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Abstract

In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed,
using an analytical approach to find optimal constant mix investment strategies in
a provisioning or savings context. In this paper we extend some of these results,
investigating some specific, real-life situations. The problems that we consider in
the �rst section of this paper are general in the sense that they allow for liabilities
that can be both positive or negative, as opposed to Dhaene et al. (2005), where
all liabilities have to be of the same sign. Secondly, we generalize portfolio selection
problems to the case where a minimal return requirement is imposed. We derive an
intuitive formula that can be used in provisioning and terminal wealth problems as a
constraint on the admissable investment portfolios, in order to guarantee a minimal
annualized return. We always apply our results to optimal portfolio selection.

1 Introduction

In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an
analytical approach to find optimal constant mix investment strategies in a provisioning
or savings context. In this paper we extend some of these results, investigating some
specific, real-life situations.

Determining the distribution function of a sum of random variables, describing a series
of future payments, is important when solving several problems in a general insurance or
finance context. In Dhaene et al. (2005), solutions are provided, both in a provisioning and
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saving context, in case all payments are of the same sign. In Vanduffel et al. (2005a), a so-
called saving-consumption plan is considered, where a series of positive payments (savings)
is followed by a series of negative ones (consumptions). In this paper we extend the
solution of Vanduffel et al. (2005a) to the more general contexts of provisioning and saving
as described in Dhaene et al. (2005), allowing for more arbitrary cash �ows patterns. We
show that allowing cash �ows of mixed signs does not necessarily mean that comonotonic
approximations can not be used anymore. As a result we significantly expand the scope
of problems for which the distribution function can be accurately approximated using
comonotonic approximations. A lot of practical situations exist where sporadic negative
payments occur. For instance, when determining the liabilities of a pension fund, outgoing
and incoming cash �ows are typically compared. It could easily happen that in some years
the incoming cash �ows are larger than the outgoing, leading to negative liabilities in these
years.

Secondly, we generalize portfolio selection problems to the case where aminimal return
requirement is imposed. We derive an intuitive formula that can be used as a constraint on
the admissable investment portfolios, in order to guarantee a minimal annualized return,
with a related probability level over a specified time period. This formula can be used in
provisionig as well as terminal wealth problems.

We always apply our results to optimal portfolio selection problems, and illustrate with
numerical examples. In the following section a short description is given of the framework
of optimal portfolio selection in which we work. For more details and practical examples
we refer to Dhaene et al. (2005).

1.1 Lognormal Framework and Optimal Portfolio Selection

When discussing optimal portfolio selection problems, we assume throughout this paper
the classical continuous-time framework of Merton (1971), also known as the Black &
Scholes (1973) setting. We suppose there are m risky assets available. We restrict to
constant mix strategies: the fractions invested in the different assets remain constant over
time. We denote the vector describing the portfolio process as �T = (�1; : : : ; �m), where
�i is the proportion invested in risky asset i, with

Pm
i=1 �i = 1. In our examples we

assume there is no risk-free asset class available. Although our results also hold in the
general case, we assume short-selling is not allowed, which means 0 � �i � 1 for all i. See
e.g. Björk (1998) for more details on the Black & Scholes setting. Throughout this paper
we use the same notations and terminology as in Dhaene et al. (2005).

As both the time period and the investment horizon that we consider are typically
long, the use of a Gaussian model for the stochastic returns can be justi�ed by Central
Limit Theorem arguments, see e.g. Cesari & Cremonini (2003) and Levy (2004) for some
empirical evidence.

Investing an amount of 1 at time k � 1 in asset i will grow to eY ik at time k. For a
fixed asset i, the random variables Y ik are assumed i.i.d., normally distributed with mean
�i � 1

2
�2i and variance �

2
i .
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We denote the drift vector and the variance-covariance matrix of the risky assets by
�T = (�1; : : : ; �m), and � respectively. The drift vector and volatility corresponding to
an investment portfolio � are written as �(�) and �2(�). We have that

�(�) = �T� and �2(�) = �T � � � �: (1)

The yearly returns Yi(�) of an investment portfolio � are independent and normally
distributed random variables, with expected value E[Yi(�)] = �(�)� 1

2
�2(�) and variance

Var[Yi(�)] = �2(�).

When no confusion is possible, we omit the dependence on the investment portfolio �
in the notations. Hence the yearly returns are modelled by the i.i.d., normally distributed
random variables Yi, with mean �� 1

2
�2 and standard deviation �.

2 Comonotonic Approximations in case of Cash-Flows
of Mixed Signs

2.1 Problem description

Consider the sum

S =
nX
i=0

�i e
Zi (2)

where the �i are deterministic constants, and the Zi are linear combinations of the com-
ponents of the multivariate normal random vector (Y1; Y2; :::; Yn):

Zi =
nX
j=1

�ijYj: (3)

As the random variable S is a sum of non-independent lognormal variables, it is impossible
to determine the distribution function of S analytically. Several approximation techniques
have been proposed throughout the literature, see e.g. Asmussen & Rojas (2005), Dufresne
(2004), Milevsky & Posner (1998) and Milevsky & Robinson (2000). In this paper we will
use convex upper and lower bounds based on comonotonicity, see e.g. Kaas et al. (2000).
See also Huang et al. (2004) or Vanduffel et al. (2005b) for a comparison of some of these
approximation techniques.

