
The S3MS.NET Run Time Monitor

Tool Demonstration

Lieven Desmet1 Wouter Joosen1 Fabio Massacci2

Katsiaryna Naliuka2 Pieter Philippaerts1,3 Frank Piessens1

Dries Vanoverberghe1

Abstract

This paper describes the S3MS.NET run time monitor, a tool that can enforce security policies expressed
in a variety of policy languages for .NET desktop or mobile applications. The tool consists of two major
parts: a bytecode inliner that rewrites .NET assemblies to insert calls to a policy decision point, and
a policy compiler that compiles source policies to executable policy decision points. The tool supports
both singlethreaded and multithreaded applications, and is sufficiently mature to be used on real-world
applications.
This paper describes the overall functionality and architecture of the tool, discusses its strengths and
weaknesses, and reports on our experience with using the tool on case studies as well as in teaching.

Keywords: security, bytecode rewriting, .NET, MSIL

1 Introduction

In todays networked world, code mobility is ubiquitous. Even mobile phones and
Personal Digital Assistants increasingly support the installation of third party ap-
plications from a variety of sources. This support for applications from potentially
untrustworthy sources comes with a serious risk: malicious or buggy applications
can lead to denial of service, financial damage, leaking of confidential information
and so forth. The research community has developed a variety of countermeasures
for addressing the threat of untrusted mobile code. One important class of counter-
measures addresses this risk by monitoring the application at run time, and aborting
it if it violates a predefined security policy.

1 DistriNet Research Group, Department of Computer Science Katholieke Universiteit Leuven, Celestijn-
laan 200A, B-3001 Leuven, Belgium
2 Department of Information and Communication Technology, Universit di Trento, Via Sommarive 14,
I-38050 Povo (Trento), Italy
3 Email: Pieter.Philippaerts@cs.kuleuven.be

Electronic Notes in Theoretical Computer Science 253 (2009) 153–159

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.11.021

http://www.elsevier.com/locate/entcs

This paper reports on a tool developed within the Security of Software and
Services for Mobile Systems (S3MS) project. It implements a monitor for the .NET
platform through bytecode inlining. Several of the key algorithms implemented in
the tool have been proven formally correct, and the implementation is sufficiently
mature to handle real-world applications for both the .NET Compact Framework
(for mobile devices) and the full .NET Framework (for desktops and servers).

2 Tool Architecture

2.1 Overview

As case studies [10] show, the major security concerns of users about third-party
applications are invocations of functionality that incurs a monetary cost, and treat-
ment of sensitive data. Access to this functionality as well as to the sensitive
information is provided by calling system API methods. A simple way to prevent
the application from causing harm is to suppress the calls to the potentially dan-
gerous methods, effectively sandboxing the application. However, in this way the
useful functionality that the application can provide is also hampered. To allow this
functionality to the application, without compromising security, the access to the
sensitive system calls (later called security-relevant methods) should be regulated by
the policy, which grants access to security-relevant methods according to specified
rules. These rules can include conditions on the environment (e.g. time) or on the
previous access requests of the application (as in history-based access control [4]).

To define what functionality is considered security-relevant, we rely on the policy.
For example, if the policy prohibits network accesses after sensitive information
was accessed by the application, then the security-relevant API calls are “starting
a connection” and “accessing sensitive information”. All other operations, such as
creating files, are irrelevant to this policy and need not to be monitored. Note,
that some operations are more likely to be listed as security-relevant than others.
For instance, GUI operations are unlikely to be listed as security-relevant by any
realistic policy, and therefore will be executed without any monitoring overhead.

The S3MS.NET run time monitor consists of two key components (Figure 1).
The inliner rewrites potentially dangerous applications. It scans the bytecode to
find security-relevant API calls, and wraps additional code around such calls. This
additional code checks whether the application is allowed to perform this call. If
so, the wrapper code will silently allow the application to continue. If not, the
application will be interrupted.

The second component, called the policy compiler, generates an executable ver-
sion of the policy that the user has created. The dotted line in Figure 1 signifies
that the wrapper code inserted by the inliner will call functions in the executable
policy, generated by the policy compiler.

The tool supports multiple platforms – most notably the .NET Compact Frame-
work and the .NET Full Framework – and hence both tool components additionally
take a platform description as input.

We discuss each of the two components in some more detail.

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159154

Fig. 1. The architecture of the tool

2.2 The Inliner

The inliner loops over the bytecode of an untrusted application looking for calls to
security-relevant methods (SRM). Identifying such calls statically in the presence
of dynamic binding and delegates (a form of type safe function pointers supported
by the .NET virtual machine) is non-trivial. The tool implements the algorithm by
Vanoverberghe and Piessens [8].

