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1 Introduction

If Ais alinear operator on a Hilbert spakie(e.g. a largeV x N matrix operating on
CM) andv € H, then the spac&,, (A, v) = spar{vy,...,v,} with v, = A¥v is
called a Krylov subspace. To solve a linear equatlan= b or an eigenvalue problem
for A, the problem is projected onto a Krylov subspace of finit. (bw) dimension
(n < N in the matrix example) and this low dimensional problem iset to give an
approximation to the original problem. To compute the petiga, an orthogonal basis
is constructed for the Krylov subspace. Clearly, the- 1)** orthogonal vectog; has
to be a combination of the firét+ 1 vectors in the Krylov sequence. Hence it is of the
form ¢, = ¢ (A)v with ¢ (z) a polynomial of degreé.

Suppose that is hermitian. Orthonormality of; ¢; = d; is then equivalent with
the orthonormality of the polynomial, ¢;) = dx; with respect to the inner product
defined by(¢y, ¢1) = M (¢1¢,;), where the linear functiondl/ is defined on the space
of polynomials by its momentsy, = M (z*) = v* A*v (see [3]). Since the classical
moment matrix has a Hankel structure, this theory will batesd to orthogonality of
polynomials on the real line. Thus, in the classical Lanarethod for hermitian
matrices, the three-term recurrence relation for the giinal polynomials leads to a
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short recurrence between the successive vegionseaning that; can be computed
from ¢;_1 andg_» without the need for a full Gram-Schmidt orthogonalisation

Computing theyy, is like an application of the power method and thereforegthe
will quickly converge to an eigenvector corresponding t@endhant eigenvalue. Thus,
if we want an eigenvalue near, we should not iterate witl, but with B = (A —
pI)~1. The rational Krylov method (RKS) of A. Ruhe [4, 5, 6] allownar fa different
shift u in every iteration step. Thusy, = (A — uxl)~v,_1, Or even more generally
vp = (A — opl)(A — pI)~tvg_1, whereuy, is used to enforce the influence of the
eigenspaces of the eigenvalues in the proximity.pf while o is used to suppress
the influence of the eigenspaces of the eigenvalues in tighibeiurhood ob. This
construction ofv, means that we may write, asv, = ri(A)v with r; a rational
function of the fornpy(2)/[(z — p1) - - - (2 — ux )], wherepy, is a polynomial of degree
k at most, so that after orthogonalisimg with respect to the previous vectors, we
obtain a vector, = ¢r(A)v, where againp,(z) is a rational function of the same
form asry,.

Orthogonal rational functions (ORFs) on the real line areenggalisation of or-
thogonal polynomials (OPs) on the real line in such a way theatOPs return if all
the poles are at infinity. 1 is hermitian again, it will be obvious that orthogonality
of the ¢, will lead to some orthogonality of the rational functiops, so that a simple
recurrence of the ORFs will lead to an efficient implementatf the RKS. Hence, the
aim of this paper is to generalise the results in [3] for Kmdequences and OPs on the
real line to the case of RKS and ORFs.

The outline of this paper is as follows. After an overviewlod necessary theoret-
ical preliminaries in Section 2, Section 3 deals with refolating those results in [3]
that still hold for the rational case. Next, in Section 4 weidks under certain condi-
tions on the poleg, a three-term recurrence relation for the orthonormalorse; .

In Section 5 we take a closer look at the conditions on thegoole conclude this
paper with some numerical examples in Section 6.

2 Preliminaries

The field of complex numbers will be denoted®yFor the real line we use the symbol
R and for the positive real lin®* = {z € R : z > 0}. If the number zero is omitted
from the setX, this will be represented b¥,, e.g.Ry = R\ {0}.

Suppose the sequence8f+ 1 < oo numbersM = {uo, pi1,...,un} C Ro U
{oo} is given, and define the factors

z

Zk(z):m, k=1,2,...,N, (1)

and the products
bo(2) =1, br(2) = Zr(2)bp_1(2), k=1,2,...,N. 2
Then the space of rational functions with polegjn, ..., u,}, n < N is defined as

L., = spar{bo(z),by(2), ..., bn(2)}.



In the special case of all, = oo, the factor in (1) becomesand the products in (2)
becomeb(z) = 2*.
Orthonormalising the basi§by(z),...,b,(2z)} with respect to an inner product

defined by a real positive definite linear functioddlon a subset of the real line,

(f,9) = M{fg}, f.9€ Ly,

we obtain the orthonormal rational functions (ORFg)(z), .. ., ¢n(2)}.
Let P, represents the space of polynomials of degree less tharual ®dg:. Sup-
pose thapy, € Py and definery, € Py, by

k
mo(z) = Hl—uj , k=1,2,.... 3)

We then callp, singular wherpy(z) = iigg andpy (ux—1) = 0fork > 1 (po(z) =0,
respectivelyp:(z) = ¢ € R, in case ofk = 0, respectivelyk = 1), and regular in all
other cases. A zero gf;, at oo then means that the degreepqfis less thark. With
this, the following recurrence relation has been proveriinThm. 11.1.2 and Lem.
11.1.6].

Theorem 2.1. Take by conventiop_; = co. Then the ORFs_1, ¢, and piy;
are regular, fork = 0,..., N — 1, iff they satisfy the following three-term recurrence
relation:

201(2) = Br—1 (1= i1 2) or1(2) + o (1= 1 2) @ (2)
+ Bk (1= py12) or(2)-

The initial conditions are>_; (z) = 0 andgy(z) = {(1,1)} /2. The coefficients are
finite andgy, is different from zero. Furthermorg, can be chosen positive real with
B_1 = 1 so that the functiong;, are uniquely determined.