In Dhaene et al. (2005) the following bounds for S are derived:

Sc =
nX
i=0

�i e
E[Zi]+�Zi�

�1(U) (4)

and

Sl = E [S j �] =
nX
i=0

�ie
E[Zi]+

1
2
(1�r2i )�2Zi+ri �Zi�

�1(U); (5)
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with U uniformly distributed on the unit interval, � the standard normal cdf, ri the
correlations between the random variables Yi and

� =

nX
j=1

�jYj: (6)

Sl and Sc are respectively a lower and upper bound for S in convex order:

Sl �cx S �cx Sc: (7)

For more details on e.g. the correlation coefficients ri and the choice of the coefficients �j
in (6) we refer to Dhaene et al. (2005). For more details about these approximations, its
relation with the concept of comonotonicity and its applications in insurance and finance,
see e.g. Dhaene et al. (2002 a,b). For more details on ordering of random variables see
e.g. Kaas et al. (2008).

If all the amounts �i are of the same sign, (4) and (5) are comonotonic sums, which
implies that distortion risk measures related to these bounds can be obtained by simply
summing the individual terms in the sum. However, in case of payments �i with changing
signs, Sl and Sc are not necessarily comonotonic sums. The upper bound approximation
(4) can be adapted easily as follows:

Sc =
nX
i=0

�i e
E[Zi]+sign(�i)�Zi�

�1(U); (8)

with sign(x) = 1 for x > 0, and sign(x) = �1 for x < 0 (see e.g. Dhaene et al. (2002a,b)).
We have that (8) is a comonotonic sum. However, the upper bound does in general not
give a very accurate approximation of the distribution function of S, the accuracy of the
lower bound (5) is usually much higher. For this lower bound, the problem is that it is not
possible to find a conditioning random variable �, leading to an accurate approximation
of S, such that Sl is a sum of non-decreasing functions of � (and hence such that Sl is a
comonotonic sum) in case the �i�s have changing signs. As mentioned above, this would
mean that distortion risk measures related to Sl can not be obtained by simply summing
the individual terms in the sum, which would make the lower bound approximations
useless in practice.

In this paper however we show that it is possible, under some mild conditions, to allow
for more arbitrary cash �ows patterns. We show that allowing some of the cash �ows to
be negative does not necessarily imply comonotonic lower bound approximations can not
be used. As a result we significantly expand the scope of problems and cash �ow patterns
for which the distribution function can be accurately approximated. A lot of practical
situations exist where sporadic negative payments occur. For instance, when determining
the liabilities of a pension fund, outgoing and incoming cash �ows are typically compared.
It may happen that in some years the incoming cash �ows are larger than the outgoing
ones, leading to negative liabilities in these years.

In Section 2.2 we look at the problem of allowing negative savings (or withdrawals)
when using a comonotonic lower bound approximation in a saving and terminal wealth
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context. We generalize the problem described in Vanduffel et al. (2005a), where a so-called
�saving-consumption�plan is considered, in which a series of positive payments (savings)
is followed by a series of negative ones (consumptions). In Section 2.3 we discuss allowing
negative liabilities (hence contributions) in a context of reserving. In both sections we
work in the lognormal framework as described in Section 1.1.

2.2 Saving and terminal wealth

In this section, we consider the problem of how to invest periodic amounts in order to
reach some target capital at a predetermined future time n. Consider a set of deterministic
amounts �0; �1; � � � ; �n�1 with n � 1. It will follow from our main result that �0 has to be
positive. The amounts �i with 0 < i < n can take any value, positive or negative. This
is a generalization of the problem described in Vanduffel et al. (2005a), where a so-called
�saving-consumption�plan is considered, in which a series of positive payments (savings)
is followed by a series of negative ones (consumptions).

