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We present a memetic approach for multi-objective improvement of robustness influencing features
(called robustness objectives) in airline schedules. Improvement of the objectives is obtained by simulta-
neous flight retiming and aircraft rerouting, subject to a fixed fleet assignment. Approximations of the
Pareto optimal front are obtained by applying a multi-meme memetic algorithm. We investigate biased
meme selection to encourage exploration of the boundaries of the search space and compare it with
random meme selection. An external population of high quality solutions is maintained using the adaptive
grid archiving algorithm.
The presented approach is applied to investigate simultaneous improvement of reliability and flexibility
in real world schedules from KLM Royal Dutch Airlines. Experimental results show that the approach
enables us to obtain schedules with significant improvements for the considered objectives. A large scale
simulation study was undertaken to quantify the influence of the robustness objectives on the operational
performance of the schedules. Rigorous sensitivity analysis of the results shows that the influence of the
schedule reliability is dominant and that increased schedule flexibility could improve the operational
performance.

© 2009 Published by Elsevier Ltd.

1. Introduction

Delay analysis carried out by Eurocontrol, shows that the Euro-
pean air transport industry is suffering from an indisputable increase
in delays [1]. In 2005, 42% of the flights were delayed and as much as
20% of the flights were delayed by 15min or more. In the same year,
the average delay per movement was approximately 11min, which
is an increase of 9% compared to 2004. Investigating the causes of
delays reveals that 50% are due to airline related issues, whereas 19%
are due to airport operations [1]. In addition, the predicted growth in
air transport over the next few years (approx. 26% by 2013 for Europe
[2]) will cause increased congestion of airports and airspace, which
is likely to result in a further increase in the number of delays [3].
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This makes the construction of more robust schedules—which are less
likely to be delayed—an absolute necessity for airlines.

For most of the airlines, different departments are involved in
the scheduling process: the network department, the operational
plan management department and operations control. The network
department is responsible for the construction of an initial feasible
schedule in the early planning stages. The main goals of the network
department are maximisation of the market share, maximisation
of passenger revenue and minimisation of the operating cost. At
KLM, schedule construction takes the network department approxi-
mately 2 months, after which it is passed on to the operational plan
management department. The operational plan management depart-
ment is responsible for making minor changes to the schedule to
improve its operational performance and to anticipate changes in
the market. Approximately two weeks before the day of operation,
the schedule is passed on to the operations department, which is
responsible for making last minute adaptations and managing the
schedule on the day of operation. This includes implementing recov-
ery strategies to mitigate the effects of a disruption. The degree of
complexity required to implement recovery strategies is influenced
by the scheduling practices of the network and operational plan
management department. Ideally, these departments would include
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robustness improving patterns in the schedule, which could be ex-
ploited by the operations department. However, well-considered
inclusion of sophisticated recovery patterns is a difficult task and
requires a deep understanding of their individual and combined
influence on the schedule's operational performance.

Unfortunately, most of the current decision support tools for
airline scheduling assume deterministic operating conditions and
discard the influence of potential disruptions on the day of opera-
tion [3,4]. In addition, current models have a strong focus on min-
imising the operating cost, improving the utilisation of resources
and decomposing the scheduling problem into several indepen-
dent sub-problems. We distinguish between flight scheduling, fleet
assignment, aircraft rotation-maintenance scheduling and crew
scheduling. The flight scheduling problem considers the construction
of a feasible flight network by selecting a set of origin–destination
pairs, assigning the flight times and determining the operating fre-
quencies. The resulting flight network is used as input to the fleet
assignment problem, which assigns a fleet type to each individual
flight leg. The main goals of the fleet assignment are the maximi-
sation of the captured and recaptured passengers, maximisation
of revenue and through revenue (additional revenue stemming
from the premium passengers pay for the comfort of staying on
the same plane) and minimisation of the operating cost [5]. Fea-
sibility constraints for the fleet assignment process include flow
constraints, balance constraints, availability constraints and flight
coverage constraints [5]. Aircraft rotations are built by assigning a
sequence of flights to each individual aircraft of a certain fleet type
and assigning the maintenance slots according to the maintenance
regulations of the Federal Aviation Authorities (FAA). Crew rotations
or crew pairings—which are not necessarily the same as the aircraft
rotations—are constructed during crew scheduling. Crew schedul-
ing involves assigning pilots and cabin crew to each individual
flight, subject to FAA regulations, airline specific rules and labour
agreements. We refer to Etschmaier and Mathaisel [6] for a survey
on early work in airline scheduling and to Barnhart et al. [7] and
Barnhart and Cohn [8] for more recent literature surveys. A rigorous
literature review of the state-of-the-art crew scheduling models can
be found in Gopalakrishnan and Johnson [9].

