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1 Introduction

If A is a linear operator on a Hilbert spaceH (e.g. a largeN × N matrix operating on
CN ) andv ∈ H , then the spaceKn+1(A, v) = span{v0, . . . , vn} with vk = Akv is
called a Krylov subspace. To solve a linear equationAx = b or an eigenvalue problem
for A, the problem is projected onto a Krylov subspace of finite (i.e. low) dimension
(n ≪ N in the matrix example) and this low dimensional problem is solved to give an
approximation to the original problem. To compute the projection, an orthogonal basis
is constructed for the Krylov subspace. Clearly, the(k + 1)th orthogonal vectorqk has
to be a combination of the firstk + 1 vectors in the Krylov sequence. Hence it is of the
form qk = φk(A)v with φk(z) a polynomial of degreek.

Suppose thatA is hermitian. Orthonormality ofq∗kql = δk,l is then equivalent with
the orthonormality of the polynomials〈φk, φl〉 = δk,l with respect to the inner product
defined by〈φk, φl〉 = M(φkφl), where the linear functionalM is defined on the space
of polynomials by its momentsmk = M(zk) = v∗Akv (see [3]). Since the classical
moment matrix has a Hankel structure, this theory will be related to orthogonality of
polynomials on the real line. Thus, in the classical Lanczosmethod for hermitian
matrices, the three-term recurrence relation for the orthogonal polynomials leads to a

∗The work is partially supported by the Fund for Scientific Research (FWO), projects ‘CORFU: Construc-
tive study of orthogonal functions’, grant #G.0184.02, and‘RAM: Rational modelling: optimal conditioning
and stable algorithms’, grant #G.0423.05, and by the Belgian Network DYSCO (Dynamical Systems, Con-
trol, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. The scientific responsibilityrests with the authors.
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short recurrence between the successive vectorsqk, meaning thatqk can be computed
from qk−1 andqk−2 without the need for a full Gram-Schmidt orthogonalisation.

Computing thevk is like an application of the power method and therefore, thevk

will quickly converge to an eigenvector corresponding to a dominant eigenvalue. Thus,
if we want an eigenvalue nearµ, we should not iterate withA, but with B = (A −
µI)−1. The rational Krylov method (RKS) of A. Ruhe [4, 5, 6] allows for a different
shift µ in every iteration step. Thus,vk = (A − µkI)−1vk−1, or even more generally
vk = (A − σkI)(A − µkI)−1vk−1, whereµk is used to enforce the influence of the
eigenspaces of the eigenvalues in the proximity ofµk, while σk is used to suppress
the influence of the eigenspaces of the eigenvalues in the neighbourhood ofσk. This
construction ofvk means that we may writevk asvk = rk(A)v with rk a rational
function of the formpk(z)/[(z−µ1) · · · (z −µk)], wherepk is a polynomial of degree
k at most, so that after orthogonalisingvk with respect to the previous vectors, we
obtain a vectorqk = ϕk(A)v, where againϕk(z) is a rational function of the same
form asrk.

Orthogonal rational functions (ORFs) on the real line are a generalisation of or-
thogonal polynomials (OPs) on the real line in such a way thatthe OPs return if all
the poles are at infinity. IfA is hermitian again, it will be obvious that orthogonality
of theqk will lead to some orthogonality of the rational functionsϕk, so that a simple
recurrence of the ORFs will lead to an efficient implementation of the RKS. Hence, the
aim of this paper is to generalise the results in [3] for Krylov sequences and OPs on the
real line to the case of RKS and ORFs.

The outline of this paper is as follows. After an overview of the necessary theoret-
ical preliminaries in Section 2, Section 3 deals with reformulating those results in [3]
that still hold for the rational case. Next, in Section 4 we derive, under certain condi-
tions on the polesµk, a three-term recurrence relation for the orthonormal vectorsqk.
In Section 5 we take a closer look at the conditions on the poles. We conclude this
paper with some numerical examples in Section 6.

2 Preliminaries

The field of complex numbers will be denoted byC. For the real line we use the symbol
R and for the positive real lineR+ = {z ∈ R : z ≥ 0}. If the number zero is omitted
from the setX , this will be represented byX0, e.g.R0 = R \ {0}.

Suppose the sequence ofN + 1 < ∞ numbersM = {µ0, µ1, . . . , µN} ⊂ R0 ∪
{∞} is given, and define the factors

Zk(z) =
z

1 − µ−1
k z

, k = 1, 2, . . . , N, (1)

and the products

b0(z) ≡ 1, bk(z) = Zk(z)bk−1(z), k = 1, 2, . . . , N. (2)

Then the space of rational functions with poles in{µ1, . . . , µn}, n ≤ N is defined as

Ln = span{b0(z), b1(z), . . . , bn(z)}.
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In the special case of allµk = ∞, the factor in (1) becomesz and the products in (2)
becomebk(z) = zk.

Orthonormalising the basis{b0(z), . . . , bn(z)} with respect to an inner product
defined by a real positive definite linear functionalM on a subset of the real line,

〈f, g〉 = M{fg}, f, g ∈ Ln,

we obtain the orthonormal rational functions (ORFs){ϕ0(z), . . . , ϕn(z)}.
Let Pk represents the space of polynomials of degree less than or equal tok. Sup-

pose thatpk ∈ Pk and defineπk ∈ Pk by

π0(z) ≡ 1, πk(z) =

k
∏

j=1

(1 − µ−1
j z), k = 1, 2, . . . . (3)

We then callϕk singular whenϕk(z) = pk(z)
πk(z) andpk(µk−1) = 0 for k > 1 (p0(z) ≡ 0,

respectivelyp1(z) ≡ c ∈ R, in case ofk = 0, respectivelyk = 1), and regular in all
other cases. A zero ofpk at∞ then means that the degree ofpk is less thank. With
this, the following recurrence relation has been proven in [1, Thm. 11.1.2 and Lem.
11.1.6].

Theorem 2.1. Take by conventionµ−1 = ∞. Then the ORFsϕk−1, ϕk and ϕk+1

are regular, fork = 0, . . . , N − 1, iff they satisfy the following three-term recurrence
relation:

zϕk(z) = βk−1

(

1 − µ−1
k−1z

)

ϕk−1(z) + αk

(

1 − µ−1
k z

)

ϕk(z)

+ βk

(

1 − µ−1
k+1z

)

ϕk+1(z).

The initial conditions areϕ−1(z) ≡ 0 andϕ0(z) ≡ {〈1, 1〉}−1/2. The coefficients are
finite andβk is different from zero. Furthermore,βk can be chosen positive real with
β−1 = 1 so that the functionsϕk are uniquely determined.

