
1 Introduction
Retinal images of the same object can be highly variable because of different lighting-
and viewing-conditions. Nevertheless, humans can recognise a familiar object despite
spatial transformations such as translations or rotations in the picture-plane, changes
in the size of its image, or even rotations in depth. Similarly, retinal images of different
objects from the same category are highly variable because of additional changes in
shape, colour, texture, etc. Again, though, humans can categorise objects which they
have never seen before as belonging to a certain basic-level class (eg a car, a chair,
a bird, a dog, etc) using the similarity of the image with stored class information (for
reviews, see Mervis and Rosch 1981; Palmeri and Gauthier 2004). Categorisation may
be a useful intermediate stage on the way to more specific identification, because it
restricts the set of candidate object models and because the use of class-specific infor-
mation allows a broader generalisation (Ullman 1989, 1998). However, it is not yet clear
how the visual system deals with the large range of possible images when classifying
and identifying objects.

One observation that has attracted a lot of attention is the behavioural dependence
on these image transformations. Behavioural studies, in which two images of the same
object are presented sequentially and subjects have to decide whether body images belong
to the same object or not, have revealed a monotonic increase in reaction times (RTs)
and/or error rates with increasing transformational distance between the two images.
This behavioural dependence on spatial transformations has been observed for transla-
tions, size-scalings, rotations in the picture-plane and in depth (Bundesen et al 1981, 1983;
Larsen and Bundesen 1978; Larsen et al 1999; Lawson 1999; Shepard and Cooper 1982),
and recently also for shape-changing or topological transformations (Graf 2002, 2006).
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Graf (2002, 2006, 2008) proposed a transformational model of recognition and
categorisation (TMRC) based on a process-based interpretation of Felix Klein's Erlanger
Programm.(1) By incorporating the general class of shape-changing or topological trans-
formations (which includes also, as a result of the hierarchies between the geometries,
all lower-level transformations such as affine and Euclidean transformations), alignment
models for recognition can be extended to account for categorisation performance.
Recognition after spatial transformations relies mostly on Euclidean transformation
processes, while categorisation up to the basic level can be accounted for mostly by
non-Euclidean topological transformations. Thus, categorisation and recognition are
achieved by transforming (the coordinates of) a generic perceptual coordinate system or
reference frame that defines the correspondence between positions specified in memory
and positions in the current visual field so that the category and object representations
in memory and the input representation can be more or less aligned, to compensate for
the image transformation.

TMRC explains the behavioural dependence on image transformations (and other
findings) parsimoniously by hypothesising that the transformations of the coordinates
of the perceptual reference frame are fast (in contrast to slower image transformations
during mental rotation), analogue (ie they traverse intermediate points along the trans-
formational path), and implemented by neural gain (amplitude) modulation (Salinas
and Sejnowski 2001). Evidence for the analogue nature of transformational processes
comes from a study by Bundesen et al (1981) who showed that RTs to decide if two
sequentially presented shapes are identical except for changes in picture-plane orienta-
tion or size, were sequentially additive, suggesting analogue rotation- and size-scaling
processes in object recognition. Evidence for the involvement of a reference frame
comes from a study by Graf et al (2005) that revealed orientation-congruency effects
between two familiar shapes of different basic-level and superordinate-level categories
(see also Jolicoeur 1990): higher naming accuracy was found when both sequentially pre-
sented object images were displayed in congruent instead of incongruent picture-plane
orientations. Finally, according to TMRC, the typicality of a stimulus for a certain
category is based on the amount of topological transformation which is necessary to
align the stimulus representation with the representation of the category prototype,
while similarity between two stimuli is based on the transformational distance between
both stimuli. This latter idea is supported by studies suggesting that the similarity
between two objectsöa concept at the core of any categorisation theoryöis based on
the transformational distance between the structural representations of those objects
(Hahn et al 2003; Markman and Gentner 1993a, 1993b).

Graf (2002) tested his transformational model by studying the dependence of sim-
ilarity and typicality judgments and sequential-matching performance on topological
transformations, using outlines of category exemplars and warping software (see also
Graf 2008). For each of twenty-two categories, he selected two exemplars and created
one or three new exemplars that were positioned at a specific transformational dis-
tance between the selected ones in the warning sequence. As predicted by TMRC,
Graf found that RTs and errors increased monotonically with increasing topological
distance between two exemplars when subjects had to indicate whether both exemplars
belong to the same basic-level category or not, while rated similarity decreased monot-
onically. Furthermore, the categorisation latencies did not seem to be incompatible
with the hypothesis of sequential additivity, which was taken to be suggestive of analogue
transformational processes. Finally, typicality ratings usually decreased monotonically

(1) In his well-known Erlanger Programm, Felix Klein has established a hierarchy of progressively
weaker geometries, consisting of groups of transformations with fewer and broader invariants,
which give rise to progressively wider equivalence classes: from Euclidean, to similarity and affine,
to projective geometry, and topology (Todd et al 1998; Van Gool et al 1994; Wagemans et al 1997).
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with increasing distance from the position of the exemplar that was rated as most typical;
the latter presumably being closest to the representation of the category prototype,
conceptualised as a superposition of topologically transformed images of category
exemplars. The data suggested that there was one prototypical exemplar for natural
categories, while there were two for artifactual categories.

Graf's TMRC is interesting because it treats recognition and categorisation within a
unified framework, integrating a wide variety of findings. However, it is also confronted
with a number of problems. First, the warping procedure that is used does indeed
imply a change in object shape that is more than Euclidean, affine, or projective, but it
does not establish a well-defined topological transformation that is easily parameter-
ised. While shape matching under Euclidean transformations (planar translations and
rotations), similarities (uniform size-scalings), affine (nonuniform size-scalings and shears),
and projective transformations has been studied extensively (Bundesen et al 1981, 1983;
Demeyer et al 2007; Kukkonen et al 1996; Larsen and Bundesen 1978; Larsen et al 1999;
Tarr 1995; Tarr et al 1998; Vanrie et al 2001, 2002; Wagemans et al 1996, 1997, 2000;
Willems and Wagemans 2001), the role of topology for visual perception is less evident.
Chen (1985, 2005) has suggested that topological transformations and the properties
they leave invariant (connectedness, inside ^ outside relations, the presence of holes) are
useful for understanding perceptual organisation but that does not mean that the human
visual system implements topological transformations as such. The only evidence so
far has come from research on the perception of growth or aging (Mark and Todd
1985; Mark et al 1981; Pittenger and Shaw 1975; Pittenger and Todd 1983), which was
inspired by theoretical work in biology by D'Arcy Thompson (1917/1942).

Second, it cannot be ruled out that subjects are sensitive to the invariant properties
preserved under each of these transformations (for an introduction to the mathematical
framework of transformations and invariants, see Van Gool et al 1994). As mathe-
matical entities, invariants areöby definitionöinvariant and hence independent of
the parameters of the transformation under which they are invariant. However, the
way in which the visual system extracts or computes these invariant properties may
be influenced quite systematically by the parameter values specifying the size of the
transformation, which may give rise to the same systematic effects on performance
measures (Wagemans et al 1996).