Applying deterministic and decomposed approaches is known to
result in sub-optimal schedules with many tightly interconnected
resources, leaving less flexibility in the schedule to recover from
delays. Recent trends in airline scheduling focus on integrated
scheduling models and new approaches to build more robust sched-
ules. Integrated scheduling considers the modelling of downstream
effects on the subsequent scheduling steps and constructing fully
integrated scheduling models by simultaneously considering two or
more individual sub-problems. The potential benefits of integrated
scheduling were estimated in [10]. Other work on integrated
scheduling includes [11–14]. Research on robust scheduling investi-
gates new approaches to build schedules that have an improved per-
formance in operation. The robustness of a schedule is influenced by
its sensitivity to stochastic events, the flexibility within the schedule
and its stability. The flexibility is related to the number of recovery
options available to mitigate the effects of a disruption, whereas the
stability of the schedule is a measure for the probability of a delay to
propagate through the schedule and the availability of local recovery
strategies with a limited impact on the rest of the schedule. Previ-
ously considered approaches for robust airline scheduling include
[15–18]. An analytical approach to evaluate the robustness of airline
schedules based on the presence of robustness influencing features
in the schedules—called robustness objectives—was presented in
[19]. Approaches that focus on improving a schedule's robustness
by manipulating individual robustness objectives were presented
in [3,4,20–26]. An important shortcoming of the latter work is the
fact that robustness objectives are considered in isolation. However,

multiple robustness objectives are likely to mutually interact and
simultaneously influence the schedule's operational performance
[4,15]. The construction of a robust airline schedule should there-
fore be considered as a multi-objective optimisation problem that
generates schedules with a good trade-off between the individual
robustness objectives, resulting in better operational performance.

In this paper, we present an approach for multi-objective opti-
misation of robustness objectives in airline schedules. Multi-objective
optimisation of robustness objectives is a promising area of research
that has, to the best of the authors' knowledge, not been addressed
before. The presented approach enables us to investigate the mutual
interaction between robustness objectives and quantify their simulta-
neous influence on the schedule's operational performance (through
large scale simulation). The approach enables us to identify dom-
inant influences and good trade-offs between robustness objectives
that result in a better operational performance. Multi-objective im-
provement is obtained by simultaneously retiming flights and rerout-
ing aircraft in existing schedules, subject to a fixed fleet assignment.
Diverse approximations of the Pareto optimal front are obtained by
applying a multi-meme memetic algorithm. Experimental results for
real world data from KLM Royal Dutch Airlines are presented. The
approach can be applied by schedule operators in the network and
operational plan management department.

The outline of our paper is as follows. Section 2 provides a detailed
description of the underlying network model and the robustness
objectives that we investigate. Section 3 describes the algorithmic
approach and is followed by a discussion of the results that were
obtained for real world data from KLM in Section 4. We conclude
and focus on our future work in the final section of this paper.

2. Research approach

Due to the multi-objective nature of the problem, we propose
Pareto optimisation [27–29] for the simultaneous improvement of
multiple robustness objectives in existing airline schedules. In Pareto
optimisation, each of the solutions x in the decision space � has a
vector z(x)={z1(x), z2(x), . . . , zk(x)} of objective values that represents
the trade-off between the objectives. The Pareto optimal front is the
set of solutions that contains all solutions that are not dominated by
any other solution in the entire feasible search space. A solution x1
dominates x2 if none of the components in x1 is worse than the cor-
responding value in x2 and at least one of the components in x1 is
strictly better than its corresponding value in x2 [29]. In the context
of our work, the Pareto optimal front represents the set of schedules
with an optimal trade-off between the individual robustness objec-
tives. Details on the robustness objectives that we investigate and
the underlying network model in our approach are provided below.

2.1. Model

Our model, of which a graphic representation is shown in Fig. 1, is
based on a weekly time-space multi-commodity flow network. Similar
models were presented in [12,30–32]. Each commodity represents
an aircraft that circulates through the network. Each airport in the
network is represented by a timeline that models its activities (e.g. C1
in Fig. 1). Timelines are connected through flight arcs that represent
non-stop flights between them (e.g. f1 and f2 in Fig. 1). A reserve arc
connects two points at the same timeline and defines an interval
during which an aircraft is allocated as a spare at the given location
(e.g. r7 in Fig. 1). Ground arcs are used to connect two flight arcs or
a flight arc with a reserve arc (e.g. between f1 and f2 or between
f6 and r7 in Fig. 1). Wrap around arcs—not shown in Fig. 1—connect
the last arc of a rotation to the first arc of the rotation and thereby
enforce periodic schedules. The exact aircraft that is allocated to an
arc—and thus the fleet type that is assigned—is determined by the
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Fig. 1. Time-expanded multi-commodity flow network.
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Fig. 2. Time-windows and arc copies, K= 3, �t = 5 min, T= ±5 min.

aircraft that is used to carry out the first arc of the corresponding
rotation.

