

{13 itN=o0

Note that there is only one polyhedral “piece” in this exampl

3.5 Polyhedral Process Networks

Now we can finally define the structure of a polyhedral proceswa/ork. For sim-
plicity we assume that no merging of processes has beenrpedpi.e., that each
process corresponds to a statement in the polyhedral mbthed ;mput.

Definition 9 (Polyhedral Process Network).A polyhedral process networis a
directed graph with as vertices a setppbcesses” and as edgesommunication
channels¢. Each procesB € & has the following characteristics

e a statement identifies;,
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e adimensiord;,
e an iteration domai; C Z4.

Each channel; € ¢ has the following characteristics

e asource proces§ € &,

e atarget proces§ € &2,

e a source access identifier corresponding to one of the aéssthe state-
mentsg,

e atarget access identifier corresponding to one of the ses@sthe statemest,

e apolyhedral relatioM; C Dg x Dt mapping iterations from the source domain
to the target domain,

e atype (e.g., FIFO),

e a piecewise quasi-polynomial buffer size.

The identifiers in the process network can be used to obtare mformation about
the statements and the accesses when constructing a haromgoftware realiza-
tion of the network. The mapping; identifies which iterations of the source process
write to the channel, which iterations of the target proceas from the channel and
how these iterations are related. The buffer sizes are fuatttie network can be
executed without deadlocks.

Example 8 Consider the network in Figure 2, derived from the code irufégl.
All processes have dimensialh = 2. The iteration domai; of the Readlmage
process was given jn Example 2. The iteration domains of therdwo processes
are

Do=D3={(i,j)eZ?|1<i<K—-1A1<j<N-1} (9)

There are nine communication channels between the firsharsktond process and
one communication channel between the second and the icommunication
channels in this network are FIFOs. How these communicati@mnels are con-
structed is explained in Section 5.1 and how their types eterohined is explained
in/Section 6. The arrows in Figure 2 representing the comaation channels are
annotated with the name of the array that has given rise tchthenel and the buffer
size. These buffer sizes are computed in Section 8.

4 Polyhedral Analysis Tools

The construction of a polyhedral process network relies naraber of fundamen-
tal polyhedral operations. This section provides an oesv\f these operations. In
each case, one or more tools are mentioned with which theatipercan be per-
formed. This list of tools is not exhaustive.
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4.1 Parametric Integer Programming

By far the most fundamental step in the construction of aggstetwork is figuring
out which processes communicate data with each other andhén way. At the
level of the input source program, this means figuring outefach value read in
the program where the value was written. That is, for eactl aeaess to an array
element, we need to know what was the last write access tathe array element
that occurred before the given read access. In particdilarany iterations of the
same statement write to the same array element, we needettieoiraphically)
last iteration of that statement. Computing such a lexiaphically maximal (or
minimal) element of a polyhedral set can be performed upg@gmetric integer
programming
Let us first define a lexmax operator on polyhedral relations.

Definition 10 (Lexicographic Maximum). Given a polyhedral relatioR, thelexi-
cographic maximunof Ris a polyhedral relation with the same parameter domain
and the same domain &sthat maps each elemenbf the domain to the unique
lexicographically maximal element that correspondsitoR, i.e.,

lexmaxR={(i,j) e RC ZU x 2% | =(Jj € Z% : (i,j’") e RAj <) }.  (10)

Now we can define an operation for computing lexrRas a polyhedral relation.

Operation 1 (Lexicographic Maximum).
Input: e a basic polyhedral relation RZ" — 7% x 7%
e a basic polyhedral set SZ" — Z%
Output: e a polyhedral relation M= lexmax RN (Sx Z%))

e apolyhedral set E= S\ domR
The polyhedral relation M satisfies the following additibnanditions:

e every existentially quantified variable in M is explicitgpresented as the great-
est integer part of an affine expression in the parametersthadiomain vari-
ables,

e every variable in the range of M is explicitly representedaasaffine expres-
sions in the parameters, the domain variables and the existlyy quantified
variables.

can be performed using! [17]/! or, with some additional trans-

formations, usingi pl i b [@E The use of the output s& will become clear in

Section 5.

Example 9Let us compute the lexicographically maximal element of ghb/he-
dral setD; (4) from|Example 8. Recall that a polyhedral set can be tceatea
polyhedral relation with zero-dimensional domain. Theuiro Operation L is then
R= N+ Z% x D1(N). Smay be taken as the universal zero-dimensional set with

Thttp://freshmeat. net/projects/isl/
2http://ww. pi plib.org/


http://freshmeat.net/projects/isl/
http://www.piplib.org/

12 Sven Verdoolaege

universal parameter domain, i.&= N — Z°. The output is the lexicographically
maximal element of the s&t;:

. N+2| .
M =N — Z° x lexmaxD1(N) = {i € Z | Ja = {;FJ (i=3a-3AN>1}.

The setE describes the (parameter) values for which there is no elemehe set
Dy,i.e,E=N {()|N <0}, with () the single element G°.

Using Operation [1, we can also compute the domain of a polhgheelation as
a polyhedral set. We simply compute the lexicographic maxmmelation of each
basic relation and then drop the range variables and thdigegighat define them.
Similarly, the range of a relation can be computed as the dowfathe inverse
relation.

Alternatively, the lexicographic maximum can be computsthgOnega MF
by expressing the lexicographic order in (10) using lineamstraints, as in (7).
However, the result will not necessarily satisfy the twoditions off Operation 1.
On the other hand, th@rega library provides built-in operations for computing
domains and ranges of relations.

4.2 Emptiness Check

A very basic and frequently used operation is that of checkimether a given
polyhedral set or relation contains any elements for anyevaf the parameters.

Operation 2 (Emptiness Check).
Input: a polyhedral relation R Z" — 7% x 7%
Output: t rue if Vse Z" : R(s) = 0 andf al se otherwise

Operation 2 can be performed by applying Operation 1 (Legiaphic Maxi-
mum) on each of the basic polyhedral sets in a polyhedraBsez.""%+% with

the same description & but where all parameters and input variables are treated
as set variables. The relatiéhis empty iff Sis empty iff in turn none of the basic
polyhedral sets has a lexicographically maximal elemeimicesS is (a union of)
Integer Linear Programming (ILP) problem(s), any otheodtym for testing the
feasibility of an ILP problem will work as well.

4.3 Parametric Counting

An important step in the buffer size computation is the cotapon of the number
of elements in the buffer before a given read. We will be ablestluce this com-

Shttp://ww. cs. und. edu/ pr oj ect s/ onega/
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putation to that of counting of the number of elements in thage of a polyhedral
relationR(s), denoted R(s,t), for which we will use the following operation.