Finally, with his notion of abstract category representations, Graf (2002, 2006)
appears to be swimming against the tide. During the last decades, the object-recognition
and categorisation literatures have been moving away from abstract category represen-
tations to shift their focus more towards image-based exemplar representations that are
size-, orientation-, view-, and shape-specific (Gauthier and Palmeri 2002; Kruschke
1992; Medin and Schaffer 1978; Mozer 2002; Nosofsky and Zaki 2002; Op de Beeck
et al 2001, 2003, 2008; Palmeri and Gauthier 2004; Perrett et al 1998; Poggio and Bizzi
2004; Tarr and Bu« lthoff 1998; Vogels 1999; Zaki et al 2003). According to exemplar-
based theories, objects are represented as collections of viewpoint-dependent features
(eg the output of receptive fields) that are present in the retinal images of the objects.
Each view can then be considered a point in a high-dimensional space that captures
the appearance of all possible views. Recognising (or categorising) unknown object
views (or category exemplars) is based on establishing the detailed (or coarse) loca-
tion of the unknown view (or exemplar) within this space, by measuring the similarity
of its features relative to the features of the nearest known views (or exemplars) in
memory, known as interpolating across the view space (or interpolation to multiple
visually similar exemplars, respectivelyöEdelman 1998; Tarr and Bu« lthoff 1998). These
view-based or exemplar-based representations are able to sustain class-based general-
isation without the need to assume the existence of compensation processes such as
alignment (Tarr and Gauthier 1998).
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In most mathematically formulated exemplar-based models, a shape is represented
by its similarity to stored prototypical exemplars from different categories, while
similarity is a decreasing function of the distance between the input and the stored
exemplars in a low-dimensional psychological shape space (Edelman 1998, 1999; Nosofsky
1986). Selective attention to certain dimensions systematically modifies the structure of
the space in which the exemplars are embedded, making similarity context-dependent
(Nosofsky 1986). Classification decisions are based on the similarity of a probe to
exemplars of a target category relative to exemplars of contrast categories; recognition
decisions are based on the overall summed similarity of a probe to all exemplars; and
typicality judgments are governed by summed similarity of a probe to all exemplars
of the target category (Nosofsky 1988).

These arguments raise doubts about the proposal that topological transformations
are used to match images of different exemplars of a basic-level category to a category
prototype (Graf 2002, 2006, 2008). In light of its potential importance, this proposal
is clearly in need of further and stronger empirical support.

The purpose of our study was two-fold. First, we wanted to create and validate a
new stimulus set in which the shape-similarity between exemplars from the same cat-
egory is systematically manipulated, to study the representation of shape-similarity at
the neuronal level (Panis et al 2008b), or to study the effects of categorisation learning
on the neural representation of shape similarity (Gillebert et al 2008). Second, we
wanted to compare the predictions of Graf's TMRC with those from pure exemplar-
based models using this new stimulus set, because we believe that it allows remediation
for possibly important shortcomings in Graf's experiments (see section 2.1). In four
experiments we collected similarity and typicality ratings, and measured the perfor-
mance in a sequential basic-level matching task.

As explained below, several aspects of our results favour an exemplar-based account
of categorisation over a transformational account. However, we will argue that modern
exemplar-based categorisation models need to incorporate modeling of well-established
but neglected processes such as temporal integration of information, gain-modulation,
response competition, and response priming in order to account for experimental data
obtained in a large range of visual tasks.

2 Experiment 1. Construction of a new stimulus set
2.1 Introduction
To test TMRC, Graf selected two exemplars per category between which to warp, by hand.
As a result, it is possible that he selected images that were both fairly (proto)typical
which might result in a large sensitivity to the single topological transformation that
was subsequently tested for each category. In contrast, for each of eleven categories,
we wanted to create a larger number of morphing sequences per category, and to select
a larger number of exemplars more objectively by collecting similarity ratings for all the
category exemplars from a published set of line drawings (Op de Beeck and Wagemans
2001; see also Op de Beeck et al 2000). Within each category, we then identified the four
most dissimilar exemplars from a two-dimensional multi-dimensional scaling (MDS)
solution. As we will show, this selection procedure resulted in selections of typical and
atypical exemplars from the same category to morph between.

2.2 Methods
2.2.1 Participants. Thirty high-school student volunteers (mean age 17 years) participated
in experiment 1. They were tested in two sessions that lasted around 1 h each. In this
and subsequent experiments, all participants were naive regarding the purpose of the
experiment in which they participated, all were unfamiliar with the stimuli, and all had
normal or corrected-to-normal vision. No one participated in more than one experiment.
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2.2.2 Stimuli. A published stimulus set of line drawings of 269 exemplars from
twenty-five different categories (Op de Beeck and Wagemans 2001) was changed in
two ways. First, we created silhouette and outline versions using a procedure which
we have also applied to the set of line drawings by Snodgrass and Vanderwart (1980;
see Wagemans et al 2008), because this allows for more experimental control over the
relevant stimulus features (see also De Winter and Wagemans 2004). Second, eight
categories were deleted either because (i) the edge-extraction algorithm failed to yield
smoothly curved, closer contours, (ii) the exemplar outlines were not recognisable
anymore, or (iii) the exemplar outlines were too similar. 180 exemplars from seventeen
categories remained.

2.2.3 Procedure. Similarity ratings were collected for all the possible intra-categorical
combinations of 2 exemplars [N � 1928; one category with 7 exemplars, six with 10
exemplars, seven with 11 exemplars, and three with 12 exemplars giving 49� (66100) �
(76121)� (36144) � 1928 combinations]. Each subject was tested in two sessions
separated by at least 24 h (eight randomly chosen categories in the first, nine in the
second session). Ten subjects were tested with all the line drawings, ten with all
the silhouettes, and ten with all the outlines. Each experimental trial started with
a fixation cross for 500 ms followed by both stimulus presentations for 200 ms
separated by an interstimulus interval of 500 ms. Subjects had to rate the similarity
between the two consecutive stimuli on a 6-point scale (1 very dissimilar; 6 very
similar). A chin-rest was placed 57 cm away from the screen. Stimuli (4006300
bitmaps) were shown on a 21-inch monitor (10246768 pixels, 60 Hz refresh, back-
ground luminance 20 cd mÿ2) and subtended 14.2 deg610.9 deg. As in Graf (2002),
subjects were made familiar with the shape differences between all the exemplars from
each category (in the particular version they were tested with) before the experimental
trials of that category started. For each category, they were shown one sheet of A4
paper with all exemplars in a random order.

2.3 Results
After applying the multi-dimensional scaling technique (MDS) on the similarity ratings
from each category, eleven categories (airplane, beetle, bird, butterfly, car, chair, fish,
guitar, motorcycle, rodent, and vase) survived the following two selection criteria.
First, only categories for which a two-dimensional MDS solution was appropriate
for the contour versions were selected (the criterion was that the screenplot showed
a knee at two dimensions with a d-hat stress valueöa measure of badness of fitö
of less than 0.1 for two dimensions). Second, only categories were selected for which
the same 4 exemplars turned out as most dissimilar (ie were located at the extremes
of each dimension) across the line drawings, silhouette, and outline versions. These
four `extreme' exemplars were selected so that they formed the largest and best possible
rectangle in the 2-D shape space.

In figure 1 we present the MDS solutions of the original outline versions of four
example categories and the 4 selected èxtreme' exemplars. Next, the commercially
available Magic Morph software was used to create 33% and 66% morphs between
each pair of the selected extreme exemplars from each category in the outline version.
This resulted in six morphing sequences with four positions (0 ^ 33 ^ 66 ^ 100) and 16
exemplar outlines for each of eleven categories (see figure 2 first column). Note that
each of the selected original exemplars (figure 1) was used as a start point (`source') or
end-point (`target') of three morphing sequences (figure 2).