Flexibility in the flight times is modelled by making K − 1 arc
copies of each individual flight arc, as shown in Fig. 2. Arc copies are
spaced at regular intervals �t within a pre-specified time window
of size T. The time windows are centred around the initial flight
arc. Keeping the size of T small enables us to discard the impact
of retimings on the passenger demand, the passenger connections
and the profitability of the schedule. In the case of larger values for
T, changes to passenger demand, the passenger connections and
the market value of the itineraries (as a consequence of the retim-
ings) must be taken into account. Multi-objective improvement is
obtained by making a well-considered selection of arc copies and the
connections between them. A feasible solution is one that does not
violate any network and schedule feasibility constraints. The network
feasibility constraints include flow balance and aircraft availability,
whereas the schedule feasibility constraints include minimum ground
time restrictions, maintenance feasibility and coverage constraints.
The latter two require that each plane undergoes maintenance at
least every 60 flight hours and that at least one of the arc copies for
each flight in the initial schedule is selected.

2.2. Objectives

2.2.1. Schedule reliability
The reliability objective R(S) for a schedule S is a measure of

the schedule's ability to absorb the effects of minor stochastic influ-
ences in its operating environment. R(S) is defined in terms of the

probability pi that the next flight (fi + 1) of an aircraft can leave on
time, given the time that is allocated to its previous flight (fi) and its
turn around operations (arrival and departure handling). The value
of pi is estimated based on stochastic distributions that are derived
from large sets of historic data. The stochastic nature of flight times
and departure handling is modelled by �-distributions, whereas ar-
rival handling is modelled by deterministic distributions. System-
atically changing operating conditions—such as congestion patterns
and weather influences—are modelled by defining different distribu-
tions depending on the time of the day, the time of the year, the ori-
gin/destination of the flight and the time that is scheduled to carry
out the activities. The latter enables the modelling of a behavioural
response. In addition, different distributions are defined for differ-
ent types of aircraft. The stochastic nature of a sequence of activi-
ties, si, is estimated by calculating the approximate convolution C
of the individual distributions [33]. si is thereby defined as the flight
fi—which connects to fi + 1—followed by its arrival and departure
handling. The corresponding value of the cumulative distribution
function for C for the time ti that is allocated to si, C(ti), provides an
estimation of pi.

The value of the reliability objective Ri(S) for si is equal to the
scaled value of pi, as defined by Eqs. (1) and (2). The non-linear
scaling functions encourage improvement of the weakest links in a
schedule by penalising low values of pi more severely. An additional
penalty is incurred in case pi violates the minimum reliability pmin.
The scaling parameter y in Eqs. (1) and (2) enables us to manipulate
the quadratic shape of the scaling function and influences the ratio of
the objective value for less reliable connections versus more reliable
connections. The parameter P in Eq. (2) controls the penalty that is
incurred in case pi violates pmin. Low values for y and P penalise larger
violations of pi less severely and encourage exploration of the search
space by facilitating crossing fitness barriers and migration to new,
possibly better, regions of the search space. The overall schedule
reliability R(S) is calculated as the sum of the individual values of
Ri(S) for all si in S, as defined by Eq. (3). Notice that |f | represents
the total number of flights in S

pi >pmin : Ri(S) = f (pi) = (1 − pi)
y (1)

pi�pmin : Ri(S) = f (pi) = (1 − pi)
y + P(pmin − pi) (2)

Ri(S) =
|f |∑

i=0

Ri(S) (3)

2.2.2. Schedule flexibility
The flexibility objective F(S) for a schedule S is defined in

terms of the number of single point swap opportunities in S. A sin-
gle point swap is defined as a sufficiently long overlap between the
ground time of two sequences, si and sj, that enables a feasible ex-
change of their aircraft. Swap opportunities are typically used on the
day of operation to reduce the impact of a disruption by redistribut-
ing slack between the aircraft rotations. Implementing a single point
swap between si and sj implies that the aircraft that was allocated
to fi will carry out fj+1 and the one that was allocated to fj will carry
out fi+1. Three different types of single point swap opportunities are
illustrated in Fig. 3. Notice that gi, gj, gi→j+1 and gj→i+1, respectively,
denote the scheduled ground time between fi and fi+1, fj and fj+1, fi
and fj+1, and fj and fi+1. As can be seen from Fig. 3, implementing
a type 1 and type 2 swap enables the creation of additional ground
time, �g, respectively, for fi and fj that could prevent knock-on de-
lays in case fi, respectively, fj, is delayed. Type 3 swaps do not allow
the creation of additional ground time for any of the flights involved,
yet could be used to exchange aircraft on the day of operation to
meet maintenance requirements, to swap the aircraft back into their
original position, or to prevent a delay of the most important flight
of fi+1 and fj+1 in case one of the inbound flights is delayed.
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Fig. 3. Swap types.