Notations and terminology used in this section are based on Vanduffel et al. (2005a).
We assume the return on the account is generated by a geometric Brownian motion
process, as explained in Section 1.1. Let Vk denote the surplus at time k. By convention,
the surplus at time k has to be understood as the surplus just after saving or withdrawal.
Starting from the initial value V0 = �0, the surplus Vk available at time k is given by the
following recursive relation:

Vk = Vk�1 e
Yk + �k; k = 1; � � � ; n� 1: (9)

The surplus at time n is then equal to Vn = Vn�1 e
Yn�1 : Solving recursion (9), we can

rewrite Vk in the form of (2) as

Vk =
kX
i=0

�i e
Zi ; k = 0; � � � ; n� 1; (10)

with Zi =
Pk

j=i+1 Yj, for i = 0; � � � ; k. By convention
Pk

j=k+1 Yj = 0. The surplus at
time n equals

Vn =

n�1X
i=0

�i e
Zi ; with Zi =

nX
j=i+1

Yj: (11)

Note that this surplus can become negative, which would imply shortselling of units of
the investment account. Our goal is to describe the distribution of the final surplus Vn.
To avoid allowing for shortselling we only look at the distribution of the �nal wealth Wn,
which we define as:

Wn = max[Vn; 0]; k = 0; : : : ; n. (12)

As explained in the previous section, we focus on the comonotonic lower bound (5),
which we denote here as V ln. We approximate the distribution of the final wealth Wn by
W l
n = max[V

l
n; 0]:
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Choosing � such that the variance of V ln is maximized, and hence as close as possible
to Var[Vn], results in the optimal conditioning random variable � of the form (6), with
coefficients �j equal to:

�j =

j�1X
i=0

�ie
(n�i)�; (13)

for j = 1; :::; n, with � the drift of the yearly return Yj, as explained in Section 1.1. The
procedure to determine this optimal � is explained in detail in Vanduffel et al. (2005a).

From (5) we find that the random variable V ln with � chosen as (6) with coefficients
(13) is distributed as

V ln
d
=

n�1X
i=0

�ie
(n�i)�� 1

2
r2i (n�i)�2+ri�

p
n�i��1(U); (14)

where d
= stands for �equality in distribution�, U is uniformly distributed on (0; 1); and the

coefficients ri are given by

ri =
cov (Zi;�)
�Zi��

=

Pn
j=i+1 �j

p
n� i

qPn
j=1 �

2
j

; i = 0; � � � ; n� 1 (15)

and rn = 0:

Throughout the remainder of this section we use the notation f for the following
function

f(p) =
n�1X
i=0

�ie
(n�i)�� 1

2
r2i (n�i)�2+ri�

p
n�i��1(p); (16)

for p 2 (0; 1). Combining (12) and (14) we see that V ln
d
= f(U) and W l

n
d
= max[f(U); 0].

In order to proof the main result of this section, we state the following lemma:

Lemma 1 Let f be defined by (16) and �j by (13). If �j > 0 for j = 1; 2; :::; n, then
for any p in the unit interval (0; 1), f(p) � 0 implies f 0(p) > 0 .

See Vanduffel et al. (2005a) for a proof of this Lemma.

The main result of this section is stated in the following Theorem.

Theorem 1 If the conditioning random variable � is chosen as (6) with coefficients (13),
and if

E [Vj] > 0; j = 0; � � � ; n� 1; (17)

then the quantiles of W l
n are given by

Qp[W
l
n] = max[f(p); 0] 0 < p < 1; (18)

whereas the distribution function of W l
n follows from

f(FW l
n
(x)) = x; x � 0; (19)

with f(p) defined by (16).
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Proof. It follows from (13) that for j = 1; 2; :::; n;

�j = e
n�j+1

j�1X
i=0

�i e
(j�1�i)� = en�j+1E [Vj�1] : (20)

In other words, condition (17) implies that �j > 0 for j = 1; 2; :::; n. Since all �j are
strictly positive, we find from Lemma 1 that the function max [f(p); 0] is non-decreasing
(and continuous) on the interval (0; 1). As stated in Vanduffel et al. (2005a), the quantiles
of W l

n can easily be determined analytically in this case:

Qp[W
l
n] = max[f(p); 0]; p 2 (0; 1) : (21)

Vanduffel et al. (2005a) also show that, under the conditions of Lemma 1, the d.f. of W l
n

can be determined from
f(FW l

n
(x)) = x; x � 0; (22)

which completes the proof.

It is clear that any reasonable plan should fulfill condition (17), which states that the
average surplus E[Vj] should be non-negative at any time. Note that for j = 0, condition
(17) can be rewritten as �0 > 0.

For given cash �ows �i, i = 1; :::; n � 1, we have that E[Vi] =
Pi

j=0 �je
(i�j)� is an

increasing function of �. In other words, for given cash �ows �i, conditions (17) can be
rewritten as a single condition on � as follows:

� > �� = max

 
min

(
� j

iX
j=0

�je
(i�j)� > 0 ; i = 1; : : : ; n� 1

)
; 0

!
(23)

Theorem 1 is a generalization of the main result of Vanduffel et al. (2005a), which
stated that in case of a �saving-consumption�plan the average final surplus had to be
non-negative for (18) and (19) to hold.

Our result shows that allowing some of the cash �ows to be negative does not neces-
sarily mean that comonotonic lower bound approximations can not be used. As explained
in the previous section, this result significantly expands the scope of problems and cash
�ow patterns for which the distribution function of the final wealth can be accurately ap-
proximated. An example is the situation where you have a relatively small fixed income
(e.g. yearly), and relatively large periodical expenses (e.g. every 5 years). This particular
situation is studied in the next paragraph.