The formulation used here for the theorem is based on the results in [2, Sec. 4],
except that we do not necessarily takeµ0 = ∞ by convention.

The zeros ofϕk can be computed from the recurrence coefficients by solving a
generalised eigenvalue problem, as given in the following theorem from [2, Sec. 5].

Theorem 2.2. Suppose that the ORFsϕj , for j = 0, . . . , n and 1 ≤ n ≤ N are
regular. Define the matrices

Jn =



















α0 β0 0 · · · 0

β0
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn−2

0 · · · 0 βn−2 αn−1



















, Dn =













µ−1
0 0 · · · 0

0 µ−1
1

. . .
...

...
. . .

. . . 0
0 · · · 0 µ−1

n−1













.

(4)
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Then the eigenvaluesλj , j = 1, . . . , n of the generalised eigenvalue problem

(In + JnDn)−1 Jnvj = λjv
j ,

whereIn is then−dimensional unit matrix andvj ∈ Cn (the superscriptj here denotes
an index), are equal to the nodeszn,j of ϕn(z).

The elements ofCN will be represented by column vectors of lengthN with the
indices running from0 to N − 1. These vectors may also be interpreted as rational
functions. Ifc = (c0, . . . , cN−1)

T is a vector, we assign to it the rational function

ĉ(z) = c0b0(z) + c1b1(z) + . . . + cN−1bN−1(z) = b(z) · c ∈ LN−1,

whereb(z) represents the vectorb(z) = (b0(z), b1(z), . . . , bN−1(z)). A row of vectors
in CN

CN×m =
(

c0, c1, . . . , cm−1
)

will also frequently be interpreted as anN by m matrix

(CN×m)i,j+1 =
(

cj
)

i
, i = 1, 2, . . . , N, j = 0, 1, . . . , m − 1,

where
(

cj
)

i
denotes theith coordinate of the vectorcj . In the remainder of this paper

a superscriptj represents an index in the case of a vector, while for constants and
matrices it denotes a power. Furthermore, the superscriptT and∗ denote respectively
the transpose and the complex conjugate transpose. Finally, in the special case of ann
by n matrix, we shall use the notationCn = Cn×n for n < N , andC = CN×N for
n = N .

Given a vectorc = (c0, . . . , cN−1)
T we denote byD(c) the diagonal matrix with

c0, . . . , cN−1 on the diagonal.

3 Extension of the polynomial case to the rational case

The results from Section 3 up to Section 6 of [3] for the polynomial case remain valid
for the case of rational functions. Therefore, in this section we reformulate those results
for the case of rational functions. For the proof of the theorems, we refer to [3, Sec.
3–6].

Spectral decompositions. A matrix P is said to be a projector ifP 2 = P . A projec-
tor P is an orthogonal projector ifP is hermitian. Ifp is a vector with‖p‖2 = 1, then
pp∗ is the orthogonal projector onto the line generated byp. In a similar way, given an
orthonormal set of vectorsp0, . . . , pk, the sum

∑k
j=0 pj(pj)∗ is the orthogonal projec-

tion onto the linear span of the vectorsp0, . . . , pk.
Given a hermitianN by N matrix A, we assign to it an operator valued function

E(λ) on the real line with the following properties:

1. For eachλ the operatorE(λ) is either zero or an orthogonal projector;
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2. E(λ1)E(λ2) = 0 if λ1 6= λ2;

3.
∑

E(λ) = 1;

4. A =
∑

λE(λ).

This way, the matrixA is represented as a weighed sum of projectors, whereλ ranges
over the whole real line, but the cardinality of the set of thoseλ for which E(λ) 6= 0
does not exceed the size of the matrixA.

It is well known that a hermitian matrixA is unitarily diagonalisable and that its
eigenvalues are real. Hence, letA be of sizeN by N , then there existN real numbers
λ1, . . . , λN and an orthonormal set of vectorsu1, . . . , uN so that

Auj = λju
j, j = 1, 2, . . . , N.

If U is the matrix(u1, . . . , uN) andΛ = D((λ1, . . . , λN )T ), this set of equations may
be rewritten in the form

AU = UΛ.

It is obvious that

A =

N
∑

j=1

λju
j(uj)∗,

where the operatorsuj(uj)∗ are rank one projectors onto a one-dimensional space. So,
to define the functionE(.), we setE(α) = 0 if α does not belong to the spectrum of
A. If α is one of the eigenvalues, we defineE(α) as the sum

∑

uj(uj)∗ for thosej
satisfyingλj = α.

Suppose the sequenceM, as defined before, satisfies the condition thatM ∩
{λ1, . . . , λN} = ∅. Then we define the factors

Zk(A) = (I − µ−1
k A)−1A = A(I − µ−1

k A)−1

=
A

I − µ−1
k A

, k = 1, 2, . . . , N,

and products

b0(A) ≡ I, bk(A) = Zk(A)bk−1(A) = bk−1(A)Zk(A), k = 1, 2, . . . , N.

Note that the order of multiplication does not matter, and hence the factors and products
are well defined. Ifr = (r0, . . . , rN−1)

T is a vector so that̂r(z) ∈ LN−1, we assign
to it the rational matrix-valued function

r̂(A) = r0b0(A) + r1b1(A) + . . . + rN−1bN−1(A).

Using the representationA =
∑

λE(λ), it is easy to see that

r̂(A) =
∑

r̂(λ)E(λ) =
∑

[b(λ) · r] E(λ).
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Scalar products onCN . The standard scalar product onCN will be denoted by

(c, d) = d∗c =

N−1
∑

j=0

cjd
∗
j .

Every positive definite scalar product onCN is given by the expression(Bc, d) =
d∗Bc, whereB is a suitable positive definiteN by N matrix.

Supposem is a nonnegative discrete measure on the real line so that theset of those
λ wherem(λ) > 0 is finite. To define a semi-definite scalar product(c, d)m on CN ,
we consider the rational functionŝc(λ) andd̂(λ) corresponding to the vectorsc andd
and set

(c, d)m =
∑

ĉ(λ)d̂(λ)∗m(λ).

If A is a hermitianN by N matrix andq is a nonzero vector inCN , it is easy to see
that we can choose for example

0 ≤ m(λ) = ‖E(λ)q‖2
2.

Observe that
∑

m(λ) = ‖q‖2
2. If c andd are two vectors inCN , we have that

(ĉ(A)q, d̂(A)q) =
(

∑

ĉ(λ)E(λ)q,
∑

d̂(λ)E(λ)q
)

=
∑

ĉ(λ)d̂(λ)∗‖E(λ)q‖2
2 = (c, d)m.