The objective value Fi,j(S) for a single point swap between se-
quences si and sj is defined by Eqs. (4)–(6). In case of a type 1 or
type 2 swap, Fi,j(S) is, respectively, equal to pj→i+1 or pi→j+1. In
the case of a type 3 swap,Fi,j(S) is equal to the minimum of pi→j+1
and pj→i+1. Notice that pi→j+1 and pj→i+1 represent the probability of
an on-time departure of fj+1 and fi+1 after implementing the swap.
The value of the flexibility objective for the whole schedule, F(S),
is equal to the sum of the individual values for Fi,j(S), as defined
by Eq. (7)

type 1 : gj→i+1<gj : Fi,j(S) = pj→i+1 (4)

type 2 : gi→j+1<gi : Fi,j(S) = pi→j+1 (5)

type 3 : gi = gj = gi→j+1 = gj→i+1 : Fi,j(S) = min(pi→j+1,pj→i+1) (6)

F(S) =
|f |∑

i=0

|f |∑

j=i+1

Fi,j(S) (7)

3. Algorithmic approach

Our search methodology is based on a hybridisation of genetic
algorithms with local search—also referred to as genetic local search
[34,35], hybrid genetic algorithms [36] and memetic algorithms [37]
in the literature. In comparison to many of the classical approaches
for multi-objective optimisation (e.g. based on mathematical pro-
gramming [38,39]), evolutionary approaches are less susceptible to
concave or discontinuous Pareto fronts and enable us to evolve a
set of solutions in one single run of the algorithm. In addition, ge-
netic algorithms are highly valued for their ability to quickly locate
promising and diverse regions of a search space [40], yet they can
have difficulties in obtaining local improvements [37]. Hybridising
genetic algorithms with local search facilitates local improvement of
genetic material and has been effective for scheduling problems [41].
Yet, care must be taken to maintain the delicate balance between
the exploration and the exploitation of the search space. Careless
hybridisation of genetic algorithms could result in premature con-
vergence of the search and might result in poor solutions [42,43].
Examples of hybridisations of genetic algorithms with multiple local
search operators—often called multi-meme memetic algorithms in the

literature—can be found in [44,45]. Hybridisations with local search
operators that focus on the improvement of individual objectives
were presented in [46,47]. Multi-meme hybridisations facilitate es-
caping from local optima and improve the robustness of the algo-
rithm [37]. Details of our multi-meme memetic algorithm, including
a detailed description of our genetic encoding, the genetic opera-
tors, the local search and the adaptive grid archiving algorithm are
provided below.

Our genetic encoding is based on the adjacency representation
that was first applied to the travelling salesman problem in [48]. The
genetic encoding for a single aircraft rotation is presented in Fig. 4.
Each gene in the chromosome represents a connection between two
non-ground arcs in the network. The inbound arc of the connection is
determined by the position of the gene within the chromosome and
is equal to the arc that can be found on the corresponding position in
the arc list (see Fig. 4). The arc list contains all flight and reserve arcs
of the network and has a fixed order. Each gene has an arc index that
determines the position of its outbound arc in the arc list and an arc
copy index that determines the exact arc copy that is selected for its
inbound arc. The aircraft that is allocated to an arc is determined by
the aircraft that is assigned to the first arc of its rotation, as shown
in Fig. 4.

The population P is initialised by selecting random arc copy indices
and making random changes to the aircraft rotations (by making swap
moves—which are defined below) in an initial feasible schedule provided
by schedule operators. Each chromosome in P contains a random se-
lection of arc indices and arc copy indices that meet the network
feasibility and the coverage constraints. Each chromosome inP cor-
responds to a schedule with different departure times, arrival times
and aircraft rotations. The fleet assignment of the chromosomes is
fixed and equal to the fleet assignment of the initial schedule.

A mating pool Mn of size |P| is generated at every iteration n of
the algorithm using binary tournament selection. Two chromosomes,
x1 and x2, are randomly selected from Pn−1 and compete against
each other. Competition is based on domination. If x1 dominates x2,
x1 is added to Mn, and the other way around. If x1 and x2 are non-
dominated with respect to each other, one of them is selected at
random and added to Mn. The resulting mating pool Mn is likely to
have an above average fitness in comparison to the populationPn−1.

Our recombination operator randomly selects two chromosomes,
x1 and x2, from Mn and generates two offspring, o1 and o2, using
single point crossover. The resulting offspring contain a sequence
of genetic material (that corresponds to a partial schedule) from
both their parents. A cyclic repair heuristic is applied if an offspring
violates the network feasibility constraints. This occurs, for instance,
when multiple inbound arcs connect to the same outbound arc or
when an arc has no inbound or outbound connection. Infeasibility
is likely to occur for connections where the position of the inbound
and the outbound arcs in the arc list is located on different sides
of the crossover point. In the case of the example shown in Fig. 5,
this occurs for the connection between fi−3 and fi+2, represented by
the gene at position i − 3 in chromosome x1. Single point crossover
between x1 and x2, taking the first genetic sequence from x1 and
the second one from x2, results in an infeasible offspring (o1,infeasible):
both fi−3 and fi−1 connect to fi+2 (illustrated in Fig. 5). The repair
cycle is initiated by randomly selecting one of the conflict positions
in one of the parents, e.g. position i− 1 in x2 (denoted by x2i−1 ). The
repair heuristic iteratively searches for the value at the currently
selected position (=i + 2) in the other parent (x1) and then selects
the value at the corresponding position in the selected parent (x2).
This continues until the initial position (x2i−1 ) is reached again. In the
case of Fig. 5, this results in the cycle x2i−1 → x1i−3 → x2i−3 → x1i−2 →
x2i−2 → x1i−1 → x2i−1 . Replacing the values of o1,infeasible by the values
that are found at the corresponding positions of the selected parent
(x2) results in a feasible offspring, o1,feasible. The repair procedure is
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Fig. 4. Genetic representation.