Before and after each call to a SRM, a call to the executable version of the
policy, called the policy decision point (PDP), is injected. A PDP is a Dynamic
Link Library that manages the security state associated with the application. It
can be thought of as an implementation of a security automaton [6] that reacts to
the start and return (both normal and exceptional) of SRMs.

Listings 1 and 2 show the effect of inlining on a simple program that sends an
SMS. If the method to send SMS’s is considered security relevant, the inliner will
transform it as shown. Note that the tool operates on the level of bytecode, not on
source level, but we show the results as they would look at source level to make the
transformation easier to understand.

SmsMessage message = . . .
message . SendSMS () ;

Listing 1. Example code that sends an SMS message on a mobile phone.

SmsMessage message = . . .
PDP. BeforeSendSMS (message) ;
try {

message . SendSMS () ;
PDP. AfterSendSMS (message) ;

} catch (Secur i tyExcept ion se) {
throw se ;

} catch (Exception e) {
PDP. ExceptionSendSMS (message , e) ;
throw ;

}

Listing 2. The SMS example code, after inlining.

Before each SRM call, a ’before handler’ is added, which checks whether the
application is allowed to call that method. If not, an exception is thrown. This
exception will prevent the application from calling the method, since the program
will jump over the SRM to the first suitable exception handler it finds.

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159 155

Likewise, after the SRM call, an ’after handler’ is added. This handler typ-
ically only updates the internal state of the PDP. If an exception occurs during
the execution of the SRM, the ’exceptional handler’ will be called instead of the
’after handler’. In summary, the different handler methods implement the reaction
of the security automaton to the three types of events: calls, normal returns and
exceptional returns of security-relevant methods.

2.2.1 Inheritance and Polymorphism
The simplified code shown above does not deal with inheritance and dynamic bind-
ing. Support for this was implemented by extending the logic in the PDP to consider
the type of the object at runtime, instead of only looking at the static type that
is available during the inlining process. When a security-relevant virtual method
is called, calls are inlined to so-called dynamic dispatcher methods that inspect the
runtime type of the object and forward to the correct handler. The details, and a
formal proof of correctness of this inlining algorithm is presented in [8].

2.2.2 Multithreading and Synchronization
Inlining in a multithreaded program requires synchronization. Two synchronization
strategies are possible: strong synchronization, where the security state is locked
for the entire duration of a SRM call, or weak synchronization where the security
state is locked only during execution of the handler methods.

Our tool implements strong synchronization, which might be problematic when
SRMs take a long time to execute, or are blocking (e.g. a method that waits for
an incoming network connection). To alleviate this problem, the tool partitions
the handler methods according to which security state variables they access. Two
partitions that access a distinct set of state variables can be locked independently
from each other.

2.3 The Policy Compiler

The policy compiler is the component that translates source policies, written by the
user or the system administrator, into an executable policy decision point.

The tool supports two different policy languages, one that represents security
automata by means of an explicit declaration of the security state, and guarded
commands that operate on this state, and another one that is a variant of a temporal
logic. Both languages extend history-based access control by introducing the notion
of scopes. A scope specifies whether the policy applies to (1) a single run of each
application, (2) saves information between multiple runs of the same application or
(3) gathers events from the entire system.

2.3.1 ConSpec
ConSpec ([1]) is directly based on the notion of security automata, and is similar
to Erlingsson’s PSLang[7] policy language. Like PSLang, a ConSpec specification
includes the definition of state variables and the definition of what state transitions

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159156

are caused by each of the security relevant events. An SRM is executed if the state
allows it, and the state is updated accordingly before or after the execution of the
SRM. ConSpec extends PSLang with support for multiple scopes.

2.3.2 2D-LTL
An alternative to ConSpec is the 2D-LTL policy language [5], a temporal logic
language based upon a bi-dimensional model of execution. One dimension is a
sequence of states of execution inside each run (session) of the application, and
another one is formed by the global sequence of sessions themselves ordered by
their start time. To reason about this bi-dimensional model, two types of temporal
operators are applied: local and global ones. Local operators apply to the sequence
of states inside the session, for instance, the “previously local” operator (YL) refers
to the previous state in the same session, while “previously global” (YG) points to
the final state of the previous session.

3 Experience and Discussion

The S3MS.NET run time monitor was developed in the European FP6 project,
Security of Software and Services for Mobile Systems (S3MS). The tool is a compo-
nent of a comprehensive security architecture for mobile devices [2] that supports
a novel paradigm for developing trustworthy applications, the security-by-contract
paradigm [3].

The implementation of the tool, as well as supporting documentation and ex-
amples can be found at http://www.cs.kuleuven.be/~pieter/inliner/.

Space limitations make it impossible to discuss related research in this paper.
We refer to the public S3MS deliverables at http://www.s3ms.org for a detailed
overview of related work. Here, we limit ourselves to a brief summary of our expe-
riences with the tool.