The formulation used here for the theorem is based on thétséay2, Sec. 4],
except that we do not necessarily take= oo by convention.

The zeros ofp;, can be computed from the recurrence coefficients by solving a
generalised eigenvalue problem, as given in the followlegptem from [2, Sec. 5].

Theorem 2.2. Suppose that the ORks;, for j = 0,...,nand1l < n < N are
regular. Define the matrices

[ag Bo O - 0 B
. . . Ho 0o - 0
Bo : 0 1 .
In = 0 0 ’ D, = 1
3 : . . 0
: . . n—2 0 0 MEE
L 0o - 0 fBn—2 ap_1 1 !

(4)



Then the eigenvalues, j = 1, ..., n of the generalised eigenvalue problem
(I, + JuDy) " Jv? = Mo,

wherel,, is then—dimensional unit matrix and’ € C" (the superscript here denotes
an index), are equal to the nodes ; of ¢,,(2).

The elements o™V will be represented by column vectors of lengthwith the
indices running frond to N — 1. These vectors may also be interpreted as rational
functions. Ifc = (co, . . . ,cN_l)T is a vector, we assign to it the rational function

é(z) = cobo(2) + c1b1(2) + ... +en—1bn—1(2) = b(2) - c € Ln_1,

whereb(z) represents the vectbtz) = (bo(z),b1(2),...,bn_1(2)). Arow of vectors
inCN
Cnxm = (¢, c,...,c™7 )

will also frequently be interpreted as ahby m matrix

(CNxm)i,jJrl = (CJ) i

3

, i=1,2,...,N, j=0,1,....,m—1,
where(c7), denotes thé'" coordinate of the vecta¥ . In the remainder of this paper
a superscript represents an index in the case of a vector, while for cotsstamd
matrices it denotes a power. Furthermore, the superstrptd* denote respectively
the transpose and the complex conjugate transpose. Fiimalhe special case of an
by n matrix, we shall use the notatiar, = C,,«, forn < N, andC = Cy«y for
n=N.

Given a vector = (co,...,cx—1)" we denote byD(c) the diagonal matrix with
co, - - -, cn—1 ON the diagonal.

3 Extension of the polynomial case to the rational case

The results from Section 3 up to Section 6 of [3] for the polyial case remain valid
for the case of rational functions. Therefore, in this sectie reformulate those results
for the case of rational functions. For the proof of the tleaas, we refer to [3, Sec.
3-6].

Spectral decompositions. A matrix P is said to be a projector iP?> = P. A projec-
tor P is an orthogonal projector iP is hermitian. Ifp is a vector with||p||2 = 1, then
pp* is the orthogonal projector onto the line generateg by a similar way, given an
orthonormal set of vectors, . . . , p*, the sume:O p?(p’)* is the orthogonal projec-
tion onto the linear span of the vectory . . ., p*.

Given a hermitianV by N matrix A, we assign to it an operator valued function
E()) on the real line with the following properties:

1. For each\ the operato&()\) is either zero or an orthogonal projector;



2. EM)E(X\2) =0if Ay # A
3.3 EN=1;
4. A= AE()).

This way, the matrix4 is represented as a weighed sum of projectors, wheamges
over the whole real line, but the cardinality of the set ofséha for which E(X) # 0
does not exceed the size of the matfix

It is well known that a hermitian matrid is unitarily diagonalisable and that its
eigenvalues are real. Hence, lebe of sizeN by N, then there exislV real numbers

A1, ..., Ax and an orthonormal set of vectars, . . ., vV so that
Au? = )\juj, j=12...,N.
If U is the matrix(u!,...,u™) andA = D((\y,..., A\n)7T), this set of equations may

be rewritten in the form
AU = UA.

It is obvious that v
A = Z /\juj(uj)*,
j=1

where the operatorg (u’)* are rank one projectors onto a one-dimensional space. So,
to define the functior®(.), we setE(«) = 0 if o does not belong to the spectrum of
A. If « is one of the eigenvalues, we defif€a) as the sund_ w’ (u’)* for those;
satisfyingh; = o.

Suppose the sequengel, as defined before, satisfies the condition thdtn
{M\1,...,An} = 0. Then we define the factors

Ze(d) = (It A) A = AL - gt 4)!
- L_l, k=1,2,...,N,
I—p, A

and products

bo(A) =1, br(A) = Zk(A)bg-1(A) = bp—1(A)Zi(4), k=12

g Ly ooy

N.

Note that the order of multiplication does not matter, anadeghe factors and products
are well defined. It = (ro, ... ,rN,l)T is a vector so that(z) € Ly_1, we assign
to it the rational matrix-valued function

f(A) = Tobo(A) + lel(A) + ...+ T‘N_le_l(A).

Using the representatioh = > AE(])), itis easy to see that

PA) =D FNEN) = [b(\) 1] E(N).



Scalar products onC». The standard scalar product 6/ will be denoted by

N-1

(c,d)=d"c= Z cjd;.

Jj=0

Every positive definite scalar product @ is given by the expressiofBc,d) =
d* Be, whereB is a suitable positive definitd by N matrix.

Supposen is a nonnegative discrete measure on the real line so thaéthod those
A wherem(A) > 0 is finite. To define a semi-definite scalar prod(etd),,, on CV,
we consider the rational functiod$\) andd()) corresponding to the vectorsandd

and set R
(e d)m =Y EN)d(N)m(N).