Interestingly, for all categories at least one original exemplar was lying in a
relatively isolated region (see figure 1). For each of the original exemplars, the aver-
age distance to the other original exemplars was used as a measure of `isolatedness'.
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All original exemplars per category were ranked from 1 to 7, 10, 11, or 12 (depending
on the category), from most to least isolated. The numbers in the four original
exemplars used to create the morphs in figure 2 report these rank numbers. For nine
out of eleven categories, the original exemplar with rank 1 was one of the 4 selected
ones.

2.4 Discussion
To compare the predictions of TMRC and exemplar-based models regarding the effect
of shape-changing transformations on similarity and typicality judgments and sequen-
tial matching performance in the next three experiments, we created 6 morphing
sequences with 16 unique exemplar outlines for each of eleven categories. Because
other researchers might be interested in using these stimuli, we made them available
on our website (http://ppw.kuleuven.be/labexppsy/johanw/wag 2D.htm).

Although two-dimensional MDS solutions provided a reasonable fit to the data of
the selected categories, the nature of the shape changes differed between the morphing
sequences within each category. For example, the shape changes were small for the
category guitar, and large for the categories fish and beetle. We used MDS only
as a selection tool, and do not assume a true two-dimensional underlying physical or
psychological space. Also, the presence of extreme exemplars in an isolated region
offers an opportunity to test another prediction of an exemplar-based model (see
experiment 3).
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Figure 1. Two-dimensional solutions by multi-dimensional scaling (MDS) for four example cate-
gories. Circles are drawn around the 4 selected exemplars used to create morphing sequences
(see figure 3): (a) birds; (b) airplanes; (c) vases; (d) chairs. Although the MDS solutions for the
outlines are shown, the shapes are drawn as silhouettes for clarity.
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Figure 2 (see next page for caption)
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Figure 2. Stimulus illustration (column 1), average RT in distance-0
trials (column 2) and rated typicality (column 3) of all exemplars.
In column 1, numbers within the selected extreme exemplars are
their ranks for `isolatedness'. These exemplars could lie alone in
a visually isolated region (*) or together with another original
exemplar (**). In column 2, lowest (black) and highest (white)
reaction times are indicated together with local minima (grey).
In column 3, highest (black) and lowest (white) typicality ratings

are indicated together with local maxima (grey). The inset at the bottom shows the six morph-
ing sequences and the four extreme (open squares) and 12 morphed exemplars (solid squares).
Thus, both central horizontal and both central vertical lines do not correspond to a morphing
sequence.
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3 Experiment 2. Similarity and topological transformations
3.1 Introduction
In experiment 2, we asked participants to rate the similarity for pairs of exemplars
while we manipulated the transformational distance between them. According to
TMRC, the similarity comparison is a two-stage process: the similarity of two shapes
is influenced by the alignment phase, but also by the matching itself. If exact align-
ment is not achieved, remaining small shape differences are captured in the matching
process (Graf 2002). TMRC and the transformational account of similarity (Hahn et al
2003) predict a monotonic decrease in rated similarity with increasing transformational
distance between two outlines of the same category. In contrast, according to most
exemplar-based theories, similarity is a decreasing function of the distance between
the two points representing the object outlines in an underlying psychological space,
which can differ between subjects.

3.2 Methods
3.2.1 Participants. Twenty high-school students participated voluntarily (mean age 17 years)
and were tested individually in a single session that lasted around 45 min.

3.2.2 Procedure. Each participant received 11 blocks of 96 trials. In each block, all the
combinations between the 4 exemplars from each of the six morph sequences of one
category were presented in separate trials (46466 � 96). As a result, 16 trial types
were created: four distance-0 trials (11, 22, 33, 44), six distance-1 or 33% trials (12, 21,
23, 32, 34, 43), four distance-2 or 66% trials (13, 31, 24, 42), and two distance-3 or
100% trials (14, 41). The order of blocks (or categories) was randomised. Trials were
self-paced and started with 500 ms fixation, followed by the sequential presentation
of both stimuli for 150 ms each, separated by an interstimulus interval of 500 ms.
Subjects had to rate their similarity on a 6-point scale (1 very dissimilar; 6 very similar)
after they were made familiar with the shape differences between all the exemplars
from each category before each block of experimental trials started (by showing all
of them on a single A4 page). Subjects were instructed not to think too long about
their decision. A chin-rest was placed 57 cm away from the screen. Stimuli (4006300
bitmaps) were shown centred on a 21-inch monitor (10246768 pixels, 60 Hz refresh,
background luminance 30 cd mÿ2) and subtended 14.2 deg610.9 deg.

3.3 Results
First, we calculated the average similarity ratings for each combination of subject
and transformational distance (averages across categories, morphing sequences, and
2 to 6 trials with equal distance). A one-way ANOVA showed a significant effect
of distance (F3 57 � 1412:73, p 5 0:0001). The average similarity ratings decreased
with increasing transformational distance (figure 3). This was confirmed by a highly
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Figure 3. Rated similarity between two exemplars as a
function of the transformational distance between them,
averaged across categories, sequences, and trial types.
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1830 S Panis, J Vangeneugden, J Wagemans



significant and negative Spearman correlation between transformational distance
and the average similarity ratings (rS � ÿ0:965, p 5 0:0001, N � 80). A very strong
linear trend (F1 57 � 4224:11, p 5 0:0001) and a weaker but highly significant quadratic
trend (F1 57 � 11:4, p 5 0:002). The cubic trend was not significant (F1 ;57 � 2:67,
p � 0:1081). Pairwise multiple comparisons showed that all the means were signifi-
cantly different from each other.

For each combination of subject and category, the Spearman rank correlation
(N � 24) between average rated similarity (across trials with equal distance) and the
transformational distance for each sequence (0, 1, 2, 3) was highly significant;
the average Spearman rank correlation across these 220 combinations equaled ÿ0:9
(STD � 0:05). For each of the 66 morphing sequences, the Spearman rank correlation
(N � 4) between average similarity (across subjects and trials) and transformational
distance between stimuli equaled ÿ1.

Finally, the mean ratings of individual subjects (averaged across the 2 to 6 trials
with the same distance) for each of the �6664) morphing sequence-positions were
examined. For the 1320 subject-specific morphing sequences (66 sequences620 subjects),
128 morphing sequences (9.7%) showed one or two deviations from strict monoton-
icity. When considering all the possible pairs (N � 3960; 20 subjects666 morphing
sequences63 pairs per morphing sequence), 134 pairs (3.38%) deviated from strict
monotonicity.

3.4 Discussion
The results of experiment 1 show that the topological transformations created by the
morphing algorithm systematically influenced the judged similarity between stimuli, as
found by Graf (2002) and predicted by TMRC and the structural alignment account
of similarity (Hahn et al 2003; Markman and Gentner 1993a, 1993b). The similarity
ratings decreased systematically with increasing transformational distance between the
exemplars.

However, although Graf (2002) found a significant linear trend, as we did, he does
not report the quadratic trend which is also significant in our data. The quadratic
trend is also present visually in Graf's data. We believe that the significant quad-
ratic trend and the observed deviations from monotonicity for individual subject data
are more consistent with the conception of similarity as an exponentially decreasing
function of distance.

Anyway, we can conclude that people usually could discriminate the shape changes
and that the amount of change could also be translated into corresponding similarity
ratings. Because the specific type and amount of transformation between exemplars
was different for different morphing sequences (see figure 2), and because the mono-
tonic relation between transformational distance and average rated similarity was found
for every morphing sequence, this correspondence is far from trivial and seems to
imply the involvement of considerable cognitive processing (see also Nosofsky 1986).
For instance, participants seem to adjust the range of the rating scale to the range of
the variability within a morphing sequence or category.