Operation 3 (Number of Image Elements).
Input: a polyhedral relation R Z" — Z% x 7%
Output: a piecewise quasi-polynomiat @" x Z% — Q: (s,t) — q(s,t) = #R(s 1)

We already performed Operation 3 on a polyhedral set in El@ip

Operation 3 can be performed usibgr vi nok [20, 18]* Note that this library
takes a basic polyhedral set as input, but it can be made wiéhdasic polyhe-
dral relations by treating the domain variables as extrarpaters. Unions can be
handled by first computing a disjoint union representatiod then summing the
number of elements in each of the individual basic sets Brpresentation.

4.4 Computing Parametric Upper Bounds

As explained in the previous section, Operation 3 can be tssedmpute the num-
ber of elements in a buffer at any given time. When allocatirgmory for this

buffer, we need to know the maximal number of elements thkewer have to re-
side in the buffer. As usual, we want to perform this compataparametrically. In
general, computing the actual maximum may be too difficaiyéver. We therefore
settle for computing an upper bound that is reasonably ¢toee maximum.

Operation 4 (Upper Bound on a Quasi-polynomial).
Input: e a piecewise quasi-polynomial: " x Z9 — Q
e a bounded polyhedral set:¥" — 79, the domain over which to

compute the upper bound
Output: a piecewise quasi-polynomial: @" — Q such that

u(s) > maxq(s,t) Vs e pdomS
tes(s)

Operation 4 can be performed usibgr nst ei n F Although the basic tech-
nigue only applies to polynomials, extensions to quasypaiials are also avail-
able [5]. Alternatively, the quasi-polynomials, which arsually the result of a
counting problem such as Operation 3, can be approximatagbjynomial during
the counting process [12].

Combining Operation 3 and Operation 4 results in the folilmwperation, by
takingS= domR.

Operation 5 (Upper Bound on the Number of Image Elements).
Input: a polyhedral relation R Z" — 7% x 7%
Output: a piecewise quasi-polynomial: Z" — Q such that

4http://freshmeat. net/ proj ects/ barvi nok/
Shttp://icps.u-strasbg. fr/pco/ bernstein. htm
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u(s) > max #R(st) Vs e pdomR

"~ tedomR(s)
Fig. 4 A simple program vofor (B =00 1 <N ++)
reading the same array ele- 2 for (j =0; ] <i; +4)
ments several times 3 blill[i] = f(ali +]j]);

Example 10Consider the program jn Figure 4 and assume we want to know the
maximal number of times an unspecified element of array aad. fEhis number is
the maximal number of domain elements in the access relttairmap to the same
array element. In terms of the operations we have definedealitog the maximal
number of image elements in the inverse of the access neldtfte access relation
is

A={(i,j))—al]0<i<NAO< j<ina=i+]j}.

Its inverse is
Al={a—(i,j)|0<i<NAO<j<ina=i+]}.

Applying Operation 3 yields the number of times a given agkgmnent is read:

_|a :
BAU(N,a) =4 2 Lzaj fo<a<N
N-|g|-1 ifN<a<2N-3

An upper bound on this number can then be computed Using Gged yielding,

max #A 1(N,a) < u(N) = {N if N> 2.

acdomA—1 2

4.5 Polyhedral Scanning

When writing out code for a process in a process network, wemgtneed to make
sure that an operation is performed for each element ofitatibn domain, but we
also need to insert the appropriate reading and writingipivies in the appropriate
places. In particular, i€; is a communication channel with the given process as
source, then a write to the communication channel needs ittsketed in each ele-
ment of the domain of its mapping relatidfy. Similarly, if C; is a communication
channel with the given process as its target, then a read tihencommunication
channel needs to be inserted in each element of the range wialbping relation
M;. Each of these domains and ranges is a polyhedral set ancewlesgsve need to
generate code for visiting each element of these sets. $hatineed the following
operation.

ts
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Operation 6 (Code Generation).
Input: A set of polyhedral setsS }
Output: Code for visiting each element of eaghrSlexicographic order

can be performed usi@00G [2]8 or CodeGen [10] (part of the
Onega library).

Note that when generating code for a process, we cannotysapply Operation 6
on the iteration domains and the domains and ranges of thencoimation channel
mappings, as the lexicographic order does not make a distinbetween several
occurrences of the same element in two or more of these satiseRwe need to
ensure that the reads happeeforethe actual operation and that the writes happen
after the operation. To enforce this extra ordering constraietjmroduce an extra
innermost dimension, assigning it the value O for readsr 1He iteration domain
and 2 for writes.

Example 11Consider a process with a one-dimensional iteration domain
D={i|0<i<N}
that reads a value from some other process in its first itarati
My={()—i|i=0},
propagates a value from one iteration to the next
Mp={i —»i"|0<i<N-1AiI'=i+1}
and then sends a value to some other process in its lastaterat
Ms={i—()]i=N-1}.

The process is shown n Figure 5. The code that results framrsegD x {1},
ranM; x {0}, domM x {2}, ranMz x {0} and doniMs x { 2} is shown schemati-

cally in|Figure 6.

Fig. 5 A process with a one- . 5
dimensional iteration domain -

8http://ww. cl oog. or g/
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for (i =0; i <N i++) {

if (i ==0)
Read(1);

if (i >=1)
Read( 2);

f();

if (i <N-1)
Wite(2);

if (i == N- 1)
Wite(3);

© ® N o o A W N e

-
o

Fig. 6 Code generated for the

process if Figure|5

i
=
—

5 Dataflow Analysis

This section describes how the communication channelsipithcess network are
constructed using exact dataflow analysis [7]. We first dis¢be standard dataflow
analysis and then explain how some inter-process comntioricean be avoided
by considering reuse.

5.1 Standard Dataflow Analysis

Standard exact dataflow analysis [7] is concerned with fopdan each read of a
value from an array element in the program, the write opemathat wrote that
value to that array element. By replacing the write to thayahy a write to one or
more communication channels (as many as there are acceshegprogram where
the value is read) and the read from the array to a read fromghepriate commu-
nication channel, we will have essentially constructedcthramunication channels.
The effect of dataflow analysis can be described as the foitpaperation.