Now, let us make the additional assumption that the spectrumof A has no multi-
plicities. WithAuj = λju

j for j = 1, . . . , N and(ui, uj) = δi,j , whereδi,j denotes
the Kronecker delta, we have thatE(λj) = uj(uj)∗, so that

m(λj) = ‖E(λj)q‖
2
2 = |(q, uj)|2, j = 1, 2, . . . , N,

and the corresponding scalar product is then

(c, d)m =
N
∑

j=1

ĉ(λj)d̂(λj)
∗m(λj).

Next, consider the matrix

V =







b(λ1)
...

b(λN )






. (5)

Given a vectorc ∈ C
N , it holds that

V c = (ĉ(λ1), . . . , ĉ(λN ))T

is a set of values of the rational function corresponding toc at the pointsλ1, . . . , λN .
If B = V ∗MV , whereM = D((m(λ1), . . . , m(λN ))T ), then

(Bc, d) = (V d)∗M(V c) =

N
∑

j=1

ĉ(λj)d̂(λj)
∗m(λj) = (c, d)m.
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Hence, it follows that the scalar product(·, ·)m is positive definite iff the hermitian
matrix A hasN distinct eigenvaluesλj andq is chosen in such a way thatm(λj) =
|(q, uj)|2 > 0 for j = 1, . . . , N .

Rational Krylov sequences. Given a hermitianN by N matrix A and a nonzero
vectorq ∈ C

N , we define the rational Krylov sequenceK(A, q,M) as the columns of
the Krylov matrix

K = (b0(A)q, b1(A)q, . . . , bN−1(A)q).

Theorem 3.1. SupposeA is self-adjoint and of the formA = UΛU∗ with U =
(u1, . . . , uN ) unitary andΛ = D((λ1, . . . , λN )T ). If q is an arbitrary nonzero vector
in CN , then

K = UD(q̃)V,

whereV is given by(5) and q̃ = U∗q, i.e. the coordinate vector ofq in the basis
u1, . . . , uN .

The rational Lanczos process and ORFs. The application of the orthonormalisation
process to the rational Krylov sequence is equivalent to theconstruction of an upper
triangular matrixG so that the resulting sequenceQ = KG satisfiesQ∗Q = I. By
qk andgk we denote the(k + 1)th column of respectivelyQ andG. Furthermore, let
ϕ̌k = gk andϕk(·) = ĝk(·).

Since(ϕ̌k, ϕ̌l)m = (ϕk(A)q, ϕl(A)q) = (Kϕ̌k, Kϕ̌l) = (qk, ql), the rational
functionsϕk constitute an orthonormal system with respect to the measure m. We
shall make the assumption that the scalar product(., .)m is positive definite, and con-
sequently, that the spectrum ofA is simple. Therefore, we have the following theorem.

Theorem 3.2. Letϕ0, . . . , ϕN−1 be a sequence of rational functions.

1. SupposeA = UD((λ1, . . . , λN )T )U∗, with U = (u1, . . . , uN) andU∗U = I,
is a hermitianN by N matrix andq is a nonzero vector inCN . If the vec-
tors qk = ϕk(A)q form an orthonormal set (or equivalently, if the matrixQ
is the result of the rational Lanczos process applied to the pair (A, q)), then
ϕ0, . . . , ϕN−1 is an orthonormal set of rational functions with respect to the
discrete measurem so that

m(z) =

{

|(q, uj)|2 , z = λj

0 , z /∈ {λ1, . . . , λN}
.

2. If m is a discrete measure with mass pointsλ1, . . . , λN , and ifϕ0, . . . , ϕN−1 is
an orthonormal set of rational functions with respect to themeasurem, then the
vectorsqk = ϕk(A)q form an orthonormal set for the standard scalar product
(·, ·) in C

N for every pair(A, q) of the form

A = UD((λ1, . . . , λn)T )U∗, q =

n
∑

j=1

m(λj)
1/2uj ,

whereU = (u1, . . . , uN) is an arbitrary unitary matrix.
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The following theorem shows how to recoverm if G is given.

Theorem 3.3. Letm be a measure concentrated inN distinct pointsλ1, . . . , λN with
m(λj) > 0. Letϕ0, . . . , ϕN−1 be the system of ORFs corresponding tom. Then

m(λj) =

(

N−1
∑

k=0

|ϕk(λj)|
2

)−1

.

4 The three-term recurrence relation

Consider a hermitianN by N matrix A with simple spectrum and a nonzero vector
q ∈ CN chosen in such a way that the scalar product(·, ·)m is positive definite. Then
we have the following lemma.

Lemma 4.1. Assume the discrete measurem and the scalar product(·, ·)m as defined
before. Then the Krylov matrixK is nonsingular (KN×n is of full rank for1 ≤ n ≤ N )
for every sequence of poles outside the spectrum ofA = UD

(

(λ1, . . . , λN )T
)

U∗ with
U∗U = I andU = (u1, . . . , uN ), if the scalar product(·, ·)m is positive definite.

Proof. Suppose that for a certain sequence of poles it holds withbn(z) ∈ Ln \ Ln−1

thatbn(A)q ∈ KN×n for an arbitraryn ∈ {1, . . . , N − 1}. It follows then that there
exists a functionpn−1(z)

πn−1(z) ∈ Ln−1 so that

(

bn(A) −
pn−1(A)

πn−1(A)

)

q = 0,

where0 denotes the zero-vector inCN . Hence,

N
∑

j=1

λn
j − (1 − µ−1

n λj)pn−1(λj)

πn(λj)
ǫjm(λj)

1/2uj = 0, |ǫj | = 1 for j = 1, . . . , N.

Becausem(λj) > 0 for j = 1, . . . , N and the sequenceu1, . . . , uN is an orthonormal
set, this can only be true if for everyj ∈ {1, . . . , N}

λn
j − (1 − µ−1

n λj)pn−1(λj)

πn(λj)
= 0.

But this implies thatbn(z) = pn−1(z)
πn−1(z) ∈ Ln−1 due to the fact thatn < N . Hence, we

get a contradiction.