Fig. 5. Repair heuristic for solving a crossover conflict (no arc copy indices shown).

followed by a mutation phase in which each of the genes in the
offspring is subject to mutation with a probability pm. Our mutation
operator is responsible for making random arc copy and swap moves
(defined below).

After mutation, the offspring are subject to local search with a
probability plsc. Once a chromosome is selected for local search, each
gene in the chromosome has a probability plsg to be selected. A se-
lected gene is used to initiate the neighbourhood of the local search
operator by selectingN−1 connections centred around it. The start
time of the inbound arc of the left-most connection, tleft , and the
finish time of the right-most connection, tright , place a time frame
[tleft , tright] on the chromosome/schedule that marks the neighbour-
hood/partial schedule that is subject to local search.

Our local search operators make random arc copy moves and
swap moves. An arc copy move randomly increments or decrements
the arc copy index of a gene. An arc copy move at position i thereby
influences the ground time of the current connection, gi, and its
previous connection, gi−1. This influences the value of Ri(S) and
Ri−1(S), and can influence the value of Fi,j(S) and Fi−1,j(S)∀j ∈
[0, |f |]. A swap move involves a single point swap between two se-
quences si and sj—carried out by aircraft of the same fleet type—and
influences the value the ground times in the case of type 1 and type
2 swaps (see Fig. 3). A swap move can therefore influence the value
of Ri(S), Rj(S), Fi,k(S) and Fj,k(S) for ∀k ∈ [0, |f |].

The diversity of the population is encouraged by hybridising the
underlying genetic algorithm with three different local search op-
erators. A multi-objective local search operator, denoted by LSR,F,

considers simultaneous improvement of R(S) and F(S) subject
to the network feasibility and the schedule feasibility constraints.
Two single objective local search operators, denoted by LSR and LSF,
consider the improvement of R(S) and F(S), respectively, sub-
ject to the feasibility constraints discussed above. In all cases, the
local search is greedy and continues until the local optimum for the
partial schedule, with respect to the considered objectives, is found.
The acceptance of new solutions is based on domination.

Biased selection of the local search operators is applied to en-
courage exploration of the boundaries of the search space. The bias
towards a certain local searcher is based on the relative position of
the selected chromosome x (representing the schedule S) with re-
spect to boundaries of the objective space as they are known in the
current stage of the search, denoted byRmin,Rmax,Fmin andFmax.
The relative position of x is defined by Eq. (8). Notice that dR(S) and
dF(S) represent the normalised distance between Rmax and R(S),
respectively, Fmax and F(S). The values of dR(S) and dF(S) are
used to calculate the reliability and flexibility shares, denoted by
sR(S) and sF(S), as defined by Eq. (9). The shares sR(S) and sF(S)
are equally divided between the local search operators that consider
R(S), respectively, F(S), as one of the objectives (see Eq. (10)).
The values sLSR,F

, sLSR and sLSF determine the shares of the local
search operators on the roulette wheel that is used to select a local
searcher in our biased selection scheme

dR(S) = 1 − Rmax −R(S)
Rmax −Rmin

, dF(S) = 1 − Fmax −F(S)
Fmax −Fmin

(8)

sR(S) = dR(S)

dR(S) + dF(S)
, sF(S) = dF(S)

dR(S) + dF(S)
(9)

sLSR,F
= sR(S)

2
+ sF(S)

2
, sLSR = sR(S)

2
, sLSF = sF(S)

2
(10)

Finally, an archive, A, is maintained as an external population
of well-distributed and non-dominated solutions using the adap-
tive grid archiving algorithm [49]. This is necessary to prevent good
solutions from getting lost due to the stochastic nature of genetic
selection or non-improving moves with respect to one objective
while a single objective local searcher improves the other objective.
The k-dimensional objective space is divided into a fixed number
of hypercubes—called grid regions—from which the bounds change
over time depending on the distribution of the population in the
objective space [49]. The grid region allocated to a chromosome de-
pends on the value of its individual objectives. A crowding procedure
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is applied to improve the distribution of the different non-dominated
grid regions. The pseudo-code that illustrates the implementation of
our methodology is presented in Algorithm 1.