If Ais a hermitianV by N matrix andg is a nonzero vector i€, it is easy to see
that we can choose for example

0 <m(\) = [[EN)ql3-

Observe thap_~ m()\) = ||¢||3. If ¢ andd are two vectors ifC", we have that

@A dDa) = (D eNEN Y dAEN)
= D NN IENal3 = (¢;d)um-

Now, let us make the additional assumption that the spectriurh has no multi-
plicities. With Au/ = \;u/ for j = 1,..., N and(u®,u/) = §; ;, whered; ; denotes
the Kronecker delta, we have th&f);) = v’ (u?)*, so that

m(\;) = [EQ)al3 = (@, «”)]?, j=1,2,...,N,

and the corresponding scalar product is then

Next, consider the matrix

V= : . (5)

Given a vector: € C¥, it holds that

Ve=(\),-...e(n)T

is a set of values of the rational function corresponding &b the pointsiy, ..., Ax.
If B=V*MV,whereM = D((m()\1),...,m(\y))T), then
N ~
(Be,d) = (Vd)*™M(Ve) = ) é(A;)d(A;) m(Xg) = (¢; d)m-
j=1



Hence, it follows that the scalar produgt-),, is positive definite iff the hermitian
matrix A hasN distinct eigenvalues; andgq is chosen in such a way that();) =
l(g,w)|> >0forj=1,...,N.

Rational Krylov sequences. Given a hermitianV by N matrix A and a nonzero
vectorg € CV, we define the rational Krylov sequenk& A, ¢, M) as the columns of
the Krylov matrix

K = (bo(A)g,b1(A)g, . ..,brn-1(A)q).
Theorem 3.1. SupposeA is self-adjoint and of the formd = UAU* with U =

(ul,...,u™) unitary andA = D((A\1,...,Ax)T). If ¢ is an arbitrary nonzero vector
in CV, then

K =UD(q)V,
whereV is given by(5) and § = U*¢, i.e. the coordinate vector of in the basis
Ul UN.

gee ey

The rational Lanczos process and ORFs. The application of the orthonormalisation
process to the rational Krylov sequence is equivalent toctmestruction of an upper
triangular matrixG so that the resulting sequen@e= K G satisfiesQ*@Q = I. By
¢* andg* we denote thék + 1)*" column of respectively) andG. Furthermore, let
¢ = g" andepy(-) = 7 ().

Since (¢r, @)m = (pr(A)a,p1(A)g) = (Kow, K@) = (¢%,¢'), the rational
functionsyy, constitute an orthonormal system with respect to the measur We
shall make the assumption that the scalar produch,, is positive definite, and con-
sequently, that the spectrum dfis simple. Therefore, we have the following theorem.

Theorem 3.2. Letyy, ..., on_1 be a sequence of rational functions.

1. Supposel = UD((A1,...,An)D)U*, withU = (u!,...,uN)andU*U = I,
is a hermitian N by N matrix andgq is a nonzero vector irC". If the vec-
tors ¢* = ¢ (A)q form an orthonormal set (or equivalently, if the matix
is the result of the rational Lanczos process applied to the pA, ¢)), then
©o,--.,pN—1 IS an orthonormal set of rational functions with respect e t
discrete measure: so that

_ |(Qvuj)|2 ) Z:/\j
m(z)_{ 0 , z2é{\,..., )

2. If m is a discrete measure with mass poiAts. .., Ay, andifeg, ..., on_1 1S
an orthonormal set of rational functions with respect to theasuren, then the
vectorsg® = ¢y, (A)q form an orthonormal set for the standard scalar product
(-,-) in CY for every pair(A, q) of the form

A=UD((A1,.... \)")U*, q=>_m(\)"/

j=1

whereU = (u!,...,u) is an arbitrary unitary matrix.



The following theorem shows how to recoverif G is given.

Theorem 3.3. Letm be a measure concentrated ¥ distinct points\y, ..., Ay with
m(A;) > 0. Letepo, ..., on_1 be the system of ORFs correspondingitoThen

m(hj) = (Z_ |sok<Aj>|2) |

4 The three-term recurrence relation

Consider a hermitiaiv by N matrix A with simple spectrum and a nonzero vector
q € CV chosen in such a way that the scalar producd,, is positive definite. Then
we have the following lemma.

Lemma 4.1. Assume the discrete measuteand the scalar produdt, -),,, as defined
before. Then the Krylov matrii is nonsingular v «, is of full rank forl < n < N)
for every sequence of poles outside the spectrumefUD (A1, ..., Ax)T) U* with
U*U = I andU = (u!,...,u), if the scalar product., -),, is positive definite.

Proof. Suppose that for a certain sequence of poles it holdsaith) € £, \ £,,—1
thatb,, (A)q € Ky« for an arbitraryn € {1,..., N — 1}. It follows then that there

exists afunctiorﬁ":—igg € L,,_1 so that

() - 210 g —o

where0 denotes the zero-vector @". Hence,

ZN: AP = (1= " Aj)Pn—1 (X))

e-m()\-)l/guj =0, l¢|=1forj=1,...,N.
Wn()\j) J J J

j=1

Becausen()\;) > 0forj =1,..., N and the sequencé, ...,u" is an orthonormal
set, this can only be true if for evegjye {1,..., N}

AP — (1= i " Xj)pn—1 (V)

T (As) =0

But this implies thab,,(z) = Pno1(2) o L,,_1 due to the fact that < N. Hence, we

T ma-1(2)

get a contradiction. O

The rational Lanczos process applied to the pairg) produces the unitary matrix
Q= (q%...,¢"1). Denote byI’ the matrixT' = Q*AQ. Thus,AQ = QT so that
T is the matrix of A taken in the basi§). In the polynomial case (i.e«, = oo for
k =0,...,N) it has been proven thdt is real symmetric tridiagonal. In the rational
case, however, this will not be so. Nevertheless, it is [pbssd prove that, under



certain conditions on the poles, there exists a malrigo thatJ is real symmetric
tridiagonal with positive subdiagonal and

T=(I+JD)'J=JI+DJ)"", D=D((ug i, un-)),

and conversely
J=(I-TD)'T=T(I-DT)".