The rational Lanczos process applied to the pair(A, q) produces the unitary matrix
Q = (q0, . . . , qN−1). Denote byT the matrixT = Q∗AQ. Thus,AQ = QT so that
T is the matrix ofA taken in the basisQ. In the polynomial case (i.e.µk = ∞ for
k = 0, . . . , N ) it has been proven thatT is real symmetric tridiagonal. In the rational
case, however, this will not be so. Nevertheless, it is possible to prove that, under
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certain conditions on the poles, there exists a matrixJ so thatJ is real symmetric
tridiagonal with positive subdiagonal and

T = (I + JD)−1J = J(I + DJ)−1, D = D((µ−1
0 , µ−1

1 , . . . , µ−1
N−1)

T ),

and conversely
J = (I − TD)−1T = T (I − DT )−1.

We shall callqk = ϕk(A)q, for k = 0, 1, . . . , N singular iff ϕk is singular, and
regular in all other cases. In the special case ofk = N , we defineϕN by

ϕN (z) = cN

∏N
j=1(z − λj)

πN (z)
, (6)

whereπN (z) is given by (3) andcN 6= 0. This way we have that

1. ϕN ∈ LN \ LN−1,

2. ϕN is orthogonal toLN−1 with respect to the measurem,

3. ϕN is regular,

4. qN , ϕN (A)q = 0, where0 denotes the zero-vector inCN .

The following theorem follows directly from Theorem 2.1.

Theorem 4.2. Take by conventionµ−1 = ∞ and qN = 0. Suppose that the matrix
K is nonsingular. Then the orthonormal vectorsqk−1, qk and qk+1 are regular, for
k = 0, 1, . . . , N − 1, iff they satisfy the following three-term recurrence relation:

Aqk = βk−1

(

I − µ−1
k−1A

)

qk−1 + αk

(

I − µ−1
k A

)

qk + βk

(

I − µ−1
k+1A

)

qk+1. (7)

The initial conditions areq−1 ≡ 0 andq0 ≡ q
‖q‖ . The coefficients are finite andβk is

different from zero.

Suppose that the orthonormal vectorsqk, for k = 0, . . . , n with n ≤ N are regular,
and letQN×n denote the matrix containing the firstn columns ofQ. With In, Dn and
Jn as defined before in Theorem 2.2 anden = (0, . . . , 0, 1)T ∈ C

n, it follows from
Theorem 4.2 that

AQN×n =
[

QN×n qn
]

·

[

Jn

βn−1e
T
n

]

− A
[

QN×n qn
]

·

[

DnJn

µ−1
n βn−1e

T
n

]

= QN×nJn − AQN×nDnJn + βn−1(I − µ−1
n A)qneT

n ,

or equivalently

AQN×n(In + DnJn) = QN×nJn + βn−1(I − µ−1
n A)qneT

n . (8)

Let Tn = Q∗
N×nAQN×n with n ≤ N . Multiplying from the left on both sides of (8)

with Q∗
N×n then gives

Tn(In + DnJn) = Jn − βn−1µ
−1
n Q∗

N×nAqneT
n .
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Furthermore, becauseJn(In + DnJn)−1 = (In + JnDn)−1Jn, it follows that

(In + JnDn)−1Jn − Tn = Rn,

whereRn is ann by n hermitian matrix with rank(Rn) ≤ 1 given by

Rn = βn−1µ
−1
n gnh∗

n

gn = Q∗
N×nAqn

hn = (In + JnDn)−1en.

In the polynomial case (µk = ∞ for k = 0, . . . , N ), it holds that rank(Rn) = 0
for n = 1, . . . , N . In this case we have thatTn = Jn so that the eigenvalues of
Tn are the zeros (i.e. the eigenvalues ofJn) of the orthonormal polynomial (OP) of
degreen. These eigenvalues ofTn are called Arnoldi eigenvalue estimates (or Ritz
values) with respect to the Krylov matrixKN×n since some of these eigenvalues may
be extraordinarily accurate approximations to some of the eigenvalues ofA. It is well
known that the approximation is better for the in absolute value largest eigenvalues of
A. For the rational case, one might expect that some of the eigenvalues ofTn still are
accurate approximations to some of the eigenvalues ofA. In the more general rational
case, however, the eigenvalues ofTn are not necessarily the zeros of the ORFϕn,
unless eithern = N , µn = ∞ or qn = 0 (which for n < N means that the Lanczos
process breaks down at stepn). Nevertheless, many observations strongly indicate that
most of the zeros ofϕn do not differ much from the eigenvalues ofTn. Therefore,
we believe that some of the zeros ofϕn are accurate approximations to some of the
eigenvalues ofA too. Consider for instance the case of one multiple poleµk = µ 6= ∞
for k = 0, . . . , N . Then the ORFsϕn(z) can be mapped onto the OPsφn(t) by the
transformation

τ : z → t : t = τ(z) =
z

1 − µ−1z
,

so thatφn(t) = φn(τ(z)) = ϕn(z) andφn(B) = φn(τ(A)) = ϕn(A), where

B =
A

I − µ−1A
.

And vice versa, the OPsφn(t) can be mapped onto the ORFsφn(z) by the inverse
transformation

τ− : t → z : z = τ−(t) =
t

1 + µ−1t
,

so thatϕn(z) = ϕn(τ−(t)) = φn(t) andϕn(A) = ϕn(τ−(B)) = φn(B), where

A =
B

I + µ−1B
.

It is not difficult to see that

Q∗BQ = J ⇔ Q∗AQ = (I + JD)−1J.

10



Furthermore we then have thatQ∗
N×nBQN×n = Jn, but Q∗

N×nAQN×n 6= (In +

JnDn)−1Jn. Clearly, the eigenvalues̃λj , for j = 1, . . . , n, of Jn are Arnoldi eigen-
value estimates for the matrixB, while the zeroszn,j, for j = 1, . . . , n, of ϕn are the
eigenvalues ofJn transformed by the mappingτ−, i.e.

zn,j = τ−
(

λ̃j

)

, j = 1, . . . , n.

Consequently, although(In + JnDn)−1Jn 6= Tn, the zeros ofϕn can be seen as Ritz
values for the matrixA with respect to the Krylov matrixKN×n as well.

To computeJ , we define the vectorsxn−1, yn−1 ∈ CN with n = 1, . . . , N by

xn−1 = Zn(A)
{

βn−2

(

µ−1
n−2 − µ−1

n

)

qn−2 + qn−1
}

− βn−2q
n−2

yn−1 =
[

I +
(

µ−1
n − µ−1

n−1

)

Zn(A)
]

qn−1, (9)

where we setµN = µN−1 for the special case ofn = N . Then it follows from (7) that

βn−1q
n = xn−1 − αn−1y

n−1, n = 1, . . . , N. (10)

Multiplying with (ql)∗, for l ∈ {0, . . . , n − 1}, from the left on both sides of (10) and
solving forαn−1 gives

αn−1 =
(ql)∗xn−1

(ql)∗yn−1
. (11)

Next, taking the 2-norm on both sides of Equation (10) we find that

βn−1 = ‖xn−1 − αn−1y
n−1‖2,

so thatqn is then given by

qn = β−1
n−1

(

xn−1 − αn−1y
n−1
)

.