Algorithm 1. Pseudo-code

1: n = 1
2: initialise P0;
3: initialise A0;
4: while (n<numberOfGenerations) do
5: while (|Mn|< |P|) do
6: x1 = selectRandomChromosome(Pn−1)
7: x2 = selectRandomChromosome(Pn−1)
8: add(Mn, tournamentSelection(x1, x2));
9: end while
10: while (|Pn|< |P|) do
11: x1 = selectRandomChromosome(Mn);
12: x2 = selectRandomChromosome(Mn);
13: offsprings[] = crossover(x1, x2);
14: for (l = 0; l< |offsprings[]|; l = l + 1) do
15: if (!feasible(offspring[l])) then
16: repair(offspring[l]);
17: end if
18: if (random()<pm) then
19: mutate(offspring[l]);
20: end if
21: if (random()<plsc) then
22: for (m = 0;m< |offsprings[l]|;m = m + 1) do
23: if (random()<plsg) then
24: LS= selectLocalSearcher(LSR,F,LSR,LSF);
25: apply(LS, offsprings[l],M);
26: end if
27: end for
28: end if
29: add(Pn, offsprings[l]);
30: end for
31: end while
32: updateArchive(An,Pn);
33: n = n + 1;
34: end while

4. Experimental results

4.1. Description of the datasets

The presented approach was applied to real world data from
KLM Royal Dutch airlines. KLM provided us with their schedules for
the second part of summer 2006 (S062) and the first part of winter
2006 (W061). The schedules were operated between the end of June
2006 and half of January 2007. The schedules are repeated on a
weekly basis and have a dominant hub and spoke structure. The fleet
used to carry out the schedule consists of four crew compatible sub-
types of the same fleet type. Based on the initial schedules, eight
new datasets were defined by selecting different subsets of aircraft
rotations (carried out by aircraft of the same sub-type) from the
initial schedules. An overview of the different datasets and their
characteristics can be found in Table 1.

4.2. Multi-objective improvement

The presented approach was applied to the datasets described
above to investigate the mutual interaction and simultaneous im-
provement of R(S) and F(S). The experiments were carried out
with T = 20 and K = 9, resulting in a time window of ±10 min
and �t= 2.5 min. Each population contained 200 chromosomes and

Table 1
Description of the datasets.

Id Initial schedule # Rotations # Flights and reserves arcs

D1 S062 5 172
D2 S062 14 445
D3 S062 13 493
D4 S062 14 496
D5 W061 5 152
D6 W061 15 473
D7 W061 12 415
D8 W061 13 504

was evolved for 1000 generations. The number of generations was
set based on empirical testing. This showed that only marginal im-
provements of the approximated Pareto front were obtained after
1000 generations. Crossover and mutation probabilities were fixed
and, respectively, equal to 1 and 0.01. The value of pmin was set to
0.7 and gmin was set to 40min. Both values are based on common
scheduling practices within airlines. The penalty parameters y and P
were, respectively, set to 1.5 and 0.5. These values ensure that in all
cases, improvement of less reliable sequences is preferred above the
improvement of more reliable sequences. The local search rates, plsc
and plsg , were both set to 0.01. Empirical testing has shown that low
levels of local search (of the order of 0.01) result in significantly bet-
ter approximations of the Pareto front and come at a minor increase
in the computational cost. Random selection was compared with bi-
ased selection of the local search operators to enable us to quantify
the potential benefits of a more sophisticated selection scheme. The
neighbourhood size N for the local search operators was set to 5.
All tests were carried out on the University of Nottingham's high
performance computing facility, for which the specifications can be
found in [50]. Each of the experiments was repeated 20 times, using
different seeds for the random generator.

Figs. 6 and 7 show a graphical representation of the non-
dominated solutions in the final archives obtained using biased and
random selection of the local search operators. The corresponding
schedules meet the network and schedule feasibility constraints.
The results for random selection are summarised in Table 2. No-
tice that the 2nd and 3rd columns of Table 2 contain the objec-
tive values for the initial schedules, R(S0) and F(S0). The 4th
and 5th columns show the values for �R(S) = R(S0) − R(S)
and �F(S) = F(S) − F(S0), with S the schedule of the non-
dominated set that has a minimal distance between F(S) and
F(S0), respectively, R(S) and R(S0). Notice that the values be-
tween the parentheses, denoted by R�min

(S) and F�min
(S), repre-

sent the values of R(S) and F(S) for the corresponding schedule.
The boundaries of the objective space for the non-dominated set
are shown in columns 6–9. Column 10 shows the p-value for the
hypothesis “random selection is better than biased selection”, cal-
culated using the hypervolume indicator presented by Zitzler and
Thiele [51] and the Mann–Whitney test. The final column shows
the computational cost in minutes.