Operation 7 (Dataflow Analysis).
Input: e aread access relation R Z¢ x 72

e alist of [write] access relations W= Z% x 72
Output: e a list of polyhedral relations MC Zd x 74

e apolyhedral set & 74
The output satisfies the following constraints

e each element in the domain of R is an element either of S oreofaihge of
exactly one of the mappings Nle., { ranM; }; U{ S} partitionsdomR,

e if a particular element in the domain of R is in the range of afid¢he map-
pings, i.e.,j € domRnNranMy, then the corresponding [write] iteration of W
ie., M;l(j ), was the last iteration in any of the domains of the input asaela-
tions W that accessed the same array element, dise., it wrote the value read
byj] and was executed befoje
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e if aread iteration belongsto S, i.¢.€ domRNS, then this iteration accesses an
array element that was not accessed by any of thdiW., this iteration reads
an uninitialized value].

Operation 7 is applied for each read access in the programligtrof access rela-
tions required in the input is constructed from all write @gses in the program that
access the same array. For edihz 0, a communication channel is created from
the process corresponding to the writing statement to tbegss corresponding to
the reading statement, with the givbh as mapping. The type and buffer size are
defined in the following sections. The <®in the output is assumed to be empty.

Below, we briefly sketch how Operation 7 can be implementéui@peration 1,
but first we define a global order on all iterations of all sta¢éats in the input
program. Recall from Section 3.2 that within a single itertlomain, the execution
order corresponds to the lexicographic order. In Secti@w& explained that the
relative order of different statements can be expressetsatement locations.
A global order can be obtained by combining these two pie€@sfarmation. In
particular, letd = max d;. We define a (8 + 1)-dimensional space where the even
dimensions (0 to@) correspond to the elements of the statement locationsdirp
and the odd dimensions (1 tal 2 1) correspond to the dimensions of the iteration
domains (in order). We can map each iteration domain in thig to the (21 + 1)-
dimensional space and we call the resulteékiended iteration domaifror iteration
domains withd; < d, the remaining dimensions can be assigned an arbitrargvalu
say zero. The lexicographic order on this space correspontthe execution order
of the input program. In particular, if the first dimensionvitich two extended
iteration vectors differ is 2 then the two corresponding statements sinaaops,
the iterators of theseloops have the same value in both vectors and the statements
have a different location inside theh loop. If the first dimension in which two
extended iteration vectors differ i;12- 1, then the two corresponding statements
share at least+ 1 loops, the iterators of first loops have the same value in both
vectors, but the iterator of the next loop has a differenieah the two vectors. The
access relations can similarly be extended by extendirigdhmains.

Example 12From Example 2, we know that the iteration domain associttélle
Read| mage statement in Line[3 of Figure 1 i§(i, j) € Z? | 0<i < KAO0< j <
N} (1), while from Example 6, we know that its statement locai®(1, 2,3). The
corresponding extended iteration domain is therefore

{(1,i,2,},3) € Z?|0<i<KAO<j< N}

Let us now assume that the input to Operation 7 contains &egiextended) write
access relatiolV. The composition of the read access relation with the imvefs
the write access relation yields a mapping from read itenatito write iterations
that wrote to the array element accessed by the read. Thehahadtually wrote
the value that is read, is the one that was the (lexicograpf)dast to write to the
element before the read. That is, we want to compute

lexmax(W~oR)NLyd, ).,
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with Loq. 1 the lexicographically smaller relation from[ (7). The reasafl this com-
putation is the inverse of the relatid in the output.

Unfortunately, we cannot directly apply Operation 1 to comepthis lexico-
graphic maximum becauseq. 1 (7) is a union of basic relations as soondas 1.
(If W or Rare unions then the basic relations in these unions candtedras sepa-
rate writes or reads, so we need not worry about unions irpdrisof the equation.)
However, an extended write iteration that shajaterator values with the extended
read iteration will always be executed after an extendedewteration that only
shares, < iq iterator values with the extended read iteration. We carefhee first
apply Operation 1 to the writes that shacki®rator values and witB set to the do-
main of the access relation. If the resulting Eés not empty then we can continue
with the writes that shared2- 1 iterator values, witls set to each of the basic sets
in E. This process continues until all the resulting $etre empty or until we have
finished the case of 0 common iterator values.

Example 13Consider once more the access relation (8) of the first argtirnehe
call toSobel in[Line 6 of/Figure 1 from Example 4, but now in its extendediior

R=1{(4,i,5,j,6) — (ab)|1<i<K—-1Al<j<N-1pa=i—1Ab=j—1}.
The only write to the a array occurs/in Line 3, with extendeckas relation

W=1{(1,i,2,j,3) = (a,b) | 0<i<KAO<j<NAa=iAb=]}.
Composition of these two relations yields

W 1loR=1{(4,i,5,j,6) — (1i’,2,],3) | 1<i<K—-1A1<j<N-1A
i"=i—1Aj'=j—1}.

We see that the range iterators are uniquely defined in tefrtfeeadomain iter-
ators, so in this case there is no need to compute the lexipbgr maximum as
lexmaxW 1o Rwould be identical t&W—1 o R. However, let us consider what would
happen if we were to apply the above algorithm anyway. Siheditst iterators in
domain and range are distinct constants, the two iteratimtovs never share any
initial iterator values. The first®= 4 applications df Operation 1 therefore operate
on an empty basic polyhedral relatiét and simply return the input basic poly-
hedral seS= domR asE. The final application returnlSz’Il’1 =R =WloRand

E = 0. Dropping the extra iterators again, we obtain

Mi={(i",j) = (i,)) | 1<i<K—1A1<j<N—1A{=i—1A}) =j—1}. (11)

If there is more than one write access relation in the inp@mération 7, then the
computation is a little bit more complicated. After compgtithe lexicographically
maximal element of a write that sharieigerator values with the read, we still need
to check that there is no other write in between. That is, vesirte check if there is
a write from a different write access that also shaigsrator values with the read,
also occurs before the read, but occurs after the alreadhdfouite. Again we have
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to consider all possible cases of shared iterator valuegdest the two writes, now
fromi to 2d + 1, as a write that occurafter a given iteration and that has fewer
iterator values in common with the given iteration will beeented after an iteration
that has more iterator values in common.

The above sketch of an algorithm can still be significantlpioved by checking
the write access relations in the appropriate order andkiyganto account the fact
that the dimensions that correspond to the statement éorsltiave fixed values. For
a more detailed description, we refer to [7], where a varidithe above algorithm
is applied directly on “quasts”, the output structurepofpl i b which we will not
explain here.

5.2 Reuse

A process network constructed using the standard dataflalysis of the previous
section will always send data from the process that corredpto the statement
that wrote a given value in the sequential program to thegqe®that corresponds
to the statement that read the given value, even if the saine i&read multiple
times from the same process. Now, in practically any formngblementation of
process networks, sending data from a process to itselfifgoly keeping it) is
much cheaper than sending data to another process. It Bfdherbetter to only
transmit data from one process to another the first time ie&led.