4 Experiment 3. Sequential basic-level matching and topological transformations
4.1 Introduction
Exemplar-based theories can and have been extended to account for categorisation perfor-
mance. For example, Nosofsky and Palmeri (1997a, 1997b) introduced the exemplar-based
random-walk model (EBRW) in which categorisation decisions are made by retrieving
stored exemplars from memory. These sequentially retrieved exemplars drive a random-
walk process in which evidence builds up to one of the alternative responses over time.

,
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In Lamberts's (2000) model, an accumulation of perceptual information about the
values of the input stimulus on different shape dimensions is used to predict catego-
risation performance, resulting in a similarity measure that is also time-dependent.

In experiment 3, we used a sequential matching paradigm to investigate the effect
of transformational distance on sequential basic-level matching performance. Accord-
ing to TMRC, basic-level categorisation is achieved by a topological transformation
process, which aligns the category representation and the stimulus representation.
The transformation process is time-consuming, error-prone, and analogue (ie it traver-
ses intermediate points in the transformational path). Consequently, TMRC predicts
(a) a systematic (monotonic) relation between response latencies (and errors) and the
extent of topological transformation (ie longer latencies and higher error rates for
larger topological transformations), and (b) sequentially additive transformation times.

According to the particular exemplar-based model of Cohen and Nosofsky (2000),
performance in sequential matching tasks (ie speeded same ^ different judgments)
can be modeled by assuming that pairs of stimuli are memorised and retrieved to
drive a random-walk process. One of the predictions of this model is that same
responses are faster for objects lying in isolated than those lying in dense regions
of similarity space.

4.2 Methods
4.2.1 Participants. Twenty-two university undergraduates in psychology participated
voluntarily (mean age 22 years) and were tested individually in two sessions of around
50 min each.

4.2.2 Procedure. Each trial started with a fixation cross for 500 ms, followed by the
first stimulus (150 ms), a mask for 500 ms, the second stimulus (150 ms), and a mask
until response. Subjects had to decide whether both stimuli belonged to the same basic-
level category (same trial) or not (different trial). The experiment consisted of 1056 same
trials and 1056 different trials. The former were created by pairing the exemplars from
each sequence with each other (46466 sequences611 categories � 1056 same trials).
The latter were created by pairing the first stimulus from all the same trials with a
stimulus from another category. For each subject, the 2112 trials were presented randomly
and divided into two sessions. Before the experiment, subjects were made familiar with
the category labels, the kind of stimuli (ie outlines that were not extreme in the MDS
solution) and the task (44 practice trials). Stimuli (4006300 bitmaps) were shown
centred on a 15-inch laptop screen (10246768 pixels, 60 Hz refresh, background
luminance 20 cd mÿ2) and subtended 12.2 deg68.9 deg. A chin-rest was placed 57 cm
away from the screen. Trials were self-paced. Reaction time and accuracy were recorded.
No feedback was given. Subjects were instructed to respond as fast and accurately
as possible.

4.3 Results
4.3.1 Reaction time. In 4.27% (N � 993) of all same trials (N � 23232) an error was
made, leaving 22 239 correct same trials. Reaction times that were larger than 2500 ms
and smaller than 200 ms were excluded (ie 52 trials or 0.23% of the correct same
trials) leaving 22187 trials to enter the analyses. The grand mean RT equaled 511 ms
and was comparable to the 471 ms found by Graf (2002). This increase of 40 ms may
be due to the fact that our stimuli were on average more complex than those used by
Graf (2002).

First, we calculated the average RT for each combination of subject, category, session,
and transformational distance. These average RTs were analysed by a repeated-measures
ANOVA with category (1 to 11), session (1, 2), and transformational distance (0, 1, 2,
and 3) as within-subject factors. Results showed a significant main effect of category
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(F10 210 � 8:55, p 5 0:0001), transformational distance (F3 63 � 67:83, p 5 0:0001), and
session (F1 21 � 43:96, p 5 0:0001). RTs increased with increasing transformational
distance and decreased from session 1 to session 2 (figure 4). Trend analysis for transfor-
mational distance showed a significant linear (F1 63 � 196:88, p 5 0:0001) and quadratic
trend (F1 63 � 6:41, p 5 0:014), but no significant cubic trend (F 5 1). Tukey ^Kramer
corrected pairwise multiple comparisons for the levels of distance showed significant
differences between all pairs.

However, the interaction between distance and category was also significant
(F30 1533 � 2:02, p 5 0:001). Therefore, we subsequently analysed the data separately for
each category to test the effect of transformational distance for each of the six morph-
ing sequences in each category. For all categories there was a significant overall effect
of transformational distance. However, for 49 out of the 66 morphing sequences
(74%), the effect of transformational distance on RTs was not significant. Also, only
14 morphing sequences (21%) showed a monotonic relation between transformational
distance and RT.

In figure 2 (second column) we show the average RT for each stimulus for the
same distance-0 trials. The maximum (white) and minimum (black) RT for each cat-
egory is indicated, as well as local minima (grey; by comparing the three neighbours
for each extreme exemplar and the two neighbours for each morphed exemplar).
In contrast to the prediction of Cohen and Nosofsky (2000), the same response in
distance-0 trials to extreme exemplars lying in an isolated region (ie with rank 1
in figure 2, first column) was not systematically the fastest; for three categories
(butterfly, bird, motorcycle) it was even the slowest. However, it is likely that the
rank-1 exemplars are not necessarily isolated in the underlying psychological space
employed by the subjects.

4.3.2 Error rates. For each subject, we calculated the percentage error for each trans-
formational distance. A one-way ANOVA showed a significant effect of transformational
distance on error rate for same-category trials (F3 63 � 18:4, p 5 0:0001; figure 5). The
effect of session (F1 21 � 1:25, p � 0:28) and the interaction (F3 63 � 1:1, p � 0:36) were
not significant.
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4.3.3 Sequential additivity. In order to investigate whether the RTs were sequentially
additive, which would point to analogue transformations, we followed the procedure
of Graf (2002), and first determined `pure' transformation times for each trial type
containing different exemplars. For example, for the analyses across subjects, we first
calculated the average RT for each combination of subject and the 16 trial types (aver-
aged across categories and sequences). Data for trial types with the same exemplars
were collapsed, resulting in 10 trial types: `11', `22', `33', and `44' with distance-0,
`12' (collapsed with 21), `23' (collapsed with 32), and `34' (collapsed with 43) for
distance-1, `24' (collapsed with 42) and `13' (collapsed with 31) for distance-2, and
finally `14' (collapsed with 41) for distance-3. Next, pure or `observed' transformation
times were calculated. For example, the observed transformation time for trial type 12
(TT12) equals the average RT for 12 (RT12) minus the average of RT11 and RT22.
Similarly, TT13 equals RT13 minus the average of RT11 and RT33, and so on. Next,
we calculated the predicted transformation times for each of three distances: the pre-
dicted TT13 � TT12� TT23, the predicted TT24 � TT23� TT34, and the predicted
TT14 � TT12� TT23� TT34. Scatter plots of the predicted and observed TTs for
this analysis across subjects are shown in figure 6 (left column) for each of the three
distances. Correlations between observed and predicted transformation times for dis-
tances 13, 24, and 14 equalled 0.75, 0.47, and 0.46, respectively (all ps 5 0:05; N � 22).
t-Tests showed that the difference in mean transformation times between predicted and
observed times was almost significant for the largest distance (distance 14: t21 � 1:76,
p � 0:093) but not for distances 13 and 24. A similar analysis was done for the 66
morphing sequences (figure 6, right column). Here, the correlations for 13, 24, and 14
equalled 0.59, 0.46, and 0.46, respectively (all ps 5 0:05, N � 66). Again, the difference
in mean transformation times between predicted and observed times was almost signif-
icant for the largest distance (distance 14: t65 � 1:76, p � 0:082) but not for distances
13 and 24. Note that several predicted transformation times were negative, indicating
that the mean RT for distance-1 trials (ie RT12, RT23, and RT34) was lower than for
distance-0 trials. Interestingly, also several observed transformation times were negative,
but only for the analysis across morphing sequences (figure 6, right column).