Finally, with the initial conditionsq−1 = 0 andq0 = q/‖q‖2, it holds forn = 1 that

α0 =
(q0)∗Z1(A)q0

1 +
(

µ−1
1 − µ−1

0

)

(q0)∗Z1(A)q0

β0 = ‖
[

{1 − α0(µ
−1
1 − µ−1

0 )}Z1(A) − α0I
]

q0‖2

= (q0)∗
[

{1 − α0(µ
−1
1 − µ−1

0 )}Z1(A) − α0I
]2

q0

q1 = β−1
0

[

{1 − α0(µ
−1
1 − µ−1

0 )}Z1(A) − α0I
]

q0.

5 Forbidden poles

Suppose that the setµ0, . . . , µn−1 is fixed for1 ≤ n ≤ N , so that the orthonormal
vectorsq0, . . . , qn−1 are regular. Note that forn ≥ 2, this implies that we assume
that the recurrence coefficientsα0, β0, . . . , αn−2, βn−2 are fixed. Furthermore, we
will again assume that the spectrum ofA is simple, and that the vectorq ∈ C

N has
been chosen in such a way that the corresponding Krylov matricesKN×n for n =

11



1, . . . , N are of full rank. When choosing a poleµn = µ, we have to make sure
that the resulting orthonormal vectorqn is regular so that the three-term recurrence
relation holds true. Hence, the question is how we can determine whether the vector
qn is regular. Therefore, we will again prove the three-term recurrence relation of
the orthonormal vectors, but now in a different way. First wewill give a temporary
definition offorbidden poles.

Definition 5.1. Suppose that the sequence of polesMn−1 = {µ0, . . . , µn−1} ⊂ R0 ∪
{∞} is fixed for1 ≤ n ≤ N − 1. Then we say thatµn is a forbidden poleiff µn

satisfies at least one of the following three conditions:

1. µn is an eigenvalue ofA;

2.
(

yn−1, qn−1
)

= 0, whereyn−1 is given by(9);

3. for n > 1, µn is an eigenvalue of(In−1 + Jn−1Dn−1)
−1

Jn−1, with I, D and
J as defined before in Theorem 2.2.

Note thatµ0 andµN can never beforbidden polesdue to the fact that respectively
q0 andqN do not depend on them. Nevertheless, we will assume that theyare outside
the spectrum ofA.

Theorem 5.2. Take by conventionqN = 0. Furthermore, for the sake of simplicity
in notation we will assume thatµN = µN−1. Suppose that the sequenceMn for
1 ≤ n ≤ N does not contain anyforbidden poles. Then there exists a set of finite
constants{fn−1,0, fn−1,1, . . . , fn−1,n}, with fn−1,n 6= 0 for n < N , so that

Aqn−1 =

n
∑

j=0

fn−1,n(I − µ−1
j A)qj . (12)

Proof. If µn is not aforbidden pole, it follows from the first condition in Definition 5.1
that µn is outside the spectrum ofA, and hence,Zn(A) is well defined. Because
Zn(A)qn−1 ∈ span{q0, . . . , qn}, there exist finite constantshn−1,j , with j = 0, . . . , n,
so that

Zn(A)qn−1 =
n
∑

j=0

hn−1,jq
j , hn−1,j =

(

Zn(A)qn−1, qj
)

. (13)

It also holds that

Zn(A)qn−1 = Zn(A)ϕn−1(A)q =
Apn−1(A)

πn(A)
q.

Therefore, under the assumption that the scalar product(·, ·)m is positive definite, we
have for1 < n < N that hn−1,n = 0 iff pn−1(µn) = 0. The third condition in
Definition 5.1 implies thatpn−1(µn) 6= 0 if µn is not aforbidden pole.

From (13) it follows forn = 1, . . . , N that

Aqn−1 = (I − µ−1
n A)

n
∑

j=0

hn−1,jq
j

=

n
∑

j=0

hn−1,j(I − µ−1
j A)qj +

n
∑

j=0

hn−1,jηn−1,jAqj ,

12



where
ηn−1,j = µ−1

j − µ−1
n .

Or equivalently,

vn−1Aqn−1 =
n
∑

j=0

hn−1,j(I − µ−1
j A)qj +

n−2
∑

j=0

hn−1,jηn−1,jAqj ,

with vn−1 = 1 − hn−1,n−1ηn−1,n−1 =
(

yn−1, qn−1
)

. Becauseµn is not aforbid-
den pole, the second condition in Definition 5.1 is not satisfied, so that vn−1 6= 0.
Consequently, we have that

Aqn−1 =
n
∑

j=0

hn−1,j

vn−1
(I − µ−1

j A)qj +
n−2
∑

j=0

hn−1,jηn−1,j

vn−1
Aqj . (14)

For i = n − 1 = 0, this becomes

Aq0 =
h0,0

v0
(I − µ−1

0 A)q0 +
h0,1

v0
(I − µ−1

1 A)q1

= f0,0(I − µ−1
0 A)q0 + f0,1(I − µ−1

1 A)q1,

wheref0,0 and f0,1 are finite andf0,1 6= 0 if µ1 is not a forbidden pole. So the
statement holds fori = 0.

Let us now suppose that the statement is true fori = 0, . . . , n− 2 under the condi-
tion thatMi+1 does not contain anyforbidden poles. Then under the same condition
for i = n − 1 we have that

Aqn−1 =

n
∑

j=0

hn−1,j

vn−1
(I − µ−1

j A)qj

+

n−2
∑

j=0

[

hn−1,jηn−1,j

vn−1

j+1
∑

l=0

fj,l(I − µ−1
l A)ql

]

(15)

=

n
∑

j=0

fn−1,j(I − µ−1
j A)qj .

Because everyfn−1,j is the result of a finite sum of finite numbers, the result itself
is finite as well. Furthermore, it holds thatfn−1,n =

hn−1,n

vn−1

, so thatfn−1,n 6= 0 for
n < N .

Assume that the sequenceM = MN does not contain anyforbidden poles, and
define the matrixF by

F =



















f0,0 · · · · · · · · · fN−1,0

f0,1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 fN−2,N−1 fN−1,N−1



















. (16)
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Then it follows from the previous theorem that

AQ = QF − AQDF,

or equivalently,
AQ(I + DF ) = QF.