We shall callg® = ¢r(A)g, for k = 0,1,..., N singular iff ¢, is singular, and
regular in all other cases. In the special cask of N, we definegp by

H;v:1(z =)

FN(Z)

(6)

on(z) =cn

wherery (z) is given by (3) andy # 0. This way we have that
1. on € Ln \ Ln-1,
2. oy is orthogonal tol 1 with respect to the measune,
3. pn isregular,
4. ¢V £ on(A)g = 0, where0 denotes the zero-vector @V
The following theorem follows directly from Theorem 2.1.

Theorem 4.2. Take by convention_; = oo and¢’ = 0. Suppose that the matrix
K is nonsingular. Then the orthonormal vectafs!, ¢* and ¢*+! are regular, for
k=0,1,..., N — 1, iff they satisfy the following three-term recurrence redat

Ad® = Bror (= i A) @ an (1= 1t A) ¢ + B (T = 1, A) 1 ()

The initial conditions arg;~! = 0 andq® = ﬁ The coefficients are finite antt}, is
different from zero.

Suppose that the orthonormal vectgfsfor k = 0, ..., n with n < N are regular,
and let@ y x, denote the matrix containing the firstcolumns ofQ). With I,,, D,, and
J,, as defined before in Theorem 2.2 and= (0,...,0,1)T € C», it follows from
Theorem 4.2 that

JIn
AQNXn - [QNXn qn}[ﬁn Tj|_A[QN><n qn}|:

—1€,
= QNXan - AQNXnDan + 571—1(1 - M;lA)qneZa
or equivalently
AQNXn(In + Dan) = QNXan + 571—1(1 - M;IA)qneZ (8)

LetT), = Qnx,AQNxn With n < N. Multiplying from the left on both sides of (8)
with Q% ., then gives

DypdJy,
u;lﬂn,18£

Tn(In + Dan) = Jn - 6n71‘u;1Q}‘vXnAqne£,



Furthermore, becausk, (1,, + D, J,,) "' = (I,, + J,,D,,) "1 J,, it follows that
(In + JnDn)_IJn - Tn - an

whereR,, is ann by n hermitian matrix with rankR,,) < 1 given by

Rn = 571—1,“7_11971}":1
gn = Q?Vanqn
hy = (In+JuDy) ten.

In the polynomial caseu, = oo for &k = 0,..., N), it holds that rankR,,) = 0
forn = 1,...,N. In this case we have thdt, = J, so that the eigenvalues of
T, are the zeros (i.e. the eigenvaluesjaf) of the orthonormal polynomial (OP) of
degreen. These eigenvalues @f, are called Arnoldi eigenvalue estimates (or Ritz
values) with respect to the Krylov matriX y «,, Since some of these eigenvalues may
be extraordinarily accurate approximations to some of therwalues ofd. It is well
known that the approximation is better for the in absolulee/dargest eigenvalues of
A. For the rational case, one might expect that some of theveédiges ofr’, still are
accurate approximations to some of the eigenvaluet df the more general rational
case, however, the eigenvaluesof are not necessarily the zeros of the ORFE,
unless eithen, = N, u, = oo or ¢™ = 0 (which forn < N means that the Lanczos
process breaks down at step Nevertheless, many observations strongly indicate that
most of the zeros op,, do not differ much from the eigenvalues ©f. Therefore,
we believe that some of the zerosf are accurate approximations to some of the
eigenvalues ofl too. Consider for instance the case of one multiple ple= p # oo
for k = 0,...,N. Then the ORFs,,(z) can be mapped onto the OBs(t) by the
transformation

Tiz—=t:t=1(2) :

=T
SO thatd)n(t) = ¢n (T(Z)) = ‘pn(z) and¢n(B) = (bn(T(A)) = QOH(A)' where
A
P=r—a

And vice versa, the OPg, (¢) can be mapped onto the ORBs(z) by the inverse

transformation ;
T it—oziz=1 (1)

T ltp it
SO that‘pn(z) = (pn(T_ (t)) = ¢n(t) and@n(A) = (pn(T_ (B)) = ¢n(B)1 where
_ B
I+ plB

It is not difficult to see that

Q*BQ=J < Q*AQ = (I+JD)"'J

10



Furthermore we then have th@t, ., BQNxn = Jn, DUt QN , AQNxn # (In +
JnDy)71J,. Clearly, the eigenvaluej%-, forj = 1,...,n, of J, are Arnoldi eigen-
value estimates for the matri®, while the zerog,, ;, forj = 1,...,n, of ¢, are the
eigenvalues of/,, transformed by the mapping, i.e.

Znj =T ()\j), j=1...,n.

Consequently, althougt,, + J,,D,,)~'J, # T,, the zeros ofy,, can be seen as Ritz
values for the matrix4d with respect to the Krylov matriX(y ,, as well.
To compute/, we define the vectors™ !, y"~t € CN withn =1,..., N by

:En_l = Zn(A) {ﬁn—? (,u;ig - ,ur_y,l) qn—2 + qn—l} - ﬁn—?qn_2
v = 4 (= ety Za(A)] " 9)
where we set.y = un—1 for the special case of = N. Then it follows from (7) that
571—1(1” :xn—l _an—lyn_17 n= 11"'7N' (10)

Multiplying with (¢')*, fori € {0,...,n — 1}, from the left on both sides of (10) and
solving fora, 1 gives

L\* on—1
et = an)

Next, taking the 2-norm on both sides of Equation (10) we fivad t
Bn-1=ll2""" = an_1y™ 2,

so thatg™ is then given by
¢" =00 (@ = ey

Finally, with the initial conditiong—! = 0 andq® = ¢/||q||2, it holds forn = 1 that

S (@°)" Z1(A)q"
L+ (7 = o 1) (6°)* Z1(A)g®
Bo = | [{1—ao(ur" — pg)}2Z1(A) — aol] ¢°|2
= (@) [{1 - aolui* — g )} Z1(A) — aol]” ¢°
¢ = Byt [{1—aolpr! —uo ")} Z1(A) — aol] °.