2.2.1 Special case: constant savings and consumptions

In this section we consider a deterministic cash �ow stream where

�i =

�
�� 1 if i = jm, j = 1; :::; k
� otherwise, 0 � i < n. , with km = n� 1: (24)
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We have a fixed yearly income �, for some � > 0, for a period of n years. Furthermore
we have fixed liabilities: a fixed amount 1 is to be paid every m years (with m > 1).

To start we investigate when conditions (17) are satisfied in this special case. First
note that the conditions are fulfilled in case E[Vim] > 0 for i = 0; : : : ; k, as these are the
only years in which a negative cash �ow is involved. Condition (17) for E[Vim] can be
rewritten as:

E[Vim] > 0, � > e�m�
1� e�im�
1� e�m�

e�� � 1
e�(im+1)� � 1 (25)

As the right-hand side of the latter inequality is increasing in i, conditions (17) hold in
case E[Vkm] =E[Vn�1] > 0, or, in terms of �:

� > �� = e�m�
1� e�(n�1)�
1� e�m�

e�� � 1
e�n� � 1 : (26)

Example 1 Suppose we have to pay an amount of 1 every 5 years over a period of 25
years (or m = k = 5, n = 26). Also suppose � = 0:07. Condition (26) indicates we can
apply the results from Theorem 1 if we have a yearly income � bigger than �� = 0:1591.

If condition (26) is satisfied, we find from Theorem 1 that the approximated quantiles
Q+p [W

l
n] and the approximated probabilities FW l

n
(x) follow from (18) and (19) with f(p) �

f�(p) given by

f�(p) = �
n�1X
i=0

e(n�i)��
1
2
r2i �

2
Zi
+ri�Zi�

�1(p) �
kX
i=1

e(n�im)��
1
2
r2im�

2
Zim

+rim�Zim�
�1(p): (27)

Let Wn(�; k;m) and W l
n(�; k;m) denote the (approximated) final wealth for the afore-

mentioned plan, with a yearly income of �, and a liability of 1 every m years over a period
of km = n� 1 years.
Next, we determine the minimal yearly income � such that the probability of a short-

fall, FWn(�)(0), is at most equal to a certain �. In other words, we determine �(�) as

�(�) = inff�jFWn(�;k;m)(0) � �g: (28)

Since FWn(�;k;m)(0) is strictly decreasing and continuous in �, �(�) follows from the equa-
tion

FWn(�(�);k;m)(0) = �: (29)

This �(�) can be approximated by �l(�), which can be determined by solving

FW l
n(�

l(�);k;m)(0) = �: (30)

As stated before, we can apply the results of Theorem 1 in case � is such that �l(�) > ��.
Hence, it follows from (19) and (30) that the approximated minimal savings effort �l(�)
can be found from

f�l(�)(�) = 0 if �l(�) > ��: (31)
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Numerical illustration Assume the yearly returns Yi have expectation and variance
given by � � �2

2
and �2, with � = 0:07 and � = 0:15. As in Example 1, consider a plan

with a fixed liability of 1 every 5 years over a period of 25 years (m = k = 5, and n = 26).
As seen in Example 1, condition (26) is equivalent to � > 0:1591. Using (19), we can
approximate the probability of shortfall Pr[W l

26 = 0]. In Table 1 this probability is given
for a range of yearly incomes �.

Using (31), we can also determine the minimal yearly income � such that the proba-
bility of shortfall is less than a given �. For instance, the approximated minimal yearly
income �l(0:05), which guarantees that the probability of shortfall is less than or equal
to 5%, is equal to 0:1910. Or, suppose we want a yearly survival probability of 99:5%,
which corresponds to a long term survival probability of approximately 0:99525 = 0:8822.
In this case we find a minimal yearly income �l(0:1178) equal to 0:1845.

� Pr[W l
26 = 0]

0.1591 63.72%
0.1600 61.94%
0.1700 40.18%
0.1800 18.81%
0.1900 5.85%
0.2000 1.19%

Table 1: Approximated probability of shortfall

p Qp[W
l
26] �Qp[W26]� s.e.

0.99 13.0510 13.1035 0.18
0.95 7.5174 7.5196 0.09
0.90 5.5375 5.5337 0.03
0.75 3.2299 3.2315 0.03
0.50 1.6520 1.6602 0.02
0.25 0.7142 0.7191 0.01
0.10 0.2051 0.1914 0.01
0.05 0 0 0.00

Table 2: Approximated and simulated values for the quantiles of W25

To illustrate the accuracy of the lower bound approximationW l
26, we compare the approx-

imated quantiles Qp[W l
26] (calculated using (21)) with the simulated quantiles �Qp[W26]�.