4.4 Discussion
In experiment 3, error percentages and average reaction times increased monotonically
with increasing transformational distance between both exemplars in a sequential basic-
level matching task, as found by Graf (2002).

However, in our data set, the hypothesis of sequential additivity, which lies at the
heart of TMRC, was violated many times, since (i) for 74% of the sequences no
significant differences in RTs were found; (ii) only 21% of the morphing sequences
showed a monotonic relation between transformational distance and RT; (iii) the
correlations between predicted and observed transformation times were not very high;
and (iv) for many sequences the predicted and/or `observed' transformation times were
negative. The evidence for sequential additivity was also not very strong in Graf's data
(which he himself also admittedöGraf 2002, pages 142 ^ 143).

To account for sequential matching performance (ie speeded same ^ different judg-
ments), Cohen and Nosofsky (2000) extended the EBRW of Nosofsky and Palmeri
(1997a) by assuming that two processes drive the same^different judgments. First, when-
ever a pair of objects is presented, subjects are assumed to make on-line judgments of
perceptual similarity; high values drive a random-walk counter toward a s̀ame' response
criterion, while low values tend to drive the counter toward a d̀ifferent' response crite-
rion. Second, observers are also assumed to store individual examples of experienced
same and different pairs of objects in memory. When presented with an input pair, exem-
plar pairs from memory are retrieved according to their similarity to the input pair;
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retrieval of same (different) pairs moves the random walk toward the same (different)
response criterion.

Thus, as the transformational distance between two outlines increases, the initial
on-line judgment of perceptual similarity will tend to drive the counter toward a `differ-
ent' response criterion. However, since similarity is time-dependent (Lamberts 2000),
continued visual processing will eventually drive the counter toward the `same' response
criterion, and this will take longer when the transformational distance is larger, producing
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the monotonic increase in RT with increasing transformational distance. The improve-
ment in RT from the first to the second session is then due to the fact that the visual
stimuli are stored in memory (during session 1) and come to speed up the decision
process (during session 2). In other words, the sequential matching task becomes more
automatic when the experience of the observers with individual exemplars and pairs
of exemplars increases (see also Palmeri et al 2004).

Although this explanation sounds valid, we believe that it does not accurately
describe human performance in sequential matching tasks. TMRC, EBRW, and Lamberts's
(2000) information-accumulation model have one thing in common: responses are only
initiated after a decision process. In section 6 we will discuss an alternative explanation
according to which the effect of image transformations on sequential matching perfor-
mance measures is localised, at least in part, at the response level.

5 Experiment 4. Typicality and topological transformations
5.1 Introduction
In experiment 4, we collected typicality ratings for each of the 16 exemplars of each
category to assess the ecological validity of our morph stimuli in each category. If the
morph exemplars are interpreted as real exemplars from a category, their typicality
should be at least as high as that for the selected extreme exemplars.

Furthermore, TMRC and exemplar-based models generate contrasting predictions.
According to TMRC, typicality is based on the transformational distance to the cate-
gory prototype representation. The most typical stimulus is regarded as being the
most similar to the category prototype representation. TMRC predicts that typical-
ity ratings will decrease with increasing distance from the most typical exemplar (the
prototypical exemplar) in a morphing sequence. Since categorisation of a stimulus
is based also on the topological distance, TMRC predicts an association between
typicality and categorisation (ie higher typicality is associated with faster RTs and vice
versa).

In contrast, exemplar-based models assume that typicality is based on the summed
similarities of the stimulus to all the exemplars from that category, while categorisation
is determined by the relative degree of target-category in contrast-category similarity.
Therefore, a dissociation between classification and typicality judgments can be expected,
as has been observed by Nosofsky (1988).

Interestingly, it is generally assumed that category prototypes constructed to be
physical central tendencies of category exemplars are also psychological central ten-
dencies (eg Smith and Minda 2001). While this assumption of a fairly direct mapping
between physical and psychological dimensions may exist for stimuli with clearly
defined psychological dimensions (eg semicircles of varying sizes containing radial
lines of varying angles), Palmeri and Nosofsky (2001) argued that the mappings
between physical properties and psychological dimensions are not so clearly defined
for fairly complex stimuli (eg artificial dot-patterns, checkerboard patterns, and
perhaps also for more natural stimuli). The result is that prototypes that are physical
central tendencies of category exemplars may sometimes reside not as psychologi-
cal central tendencies, but as psychological extreme points relative to the category
exemplars (and to the exemplars of contrast categories). In each of three experiments,
Palmeri and Nosofsky (2001) created prototypes (dot patterns in the shape of a triangle,
a plus, and an F; three unfamiliar dot patterns with vertical symmetry; two complex
checkerboard patterns) and distortions of these prototype patterns, the latter acting as
category exemplars. During training in each experiment, participants learned to classify
a subset of the distortions with feedback. During transfer, participants were tested on
the old distortions, on new distortions, and on the prototypes. Finally, in each experi-
ment, participants made pairwise similarity judgments between all possible pattern
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pairs to derive the psychological coordinates of all the patterns using MDS. The
most important result in the current context is that the MDS solutions of each experi-
ment showed that the prototypes were psychological extremes in relation to other
exemplars of their categories (and to the exemplars of contrast categories). During
categorisation learning with complex physical stimuli, various emergent dimensions,
based on diagnostic, functional features may be formed, which causes the prototypes
to be represented as psychological extremes. The similarity measure based on these
features can be quite different from the similarity measure used to create the physical
central tendencies. The MDS solutions also allowed exemplar-based models to pre-
dict the observed extreme prototype-enhancement effects better than prototype-based
models.

Based on this reasoning, it is possible that participants have created such functional
features during categorisation learning of real-life objects, and that the exemplar outline
rated as most typical will occupy extreme positions.

5.2 Methods
5.2.1 Participants. Fifty-six high-school students participated voluntarily (mean age
17 years) and were tested collectively in one of three groups. The experiment lasted
around 30 min.

5.2.2 Procedure. The 16 exemplar outlines (4 extremes � 12 morphs) of each category
were printed on one A4 page, in a random order for each participant. For each of the
eleven categories, subjects had to rate the typicality of each exemplar on a 6-point scale
(1 very atypical 6 very typical) which was also printed on each page. Subjects were
encouraged to use all points of the scale.