Obtaining a network that only transmits data to a given peaance is actu-
ally fairly simple. When applying Operation 7 from the pravsosection, instead
of only supplying a list of write accesses to the array readhgyread accesk,
we extend the list with all read accesses to the given arnayu@ingR itself) from
the same statement. Any value that was already read by tha piocess will then
be obtained from the last of those reads from the same pratsisesid of from the
process that actually wrote the value.

Readlimage

bl: 1
WritelImage

Fig. 7 A process network corresponding to the sequential prograngim&il exploiting reuse
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Example 14In [Example 1, we have shown a process network (Figure 2) efieriv
from the code in Figure 1 without exploiting reuse inside$lodel process. Figure 7
shows a process network derived from the same code, butsrcéisie with reuse.
The first network was created by only considering the writartay a in Line 3 of
[Figure 1 as a possible source for the reads in Line 6, whilse¢hend was created by
also considering all the reads in Line 6 as possible souitdsglear from the figures
that in the first network the Sobel process does not commignigith itself, while
in the second network it does. What may not be apparent, howisvbat in both
networks there are 9 channels from the Readlmage proceks t®abel process.
The second figure only shows 3 channels because the softwadeta generate
these process networks automatically combines some coioatiom channels if
this combination does not affect the type of the channelgxptained at the end
of Section 6.1. The number of channels from the first proce$iset second has not
changed because each read in Lihe 6 reads at least one vatue tiot read by
any of the other reads. However, even though the number ohellemay not have
changed, the number of values transmitted over these clsamebeen drastically
reduced. In particular, the image read by the Readlmagepsds now transmitted
only once, instead of nearly 9 times.

6 Channel Types

In the previous section, we showed how to determine the camuation channels
between the processes in the network. The practical impitatien of these chan-
nels in hardware depends on certain properties that may grno@hold for the
channels. In particular, it will be important to know if a coranication channel can
be implemented as a FIFO. Other properties include mudtipland special kinds
of internal channels. In this section, we describe how taklileese properties.

6.1 FIFOs and Reordering Channels

The communication channels derived in Section 5 are cleniaet by a mappiniyl
(see Definition 9) relating write iterations in one procesthe corresponding read
iterations in the same or another process. The channel neetsure that when
the second process reads from the channel it is given theataalue and therefore
needs to keep track of which iteration in the first procesgavaaiven value. There
is, however, no need to keep track of this extra informatfandan be shown that
the values will always be read in the same order as that intwthiey were written.
In such cases, the communication channel can simply be mgsieed as a FIFO.
To check if the writes and reads are performed in the same,orgeconsider
what happens when the order is not the same, i.e., when ra@wydecurs on the
channel. In this case, there is a pair of writeg,w,) such that the corresponding
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reads(rq,r») are executed in the opposite order, ive3,> wp while ry < rp. That
is, reordering occurs if the relation

T={wi1—wy|3rg,ro:(wa,rg),(wa,ro) € MAWL > WaArg <rp} (12)

is non-empty, which can be verified by applying Operation ejiness Check).
Note thatT will only be considered empty if there is no reordering foy &alue of

the parameters. Also note that we only need the lexicogeagridier within iteration
domains and not across iteration domains, as we only compads to other reads
and writes to other writes. If we identify two (or more) commzation channels

C; andC; as FIFOs, we can check if we can combine them into a single FIFO
by performing two emptiness check on a relatibras in (12), except that in one
relation(wy,r1) is taken fromM; and(wz,r2) is taken fromM; and vice versa in
the other relation.

for (i 0; i <= N i++)

1 =
Fig. 8 A program resulting in 2 afi ] = 9_( i ) ; o
a network with a reordering s for (i =05 i <= N i+4)
channel 4 b[i] = f(a[Ni]);

Example 15Consider the program in Figure 8. The corresponding pratetsgork
has two processes and one communication channel conndutimg The mapping
on the channel is

M={w—r|0<w<NAr=N-w}
and we have

T= {W1—>W2|Hrl,rgi(Wl,rl),(Wz,rz) S M/\W1>W2/\r1<r2}
={w1 —>wz | 0<w,wp <NAWp >W2 AN—wW; <N—wz}
={w; w2 |0<wp <wy <N}

ForN > 0, this relation is clearly non-empty. We conclude that weedealing with
areordering channel. See Example 20 for a variation on gaisele where we find
a FIFO.

6.2 Multiplicity

The standard dataflow analysis from Section 5.1 may resaotiimmunication chan-
nels that are read more often than they are written to whesdaime value is used in
multiple iterations of the reading process. Such chanrmgjsire special treatment
and this multiplicity condition should therefore be desstby checking whether
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there is any write iteratiow that is mapped to multiple read iterations through the
mappingM. In particular, lefT be the relation

T={wi1—wy|3ry,ro:(wyrg),(wa,ro) E MAWL =WaArq <ra}.

This relation contains all pairs of identical write iteats that correspond to a pair
of distinct read iterations. If this relation is non-emghen multiplicity occurs. As
in the previous section, we can check the emptiness Usinga@pe 2 (Emptiness
Check).

It should be noted that if we use the dataflow analysis fronti@e&.2, i.e.,
taking into account possible reuse, then the resulting conication channels will
never exhibit multiplicity. Instead, two channels would dmnstructed, one for the
first time a value is read and one for propagating the valug teekater iterations. In
general, it is preferable to detect reuse rather than ntigltip because the analysis
results in fewer types of channels and because taking aatyawmif reuse may split
channels that are both reordering and with multiplicitpiatpair of FIFOs.

1 for (i =0; i <N ++i)
2 afi] = A(i);
s for (j =0, ] <N ++)
4 b[j] = B(j);
s for (i =0; i <N ++i)
Fig. 9 Outer product source 6 for (j =05 ] <N ++4)
7 =

clilli]

code. afi] * b[j];

Ly L )

@—~© Eiﬁi.ﬂ

Fig. 10 Outer product network with multi- Fig. 11 Outer product network without mul-
plicity tiplicity

Example 16Consider the code for computing the outer product of two amsct
shown in Figure 9. Figures 10 and 11 show the results of apgplytandard dataflow
analysis|(Section 5.1) and dataflow analysis with reuseti@eb.2) respectively.
Each figure shows the network on the left and the dataflow legtvilee individ-

ual iterations of the processes on the right. The iteratamesexecuted top-down,
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left-to-right. In the first network, the channel betwdeandc has mapping

Mpe ={W— (r1,r2) |0<rg,ra <NAwW=r2}.
For testing multiplicity, we have the relation
T={r10—r22|3r11,r21€Z:0<r11,r12,r21,122 <NAr12=r22Ar11<ra1},
which is clearly non-empty, while for testing reordering use the relation
T ={r12—r22|3r11,r21 €Z:0<r11,r12,121,122 <NAr12>Tr22Ar11<r21},

which is also non-empty. In the second network, the chaneisldéenb andc has
mapping

Mp—e ={W— (r1,r2) |0<ra <NArp=0Aw=rz}. (13)

There is no multiplicity since each write corresponds toctlyaone read. There is
also no reordering, since the writes and reads occur foe&sing values ofi = r;
in both processes.