As can be seen from Figs. 6 and 7, the presented approach en-
ables us to generate diverse sets of schedules with significant im-
provements forR(S) andF(S), compared toS0. A clear trade-off
between R(S) and F(S) exists. Notice that, given the definition
of the objectives, R(S) needs to be minimised whereas F(S) re-
quires maximisation. The values for �R(S) and �F(S) (4th and
5th columns in Table 2) show that significant improvements for
R(S) and F(S) can be obtained for “similar” values for F(S),
respectively, R(S) compared to S0. It is observed from Figs. 6, 7,
and column 10 in Table 2 that random meme selection performs
equally well compared to biased selection of the local search opera-
tors. This can be explained by the fact that the local searchers create
high quality sequences of genetic material that are locally optimal
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Fig. 6. Non-dominated solutions for D1, D2, D3 and D4.

and successfully migrate through the underlying genetic algorithm.
The computation times shown in Table 2 provide an indication of
the computational cost of our implementation which employed Java
using a component based approach. This approach greatly enhances
the flexibility of our code, yet slightly compromises its performance.
Delta evaluation was implemented for R(S) and F(S) in combi-
nation with result caching for R(S). Significant improvements of
the performance could be obtained by implementing result caching
for F(S) and computing the different objectives in parallel. This is
currently done sequentially by different components of the imple-
mentation.

4.3. Simulation results

The operational performance of the schedules in the final
archives—for random meme selection—was estimated using KLM's
simulation model [52]. The simulation model randomly generates
disruptions to the input schedule and calls a problem solver in case
the disruption would result in a (knock-on) delay. The problem
solver applies a heuristic approach that is based on the current
practices at KLM's operations control department. The recovery
strategies include swapping aircraft, cancelling flights and accepting
delays. The crew schedule is not explicitly taken into account in
the simulation model. This is realistic, given the fact that KLM has
reserve crew available to resolve crew problems. The output of the
simulation model is a detailed overview of the 0, 5 and 15minute
arrival and departure punctuality of the schedule per fleet type, per
location, and per flight number. The results presented below are

based on the average 15minute on-time performance for the whole
schedule, denoted by OTP15(S). The value of OTP15(S) is equal
to the average number of aircraft that has left/arrived not later than
15minutes after the scheduled time. OTP15(S) is a commonly
used measure in the airline industry and is considered to be a good
surrogate measure for the robustness of a schedule.

A graphical representation of the simulation results for D5 and
D6 is shown in Figs. 8 and 9.1 Notice that, in contrast to Figs. 6 and
7, the graphs show all schedules in the final archives. A summary of
the simulation results for all datasets is provided in Table 3. The 2nd
and 3rd columns in Table 3 represent the number of schedules that
were included in the simulation study and the on-time performance
for the initial schedule (OTP15(S0)). The 4th and the 5th columns
show the averaged value for OTP15(S) for the 20 schedules in
the archives that are most similar to S0 with respect to R(S), and
F(S), respectively. The last column of Table 3 shows the averaged
on-time performance for the 20 most reliable schedules in the final
archives (with the lowest values for R(S)). Notice that the values
between the parentheses in columns 4–6 represent the difference
between the averaged value for OTP15(S) and OTP15(S0).

It can be seen from Figs. 8 and 9 that, with respect to the trade-
off between R(S) and F(S), the influence of R(S) is dominant.
More reliable schedules result in a better operational performance
in terms of OTP15(S). We also found that the correlation shown

1 Additional graphs for the other datasets are available from the corresponding
author upon request.
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Fig. 7. Non-dominated solutions for D5, D6, D7 and D8.

Table 2
Summary of the improvement results for random selection.

Id R(S0) F(S0) �R(S)
for F�min

(S)
�F(S)
for R�min

(S)
Rmin Rmax Fmin Fmax p-Value tcpu

D1 21.7 43.8 12.8(50.3) 27.0(21.5) 8.9 31.8 50.3 74.5 0.971 7
D2 35.4 331.2 24.9(328.7) 85.0(35.8) 10.4 152.0 328.7 521.7 0.667 60
D3 39.0 380.3 23.9(380.5) 58.5(40.0) 12.6 132.9 353.0 576.5 0.165 72
D4 49.2 696.0 30.8(695.9) 82.3(48.9) 12.9 113.9 664.1 887.4 0.304 96
D5 17.6 48.7 9.1(51.6) 32.5(17.6) 8.5 32.9 51.6 91.9 0.821 7
D6 46.8 357.4 22.0(359.0) 54.8(46.8) 17.5 176.0 321.3 547.9 0.543 60
D7 45.0 308.1 29.5(313.4) 84.0(45.9) 14.5 96.9 297.4 474.6 0.554 72
D8 45.6 715.7 26.4 (715.8) 77.4 (46.4) 10.9 97.7 643.1 924.7 0.935 98

for D5 and D6 was representative of all datasets that were addressed
in the experiments. Apart for the smaller datasets (D1 and D5), the
increased flexibility for schedules that are similar to S0 with re-
spect toR(S) is shown to result in improved values for OTP15(S)
(Table 3—column 4, Figs. 8 and 9). In the case of D1 and D5, slightly
worse values for OTP15(S) are observed. This is likely to be caused
by the increased variance in the simulation results that was observed
for those datasets and the fact that the location of swap opportuni-
ties in smaller schedules is expected to play a more important role.
Yet, the location is not taken into account in the definition of our
flexibility objective. Finally, the increased reliability for schedules
that are highly similar to S0 with respect to F(S) is shown to re-
sult in improved values for OTP15(S) (5th column in Table 3). In all
cases, apart from D1, the better on-time performance was observed
for the most reliable schedules in the final archives.