5.3 Results
First, we calculated the average typicality for each combination of subject and the
four exemplar positions within a sequence. Like Graf (2002), we did not necessarily
expect that the effect of position would be significant because the position of the
category prototypes might be distributed over categories and sequences. Still, a one-
way repeated-measures ANOVA showed a significant effect of exemplar position
(F3 159 � 18:576, p 5 0:0001). On average, the typicality ratings were higher for exem-
plars in the middle positions than for the exemplars at the extreme positions of the
sequences (figure 7). Trend analyses showed a significant linear trend (F1 159 � 16:69,
p 5 0:0001) and an even stronger quadratic trend (F1 159 � 39:6, p 5 0:0001), but no
significant cubic trend (F 5 1). Pairwise multiple comparisons showed that positions
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2 and 3, and positions 2 and 4 did not differ significantly from each other, while the
others did.

Second, to investigate the prototypicality gradients for each sequence in each cat-
egory, figure 2 (right column) shows the mean typicality ratings of each exemplar of
each category (averaged across subjects) with the maximum (black) and minimum
(white) values indicated. Similar to Graf (2002), we define a prototypical exemplar as
an exemplar for which the average typicality is higher than that of their neighbouring
exemplars (ie three neighbours for each extreme exemplar and two neighbours for
each morphed exemplar; grey squares in figure 2 right column; the black square
indicates maximum typicality). Based on this definition, the number of prototypical
exemplars for a category ranged from 1 to 6. Figure 8 shows the position of the
four extremes for each category when the sixteen stimuli are sorted from low to high
typicality.

Two interesting observations can be made. First, a clear dissociation between typi-
cality and categorisation is evident when comparing the positions of the white, black,
and grey squares in the middle and right column of figure 2. TMRC would predict
the same locations of the different coloured squares in both columns for each category.
Second, figure 8 shows that the exemplar that was rated as the most typical occupied
an extreme position for five out of eleven categories, while this was also the case for
the second-most typical for three other categories. For nine categories the exemplar
rated on average as least typical was also an extreme stimulus.

5.4 Discussion
In experiment 4 we found that the rated typicality was on average higher for the
intermediate morph stimuli than for the extreme stimuli, replicating the findings of
Graf (2002). The position of the exemplar that was rated as most typical, however, was
an extreme position for five out of eleven categories (car, guitar, chair, vase, bird).
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This finding is inconsistent with the idea that the category prototype representation
is the central tendency of the exemplars, and therefore should occupy a central posi-
tion in the underlying psychological space. However, just as exemplar-based models,
TMRC allows the existence of multiple prototypes (in analogy with multiple views in
object recognition). The observed range of (local) prototypes across categories (one to
six) might resemble the existence of a different number of subcategories for different
basic-level categories. Crucially, the observed dissociation between typicality and cate-
gorisation clearly favours an exemplar-based account over an alignment account.

Finally, the observation that an extreme exemplar was rated as most typical for
five categories is not inconsistent with the idea put forward by Palmeri and Nosofsky
(2001) who, as mentioned in section 1, found that prototypes that are physical central
tendencies of category instances may become represented psychologically as extreme
points. They suggested that the extreme-point prototype representation might arise
from the emergence of diagnostic, functional features that may be created as part of
the process of category learning (Schyns 1997, 1998; see also Schyns and Rodet 1997).
Neurophysiological studies showed that neurons in IT respond strongest to stimuli
with extreme values of shape dimensions (De Baene et al 2007, 2008; Kayaert et al
2005). Thus, although prototypes are never observed during natural vision, the proto-
types used in vision research (eg stimuli with perfect symmetry, averages of a large
number of faces, etc), and our exemplars that are rated as most typical, might have
extreme values of the diagnostic shape dimensions from exemplar-based models.

6 General discussion
We created and validated a new stimulus set using morphing between four selected
exemplar outlines from the same category, and investigated the predictions from a
transformational alignment model and from exemplar-based models. The nonlinear
relation between similarity and topological distance (experiment 2), the deviations
from sequential additivity (experiment 3), and the dissociation between typicality and
categorisation (experiment 4), contradict the idea of an analogue transformational
alignment process, but not of exemplar-based representations.

However, we believe that current exemplar-based categorisation models do not yet
adequately describe human visual performance. In this section we first discuss two
principlesöthe world as an outside memory and the continuous-flow model of infor-
mation processingöthat have been neglected in the literature. Subsequently, we argue
that when exemplar-based models also incorporate the second principle, they can
quite easily explain the behavioural dependency on all kinds of image transformations.
Next, we discuss the concept of transformation and its relation to gain-modulation.
We end by discussing other time-consuming and error-prone processes that can con-
tribute to the behavioural dependence on image transformations.

6.1 The world as an outside memory
O'Regan (1992) noted, as many before him, that, despite all kinds of defects in the
construction of the eye and retina (eg the fovea is not a region of uniform acuity),
the world we perceive does not seem of different resolution or colour at different
eccentricities, and the displacement of the retinal image caused by saccades and
fixational instability is usually not noticed. Traditional theories, including TMRC,
incorporate some kind of compensatory mechanisms that implicitly assume the exis-
tence of an internal representation like a kind of `internal screen' or `scale model'
which has metric properties like the outside world. However, O'Regan (1992) dis-
cusses experiments that suggest an alternative view in which the outside world is
considered a form of ever-present external memory that can be sampled at leisure
through eye movements. According to this view there is no need to reconstruct shape
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to compensate for eye movements or image transformations, and not many details are
remembered across saccades. The goal is simply to extract enough visual information
to decide on an appropriate action. Vision is an active process where eye movements
cause a change in sensation which is used to modify or confirm an interpretation,
which guides further action (O'Regan 1992; see also Rybak et al 1998; Trick and Enns
1997).

While TMRC and classical structural description theories such as recognition-by-
components (Biederman 1987) reconstruct shape or parts, and thus represent shape
information through the similarity between input and memory (first-order isomorphism),
exemplar-based models do not try to reconstruct shape but convey information about
shape by representing the similarity between shapes itself (second-order isomorphismö
Edelman 1998) by means of an interpolation process (see above). Nevertheless, the
structure of objects can be represented in exemplar-based models if shape-tuned units
are also selective to the location of its preferred shape feature (`what � where' unitsö
Edelman and Intrator 2000; see also Newell et al 2005). In this view, exemplars are
defined as image fragments (in contrast to holistic images or generic parts), and the
spatial relations between them are continuous and coarsely coded. In general, features
that co-occur more frequently will become more strongly associated, and extensive
experience with the same features in a consistent configuration will give rise to more
complex features. In contrast to rigid templates, the relative positions of features might
be represented probabilistically instead of deterministically, thereby providing flexible
or `deformable' templates for recognition (Barenholtz and Tarr 2008; Tarr and Bu« lthoff
1998).

For example, Kukkonen et al (1996; see also Wagemans et al 1996, 2000) showed
that relatively simple cues, such as parallelism, collinearity, and curvature sign (convex-
ities versus concavities), which are easy to extract during different fixations, are used
when judging whether two retinal images arise from the same object viewed from
different positions. These image-based properties, resulting from perceptual organisa-
tion, can be described as `qualitative or quasi-invariant properties'öby themselves
special cases of mathematical invariant propertiesöand might partly underlie the fast
assessment of affine, projective, and Euclidean shape equivalence, and topological class
equivalence.

6.2 The continuous-flow model of human information processing
The continuous-flow model of information processing (Eriksen and Schultz 1979; see
also Coles et al 1985) suggests that the latency and accuracy of overt behavioural
responses are a function of (a) a response activation process controlled by a stimulus
evaluation process that accumulates evidence gradually, (b) a response priming process
that is independent of stimulus evaluation, and (c) a response competition process.
Although this model was invented in the context of visual search tasks, where RT
increased with increasing number of distractors, we will elaborate on these proces-
ses and provide recent studies that are consistent with the predictions of this model,
although they were not set up to test them directly. Current exemplar-based categori-
sation models are largely neglecting these processes.