We compute the quantiles for the optimal strategy obtained earlier, with � = �l(0:05) =
0:1910. The results are given in Table 2. We see for instance that there is a 10% probability
that the final wealth at time 25 will exceed 5.5337 (simulated value). The approximated
value for this final wealth is equal to 5.5375.
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2.2.2 Application to Optimal Portfolio Selection

To apply the results of Section 2 to optimal portfolio selection problems, we slightly adapt
notations. The surplus Vk (see (10)) and wealthWk (see (12)) are in this setting a function
of an investment portfolio �, which we denote as:

Vk(�) =
kX
i=0

�ie
Zj(�) =

kX
i=0

�ie
Pk
i=j+1 Yi(�); k = 0; : : : ; n� 1; (32)

with
Vn(�) = Vn�1(�) e

Yn(�); (33)

and
Wk(�) = max[Vk(�); 0]; k = 0; : : : ; n. (34)

As follows from Theorem 1, we should only look at the portfolios � for which conditions
(17), or, equivalently, condition (23), is fulfilled. In other words, we have to restrict any
optimization to the following set of admissable portfolios �:

� = f� j E[Vi(�)] > 0 ; i = 0; : : : ; n� 1g = f� j �(�) > ��g; (35)

with �� given by (23).

This means that, whenever some cash �ows �i are negative, the optimization proce-
dures described in the following paragraphs will not always take into account all possible
investment portfolios. However, restricting optimization to � is intuitive, as in most situ-
ations it will be desirable to obtain a portfolio for which the expected value of the future
available assets is positive at any time.

Maximizing the probability level for a given target wealth For a given invest-
ment portfolio �, the probability that the final wealth Wn(�) exceeds some positive value
x is given by

p = Pr[Wn(�) > x] = 1� FWn(�)(x) = FWn(�)(x). (36)

We determine the portfolio ��, for which the probability p of reaching at least a certain
amount x at time n is maximal. Denoting this probability by p�, we have:

p� = max
�2�

FWn(�)(x), (37)

with � given by (35). Consider two portfolios, �1 and �2, with �(�1) = �(�2) and
�(�1) < �(�2). As shown in Dhaene et al. (2005), we have that FWn(�1)

(x) � FWn(�2)
(x).

Therefore the solution of (37) is to be found on the Capital Market Line, which means
we can replace (37) by

p� = max
�2�0

FWn(��)(x), (38)

with
�0 = f� j �� 2 �g. (39)
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Recall that, for a given �, the corresponding mean-variance efficient portfolio �� is given
by

�� = �
��1 � (�� r1)q

(�� r1)T � ��1 � (�� r1)
. (40)

Finally, we approximate the optimal investment strategy �� by �l, using the comonotonic
lower bound approximation W l

n(�). This results in the approximated optimal probability
level pl:

pl = max
�2�0

FW l
n(�

�)(x) � p�. (41)

Maximizing the target capital for a given probability level For a given invest-
ment strategy �, we define the p-target capital K as the (1� p)-th order quantile of the
final wealth:

K = Q1�p[Wn(�)]. (42)

This target capital can be interpreted as the maximal amount that will be available at time
n, with a probability of at least p. We determine the optimal portfolio ��, by maximizing
the target capital that can be reached for a given probability level p. We have

K� = max
�2�

Q1�p[Wn(�)], (43)

with � given by (35).

As shown in Dhaene et al. (2005), the solution of (43) is to be found on the Capital
Market Line, implying we can replace (43) by

K� = max
�2�0

Q1�p[Wn(�
�)], (44)

with �0 and �� given by (39) and (40) respectively.

As in Section 2.2.2, we approximate the optimal investment strategy �� by �l, using
the comonotonic lower bound approximation W l

n(�). This results in the approximated
maximal target capital K l:

K l = max
�2�0

Q1�p[W
l
n(�

�)] � K�. (45)

Numerical Illustration Suppose n = 31, �i = 10 if i is not a multiple of 5, and �5k =
�45 for k = 1; :::; 6: Furthermore, suppose there are three risky asset classes available,
with drift vector �T = (0:02; 0:05; 0:075), standard deviations �T = (0:01; 0:1; 0:18) and
correlations �1;2 = �0:10, �1;3 = 0:03 and �2;3 = 0:50. Determining the set of admissable
portfolios � leads to:

� = f� j E[Vi(�)] > 0 ; i = 1; : : : ; n� 1g = f� j �(�) � 0:0242g (46)
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Hence we can use the comonotonic lower bound approximations for all portfolios with
drift bigger than 2:42%: As a first application, assume a target wealth x equal to 0. Using
our lower bound approximation leads to a maximal survival probability

pl = max
�2�

FW l
n(�

�)(0) = 0:87 = (0:9954)
30; (47)

with the corresponding optimal investment strategy �l equal to (�l)T =
(0:1808; 0:5167; 0:3025), with drift �(�l) = 0:0521 and standard deviation �(�l) = 0:0920.
Note that this optimal strategy indeed satisfies condition (46).