In the context of the S3MS project, we gained experience with the tool described
in this paper on two case studies:

• a “Chess-by-SMS” application, where two players can play a game of chess on
their mobile phones over SMS.

• a multiplayer online role-playing game where many players can interact in a vir-
tual world through their mobile phones. The client for this application is a
graphical interface to this virtual world, and the server implements the virtual
world, and synchronizes the different players.

In addition, the tool was used to support a project assignment for a course on
secure software development at the K.U.Leuven. In this assignment, students were
asked to enforce various policies on a .NET e-mail client.

Based on these experiences, we summarize the major advantages and limitations
of the tool.

A major advantage of the tool, compared to state-of-the-art code access security
systems based on sandboxing (such as .NET CAS and the Java Security Architec-

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159 157

http://www.cs.kuleuven.be/~pieter/inliner/
http://www.s3ms.org

ture) is its improved expressiveness. The main difference between CAS and the
approach outlined here, is that CAS is stateless. This means that in a CAS policy,
a method call is either allowed for an application or disallowed. With the S3MS
approach, a more dynamic policy can be written, where a method can for instance
be invoked only a particular number of times. This is essential for enforcing policies
that specify quota on resource accesses.

A second important strength of the tool is its performance. A key difference
between CAS and our approach, is that CAS performs a stack walk whenever it
tries to determine whether the application may invoke a specific sensitive function
or not. Because stack walks are slow, this may be an issue on mobile devices (CAS
is not yet implemented on the .NET Compact Framework). The speed of the S3MS
approach mainly depends on the speed of the before and after handlers. These
can be made arbitrarily complex, but are usually only a few simple calculations.
This results in a small performance overhead. Microbenchmarks [9] show that the
performance impact of the inlining itself is negligible, and for the policies and case
studies done in S3MS, there was no noticeable impact on performance.

Finally, the support for multiple policy languages and multiple platforms makes
the tool a very versatile security enforcement tool.

A limitation is that we do not support applications that use reflection. Using the
reflection API, functions can be called dynamically at runtime. Hence, for security
reasons, access to the reflection API should be forbidden, or the entire system
becomes vulnerable. We do not see this as a major disadvantage, however, because
our approach is aimed at mobile devices, and the reflection API is not implemented
on the .NET Compact Framework. Also, by providing suitable policies for invoking
the Reflection API, limited support for reflection could be provided.

A second limitation of the approach implemented in the tool is that it is hard and
sometimes even impossible to express certain useful policies as security automata
over API method calls. For instance, a policy that limits the number of bytes
transmitted over a network needs to monitor all API method calls that could lead
to network traffic, and should be able to predict how much bytes of traffic the
method will consume. In the presence of DNS lookups, redirects and so forth, this
can be very hard.

A final limitation is that the policy languages supported by the tool are tar-
geted to “expert” users. Writing a correct policy is much like a programming task.
However, more user-friendly (e.g. graphical) policy languages could be compiled to
Conspec or 2D-LTL.

References

[1] Aktug, I. and K. Naliuka, Conspec - a formal language for policy specification, Electr. Notes Theor.
Comput. Sci. 197 (2008), pp. 45–58.

[2] Desmet, L., W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens and D. Vanoverberghe,
A flexible security architecture to support third-party applications on mobile devices, in: CSAW, 2007,
pp. 19–28.

[3] Desmet, L., W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan and D. Vanoverberghe,
Security-by-contract on the .NET platform, Inf. Secur. Tech. Rep. 13 (2008), pp. 25–32.

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159158

[4] Edjlali, G., A. Acharya and V. Chaudhary, History-based access control for mobile code, in: Proceedings
of the 5th ACM conference on Computer and communications security, 1998, pp. 38–40.

[5] Massacci, F. and K. Naliuka, Multi-session security monitoring for mobile code, Technical Report
DIT-06-067, UNITN (2006).

[6] Schneider, F. B., Enforceable security policies, ACM Trans. Inf. Syst. Secur. 3 (2000), pp. 30–50.

[7] Úlfar Erlingsson, “The inlined reference monitor approach to security policy enforcement,” Ph.D. thesis,
Dep. of Computer Science, Cornell University (2004).

[8] Vanoverberghe, D. and F. Piessens, A caller-side inline reference monitor for an object-oriented
intermediate language, in: FMOODS, 2008, pp. 240–258.

[9] Vanoverberghe, D. and F. Piessens, Security enforcement aware software development, Information and
Software Technology (2009).

[10] Zobel, A., C. Simoni, D. Piazza, X. Nuez and D. Rodriguez, Business case and security requirements,
Public Deliverable of EU Research Project D5.1.1, S3MS- Security of Software and Services for Mobile
Systems, Report available at www.s3ms.org (2006).

L. Desmet et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 153–159 159

	Introduction
	Tool Architecture
	Overview
	The Inliner
	The Policy Compiler

	Experience and Discussion
	References