First, Eriksen and Schultz (1979) discuss how improvement in acuity with increased
viewing time or exposure duration of the stimulus can be attributed in most instances
to increased energy summation over the longer temporal interval. Such summation
of energy implies that the accumulation of information about a stimulus in a sensory
register or the percept is a temporally distributed process. The gradual accumulation
of stimulus information in the visual system is consistent with (a) the gradual increase
in neural activity of single cells and cell populations in object-related areas (Eger et al
2006; Mruczek and Sheinberg 2007), (b) the reverse hierarchy theory (Hochstein and
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Ahissar 2002) which states that the local properties or details are only available later
when focused attention is directed to them, (c) the finding that object-selective neurons
first convey global, categorical information before they convey local, fine identity
information (Sugase et al 1999), and (d) recent computational and neurophysiological
research that uses time as a coding dimension for neural representations (Perrett et al
1998; Wyss et al 2003). For example, Perrett et al suggest that the speed of recognition
of an object depends on the rate of accumulation of activity from responsive neurons
that is evoked by the input view, which depends on the extent that the object has
been experienced before under the same viewing conditions. Activity among the popu-
lation of cells selective to the object's appearance will accumulate more slowly when
the object is seen in an unusual view, orientation, or size, compared to the training
experience. Furthermore, if the evidence for a particular object at a particular orienta-
tion is small (because of degraded input or short presentation durations) more
information needs to be gathered by covert and overt attentional selection processes
(Perrett et al 1998). However, it is not clear whether such a process is sufficient to explain
the behavioural dependence on image transformations in sequential matching tasks.

Second, according to the continuous-flow model, response activation begins as soon
as some visual information is accumulated. Thus, the process of stimulus evaluation
continuously feeds information about the stimulus to associated response activation
systems. Early in the process, the information is consistent with a wide range of
responses, and these receive initial activation. As the information continues to accumu-
late, response activation becomes increasingly focused on responses that remain viable
alternatives, given the accumulated data. A given response is only evoked when the
activation of its channel exceeds a threshold. Crucially, responses can compete with
each other. The speed with which a correct response is executed depends, in part, on
the extent of response competition. The greater this competition, the longer the latency
of the correct response.

Thus, this continuous-flow model does not provide for a separate decision stage
responsible for activating or initiating responses; responses are emitted whenever one
of the response channels exceeds a criterion level (which can fluctuate from trial to trial).
Furthermore, it implies that the duration of the evaluation process cannot always be
inferred from RT (which is an implicit assumption in TMRC). Initial evidence for
these processes in a non-search task comes from a study of Coles et al (1985) who used
an analogue-response device (two dynamometers) and measures of the electromyogram
of the hand muscles to show the reality of partial response activation and response
competition. By measuring also the latency of the P300 component of the event-
related brain potential (probably related to a process that is invoked only after stimulus
evaluation has been completed), Coles et al (1985) could confirm the predictions of
the continuous-flow model.

Recent evidence for response competition in the context of a categorisation task
comes from Spivey and Dale (2006) and Dale et al (2007) who used eye-tracking
and mouse-tracking evidence. Also, neurophysiological and neuroimaging research on
decision-making is consistent with the idea of a continuous flow of information up
to response systems (Heekeren et al 2004; Hernändez et al 2002; McKeeff and Tong
2007; Rorie and Newsome 2005). For example, Hernändez et al (2002) trained
monkeys to discriminate between two vibrations applied sequentially to the fingertips;
monkeys had to recall the frequency of the first vibration, compare it to the second
one, and indicate with a hand movement which of the two vibrations had the higher
frequency. They found that the responses of single neurons in medial premotor cortex
correlated with these diverse stages of the discrimination process (ie coding the first,
coding the second, comparison, response). Finally, the idea that multiple object repre-
sentations can be activated and compete has recently been taken up by Bar (2003),
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Bar et al (2006), Gabroi and Lisman (2003), Panis et al (2008a), and Panis and Wagemans
(2008). For example, Gabroi and Lisman (2003) show how bidirectional flow of infor-
mation in reciprocally connected hierarchical cortical areas can be organised to produce
recognition of objects and categories through the detection of combinations of features,
and how the serial process of attention can be integrated with the parallel recognition
processes. After the early activation of a set of candidate objects (and responses) based
on early and coarse information (eg low spatial frequencies), later bottom ^ up flow of
detailed information through a narrow window of attention then leads to the inactiva-
tion (exclusion) of candidate object representations (eg activated flexible hierarchical
feature templates) that are inconsistent with the sampled information, thereby reducing
the set of possible objects and responses. Algorithms for moving attention make use
of top ^ down connections to compute the relative probability of each feature or spatial
relation between features, given the set of still-possible object representations, after
which attention will move to the most informative feature. Recognition occurs after a
few cycles when the serially sampled information leads to the inactivation of all but one
candidate object (Gabroi and Lisman 2003).

Third, another way in which response channels can be activated is through a
response-priming process that is independent of the nature of the input stimulus and
may even precede stimulus presentation. Such aspecific priming may be triggered by
factors such as instructions, expectancy, pay-off schedules, and the like (Coles et al 1985).

We argue that the continuous-flow model can, at least in part, explain the behav-
ioural dependence on topological and other image transformations. In particular, the
increase in RT (and error percentage) with increasing topological distance in experi-
ment 3 is caused by a greater competition between the responses of both hands:
`yes' (same) or `no' (different). Response competition is lowest in distance-0 trials since
there is no evidence in the stimuli for the `no' response. However, a low number of
errors is made because of the aspecific priming process, which will sometimes activate
the incorrect response. For distance-1 to distance-3 trials, the initial evidence is
increasingly activating the `no' response because of the greater shape changes and the
image-based sensitivity of the visual system, leading to stronger response competition,
and the observed higher error probabilities and latencies of the correct `yes' response.

Furthermore, negative transformation times for distance-1 trials (TT12, TT23, or
TT34), resulting in negative subject- and sequence-specific, predicted transformation
times for distance-2 and distance-3 trials (TT13, TT24, and TT14), are not surpris-
ing: trial-by-trial fluctuations in the threshold and/or fluctuations in the amount of
aspecific priming can result in a faster crossing of the threshold in some distance-1
trials compared to distance-0 trials, when the competition is weak. However, when the
shape changes reach a critical size (as in distance-2 and distance-3 trials), the competi-
tion between responses is strong enough to prevent a quick crossing of the threshold
of the correct response; no observed subject-specific transformation times (averaged
across all morphing sequences) for distance-2 and distance-3 were negative (figure 6
left column). In contrast, observed morphing sequence-specific transformation times for
distance-2 and distance-3 trials can be negative because they are averaged across subjects
which differ in the speed of information transmission, the threshold level, the amount
of aspecific priming, category knowledge, muscle strength, etc.