6.3 Internal Channels

Internal channels, i.e., channels from a process to iteali, typically be imple-
mented more efficiently than external channels. In padigidince processes are
scheduled independently there is no guarantee that whetua igaread, it is al-
ready available, or that when a value is written, there i estiough room in the
channel to hold the data. The external channels therefar@ teeimplement both
blocking on read and blocking on write. For internal chaantiere is no need for
blocking. In fact, blocking would only lead to deadlocks.sikes the blocking is-
sue, there are some special cases that allow for a more efficiplementation than
a general FIFO buffer.

6.3.1 Registers

The first special case is that where the FIFO buffer holds atmoe value. The
FIFO buffer can then be replaced by a register. In Section 8villesee how to
compute a bound on a FIFO buffer in general, but the case whisrbound is one
can be detected in a simpler way. If each writeto a channel is followed by the
corresponding read;, without any other read occurring in between, then we indeed
only need room for one value. On the other hand, if theran intervening read,
wj < rp < r1, then we will need more storage space. As usual, we can datect
situation by performing an emptiness check. Consider the se
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T={wi]|3rq,ro:(wi,r1) e MAraeranM AWy <ra<rq}.

This set contains all writeg/; such that there exists a reagl that occurs before
the readr; that corresponds to the write;. Note that it is legitimate to compare
read and write iterations because we are dealing with iatetmannels and so these
iterations belong to the same iteration domain.

6.3.2 Shift Registers

Another special case occurs when the number of iteratiotvgelem a write to an
internal channel and the corresponding read from the chanoenstant. If so, the
FIFO can be replaced by a shift register, shifting the datihénchannel by one
in every iteration, independently of whether any data wasl rer written in that
iteration. Such shift registers can be implemented moreieffily than FIFOs in
hardware.

Checking whether we can use a shift register is as easy asgvdbwn the
relation

R={(w,i)ezxZ3|3Irezs: (w,r)eMAieDAW<i =T},

whereM is the mapping on the channel abds the iteration domain of the process,
and applying Operation 3 (Number of Image Elements). Theltrésa piecewise
quasi-polynomial of type Z" x Z¢ — Q, wheren is the number of parameters. If
the expression is independent of the ldstariables, i.e., ifg is defined purely in
terms of the parameters and not in terms of the write itesatben we can use a
shift register. Note that we also count iterations in whichvalue is read from or
written to the channel. This means that the size of the shifister may be larger
than the buffer size of the FIFO, as computed in Section 8.

7 Scheduling

Although the processes in a process network are schedudegendently during
their execution, there are two occasions where we may wartrtgpute a common
schedule for two or more processes. The first such occasighds there are more
processes in the network than there are processing eletoentsthem on. The sec-
ond is when we want to compute safe buffer sizes as will beagixgdl i Section|8.
In principle, we could use the extended iteration domainmfSection 5.11 as the
common schedule, resulting in the same execution ordeaasftthe input sequen-
tial program. This schedule may lead to very high overegmaf the buffer sizes,
however, and we therefore prefer constructing a schedatagtmore suited for the
buffer size computation. There are many ways of obtainiro suschedule. Below
we discuss a simple incremental technique.
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7.1 Two Processes

Let us first consider the case where there are only two presgRsand P, that
moreover have the same dimensiba- d; = do. We will relax these conditions in
ISection 7.2 and Section 7.4. Since the two iteration dontzns the same dimen-
sion, we can consider the two iteration domains as beinggbaine same iteration
space. However, if there are any communication channelseeet the two pro-
cesses, then we need to make sure that that the second doesachat value from
any channel before it has been written. MytC Dp, x Dp, be the mapping of one
of these channels and consider the delays between a write tohannel and the
corresponding read

Ai={teZ%3(w,r)eM:t=r—w}.

Note that the concept of a delay, in particular the subwaati—w, is only valid
because we now consider both iteration domains as bein@fplut same iteration
space. If any of these delays is lexicographically negatige if the smallest delay

di = lexminA; (24)

is lexicographically negative, then some reads do occuwrbehe corresponding
writes and the schedule would be invalid. The solution isdiaythe whole second
process by just enough to make all the delays over the conuationm channels
lexicographically non-negative. In particular, let

512 = lexmin{ &; }i, (15)

with i ranging over all communication channels between procéisasdP,. Then,
replacing the iteration domaiD, of P> by D> — 622 (and adapting all mappings
M; accordingly) will ensure that all delays over channels exgcbgraphically non-
negative.

In principle, we could choose any delay on the second immadomain that is
lexicographically larger than 312, However, delaying the reads more than strictly
necessary would only increase the time the values stayerkiel communication
channel and could therefore only increase the buffer sieeled on the channel.
Furthermore, if there are also communication channels fpto P, then we need
to make sure the delays on these channels are also nonveeatitunately, 521
is the minimal delay over any such channel, then

2457t 0. (16)

Otherwise there would be a read operation in pro€gdbat indirectly depends on
a write operation from the same process that occurs latdrtbedame time, which

is clearly impossible if the process network was derivedifeosequential program.
By choosing a delay on proceBs of —&1~2, the minimal delay on any channel
from P, to P, becomes exactlﬁl_’2 + 6271 and is therefore safe.
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There are still some details we glanced over in the discossimve. First, it
should be clear thad; (14) can be computed using a variation| of Operation 1
(Lexicographic Maximum) or even directly aslexmax —4;). The minimal delay
over all communication channed8—2 (15) can be computed as

lexmin{ &; }; = U{ 0i| & < ojforall j <iandd < o forall j>i},
i

where bothi and j range over all communication channels between the two pro-
cesses. That is, we selegt for the values of the parameters where it is strictly
smaller than all previoud; and smaller than or equal to all subsequ&ntThe re-
sultis a polyhedral set that contains a single vector foh&atue of the parameters.
Finally, we need to deal with the fact that the above prooedan set the delay
over a channel to zero, which means that the write and carnelipg read would
happen simultaneously. The solution is to assign an ordexedution to the state-
mentswithin a given iteration by introducing an extra innermost dimensas we
did in[Section 4.5. The values for the extra dimension canebéased on a topo-
logical sort of a direct graph with as only edges those coniaation channels with
a zero delay. The absence of cycles in this graph is guachhie€lg).