As a second application we compute the maximal target wealth K l and corresponding
optimal investment strategy �l for a range of probability levels p. The results are given
in Table 3.

Note that for p = 0:90 en p = 0:95 we �nd K l = 0. Since we are maximizing the
quantiles of W l

n = max(V
l
n; 0), this result means that we can not reach a positive target

wealth with the given probabilities. Hence the maximal surplus V ln that can be reached
is negative. In fact, as can be seen from (47), it is not possible to �nd a strategy leading
to a positive surplus for any probability level above 0:87.

p
70% 75% 80% 85% 90% 95%

�l1 0.00% 0.00% 0.00% 5.54% 43.76% 80.75%
�l2 45.82% 53.07% 58.05% 59.51% 35.88% 13.14%
�l3 54.18% 46.93% 41.95% 34.95% 20.36% 6.11%
�(�l) 6.35% 6.17% 6.05% 5.71% 4.20% 2.73%
�(�l) 12.68% 12.01% 11.60% 10.60% 6.28% 2.21%
K l 27.73 19.40 11.54 3.84 0.00 0.00

Table 3: Maximal target wealth K l and optimal strategy �l for survival probabilities p.

2.3 Reserves for future obligations

In this section we discuss the reserving problem, which is in some sense the dual problem of
the terminal wealth problem as described in Section 2.2. Consider a series of deterministic
obligations �1; :::; �n; due at time 1; :::; n respectively. Being able to meet these obligations
requires appropriate funding, meaning that a reserve has to be set up at time 0. In Dhaene
et al. (2005) the reserving problem is discussed in detail, with the restriction that all
obligations �i are positive. It will follow from our main result that �n has to be positive.
However, �i for i = 1; :::; n � 1 can take any value, positive or negative. A negative
obligation can be interpreted as adding an amount to the reserve on the account.

As explained in Dhaene et al. (2005), the variables of interest in this setting, of which
we would like to describe the distribution, are the so-called stochastic future obligations.
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These random variables Rk are given by:

Rk =

nX
i=k+1

�i e
Zi ; k = 0; � � � ; n� 1; (48)

with Zi = �
Pi

j=k+1 Yj, for i = k + 1; :::; n. Note that Rk in (48) has the same general
form as (2). For a given k; Rk is the stochastically discounted value at time k of all future
obligations from time k on.

Our goal is to approximate the distribution function of R0. As for the surplus in the
previous section, we see that R0 can become negative. To avoid this we only look at the
stochastic provision S0 available at time 0, which we define as:

S0 = max[R0; 0] (49)

As explained in Section 2.1, we focus on the lower bound approximation, which we denote
as Rl0 and S

l
0 respectively. The amount of money that has to be set aside to meet future

liabilities can then be determined by applying an appropriate distortion risk measure to
this approximation.

As derived in Dhaene et al. (2005), the optimal conditioning random variable � of the
form (6) has in this setting coefficients �j given by:

�j = �
nX
k=j

�ke
k(��+�2); (50)

for j = 1; :::n. This leads to the following lower bound approximation Rl0:

Rl0
d
=

nX
i=1

�ie
�i�+(1� 1

2
r2i )i�2+ri�

p
i��1(U); (51)

where d
= stands for �equality in distribution�, U is uniformly distributed on (0; 1); and the

coefficients ri are given by

ri =
�
Pi

j=1 �j
p
i
qPn

j=1 �
2
j

; i = 0; � � � ; n: (52)

Throughout the remainder of this section we use the notation f to denote the function

f(p) =

nX
i=1

�ie
�i�+(1� 1

2
r2i )i�2+ri�

p
i��1(p); (53)

with p 2 (0; 1). Combining (49) and (51) we see that Sl0
d
= max[f(U); 0].

In order to proof the main result of this section, we state the following Lemma, which
is similar to Lemma 1:

13



Lemma 2 Let f(p) be defined by (53) and �j by (50). If �j < 0 for j = 1; 2; :::; n, then,
for any p in the unit interval (0; 1), f(p) � 0 implies f 0(p) > 0 .

Proof. This proof is analogous to the proof of Lemma 1 (see Vanduffel et al. (2005)).
Since �j < 0 for j = 1; 2; :::; n we see from (52) that ri > 0 for i = 0; :::; n. Furthermore
we see that

ri�Zi = ��
Pi

j=1 �jqPn
j=1 �

2
j

; i = 0; � � � ; n;

since �Zi =
p
i�. Hence the sequence fri�Zig0�i�n is strictly decreasing and strictly

positive.

From (53) we find, by application of the chain rule, that

f
0
(p) =

1

�0 [��1(p)]

nX
i=1

aie
�i�+(1� 1

2
r2i )i�2+ri�

p
i��1(p) ri �Zi :

Assume f(p) � 0 for some p in the unit interval. Since also 1
�0 [��1(p)]

> 0 we find that

f
0
(p) >

r1�

�0 [��1(p)]

nX
i=1

aie
�i�+(1� 1

2
r2i )i�2+ri�

p
i��1(p)

=
r1�

�0 [��1(p)]
f(p) � 0;

which completes the proof.