5. Conclusions and future research directions

We have presented an approach for multi-objective optimisa-
tion of robustness objectives in airline schedules. Multi-objective im-
provement is obtained by making incremental changes to the flight
schedule and the aircraft rotation/maintenance schedule. The solu-
tion methodology is based on a multi-memememetic algorithm. The
presented approach was applied to real world data from KLM Royal
Dutch Airlines to investigate reliability and flexibility improvements
of their schedules. The results show that diverse sets with signifi-
cant improvements for the considered objectives can be obtained.
The operational performance of the improved schedules was esti-
mated in a large scale simulation study. This enables us to quantify
the influence of the robustness objectives. Sensitivity analysis of the
results shows that the influence of schedule reliability is dominant

Please cite this article as: Burke EK, et al. A multi-objective approach for robust airline scheduling, Computers and Operations Research (2009),
doi:10.1016/j.cor.2009.03.026

http://dx.doi.org/10.1016/j.cor.2009.03.026


ARTICLE IN PRESS
E.K. Burke et al. / Computers & Operations Research ( ) -- 9

45

50

55

60

65

70

75

80

85

90

3530252015105

F 
(S

)

R (S)

45

50

55

60

65

70

75

80

85

90

86848280787674

F 
(S

)

OTP (S) 15

-5-10-15-20-25-30-35

74

76

78

80

82

84

86

O
TP

 (S
)

R (S)

5 10 15 20 25 30 35 45
50

55
60

65
70

75
80

85
90

74
76
78
80
82
84
86

O
TP

 (S
) 15

R(S)

F(S)

Fig. 8. Simulation results for D5.

 300

 350

 400

 450

 500

 550

0 20 40 60 80 100 120 140 160 180 200

F(
S

)

R(S)

 300

 350

 400

 450

 500

 550

80 81 82 83 84 85 86 87 88

F(
S

)

OTP(S)15

 80

 81

 82

 83

 84

 85

 86

 87

 88

-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0

O
TP

(S
15

)

R(S)

 0  20  40  60  80  100 120 140 160 180 200  300
 350

 400
450

 500
550

 80
 81
 82
 83
 84
 85
 86
 87
 88

R(S)
F(S)

O
TP

(S
) 1

5

Fig. 9. Simulation results for D6.

Please cite this article as: Burke EK, et al. A multi-objective approach for robust airline scheduling, Computers and Operations Research (2009),
doi:10.1016/j.cor.2009.03.026

http://dx.doi.org/10.1016/j.cor.2009.03.026


10 E.K. Burke et al. / Computers & Operations Research ( ) --

ARTICLE IN PRESS

Table 3
Summary of the results using OTP15(S).

Id #S OTP(S0) OTP15(S)
for R�min

(S)(�)
OTP15(S)
for F�min

(S)(�)
OTP15(S) for Rmax(S)(�)

D1 1819 85.0 83.8(−1.2) 85.0(0.0) 84.8(−0.2)
D2 899 85.2 85.4(0.1) 86.3(1.0) 86.3(1.1)
D3 1224 86.2 86.8(0.6) 87.4(1.1) 87.6(1.3)
D4 1664 88.5 89.1(0.6) 90.0(1.5) 90.1(1.6)
D5 1750 80.8 79.7(−1.1) 81.3(0.6) 81.5(0.8)
D6 1095 82.5 85.1(2.6) 86.1(3.6) 86.4(3.9)
D7 2324 82.5 88.2(5.7) 89.6(7.2) 89.6(7.1)
D8 1062 86.5 86.6(0.1) 87.5(1.0) 87.8(1.2)

and that increased flexibility could result in improved operational
performance. We therefore recommend schedule operators to pri-
marily focus on schedule reliability, and take schedule flexibility into
account while building the schedule.

Our future work will focus on applying the presented approach
with different robustness objectives. We will focus in particular on
prioritising strategic flights, quantifying the influence of different
flexibility patterns, and time/location based robustness. The latter
recognises the different strategic value of the robustness during the
course of the day and depending on the location. This will provide
us with additional insights in the robustness of airline schedules
and enable us to provide schedule operators at KLM with detailed
feedback on how to further improve the robustness of their schedules
and reduce the discomfort caused to their passengers.
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