Example 17Consider a network composed of the first two processes inmé&igu
There are nine channels between the two processes. For dimesefchannels, we
computed the mapping; (11) in|Example 18. The delay between writes and reads
on this channel is constant and we obtay } = A; = {(1,1) }. The other channels
also have constant delays and the smallest of these y#éfd$ = (—1,—1). We
therefore replace the second iteration donfagn(9) by D, + (1,1), resulting in a
new 522 of (0,0). To make this delay lexicographically positive (rathemttast
non-negative), we introduce an extra dimension and assite ivalue 0 inP, and

1in P.. The new iteration domains are therefore

D1={(i,j,00€Z3|0<i<KAO<j<N},
Do ={(i,j,1)€Z®|2<i<KA2<j<N}.

7.2 More than Two Processes

If there are more than two processes in the network, then westilhapply essen-
tially the same technique as that of the previous sectionwkwneed to be careful
about how we define the minimal delé} 2 (15) between two process®s and
P.. It will not be sufficient to consider only the communicatiomannels between
P, andP, themselves. Instead, we need to consider all paths in tleegsmetwork
from Py to P,, compute the sum of the minimal delays on the communicatiamc
nels in each path and then take the minimum over all pathdfdntethis is just the
shortest path betwedh andP, in the process network with as weights the minimal
delays on the communication channels. As in the case of a tameps network
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(16), the minimal delay over a cycle is always (lexicography) positive. We can
therefore apply the Bellman-Ford algorithm (see, €.g., fettion 8.3]) to compute
this shortest path.

If the network not only contains more than two processeswaualso want to
combine more that two processes, then we can apply the abosedure incremen-
tally, in each step combining two processes into one pragefsve have performed
all the required combinations. If many or all processes rieéed combined, it may
be more efficient to compute the all-pairs shortest pathsguisie Floyd-Warshall
algorithm [14, Section 8.4] and then to update the minimédykein each combina-
tion step.

Example 18Consider once more the network in Figure 2. There are thimmepses,
so we will need two combination steps. Let us for illustratjpurposes combine
the first and the last process first, even though there is rectdédge between
these two processes. (Normally, we would only combine meegthat are directly
connected.) The delay betweBp andP; is constant and equal &2 = (0,0),
while the minimal delay betwed® andPs, as computed in Example 17,82 =
(-1, —1). The minimal delay betwee®, andPs is therefored’ =3 = 6172+ 523 =
(—1,—1). We therefore replace the third iteration domBiniby D3+ (1,1), result-
ing in a newd' 3 of (0,0). 52 remains unchanged, b&t—3 changes td1,1).
In the next combination stef), is again replaced b, + (1,1) and 5*~2 and
523 both becomée0,0). There are now two edges with a zero minimal delay, so
we assign the processes an increasing value in a new innestimansion. The final
iteration domains of the first two processes are as in Exafiplevhile that of the
third process is

D3={(i,j,2) €Z®|2<i<KA2<j<N}.

Figure 12 shows the code for the completely merged processsifplicity,
we have written out this code in terms of the original statet:i@nd their origi-
nal accesses rather than using read and writes to commionicdtannels. If we
were to compute buffer sizes based on the original sche@idere 1), then each
channel between the first and the second process would dghedsa buffer size
of (K —2)(N — 2) because in this original schedule the Readlmage procesgaun
completion before the Sobel process starts running. Thefisigntly smaller buffer
sizes that we obtain using the proceduré of Section 8 baséleoschedule com-
puted here are shown|in Figure 2.

7.3 Blocking Writes

In deriving combined schedules, we have so far only beemdsted in avoiding
deadlocks. When merging several processes into a singlegsadbis is indeed all
we need to worry about. However, when using a global schedles computation
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for (i =0; i <K, i++)

j =0, j <N j++) {
a[il[j] = Readl mage();
if (i >= 2 &&j >=2) {

Sbi[i-1][j-1] = Sobel(a[i-2][j-2], a[i-1][j-2], a[i][j-2],
ali-2][j-1], a[i-1][j-1], a[i][j-1],
ali-2][ j], ali-11[ jl. a[i]ll il1);

Witelmage(Sbl[i-11[j-1]);
}
}

Fig. 12 Merged code for the process network of Figure 2

of valid buffer sizes, we may end up with buffer sizes thatilevhot introducing any
deadlocks, may impose blocking writes, impacting negbtige the throughput of
the network. In particular, iterations of different proses that are mapped onto the
same iteration in the global schedule (ignoring the extneimost dimension), can
usually be executed in a pipelined fashion, except whenaujaeent processes in
this pipeline communicate with each other. In this casectimaputed buffer sizes
may be so small that the first of these non-adjacent processsts to wait until
the second reads from the communication channel beforepdity onto the next
iteration.

The solution is to enforce a delay between a writing procedglae correspond-
ing reading process that is equal to one iteration of theivgriprocess. This delay
ensures that the delay between non-adjacent processespelae will be large
enough to avoid blocking writes that hamper the throughplé required delay is
the smallest variation in the iteration domdnof a process. LeP be the relation
that maps a given iteration @f to the previous iteration dd, i.e.,

P(D) =lexmax{(i — i’ |i,i' € DAI' <i}. (17)

The relationP(D) can be computed using Operation 1 (Lexicographic Maximum).
The required delay) is then the smallest difference between two subsequeat iter
tions, i.e.,

n =lexmin{t | 3(i,i") e P(D)At =i—i"}.

The delay is enforced by subtracting thecorresponding to the writing process
from each channel delay (14). Note, however, that in the presences of cycles, we
may not always be able to enforce this extra delay. In pdaicsubtracting thg's
may result in negative total delays over these cycles. # kappens, we have to
resort to the scheduling of Section 7.2, without the add&lalelays.