The main result of this section is stated in the following Theorem.

Theorem 2 If the conditioning random variable � is chosen as (6) with coefficients (50),
and if

E [Rj] > 0; j = 0; � � � ; n� 1; (54)

then the quantiles of Sl0 are given by

Qp[S
l
0] = max[f(p); 0] 0 < p < 1; (55)

whereas the distribution function of Sl0 follows from

f(FSl0(x)) = x; x � 0; (56)

with f(p) defined by (53).

Proof. This proof is analogous to the reasoning in Section 3 of Vanduffel et al. (2005a).
It follows from (50) that for j = 1; 2; :::; n;

�j = �e�(j�1)(��+�
2)E [Rj�1] : (57)
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In other words, condition (54) implies that �j < 0 for j = 1; 2; :::; n. It is easy to show
that this implies

lim
p!0

f(p) = 0 and lim
p!1

f(p) = +1: (58)

We find from Lemma 2 that the function max [f(p); 0] is non-decreasing (and continuous)

on the interval (0; 1). Using Sl0
d
= max[f(U); 0] and the fact that Qp (g(X)) = g (Qp[X])

and Q+p [g(X)] = g
�
Q+p [X]

�
for any non-decreasing function g and any p 2 (0; 1), we see

that the quantiles of Sl0 can easily be determined analytically in this case:

Qp[S
l
0] = Qp[S

l
0] = max[f(p); 0]; p 2 (0; 1) : (59)

It is easy to show that

FSl0(x) = sup fp 2 (0; 1) j f(p) � xg : (60)

Using this last equation (60), together with (58), Lemma 2 and the fact that f is contin-
uous on (0; 1), we see that the d.f. of Sl0 can be determined from

f(FSl0(x)) = x; x � 0; (61)

This completes the proof.

It is clear that conditions (54) will be satisfied in a lot of practical situations. When
working in a provisioning context, it is natural to suppose that the expected present value
of future obligations will be positive at any time.

For given cash �ows �i, we have E[Rj] =
Pn

k=j+1 �ke
(k�j)(��+�2): This function depends

on both � and �. Moreover, it is decreasing in �, and increasing in �, which means that,
in contrast to the previous section (see (23)), it is not useful to rewrite conditions (54) as
a single condition.

We have shown that allowing some of the obligations to be negative does not necessarily
mean that comonotonic lower bound approximations can not be used to approximate the
distribution function of the initial provision. This is important, since it again significantly
improves the practical applicability of the approximations.

There are plenty of practical examples where negative future obligations occur. For
instance in case of a life insurance, premiums will typically exceed benefit payments in the
first years, whereas the majority of the benefits are paid near the end of the contract. For
these contracts conditions (54) will typically be satisfied, since most negative obligations
will occur in the near future, meaning that the lower bound approximation can be used
to compute an initial provision.

Deriving formulas for the special case of constant future obligations, and applying the
results of this section to optimal portfolio selection is completely analogous to Section
2.2.1 and Section 2.2.2 respectively. We do not discuss this here.
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3 Minimal Return Requirement

In this section we generalize the problem of finding an optimal constant mix investment
strategy in a provisioning or savings context to the case where a minimal return require-
ment is imposed. Assume the owner of the invested capital requires a minimal yearly
return of r. This minimal level of the return should be obtained with a given (high)
probability of at least (1� ") over each period of m years.

Note that r is not necessarily strictly positive. A capital guarantee requirement for
example corresponds to a minimal return of 0. Also, a negative r can be used to ensure
the loss of capital can not exceed a specified amount.

Using notations as defined in Section 1.1, an amount of 1 invested according to a
strategy � will grow to the random amount eY1(�)+:::+Ym(�) after a period of m years.
Hence, the minimal return requirement can be expressed as

Pr
�
eY1(�)+:::+Ym(�) � emr

�
� 1� "; (62)

or, equivalently,
m r � F�1Y1(�)+:::+Ym(�)("): (63)

The distribution function of the random variable Y1(�) + :::+ Ym(�) is characterized by

Y1(�) + :::+ Ym(�)
d
= m

�
�(�)� 1

2
�2(�)

�
+
p
m �(�)��1(U); (64)

with U uniformly distributed on the unit interval, and � the standard normal cdf. This
implies that the "-quantile of Y1(�) + :::+ Ym(�) is given by

F�1Y1(�)+:::+Ym(�)(") = m

�
�(�)� 1

2
�2(�)

�
+
p
m �(�)��1("): (65)

Using (65), the return guarantee requirement (63) can be rewritten as

�(�)� 1
2
�2(�) � r + 1p

m
�(�) ��1(1� "); (66)

or, equivalently,

E[Yi(�)] � r +
r
Var[Yi(�)]

m
��1(1� "): (67)

This condition is in accordance with intuition, as the right hand side of inequality (67) is
increasing for respectively increasing r, decreasing m and decreasing ".