5 Forbidden poles

Suppose that the s@b, ..., u,—1 is fixed for1 < n < N, so that the orthonormal
vectorsq®,...,¢" ! are regular. Note that far > 2, this implies that we assume
that the recurrence coefficients), 3o, ..., an_2, Bn_o are fixed. Furthermore, we
will again assume that the spectrum_fis simple, and that the vectqre C"V has
been chosen in such a way that the corresponding Krylov cestf y «,, for n =

11



1,...,N are of full rank. When choosing a pole, = p, we have to make sure
that the resulting orthonormal vectgt is regular so that the three-term recurrence
relation holds true. Hence, the question is how we can détermhether the vector
q"™ is regular. Therefore, we will again prove the three-tercureence relation of
the orthonormal vectors, but now in a different way. Firstwi#t give a temporary
definition offorbidden poles

Definition 5.1. Suppose that the sequence of polds_1 = {po, ..., tn—1} C RgU
{o0} is fixed forl < n < N — 1. Then we say that,, is aforbidden poleiff p,,
satisfies at least one of the following three conditions:

1. u, is an eigenvalue ofl;
2. (y"',¢" ") =0, wherey" ! is given by(9);

3. forn > 1, u, is an eigenvalue ofl,,_1 + Jn_an_l)_1 Jn_1, With I, D and
J as defined before in Theorem 2.2.

Note thatu, andpuy can never béorbidden poleslue to the fact that respectively
¢° and¢’v do not depend on them. Nevertheless, we will assume thattteegutside
the spectrum ofd.

Theorem 5.2. Take by convention = 0. Furthermore, for the sake of simplicity
in notation we will assume thaty = py_1. Suppose that the sequenté,, for

1 < n < N does not contain anforbidden poles Then there exists a set of finite
constanty{ f,—1,0; fn—1,15- - - fa—1,n}, With f,_1 , # 0 forn < N, so that

A=) i — 5 A)g (12)
j=0
Proof. If ., is not aforbidden poleit follows from the first condition in Definition 5.1
that u,, is outside the spectrum of, and hence/Z,,(4) is well defined. Because
Zn(A)g"~t € spad¢®, ..., q"}, there exist finite constants,_1 ;, withj = 0,...,n,
so that

Zn(A)g" = a1 hno1y = (Za(A)g" 7). (13)
j=0
It also holds that
_ Apnp_1(A)
n—1 __ _

Therefore, under the assumption that the scalar produgt, is positive definite, we
have forl < n < N thath,_1, = 0iff p,—1(un) = 0. The third condition in
Definition 5.1 implies thap,,—1 (i, ) # 0 if p, is not aforbidden pole

From (13) it follows forn = 1, ..., N that

At = (T =p A ha 0
j=0

= Z hn—1,;(I — ;' A)g’ + Z hn—1,1m—1,; A,
=0 =0

12



where
_ . —1 —1
nn—lJ _'Mj _-Mn .

Or equivalently,

n n—2
Un—lA~qn_1 - Z hn—l,j (I - ,u;lA)qJ + Z hn—l,jnn—l,quja
§=0 =0

With v,—1 = 1 — hy—1p-1n—1,n—1 = (y" ', ¢""*). Because, is not aforbid-
den pole the second condition in Definition 5.1 is not satisfied, satth,_; # 0.
Consequently, we have that

n

n—2
hnf i — i hnf ) 'In—1,5 i
Agrh = 3T SR ) Y T AL (14)

=0 Un—1 =0 n—1

For: =n — 1 =0, this becomes

h B h B
A = (I =gt A + = (I py A
Vo Vo

= fooll —pg A)q® + foa(I — puytA)g,

where fy o and f, ; are finite andfy,; # 0 if p is not aforbidden pole So the
statement holds far= 0.

Let us now suppose that the statement is trué for0, . . ., n — 2 under the condi-
tion that M, ; does not contain anfprbidden poles Then under the same condition
fori = n — 1 we have that

n

_ hnf .J — 1
At = Y (I - A
=0 Un—1
n—2 h " J+1
n—1,5/In—1,7 —
2| TRl e A | @)
§j=0 n- 1=0
= > o1 —py A
j=0

Because every,,_ ; is the result of a finite sum of finite numbers, the result itsel
is finite as well. Furthermore, it holds th#t_; , = h"*l’", so thatf,_; , # 0 for

Un—1

n<N. O

Assume that the sequendd = My does not contain anfprbidden polesand
define the matrix' by

r f070 fN—l,O
fo : . : :
F=1| ¢ - - : . (16)
. 0 - 0 fyn-2aN-1 fNn-1N—1 ]

13



Then it follows from the previous theorem that
AQ = QF — AQDF,
or equivalently,
AQ(I + DF) = QF.

Note that we get the same kind of formula as before, in Seetjoexcept that/ is
tridiagonal whileF' is a Hessenberg matrix. Assuming that the vectdrsfor n =
1,...,N — 1, are determined in such a way thiathas a positive real subdiagonal, we
have the following two lemmas.

Lemma 5.3. Suppose that the sequensd does not contain anjorbidden poles
Then, withF' given by(16)and D = D((uy ", pyts - -+, - 1)T), it holds that the
inverse of( + DF') exists.