Example 19Consider the code jn Figure [13. There are three statemigrgsandh

with three FIFO communication channels between them: ama frto g, one from
gtohand one fromf to h. The delays on these channels are all zero. The scheduling
of/Section 7.2 therefore leaves everything in place andaselting code is identical

to the original. It is clear that in this schedule the size atte of the FIFOs can
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for (i
a[i]
b[i]
cli]

0; i <N ++i) {
f(i);

g(ali]);
h(a[i], b[i]);

Fig. 13 A program illustrat-
ing blocking writes

o s W N e

be set to 1. However, if we try to run the resulting processvogk, then we see

that the second iteration of proceésmeeds to wait for the first iteration df to
empty the FIFO before it can write to the FIFO of size 1. Beeanfghis blocking

write, the three processes cannot be fully pipelined, astitated in Figure 14. Since

all domains are 1-dimensional, the internal delay in eacktgss is 1. Subtracting

this internal delay from each channel delay, we see that themmal delay between
processf andhis (—1)+ (—1) = —2. Proces# is therefore scheduled at position 2
relative to proces$. This means that the channel between these two process needs
to be of size at least 2. This size in turn then allows a fullygtined execution of

the three processes, as illustrated in Figure 15.

Fig. 14 Time diagram with blocking Fig. 15 Time diagram without blocking

7.4 Linear Transformations

The schedules that we have seen so far are all of the &gjin= 141 gj + b, where
lg+1.4 is (d+1) x d matrix withiy, = 1 andix; =0 fork # |, andb € 79+1, That
is, we add an extra dimensioly (1 4j) and apply a shiftlf). Note that we have also
assumed so far that all iteration domains have the same diorerin principle, we
could apply more general affine schedulés) = Aj +b, i.e., including an arbitrary
linear transformatioy . Not only would this allow us to compute potentially tighter
bounds on the buffer sizes, but it may even change the typise @fommunication
channels.

Example 20Consider once more the program in Figure 8. In Example 15 we ha
shown that the only channel in the corresponding networkrbasdering. If we
reverse the second loop, however, i.e., if we apply the toamstion—j + N, then
the mapping on the channel becomes

M={w—r|0<w<NAr=w}
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and we have

T={w;—wy|0<wy,wo <NAW >Wo AWy < Wy }.
This set is clearly empty and so the communication chanreebeaome a FIFO.

The example shows that if we were to apply general lineasfcamations, then
we would need to do this before the detection of channel tyfiéSection 6. In
fact, if we want to detect reuse, as we did in Section 5.2, therwould need to
do this reuse detectioafter any linear transformation. The reason is that a linear
transformation may change the internal order inside aatiter domain, meaning
that what used to be a previous iteration, from which we coelbe data, may have
become a later iteration. On the other hand, the datafloneisdéguential program
imposes some restrictions on which linear transformataasvalid, so we need to
perform dataflow analysis (Section Bg¢foreany linear transformation. The solu-
tion is to first apply standard dataflow analysis (Section, Stien to perform linear
transformations and finally to detect reuse inside the conication channels that
were constructed in the first step. A full discussion of gahkimear transformations
is beyond the scope of this chapter.

There is however one case where we are forced to apply a lireesformation,
and that is the case where not all iteration domains haveatme slimension. Be-
fore we can merge two iteration domains, they have to residled same space. In
particular, they need to have the same dimensiondlist the maximal dimension
of any iteration domain, then we could could expardi-dimensional iteration do-
main withd; < d using the transformatioly 4 . This transformation effectively pads
the iteration vectors with zeros at the end. This may, howea be the best place
to insert the zeros. A simple heuristic to arrive at bettesifians for the zeros is
to look at the communication channels between a lower-déme@al domain and a
full-dimensional domain and to insert the zeros such tleaafors that are related
to each other through the communication channels are aigwete that inserting
zeros does not change the internal order inside the iterdomain. The same holds
for any scaling that we may want to apply based on essentralgame heuristic.

Example 21Consider the communication channel between procdssexic in
the network of Figure 11 (see Example 16). The first processituae-dimensional
iteration domain, while the second process has a two-dimealsteration domain.
The mapping on the channel (13) shows that there is a relatierr, between the
single iterator of the writing process and the second iberatt the reading process.
We therefore insert a zero before the iteration vectors efhting process such
that the original iterator ends up in the second positiom.tRe channel between
a andc the relation isw = rq, so in this case we insert a zeafter the original
iterator. These choices are reflected by the orientatiotisesk two one-dimensional
iteration domains in Figure 11. With these orientations vifites may be moved on
top of the corresponding reads by simply shifting the iieralomains, meaning
that a buffer size of at most 1 is needed. Had we chosen adiff@rientation for
the two one-dimensional iteration domains, then this wawglthave been possible.
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8 Buffer Size Computation

This section describes how to compute valid buffer sizesafbcommunication
channels. The buffer sizes are valid in the sense that imgdsem does not cause
deadlocks. The first step is to compute a global schedulellf@r@cesses in the
network, e.g., using the techniques of Section 7. This sdheglstep effectively
makes all communication channels internal (to the singlalined process). We
then compute buffer sizes for this particular schedule. 3tteedule itself is not
used during the actual execution of the network. Howeverkm@v that there is
at least one schedule for which the buffer sizes are valié. Glbcking reads and
writes on the communication channels will therefore natidtice any deadlocks.

8.1 FIFOs

We are given an internal communication channel that has ideatified as a FIFO
using the technique 6f Section 6.1 and we want to know how nudfer space
is needed on the FIFO. Recall that any channel may be coesidieternal after a
global scheduling step that maps all iteration domains toranon iteration space.
The buffer should be large enough to hold the number of tokeaisare in transit
between a write and a read at any point during the executiethafrefore first
count this number of tokens in terms of an arbitrary iteraind then compute an
upper bound over all iterations.

Let us look at these steps in a bit more detail. The commuoitathannel is
described by a mapping from the write iteration domaib,, to the read iteration
domainD,. The maximal number of tokens in the buffer will occur afteme write
to the buffer and before the first subsequent read from thietout is therefore
sufficient to investigate what happens right before a tokeread from the buffer.
Let W be the relation mapping any read iteratioto all write iterations that occur
before this read and lé® be the relation mapping the same read iteration to all
previous read iterations, i.e.,

W= {r—w|reranMAw € domMAW <r} (18)
R={r—r'|r,;r eranMAr' <r}. (19)

Then the numbaen(s, r) of elements in the buffer right before the execution of nead
is the number of writes to the buffer before the read, i¥&/(g¢r), minus the num-
ber of reads from the buffer before the given read, i.B(s# ), where as usuak
are the parameters. Both of these computation can be pexbusing Operation 3
(Number of Image Elemernts). Finally, we apply Operation 4{er Bound on a
Quasi-polynomial) to the piecewise quasi-polynonmigd, r) = #W(s,r) — #R(s,r)
and the polyhedral set rah, resulting in a piecewise quasi-polynomigk) that is
an upper bound on the number of elements in the FIFO chanmigigditne whole
execution.
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Example 22Consider once more the network in Figure 2. A global schefdulthis
network was derived in Examples|17 and 18, and code corregmpio this sched-
ule is shown in Figure 12. Writing the mapping (11) on the clemonstructed
from the first argument to the call @obel in|Line 6 of Figure 1 in Example 13 in
terms of the new iterators, we obtain