In the framework of optimal portfolio selection, condition (67) can be used as a con-
straint on the admissable investment portfolios �, in order to guarantee a minimal yearly
return r, with a related probability level (1� ") over each period of m years.
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3.1 Numerical Illustration

Using notations as in Dhaene et al. (2005) and Section 1.1, suppose n = 30, and �i = 10
for i = 0; :::; 29. Furthermore, suppose we have the three asset classes available which
were described in Section 2.2.2. The minimal return requirement (67) can be applied
both in a context of saving and provisioning. Here we work in the former framework.

The terminal wealth, or the amount of money available on our account at time n, is
equal to:

Wn(�) =
n�1X
i=0

�ie
Pn
j=i+1 Yj(�): (68)

We approximateWn(�) by the comonotonic lower bound approximationW l
n(�), as defined

in Dhaene et al. (2005):

W l
n(�) =

n�1X
i=0

�ie
(n�i)�(�)� 1

2
�2(�)+ri(�)

p
n�i�(�)��1(U) (69)

We want to determine the strategy �� leading to a maximal terminal wealth K�:

K� = max
�
F�1Wn(�)

(1� p): (70)

By maximizing the quantiles of the comonotonic lower bound approximation (69) we can
approximate �� and K� as:

K l = max
�
F�1
W l
n(�)
(1� p) � K�: (71)

Denote the approximated optimal strategy leading to K l as �l. In our example we use
a certainty level p = 0:85. In Table 4 the in�uence of a return requirement on the
optimal investment portfolio is illustrated. If we do not impose a return requirement, we
find as a result an optimal strategy �l = (0; 0:5611; 0:4389)T , with corresponding drift
�(�l) = 0:0610 and standard deviation �(�l) = 0:1176. The maximized terminal wealth
K l amounts to 499.72.

no return capital guarantee positive return
requirement (0%) requirement (1%)

�l1 0% 17.57% 54.33%
�l2 56.11% 52.05% 29.40%
�l3 43.89% 30.38% 16.72%
�(�l) 6.10% 5.23% 3.78%
�(�l) 11.76% 9.24% 5.09%
K l 499.72 489.0 460.4

Table 4: In�uence of return requirement on optimal investment strategy.

Now suppose we use formula (67) as a constraint on the admissable investment port-
folios, with parameters r = 0, m = 10 and � = 0:05. In other words, we require a capital
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guarantee, with a return at least equal to zero, over each period of 10 years, with a prob-
ability of 95%. As can be seen from Table 4, imposing this leads to an optimal strategy
�l = (0:1757; 0:5205; 0:3038)T , with �(�l) = 0:0523 and �(�l) = 0:0924. The maximized
terminal wealth K l in this case amounts to 489.0. As a second example, suppose m = 10
and � = 0:05, but we require a positive return of at least 1%, or r = 0:01. This leads to
�l = (0:5433; 0:2940; 0:1672)T , with �(�l) = 0:0378; �(�l) = 0:0509 and K l = 460:36.

From these results we can conclude that imposing a return requirement leads to a
more conservative optimal portfolio, with higher proportions invested in less risky assets,
and hence with a lower drift and volatility. Also, the resulting maximal terminal wealth
is significantly lower. These results are in correspondence with intuition.

4 Conclusion

In this paper we analyzed several applications of optimal portfolio selection problems.
We extended some of the results obtained by Dhaene et al. (2005) and Vanduffel et al.
(2005a), expanding the scope of problems to which comonotonic approximations can be
applied.

First we investigated if the lower bound approximations based on comonotonicity (see
e.g. Dhaene et al. (2002 a,b)) are still valid in case of cash �ows with �uctuating signs. In
the context of saving and terminal wealth we showed that the lower bound approximation
works perfectly as long as the expected surplus remains positive at any time in the future.
Similarly we showed that, when working in a context of reserving, the approximation
is valid in case the expected future obligations remain positive. In both cases these
conditions are intuitive, and satisfied in most practical situations. We also pointed out
how these problems can readily be applied to optimal portfolio selection, illustrating it
with numerical examples.

Next we explained how a minimal return guarantee can be introduced in our optimal
portfolio selection framework. We obtained a basic, but very useful and intuitively clear
formula, and illustrated the effect of such a guarantee numerically.

Overall this paper gives several extensions to comonotonic approximations, and its
application to optimal portfolio selection. This significantly increases the practical ap-
plicability of the main results obtained e.g. in Dhaene et al. (2005). Future research
would consist in generalizing some of these results even further, for example to the case
of stochastic cash �ows, or an elliptically distributed return process. Also, the problem
of liabilities with changing signs still has to be solved for more general (distortion) risk
measures, such as TVaR or CTE.
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