Proof. Suppose thatet(I + DF) = 0. Then there exists a nonzero vectar CV so
that(I + DF)c = 0. Hence

Q*AQ(I+DF)c=0 = Fc=0= DFc=0
= (I+DF-I)c=0=c=0.

But this is in contradiction with our assumption tlias a nonzero vector. Thus it holds
thatdet(l + DF) # 0. O

Lemma 5.4. Suppose that the sequentédoes not contain anfprbidden polesThen
the matrixF, given by(16), is real symmetric tridiagonal.

Proof. Because the matrid is hermitian, we have that
FI+DF)™' = T=T*
(I + DF)™ " F™,

so that
(I + DF)*F = F*(I + DF).
Due to the fact thabD is a real diagonal matrix, and henfe= D*, it follows that
F+F'DF =F"+F*DF = F = F~*.

Thus it holds that the matrik' is hermitian. Finally, because the matfixis a Hessen-
berg matrix with positive real subdiagonal, it follows tHais real symmetric tridiag-
onal. O

From the previous lemma we can conclude tfiat J. Hence, we have proven that
the orthonormal vectorg’, . .., ¢ are regular ifM,, does not contain anfprbidden
poles

14



Remark 5.5. With our temporary definition diorbidden polesthe opposite is not nec-
essarily true, i.e. if the orthonormal vectog8, . . ., g™ are regular,M,, may contain
forbidden polesConsider the case of orierbidden poleu,, satisfying the second and
third condition, but not the first. Equatiqii5)then becomes

0 = 111z—lf4qn_1

n—1 n—2 J+1
= Z hp—1;(I — /’L_]‘_IA)qJ + Z hp—1,Mn-1,j ij,l(f —u tA)g
j=0 j=0 1=0
n—1
= Z hnfl,j(l — /,LJ_IA)qj
7=0
Thus, ifh, 1 ; = 0for j =0,...,n — 1, we cannot conclude that" is singular.

In practice, a,,—1, given by(11), will most of the time be computed wighi—*.
Therefore, ifu,, only satisfies the second condition, the denominatdilit) equals
zero, so thaty,,_; = oo. However, ifu, also satisfies the third condition, many
observations strongly indicate that

e the denominator irf11)tends to zero as well;

e ¢" isregular;

e «,_; can be computed more accurately with the aid of another ordhmal
vectorg’ with j < n — 1.

However, at the moment of writing we did not found a proof fagse observations.
Therefore, we will still considef:,, a forbidden pole even when it simultaneously
satisfies the second and third condition. The least we cafsayre, is that

1. the first condition in Definition 5.1 is essential. Othesgjiwe can never have
that¢" = 0 (see Equatiorf6));

2. if u, satisfies either the second or third conditigfi,is singular;

3. if M,, does not contain anforbidden polesthen the rational Lanczos process

breaks down at step iff the matrix A has justn — 1 distinct eigenvalues or the
vectorqg is a combination of just — 1 eigenvectors ofi.

Suppose that,,_1, for n > 0, does not contain arfprbidden poles With A =
UD ((M,...,An)T) U andU*U = I, the second condition in Definition 5.1, for
Itn = 1, Can be rewritten as

(u = ppti)A
I—p1A

n—1

0 = (") |1+

= (qnfl)* w
I—p1tA

T
L= tA L=t
_ (q~n—1)*D /Lnfl 1’“.’ :unfl q«n—l’
1—#71)\1 1—#71/\71

n—1

15



whereq"~! = U*q" ™! = (wy,...,wy—1)T andy_ [, Jw;_1|? = 1. So, let us define
ha (1) DY

N o o
h (/\l) — Z |w_71|21 - Mn—l)\j — gN—l(M) (17)
j=1 ! 1_:&/\3' PN(,EL) ’

with i,y = p, 'y andji = p=t € R, gy_1 € Py andpy (i) = [} (1 —
ftA;). Then the second condition in Definition 5.1 is satisfiedtifs a zero ofh,, (i).
Moreover, if i is a pole ofh, (1), the first condition in Definition 5.1 is satisfied.
Hence, we have proven the following theorem.

Theorem 5.6. Let h,, (i), with i € R andn > 0, be given by(17). Suppose
Lo, - - -, in—1 are notforbidden poles Thenyu, = g~ is aforbidden poleif i is

a zero or pole oh,, (f1).

Note thaty = u,—1 can never be dorbidden pole due to the fact that,,
is not an eigenvalue ofl, p,,_1(tn—1) # 0 (becausep,—1 € L,-1 \ L,—2) and
hn(fin—1) = 1 # 0. Furthermore, it follows from the previous theorem thatréhean
be no more tha(N — 1) + n forbidden poles The upper bound for this maximum
number offorbidden polesan be reduced even more. Therefore, we first need the
following lemma.

Lemma 5.7. Suppose thah, # 0 is an eigenvalue oA and assume that the se-
quenceM,, _; for n > 1 does not contain anforbidden polesThenh,, (\;!) € R iff
Prn—1(As) = 0. Furthermorelim; . hy(jt) # 0 iff det A = 0 andp,,—1(0) # 0.