M={(@j,00—(i,j,1) | 2<i<KA2<j<NAi'=i-2Aj =j-2}.
From this relation we derive,

W={(i,j.1) — @0 [2<i<KA2<]<NA
0<i"<K—=2A0<j <N=2A
(T<iv(i'=inj <j)}

The number of image elements of this relation can be commasged

iN=2)+j+1 if(i,j,1) eranMAIi <K—-2Aj<N-=2
MWK NI, j)=q (i+1)(N=2) if (i,j,1) eranMAi <K—2Aj>N-2
(K=2)(N-2) if (i,j,1) eranMAi > K —2.

For the number of reads before a given réiagl, 1), we similarly find
HRK, N, ) = {(i “(N-2)+j-2 if(i,j,1) € ranM.
Taking the difference yields

2(N-2)+ if (i,j,1) eranMAi <K—-2AjJ<N-2
nN(K,N,i,j)=< 3(N— 2)—J+2 if (i,j,1) eranMAT <K—-2Aj>N-2
(K=D)(N=2)—j+2 if(i,j,1) eranMAi > K-2.

The maximum over all reads in r&h occurs in the first domain and is equal to
2(N —2)+3=2N—1, which is the value shown on the first edge in Figure 2.

8.2 Reordering Channels

For channels that have been identified as exhibiting reorglesing the technique
of[Section 6.1, we need to choose where we want to performethrelering of the
tokens. One option is to perform the reordering inside thenokl itself. In this
case we can apply essentially the same technique as that pfekiious section to
compute an upper bound on the minimal number of locationsletéo store all
elements in the buffer at any given time. However, since tkeris now have to
be reordered, we need to be able to address them somehowfidientfmapping
from read or write iterators to the internal buffer of the ichal may require more
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space than strictly necessary. We refer to [4] for an ovendad a mathematical
framework for finding good memory mappings.

Another option is to perform the reordering inside the regddrocess. In this
case, a process wanting to read a value from the reorderangnehfirst looks in its
internal buffer associated with the channel. If the valuedsin the buffer, it reads
values from the channel in the order in which they were wrijtstoring all values it
does not need yet in the local buffer until it has read theevilis actually looking
for. In other words, the original reordering channel istdptio a FIFO channel and a
local reordering buffer. There are therefore two buffeesito compute in this case.

Before embarking upon the computation of these buffer sizehould be noted
that nothing really interesting happens to the buffersrdpiterations that do not
read from the FIFO. In particular, the maximal number of edats in the FIFO
buffer will be reached right before a read from the FIFO arerttaximal number
of elements in the reordering buffer will be reached righbbethe read of the value
from the FIFO that the process is actually interested in, afer it has copied all
intermediate data to the reordering buffer. The unintergsterationsU are those
readsr for which there is an earlier read that reads something that was written
after the value read by. This latter value will have been put in the reordering
buffer at or perhaps even before reddThat is,

U={r|3wr' w:(w,r)eMAW, r')e MAW<W AT <T}

and
S=ranM\U

is the set of “interesting” iterations.

For the first of these interesting iteration, i.e., the fiestdr * of a value from the
FIFO, the number of tokens in the FIFO is equal to the numbevriiés that have
occurred before that read, i.e\Wi#s,r*), whereW is as defined in[ (18). For any
other read € S we will also have read some values from the FIFO. In paicul
we will have read all values that were written up to and incigdhe value that we
needed in the previous read LetW’ map a given readto all these previously read
values. Then the number of tokens in the FIFO right befaseAV (s, r) —#W'(sr).
The relationW’ can be computed as

W={r—w |3 :resSa(rr)ePA(’ W)eMAwW xw'},

whereP = P(S) is the relation that maps a read $ito the previous read ii$,
as defined in[ (17). As before, the relatibncan be computed using Operation 1
(Lexicographic Maximum). As a side effect, we obtain a pelgtal seE containing
the first read *. The counts can be computed using Operation 3 (Number ofédmag
Elements) and finally Operation |4 (Upper Bound on a Quasifmohial) needs to
be applied to obtain a bound on the FIFO buffer size that isl Vat all reads.

As for the internal buffer, the number of tokens in this butifter a read from
the FIFO is equal to the number of subsequent reads that oeaeklsing (from the
internal buffer) that was written (to the FIFO) before th&eo that was actually
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needed by, i.e.,
#Hor—r' [ 3w,w e (wr), (W) e MAW <wAT <1’}

Again, this number can be computed using Operation 3 and acbon the buffer
size can then be computed using Operation 4.

8.3 Accuracy of the Buffer Sizes

Although the buffer sizes computed using the methods desttiibove are usually
fairly close to the actual minimal buffer sizes, there amasossible sources of in-
accuracies that we want to highlight in this section. Theseguracies will always
lead to over-approximations. That is, the computed bounitisalways be safe.
For internal channels, the only operation that can lead &-approximations is
‘Operation 4/ (Upper Bound on a Quasi-polynomial). Therelmeetcauses for inac-
curacies in this operation: the underlying technique [3lefined over the rationals
rather than the integers; in its basic form it only handldgmamials and not quasi-
polynomials; and the technique itself will only return thetial maximum (rather
than just an upper bound) if the maximum occurs at one of thremal points of
the domain. For external channels, we rely on a schedulemtsteffectively make
them internal. Since we only consider a limited set of pdessbhedulings, the de-
rived buffer sizes may in principle be much larger than theolie minimal buffer
sizes that still allow for a deadlock-free schedule.

9 Summary

In this chapter we have seen how to automatically constryilyghedral process

network from a sequential program that can be representde jpolyhedral model.

The basic polyhedral tools used in this construction ararpatric integer program-
ming, emptiness check, parametric counting, computingrpatric upper bounds
and polyhedral scanning. The processes in the networkspng to the statements
in the program, while the communication channels are coatpusing dependence
analysis. Several types of channels can be identified byrgpaynumber of empti-

ness checks and/or counting problems. Safe buffer sizethéochannels can be
obtained by first computing a global schedule and then comgpain upper bound

on the number of elements in each channel at each iteratithiso§chedule.
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