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6 Most approaches to structuractivity-relationship (SAR) prediction proceed in two steps. In the first step,

7 a typically large set of fingerprints, or fragments of interest, is constructed (either by hand or by some

8 recent data mining techniques). In the second step, machine learning techniques are applied to obtain a
9 predictive model. The result is often not only a highly accurate but also hard to interpret model. In this

10 paper, we demonstrate the capabilities of a novel SAR algorithm, SMIREP, which tightly integrates the
11 fragment and model generation steps and which yields simple models in the form of a small set of IF-
12 THEN rules. These rules contain SMILES fragments, which are easy to understand to the computational
13 chemist. SMIREP combines ideas from the well-known IREP rule learner with a novel fragmentation

14 algorithm for SMILES strings. SMIREP has been evaluated on three problems: the prediction of binding
15 activities for the estrogen receptor (Environmental Protection Agency’s (EPA’s) Distributed Structure-

16 Searchable Toxicity (DSSTox) National Center for Toxicological Research estrogen receptor (NCTRER)
17 Database), the prediction of mutagenicity using the carcinogenic potency database (CPDB), and the prediction
18 of biodegradability on a subset of tB#wironmental Fate DatabasgEFDB). In these applications, SMIREP

19 has the advantage of producing easily interpretable rules while having predictive accuracies that are comparable
20 to those of alternative state-of-the-art techniques.

21

22 1. INTRODUCTION techniques are theoretically appealing because of the use: of

expressive representation languages, they exhibit significant
efficiency problems, which in turn implies that their apss
plication has been restricted to finding relatively smai

23 In the past few decades, a number of computational
24 methods to predict structuractivity relationships (SAR)

25 or quantitative structureactivity relationships (QSAR) based fragments in relatively small databases. Recently proposed
26 on 2D or_3D models of moIecu_Ies have have been prOposedapproaches to mining frequent fragments in graphs sucs@s
27 for fast high-throughput screening. Most of these approachesgspang CloseGraph5 FSG® MoFal® Gastori® and AGM2 57
28 assume that the relevant fragments, biophores, or fingerprintsare at;le to mine ’comp,lex sut’)graphs ;nore efficienths
29 are provided by an expert or are calculated apriori and then, o o the key difficulty with the application of theses
30 induce a predictive model employing these. The commonly techniques isas for other frequent pattern mining apso
31 used MDL key sets’ can b(_a Seen as an example O.f these proaches-the number of patterns that are generated. Feor
32 predgflned fragments or fingerprint approach. It is glso instance, Inokuchi et &k report on the order of F(patterns 62
33 possmle'to emp'loy a numper of other structural, topolqg!cal, being discovered. Furthermore, frequent fragments are ¢wt
34 or _physiochemical descrlptgrs calculated by specialized necessarily of interest to a molecular scientist. Therefose
35 software such as MolconniZand use them for high- . . o ’
' Kramer et af and Inokuchi and Kashind&take into account 65
56 throughput screening of larger databases. However, as thethe classes of the molecules. Kramer et al. compute all simgale
37 generation of the relevant structural alerts or fragments is apatterns that are frequent i.n the activeé and infrequentsin
38 nontrivial task, which greatly determines the quality o_f the the inactives, whereas Inokuchi et al. compute correlated
39 learned model, several recent approaches from the field of atterns ' :
40 data mining try to automate this generation process. P Secon.d there exist a few approaches that integrate ;;e
41 First, a number of graph-mining methods have been ' . ; o
42 employed to SAR problems in order to discover the necessaryd'S((:JIO\llery of the frslgrr;]ents W'th/the learning Off trrrl}?rpgedgtwe
43 relevant fragments. The vast majority of these approachestmhO el, most nOt'?LXZtA?QCAStE ML;LTAC&S;: an y; and 72
44 computes fragments (sometimes called local patterns) thatthe mollri recenMULTICASSyé emt y ne t otr '?S a:jnc?'e:i
45 frequently occur in or are significant with respect to a given 1€ Well-known System constructs fixed siz
46 data set, cf. DehasgeDeshpande et al.Kramer et als7 fragments from the compounds a_nd_ then uses a dl_\/lc_ie-ar_ad—
47 Zaki® Yan and Har, Borgelt and Berthol@ Inokuchi et conquer strategy (based on statistical tests) to distinguish
45 al.1112 and Kuramochi and Karypi. The earliest ap- between major biophores for classification and modulatars
49 proachesto compute such fragments are based on techniques]tchat)_car;] rebgulatg_ activity of a prlrr_ll_a;]ry b|ophoreda§ W‘;" a8
50 from inductive logic programming (ILP)Y Whereas ILP ~ for biophobes indicating inactivity. The generated biophores

or fragments are in principle linear fragments (though
* Corresponding author phonet49 761 203 8029; e-mail: karwath@ MULTICASE also supports bran_CheS around the backbore)
informatik.uni-freiburg.de. and, hence, do not necessarily capture more compdex