Proof. First, note that
P =U """ = U 0n1(A)g =D ((gn-1(M), -, on1(An)") G,
2
whereq = U*g, 50 thatlw, 1|2 = |pn—1(As)Pm(A) = |28 m(),), with
m(As) > 0. Hencews_1 = 0iff p,,—1(As) = 0. ForAs # 0 it now holds that

1= fin—1A; 1— fip—1A
,un_ll ¥ + |’LU571|2 hm ,LLnV 11\s
1-— )\5 )\j [l—))\;l 1- M)\s

. 1
= ha(A? o121 = i1 Xs) i :
(AS) + [ws—1[7(1 = fin—1 >ﬁi§}11—ﬁ/\s

Hm o, (1)

A=At

I
l\g
&

with 7, (A;!) € R and(1 — fin—1As) # 0. So, we have thatm, -1 h,(ji) € R ff
Ws—-1 = 0.
Finally, for iz tending to infinity, we have that

N
lim h,(ji) = —112(1 = fin—1Ay) lim ———
Jim o (71 ;Iwg Q= ineady) Jim 5
qo0 it det A0
= leaa(0)2m(0) if detA=0
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Because: € Ry U {oo} (or equivalentlyi € R), we only have to consider the
eigenvalues ofd different from zero in the first condition of Definition 5.1hiE way,
it follows from the previous lemma that Definition 5.1 is egplent with the following
final definition forforbidden poles

Definition 5.8. Suppose that the sequence of polds_1 = {po, ..., tn—1} C RgU
{o0} is fixed forl < n < N — 1. Then we say that,, is aforbidden poleiff p,,
satisfies at least one of the following two conditions:

1. ji = u;*is a pole or zero oh,,(ji) given by(17),

2. forn > 1, u = u, is an eigenvalue off,,_; + Jn,an,l)’1 Jp—1,withI, D
andJ as defined before in Theorem 2.2.

Theorem 5.9. Suppose thap,,—1(\;) = 0forl <n < Nands = 1,...,m <
n—1,with L, = {\;}™, C {)\1,...,An} = Ln. Then there can be no more than
2(N — 1 —m) + n forbidden poles

Proof. If 0 ¢ L,,, it follows directly from Lemma 5.7 that: finite poles vanish with
m finite zeros. If, on the other hand, it holds that= 0 € L,,,, then we have that

N o o

h (/i) |’LU 1|21_NH*1/\J' _ ngz(/L)
n = E j— oy o\
P L — fid; pn—1(f2)

with gy_2 € Py_o andpy_1(ft) = HL#S(I — ftAj). Furthermore, it follows
from the previous lemma that — 1 of the remaining finite poles vanish with — 1
finite zeros. O

6 Numerical examples

In every example that follows, we have takgs- (1,1,...,1)7.
Example 6.1. First, let us consider the case that
A=D((1,2,...,20,101,102,...,120,201,202,...,220,301, 302, ..., 320,

401,402, . .., 420,501,502, ..., 520,601, 602, ..., 620,
701,702, . ..,720,801,802,...,820,901,902, ...,920)7) (18)

and
M:{/Lozul:/LQZ...:/LQ:425,/L10:/L12:...:/L19:8957
H20 = Moz = ... = fi2g = 25, 130 = fi32 = ... = 39 = 125}. (19)

Figure 1 then graphically shows the zerosgf(z) for k = 1,...,39. Starting with a
pole in425, this graph clearly illustrates the convergence of one oraveeros ofpy (2)
to the eigenvalues of the closest tal25. When, for instance a = 10, the pole in
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Figure 1: The zeros;, ; of pi(z) fork =1,...,39and: = 1,...,k whenA is given
by (18) and the poles are given by (19).

425 is changed into a pole iR95, a few steps later the graph shows the introduction of
zeros in the proximity of the eigenvalues/the closest t#95. Similarly, the graph
shows the introduction of zeros in the proximity of the eigdures ofA the closest to
25 and125 a few steps after the pole is changed into respecti¥elt £ = 20 and125

atk = 30.

Example 6.2. Next, consider the case that
A= D((5,5.3,5.7,6.2,6.7,7.3,8,8.9,10,11.4,13.3, 16, 20, 26.7, 40,80)7) ~ (20)

and
M={pur=13,k=0,...,15}. (21)

Table 1 then gives the zeros pf(z) and pg(z) as well as their inverse values. The
values in bold are approximately equal to one of the eigaresabfA. For instance,
for k = 4, we can deduce from this table thai(z) has a nodez, 3 ~ 13.3, which

is indeed the eigenvalue df the closest to the pole3. Hence, when determining,
we could have decided to choose another ggle Or we could have waited until the
determination of;® to choose another polgy. Letji = g~!, then Figure 2 above
shows the graph oi5(i:), given by(17), while Figure 2 beneath shows the graph of
hg(ft). Comparing both graphs, they clearly show that the polds)¢f) in the inverse
eigenvalues ofi vanish with the same zeros @§(z) (see also the values in bold in
Table 1).
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—1

4 8 4 8

ik

1 5.8332  5.7289 | 0.171 0.175
2 11.2957  8.3603 | 0.089 0.119
3 13.3000 9.9859 | 0.075 0.100
4 17.1800 11.4000| 0.058 0.088
5 13.3000 0.075
6 16.0001 0.063
7 20.2251 0.049
8 38.4973 0.026

Table 1: The zeros;, ; of i (z) fork = 4,8 andi = 1,. .., k whenA is given by (20)
and the poles are given by (21). The values in bold are apmrately equal to one of
the eigenvalues ofl. The inversez,;} of these values is given as well.

i | eig(d) | 216 216,

1 ) 4.9953 5.0000
2 5.3 5.2986 5.3000
3 5.7 5.7000 | 5.7000
4 6.2 5.7008 6.2000
5 6.7 5.7024 | 6.7000
6 7.3 5.7039 7.3000
7 8 6.2004 8.0000
8 8.9 6.2022 8.9000
9 10 6.6939 | 10.0000

10 | 114 7.3579 | 11.4000
11| 13.3 8.9032 | 13.3000
12 16 11.3691 | 16.0000
13 20 13.3000 | 20.0004
14| 26.7 | 14.5657 | 26.7069
15 40 16.9531 | 40.0207
16 80 36.9986 | 80.0125

Table 2: The eigenvalues 'eid}’ of A, given by (20), and the zerass ; andZ;s ; of
©16(2) whenay has been computed respectively withandq®. The poles are given
by {po = ... = pa = 13,45 = ... = p15 = 5.8332}, whereb5.8332 is a zero of

pa(2).