Note that we get the same kind of formula as before, in Section4, except thatJ is
tridiagonal whileF is a Hessenberg matrix. Assuming that the vectorsqn, for n =
1, . . . , N − 1, are determined in such a way thatF has a positive real subdiagonal, we
have the following two lemmas.

Lemma 5.3. Suppose that the sequenceM does not contain anyforbidden poles.
Then, withF given by(16) and D = D((µ−1

0 , µ−1
1 , . . . , µ−1

N−1)
T ), it holds that the

inverse of(I + DF ) exists.

Proof. Suppose thatdet(I + DF ) = 0. Then there exists a nonzero vectorc ∈ C
N so

that(I + DF )c = 0. Hence

Q∗AQ(I + DF )c = 0 ⇒ Fc = 0 ⇒ DFc = 0

⇒ (I + DF − I)c = 0 ⇒ c = 0.

But this is in contradiction with our assumption thatc is a nonzero vector. Thus it holds
thatdet(I + DF ) 6= 0.

Lemma 5.4. Suppose that the sequenceM does not contain anyforbidden poles. Then
the matrixF , given by(16), is real symmetric tridiagonal.

Proof. Because the matrixA is hermitian, we have that

F (I + DF )−1 = T = T ∗

= (I + DF )−∗F ∗,

so that
(I + DF )∗F = F ∗(I + DF ).

Due to the fact thatD is a real diagonal matrix, and henceD = D∗, it follows that

F + F ∗DF = F ∗ + F ∗DF ⇒ F = F ∗.

Thus it holds that the matrixF is hermitian. Finally, because the matrixF is a Hessen-
berg matrix with positive real subdiagonal, it follows thatF is real symmetric tridiag-
onal.

From the previous lemma we can conclude thatF = J . Hence, we have proven that
the orthonormal vectorsq0, . . . , qn are regular ifMn does not contain anyforbidden
poles.

14



Remark 5.5. With our temporary definition offorbidden poles, the opposite is not nec-
essarily true, i.e. if the orthonormal vectorsq0, . . . , qn are regular,Mn may contain
forbidden poles. Consider the case of oneforbidden poleµn satisfying the second and
third condition, but not the first. Equation(15) then becomes

0 = vn−1Aqn−1

=

n−1
∑

j=0

hn−1,j(I − µ−1
j A)qj +

n−2
∑

j=0

[

hn−1,jηn−1,j

j+1
∑

l=0

fj,l(I − µ−1
l A)ql

]

=
n−1
∑

j=0

ḧn−1,j(I − µ−1
j A)qj .

Thus, ifḧn−1,j = 0 for j = 0, . . . , n − 1, we cannot conclude thatqn is singular.
In practice,αn−1, given by(11), will most of the time be computed withqn−1.

Therefore, ifµn only satisfies the second condition, the denominator in(11) equals
zero, so thatαn−1 = ∞. However, ifµn also satisfies the third condition, many
observations strongly indicate that

• the denominator in(11) tends to zero as well;

• qn is regular;

• αn−1 can be computed more accurately with the aid of another orthonormal
vectorqj with j < n − 1.

However, at the moment of writing we did not found a proof for these observations.
Therefore, we will still considerµn a forbidden pole, even when it simultaneously
satisfies the second and third condition. The least we can sayfor sure, is that

1. the first condition in Definition 5.1 is essential. Otherwise, we can never have
thatqN = 0 (see Equation(6));

2. if µn satisfies either the second or third condition,qn is singular;

3. if Mn does not contain anyforbidden poles, then the rational Lanczos process
breaks down at stepn iff the matrixA has justn − 1 distinct eigenvalues or the
vectorq is a combination of justn − 1 eigenvectors ofA.

Suppose thatMn−1, for n > 0, does not contain anyforbidden poles. With A =
UD

(

(λ1, . . . , λN )T
)

U∗ andU∗U = I, the second condition in Definition 5.1, for
µn = µ, can be rewritten as

0 = (qn−1)∗

[

I +
(µ−1 − µ−1

n−1)A

I − µ−1A

]

qn−1

= (qn−1)∗

[

I − µ−1
n−1A

I − µ−1A

]

qn−1

= (q̃n−1)∗D





(

1 − µ−1
n−1λ1

1 − µ−1λ1
, . . . ,

1 − µ−1
n−1λn

1 − µ−1λn

)T


 q̃n−1,

15



whereq̃n−1 = U∗qn−1 = (w0, . . . , wN−1)
T and

∑N
j=1 |wj−1|2 = 1. So, let us define

hn(µ̆) by

hn(µ̆) =

N
∑

j=1

|wj−1|
2 1 − µ̆n−1λj

1 − µ̆λj
=

gN−1(µ̆)

ρN (µ̆)
, (17)

with µ̆n−1 = µ−1
n−1 and µ̆ = µ−1 ∈ R, gN−1 ∈ PN−1 andρN (µ̆) =

∏N
j=1(1 −

µ̆λj). Then the second condition in Definition 5.1 is satisfied iffµ̆ is a zero ofhn(µ̆).
Moreover, if µ̆ is a pole ofhn(µ̆), the first condition in Definition 5.1 is satisfied.
Hence, we have proven the following theorem.

Theorem 5.6. Let hn(µ̆), with µ̆ ∈ R and n > 0, be given by(17). Suppose
µ0, . . . , µn−1 are not forbidden poles. Thenµn = µ̆−1 is a forbidden poleif µ̆ is
a zero or pole ofhn(µ̆).

Note thatµ = µn−1 can never be aforbidden pole, due to the fact thatµn−1

is not an eigenvalue ofA, pn−1(µn−1) 6= 0 (becauseϕn−1 ∈ Ln−1 \ Ln−2) and
hn(µ̆n−1) = 1 6= 0. Furthermore, it follows from the previous theorem that there can
be no more than2(N − 1) + n forbidden poles. The upper bound for this maximum
number offorbidden polescan be reduced even more. Therefore, we first need the
following lemma.

Lemma 5.7. Suppose thatλs 6= 0 is an eigenvalue ofA and assume that the se-
quenceMn−1 for n > 1 does not contain anyforbidden poles. Thenhn(λ−1

s ) ∈ R iff
pn−1(λs) = 0. Furthermore,limµ̆→∞ hn(µ̆) 6= 0 iff det A = 0 andpn−1(0) 6= 0.