6.3 Transformations and gain-modulation
Although our data reject TMRC, analogue transformations of visual information
might occur in the system. Information processing of visual information can be con-
sidered as a progressive series of visual re-representations or transformations of the
retinal representations, from V1 to V2 to V4 to IT, in order to make objectively sim-
ilar stimuli closer to each other, and dissimilar stimuli farther apart (Connor et al 2007;
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DiCarlo and Cox 2007; Weiss and Edelman 1995). Furthermore, gain-modulation is a
nonlinear way in which neurons combine information from two or more sources, and
it can serve as a basis for a general class of computations, namely coordinate trans-
formations and the generation of invariant responses (Salinas and Sejnowski 2001).
For example, the receptive fields of some neurons in parietal cortex are gain-modulated
by head and eye positions, resulting in a change from retinal, or eye-centred, to body-
centred coordinates. Also, neurons in V4 which respond to combinations of curvature
and orientation, are gain-modulated by the location where attention is directed, and
leads downstream IT neurons that are driven by the gain-modulated ones, to become
responding in a coordinate frame centred on the location where attention is directed,
ie they are insensitive to the absolute location of the input pattern or translation invariant
(Salinas and Sejnowski 2001).

These attention-centred responses in V4 might explain the orientation-congruency
effects as observed by Graf et al (2005). They presented a first stimulus for 104 ms
immediately followed by a second stimulus for 82 ms (on average across subjects).
Both stimuli were either in congruent or incongruent orientations. Six different objects
could appear as the first target and eighteen objects as the second target. Furthermore,
left-facing objects were flipped so that all objects were oriented to the right. The
orientation-congruency effect found by Graf et al, namely higher naming accuracy of
both objects in the correct order for congruent than for incongruent orientations,
was independent of superordinate category membership and was found for objects with
different main axes of elongation (eg tree versus fish).

Gauthier and Tarr (1997) and Tarr and Gauthier (1998) found (picture-plane and
3-D) orientation priming only for visually similar shapes. Indeed, in an exemplar-based
system in which objects are represented in a viewpoint-dependent manner, including
information of the shape and orientation or pose, the same view of two different
exemplars of the same class may be more similar than two different views of the
same exemplar. The most salient difference between the study of Gauthier and Tarr
(1997) and that of Graf et al (2005) is the difference in stimulus duration. Presenting
stimuli for as short a time as Graf et al (2005) did will not allow extraction of details
of shape and location (ie full accumulation of visual information about shape and
location). Rather than concluding that orientation congruency effects argue for models
in which recognition is achieved by an adjustment of a perceptual coordinate system,
we believe that a much more basic process such as gain-modulation by attention can
be responsible. First, we assume that accuracy is mostly dependent on the correct
recognition of the second object. Second, it is known that covert spatial attentional-
selection effects start around 80 ms after stimulus onset, peaking about 20 ms later
(Hillyard et al 1998). Third, if the first object, eg a fish rotated by 508 in the picture
plane, is categorised around 150 ms after its onset, the system knows that the feature
on the upper right of the fixation cross (where covert attention might be focused at
that moment) is the top of the fish (eg its dorsal fin or a sharp convexity pointing to
the upper right). Thus, when suddenly the second object (eg a tree rotated by 508)
replaces the first object at 104 ms after the onset of the first stimulus, the top ^ down
gain-modulatory influences based on the location of attention might still continue
when initial and coarse shape and location information of (fragments of) the second
stimulus reaches V4; this will lead to the correct interpretation of the location of the
new input only when both objects have the same orientation regardless of superordi-
nate or main-axis congruency (ie if this new feature on the upper right of the fixation
cross is also located on top, then it must be a tree). Indeed, because only eighteen
objects could appear as the second target (and each object was seen many times),
accumulating details about the shape of the new featureötogether with the interpre-
tation of its coarse locationöwill often allow rejection of all the incorrect responses.
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In contrast, when the second stimulus has a different picture-plane orientation (eg a
tree rotated by 1408), then interpreting the new feature as lying on top of the object
will interfere with the recognition process.

6.4 Other time-consuming and error-prone processes
Response competition is not the only time-consuming and error-prone process that
might lead to the observed behavioural dependence on image transformations. First,
the statistical properties of images of a certain category (eg face, dog, car, etc) might
allow easy or difficult generalisation performance (Ja« kel et al 2007). For example,
Vanucci and Viggiano (2000) examined the effects of plane rotations on the identifi-
cation of line drawings of exemplars from three categories (animals, vegetables, and
inanimate objects). While a clear effect of rotation on response time was found for
animals (which have been seen usually in the upright orientation), no effect at all was
found for vegetables (which have been seen in all orientations before) and only partial
effects for inanimate objects. Interestingly, the minimum amount of visual information
necessary to identify rotated stimuli also varied as a function of category.

Second, departures from a monotonic increase in RTs and/or error rates with increas-
ing spatial transformations have been observed, resulting from practice with certain
views of the same object, or of visually similar objects (Lawson and Humphreys 1998;
Tarr and Gauthier 1998).

Third, previous experiences with objects will lead to repetition priming effects
(Schacter 1992). This unconscious or implicit form of memory refers to the fact that
object recognition is improved for repeated compared to new stimuli. Furthermore,
repetition priming is shape-specific, gradual, and long-lasting; and reduced but not
eliminated with changes in an object's exemplar (Vuilleumier et al 2002). Since Wiggs
and Martin (1998) concluded that all changes in physical attributes that are essential
to the representation of object form do influence perceptual priming, we conclude
that this process could contribute to differences in RT in sequential matching tasks.
Note that neurophysiological manifestation of repetition priming and familiarity can
also explain asymmetries in similarity judgments (Op de Beeck et al 2003).

The result is that different processes might be used for different transformations.
For example, the results of Lawson et al (2000) suggest that compensation for plane
rotation starts relatively early in processing, before compensation for depth rotation
has begun. First, plane-rotated stimuli may be processed differently from upright
stimuli because spatial relations between features may be harder to extract for plane-
disoriented views of familiar objects, whereas local features may be analysed equally
efficiently at all plane rotations. Also, certain perceptual attributes that can be extracted
before the identification of an object (eg based on low spatial frequenciesöBar 2003)
could provide important information about the probable orientation of the object
in the plane, for instance, the orientation of any axes of symmetry, the main axis of
extension, and the likely base of the object. In contrast, these attributes may not be
as informative about the depth orientation of an object. Identifying objects rotated in
depth may depend on additional perceptual processing (if a more accurate representa-
tion is required compared to canonical views) or prolonged memory retrieval (if, for
example, only fragments of foreshortened views could initially be identified, since the
bounding contour or outline is not diagnosticöLawson et al 2000). It is also quite
likely that the shape of the parts of foreshortened objects and the spatial relationships
between them differ so radically from the correctly stored, view-specific object represen-
tations, that it takes longer to accumulate enough evidence to rule out all the acti-
vated but incorrect candidates (see also Panis et al 2008a; Panis and Wagemans 2008).
Similarly, the finding that RTs to decide if two sequentially presented shapes are
identical except for changes in picture-plane orientation or size are sequentially additive

1844 S Panis, J Vangeneugden, J Wagemans



(Bundesen et al 1981) is also consistent with the idea that two sequential and dissociable
processes are involved, eg attentional selection of a spatial area of a certain size (see
also Cave and Kosslyn 1989) and the extraction of low spatial frequencies that contain
information about the probable orientation (see above).

7 Conclusion
It is perhaps not surprising that view-based and exemplar-based theories do a better
job in explaining categorisation data, since they store more information and therefore
can convey more information about the stimulus during a given period in comparison
to prototype-based models. In contrast to the idea that categorisation involves analo-
gue frame coordinate transformations implemented by gain modulation, we conclude
that our results and other findings are consistent with exemplar-based, view-specific
accounts of recognition for matching the input with stored representations when taking
into account well-established processes such as accumulation of visual information,
perceptual organisation, attentional selection, covert model selection, perceptual priming,
response priming, and response competition.
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