Finally, note that the inverse values of those zerog,of; (2) that do not approx-
imate an eigenvalue ol, seem to be zeros &f, (). Consider for instance the case
thatfii; = ... = fl1s = 24,1 = 5.8332. Table 2 then gives the nodesofs(z), first

whenay has been computed witH, and afterwards whet, has been computed with

¢
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Figure 2: The graph di,(i1), given by (17), when! is given by (20) angi,—; = 1/13
(marked with an '0’), fork = 5 (above) andc = 9 (beneath). The positions of the
inverse eigenvalues of are marked with a«#’, while the positions of the inverse zeros

of pr_1(z) are marked with anx’.
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Figure 3: The zeros;, ; of pr(z) fork =1,...,58 andi = 1,...,k whenA is given
by (22) and the poles are given by (23).

Example 6.3. Finally, consider the case that

A=B+ BY (22)
and
M = {po=...= 2= —74.70665262792586,
13 = ... = p21 = 28.43493168481659,
fi22 = ... = i34 = —83.62041912422748,
f3s = ... = g = —44.09278169786580,
fhar = ... = psg = —0.07633138941779551}, (23)

whereB is a random matrix of siz€000 by 1000. To generate this random matriz,
we used the matlab command RANDOM with exponential disiviband parameter
equals one, i.e.

B = randonf’exp’, 1, 1000, 1000).

Figure 3 then graphically shows the zerosmf(z) for k = 1, ..., 58, while Tables 3—7
illustrate the convergence of these zeros to the eigensalf in the neighbourhood
of the chosen poles.
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—75.07138158649700
—74.90415598532118
—74.88722821487410
—74.88293719212363
—74.88257941910386
—74.88255314969979
—74.88254936102433

—172.33545848125323
—74.35442689734335
—74.52247064066461
—74.53039687584757
—74.53073528541057
—74.53075558708387

9 —74.88254921469675 —74.53075603831439
10 —74.88254921310352 —74.53075604269772
11 —74.88254921307571 —74.53075604277467
12 —74.88254921307535 —74.53075604277581
eig(A) | —74.88254921307539 —74.53075604277633
Table 3: Selection of zeros af;(z) for £ = 2,...,12 together with two eigen-

values ’'eig@)’ of A, given by (22), in the neighbourhood of the pagle

—74.70665262792586.

k

14
15
16
17
18
19
20
21

28.34912717573689
28.38206678607947
28.38260053019498
28.38262104605347
28.38262175296683
28.38262176941285
28.38262176957222
28.38262176957326

28.48889591607436
28.48727120290261
28.48724226540813
28.48724162263257
28.48724160040398
28.48724160006213
28.48724160005994

eig(4)

28.38262176957325

28.48724160005994

Table 4: Selection of zeros @f;(z) for k =
values ’'eig@)’ of A, given by (22), in the neighbourhood of the pagle

28.43493168481659.
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14,...,21 together with two eigen-



k

23
24
25
26
27
28
29
30
31
32
33
34

—84.45655848650057
—84.01378336701816
—83.99882748400724
—83.99444372863825
—83.99347127968137
—83.99342336103068
—83.99341815210235
—83.99341614761853
—83.99341606464419
—83.99341606102384
—83.99341606096259
—83.99341606096212

—82.58622618669277
—83.08343357327384
—83.23161100812494
—83.24679334108409
—83.24738972709405
—83.24741918943062
—83.24742209304441
—83.24742218057737
—83.24742218731915
—83.24742218749245
—83.24742218749395

eig(4)

—83.99341606096128

—83.24742218749370

Table 5: Selection of zeros af.(z) for k =
values ’'eig@d)’ of A, given by (22), in the neighbourhood of the pale

—83.62041912422748.

23,...,34 together with two eigen-

k

36
37
38
39
40
41
42
43
44
45
46

—45.81012402440861
—44.28756728280433
—44.22848506443002
—44.22395584485643
—44.22378193048641
—44.22377594338028
—44.22377568240039
—44.22377567384875
—44.22377567369579
—44.22377567368481
—44.22377567368464

—43.92468126641263
—43.96007168770122
—43.96172849534423
—43.96178549173455
—43.96178764163637
—43.96178771998225
—43.96178772201143
—43.96178772204942
—43.96178772204691
—43.96178772204685

eig(A)

—44.22377567368397

—43.96178772204763

Table 6: Selection of zeros @f;(z) for k =
values ’'eig@d)’ of A, given by (22), in the neighbourhood of the pale

—44.09278169786580.

23

36, ...,46 together with two eigen-



k
48 —0.4838570877860278
49 —0.1863101036041319  0.1837911717117914
50 —0.1776579965610296  0.03687735307379819
o1 —0.1769717619800633  0.02453950362899089
52 —0.1769482165993965  0.02429560467638048
53 —0.1769432429686140  0.02428058031246304
54 —0.1769427918398407  0.02428001287400376
55 —0.1769427796416630  0.02428000080026274
56 —0.1769427794038496  0.02428000059346411
o7 —0.1769427794022227  0.02428000059212321
o8 —0.1769427794022236  0.02428000059210279
eig(4) | —0.1769427793333267  0.02428000049773565

Table 7: Selection of zeros af;(z) for k = 48,...,58 together with two eigen-
values ’'eig@d)’ of A, given by (22), in the neighbourhood of the pale =
—0.07633138941779551.
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