Proof. First, note that

q̃n−1 = U∗qn−1 = U∗ϕn−1(A)q = D
(

(ϕn−1(λ1), . . . , ϕn−1(λN ))T
)

q̃,

whereq̃ = U∗q, so that|ws−1|2 = |ϕn−1(λs)|2m(λs) =
∣

∣

∣

pn−1(λs)
πn−1(λs)

∣

∣

∣

2

m(λs), with

m(λs) > 0. Hence,ws−1 = 0 iff pn−1(λs) = 0. Forλs 6= 0 it now holds that

lim
µ̆→λ−1

s

hn(µ̆) =





N
∑

j=1,j 6=s

|wj−1|
2 1 − µ̆n−1λj

1 − λ−1
s λj



+ |ws−1|
2 lim

µ̆→λ−1

s

1 − µ̆n−1λs

1 − µ̆λs

= h̃n(λ−1
s ) + |ws−1|

2(1 − µ̆n−1λs) lim
µ̆→λ−1

s

1

1 − µ̆λs
,

with h̃n(λ−1
s ) ∈ R and(1 − µ̆n−1λs) 6= 0. So, we have thatlimµ̆→λ−1

s
hn(µ̆) ∈ R iff

ws−1 = 0.
Finally, for µ̆ tending to infinity, we have that

lim
µ̆→∞

hn(µ̆) =

N
∑

j=1

|wj−1|
2(1 − µ̆n−1λj) lim

µ̆→∞

1

1 − µ̆λj

=

{

0 if detA 6= 0
|ϕn−1(0)|2m(0) if detA = 0

.
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Becauseµ ∈ R0 ∪ {∞} (or equivalentlyµ̆ ∈ R), we only have to consider the
eigenvalues ofA different from zero in the first condition of Definition 5.1. This way,
it follows from the previous lemma that Definition 5.1 is equivalent with the following
final definition forforbidden poles.

Definition 5.8. Suppose that the sequence of polesMn−1 = {µ0, . . . , µn−1} ⊂ R0 ∪
{∞} is fixed for1 ≤ n ≤ N − 1. Then we say thatµn is a forbidden poleiff µn

satisfies at least one of the following two conditions:

1. µ̆ = µ−1
n is a pole or zero ofhn(µ̆) given by(17),

2. for n > 1, µ = µn is an eigenvalue of(In−1 + Jn−1Dn−1)
−1

Jn−1, with I, D
andJ as defined before in Theorem 2.2.

Theorem 5.9. Suppose thatϕn−1(λs) = 0 for 1 < n < N and s = 1, . . . , m ≤
n − 1, with Lm = {λs}m

s=1 ⊂ {λ1, . . . , λN} = LN . Then there can be no more than
2(N − 1 − m) + n forbidden poles.

Proof. If 0 /∈ Lm, it follows directly from Lemma 5.7 thatm finite poles vanish with
m finite zeros. If, on the other hand, it holds thatλs = 0 ∈ Lm, then we have that

hn(µ̆) =

N
∑

j=1,j 6=s

|wj−1|
2 1 − µ̆n−1λj

1 − µ̆λj
=

gN−2(µ̆)

ρN−1(µ̆)
,

with gN−2 ∈ PN−2 andρN−1(µ̆) =
∏N

j=1,j 6=s(1 − µ̆λj). Furthermore, it follows
from the previous lemma thatm − 1 of the remaining finite poles vanish withm − 1
finite zeros.

6 Numerical examples

In every example that follows, we have takenq = (1, 1, . . . , 1)T .

Example 6.1. First, let us consider the case that

A = D((1, 2, . . . , 20, 101, 102, . . . , 120, 201, 202, . . . , 220, 301, 302, . . . , 320,

401, 402, . . . , 420, 501, 502, . . . , 520, 601, 602, . . . , 620,

701, 702, . . . , 720, 801, 802, . . . , 820, 901, 902, . . . , 920)T ) (18)

and

M = {µ0 = µ1 = µ2 = . . . = µ9 = 425, µ10 = µ12 = . . . = µ19 = 895,

µ20 = µ22 = . . . = µ29 = 25, µ30 = µ32 = . . . = µ39 = 125}. (19)

Figure 1 then graphically shows the zeros ofϕk(z) for k = 1, . . . , 39. Starting with a
pole in425, this graph clearly illustrates the convergence of one or more zeros ofϕk(z)
to the eigenvalues ofA the closest to425. When, for instance atk = 10, the pole in
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Figure 1: The zeroszk,i of ϕk(z) for k = 1, . . . , 39 andi = 1, . . . , k whenA is given
by (18) and the poles are given by (19).

425 is changed into a pole in895, a few steps later the graph shows the introduction of
zeros in the proximity of the eigenvalues ofA the closest to895. Similarly, the graph
shows the introduction of zeros in the proximity of the eigenvalues ofA the closest to
25 and125 a few steps after the pole is changed into respectively25 at k = 20 and125
at k = 30.

Example 6.2. Next, consider the case that

A = D((5, 5.3, 5.7, 6.2, 6.7, 7.3, 8, 8.9, 10, 11.4, 13.3, 16, 20, 26.7, 40, 80)T) (20)

and
M = {µk = 13, k = 0, . . . , 15}. (21)

Table 1 then gives the zeros ofϕ4(z) andϕ8(z) as well as their inverse values. The
values in bold are approximately equal to one of the eigenvalues ofA. For instance,
for k = 4, we can deduce from this table thatϕ4(z) has a nodez4,3 ≈ 13.3, which
is indeed the eigenvalue ofA the closest to the pole13. Hence, when determiningq5,
we could have decided to choose another poleµ̃5. Or we could have waited until the
determination ofq9 to choose another polẽµ9. Let µ̆ = µ̃−1, then Figure 2 above
shows the graph ofh5(µ̆), given by(17), while Figure 2 beneath shows the graph of
h9(µ̆). Comparing both graphs, they clearly show that the poles ofh9(µ̆) in the inverse
eigenvalues ofA vanish with the same zeros ofϕ8(z) (see also the values in bold in
Table 1).
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zk,i z−1
k,i

i k 4 8 4 8
1 5.8332 5.7289 0.171 0.175
2 11.2957 8.3603 0.089 0.119
3 13.3000 9.9859 0.075 0.100
4 17.1800 11.4000 0.058 0.088
5 13.3000 0.075
6 16.0001 0.063
7 20.2251 0.049
8 38.4973 0.026

Table 1: The zeroszk,i of ϕk(z) for k = 4, 8 andi = 1, . . . , k whenA is given by (20)
and the poles are given by (21). The values in bold are approximately equal to one of
the eigenvalues ofA. The inversez−1

k,i of these values is given as well.

i eig(A) z16,i z̃16,i

1 5 4.9953 5.0000
2 5.3 5.2986 5.3000
3 5.7 5.7000 5.7000
4 6.2 5.7008 6.2000
5 6.7 5.7024 6.7000
6 7.3 5.7039 7.3000
7 8 6.2004 8.0000
8 8.9 6.2022 8.9000
9 10 6.6939 10.0000
10 11.4 7.3579 11.4000
11 13.3 8.9032 13.3000
12 16 11.3691 16.0000
13 20 13.3000 20.0004
14 26.7 14.5657 26.7069
15 40 16.9531 40.0207
16 80 36.9986 80.0125

Table 2: The eigenvalues ’eig(A)’ of A, given by (20), and the zerosz16,i andz̃16,i of
ϕ16(z) whenα4 has been computed respectively withq4 andq3. The poles are given
by {µ0 = . . . = µ4 = 13, µ5 = . . . = µ15 = 5.8332}, where5.8332 is a zero of
ϕ4(z).

Finally, note that the inverse values of those zeros ofϕk−1(z) that do not approx-
imate an eigenvalue ofA, seem to be zeros ofhk(µ̆). Consider for instance the case
that µ̃5 = . . . = µ̃15 = z4,1 = 5.8332. Table 2 then gives the nodes ofϕ16(z), first
whenα4 has been computed withq4, and afterwards whenα4 has been computed with
q3.
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Figure 2: The graph ofhk(µ̆), given by (17), whenA is given by (20) and̆µk−1 = 1/13
(marked with an ’o’), fork = 5 (above) andk = 9 (beneath). The positions of the
inverse eigenvalues ofA are marked with a ’∗’, while the positions of the inverse zeros
of ϕk−1(z) are marked with an ’×’.
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Figure 3: The zeroszk,i of ϕk(z) for k = 1, . . . , 58 andi = 1, . . . , k whenA is given
by (22) and the poles are given by (23).

Example 6.3. Finally, consider the case that

A = B + BH (22)

and

M = {µ0 = . . . = µ12 = −74.70665262792586,

µ13 = . . . = µ21 = 28.43493168481659,

µ22 = . . . = µ34 = −83.62041912422748,

µ35 = . . . = µ46 = −44.09278169786580,

µ47 = . . . = µ58 = −0.07633138941779551}, (23)

whereB is a random matrix of size1000 by1000. To generate this random matrixB,
we used the matlab command RANDOM with exponential distribution and parameter
equals one, i.e.

B = random(′exp′, 1, 1000, 1000).

Figure 3 then graphically shows the zeros ofϕk(z) for k = 1, . . . , 58, while Tables 3–7
illustrate the convergence of these zeros to the eigenvalues ofA in the neighbourhood
of the chosen poles.
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k
2 −75.07138158649700
3 −74.90415598532118 −72.33545848125323
4 −74.88722821487410 −74.35442689734335
5 −74.88293719212363 −74.52247064066461
6 −74.88257941910386 −74.53039687584757
7 −74.88255314969979 −74.53073528541057
8 −74.88254936102433 −74.53075558708387
9 −74.88254921469675 −74.53075603831439
10 −74.88254921310352 −74.53075604269772
11 −74.88254921307571 −74.53075604277467
12 −74.88254921307535 −74.53075604277581

eig(A) −74.88254921307539 −74.53075604277633

Table 3: Selection of zeros ofϕk(z) for k = 2, . . . , 12 together with two eigen-
values ’eig(A)’ of A, given by (22), in the neighbourhood of the poleµk =
−74.70665262792586.

k
14 28.34912717573689
15 28.38206678607947 28.48889591607436
16 28.38260053019498 28.48727120290261
17 28.38262104605347 28.48724226540813
18 28.38262175296683 28.48724162263257
19 28.38262176941285 28.48724160040398
20 28.38262176957222 28.48724160006213
21 28.38262176957326 28.48724160005994

eig(A) 28.38262176957325 28.48724160005994

Table 4: Selection of zeros ofϕk(z) for k = 14, . . . , 21 together with two eigen-
values ’eig(A)’ of A, given by (22), in the neighbourhood of the poleµk =
28.43493168481659.
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k
23 −84.45655848650057
24 −84.01378336701816 −82.58622618669277
25 −83.99882748400724 −83.08343357327384
26 −83.99444372863825 −83.23161100812494
27 −83.99347127968137 −83.24679334108409
28 −83.99342336103068 −83.24738972709405
29 −83.99341815210235 −83.24741918943062
30 −83.99341614761853 −83.24742209304441
31 −83.99341606464419 −83.24742218057737
32 −83.99341606102384 −83.24742218731915
33 −83.99341606096259 −83.24742218749245
34 −83.99341606096212 −83.24742218749395

eig(A) −83.99341606096128 −83.24742218749370

Table 5: Selection of zeros ofϕk(z) for k = 23, . . . , 34 together with two eigen-
values ’eig(A)’ of A, given by (22), in the neighbourhood of the poleµk =
−83.62041912422748.

k
36 −45.81012402440861
37 −44.28756728280433 −43.92468126641263
38 −44.22848506443002 −43.96007168770122
39 −44.22395584485643 −43.96172849534423
40 −44.22378193048641 −43.96178549173455
41 −44.22377594338028 −43.96178764163637
42 −44.22377568240039 −43.96178771998225
43 −44.22377567384875 −43.96178772201143
44 −44.22377567369579 −43.96178772204942
45 −44.22377567368481 −43.96178772204691
46 −44.22377567368464 −43.96178772204685

eig(A) −44.22377567368397 −43.96178772204763

Table 6: Selection of zeros ofϕk(z) for k = 36, . . . , 46 together with two eigen-
values ’eig(A)’ of A, given by (22), in the neighbourhood of the poleµk =
−44.09278169786580.
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k
48 −0.4838570877860278
49 −0.1863101036041319 0.1837911717117914
50 −0.1776579965610296 0.03687735307379819
51 −0.1769717619800633 0.02453950362899089
52 −0.1769482165993965 0.02429560467638048
53 −0.1769432429686140 0.02428058031246304
54 −0.1769427918398407 0.02428001287400376
55 −0.1769427796416630 0.02428000080026274
56 −0.1769427794038496 0.02428000059346411
57 −0.1769427794022227 0.02428000059212321
58 −0.1769427794022236 0.02428000059210279

eig(A) −0.1769427793333267 0.02428000049773565

Table 7: Selection of zeros ofϕk(z) for k = 48, . . . , 58 together with two eigen-
values ’eig(A)’ of A, given by (22), in the neighbourhood of the poleµk =
−0.07633138941779551.
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