10.1021/ci060159g CCC: $33.50 © xxxx American Chemical Society
Published on Web 00/00/000PAGE EST: 12.8



BATCH:

83
84
85
86
87
88
89
90
91
92
93
94
95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

¢i6a07 USER: ckt69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i06/DIV_ci060159¢g DATE: September 6, 2006

B J. Chem. Inf. Model. KARWATH AND DE RAEDT

structures of chemical compounds. Furthermore, it is hard 2.1.2. CPDB.The original carcinogenic potency databases
to find detailed information about the way the fragments are (CPDB: http://potency.berkeley.edu/cpdb.html) provides cas4
generated. The recent LAZAR approach by Helhidenti- cinogenic as well as mutagenic classifications as determined
fies linear fragments present in a compound database,by the Salmonell&nicroassay for a number of chemicalsé
identifies the relevant ones (using a statistical test), removescompounds mainly of industrial and pharmaceutical interest:
redundant ones, and predicts activity or inactivity for a given The database employed here was published by Helma’et ais,
test compound based on majority vote. Similar to MULTI- filtered to eliminate mixtures and undefined structure=o
CASE, the employed fragments are linear and include moreand annotated with SMILES strings for each compoundo
complex structures, such as rings, only indirectly within their The filtered database was downloaded from httpish
predictions. Furthermore, MULTICASE and LAZAR employ www.predictive-toxicology.org/data/cpdb_mutagens/. 152
a weighting/scoring scheme on the fragments to make Overall, the database contains 684 chemical structures (841
predictions, which are not always easy to understand or mutagens and 343 non-mutagens). Each entry is annotated

interpret. with a variety of precalculated numerical attributes as weib

The approach employed in SMIRER different. SMIREP as other relevant information such as logP, homo, lumeg
combines the chemical modeling language SMILES (Simpli- €lectronegativity, and other numerical properties. 157
fied Molecular Input Line Entry Systefi, with IREP 2.1.3. EFDB.This database originates from a study abousis

(Incremental Reduced Error Pruning), a state-of-the-art biodegradability of a number of commercially availables
machine learning algorithm that produces a predictive model chemical compounds. The data set was first published 1y
in the form of a small set of IF-THEN rules. It is essentially Howard et ak°and has been used to evaluate the prediction
a specialized learning system for SAR and QSAR applica- capabilities of a number of relational classifications metis2
tions and for fast extraction of relevant structural fingerprints 0ds?®?’where a subset of 328 chemicals was used. We hase
or features. In SMIREP, each IF-THEN rule lists one or more selected this data set to be able to compare SMIRERs
fragments that must be present in order for a compound toperformance to some other state-of-the-art approaches fiesn
be active and, hence, describes directly a structural alert thathe machine learning and data-mining community. The data
is easy to interpret. The generation of the fragments is S€ts main source is thByracuse Research Cooperation’ss7
performed directly on the SMILES representations of the (SRC)Environmental Fate DatabasgEFDB). The databaseies
compounds and is guided by heuristics from the well-known contains degradation rates (in form of half-life times) faso
rule-learner IREP223 We have applied SMIREP to three chemicals, consideringiotic, abiotic, andall degradation 170
SAR problems: the prediction of binding activities for the Wwithin four environmental situations (soil, air, surface water;1
estrogen receptor (EPA’s DSSTox NCTRER Database), theand groundwater). Furthermore, these degradation ratesiare
prediction of mutagenicity using the carcinogenic potency measured within three environmental conditicaerobic, 173
database (CPDB), and the prediction of biodegradability on anaerobic,andremaval in wastewater treatment plant§o 174
a subset of the Environmental Fate Database (EFDB). Thebe able to compare our approach to previously publishesl
experiments show that SMIREP producasall rule sets work,2627we restrict ourselves to the aqueous biodegradatios
containing possiblycomplexfragments, that SMIREP is  in aerobic conditions. We use the same procedure of dividing
Competitive in terms of predictive accuracy, and that the chemicals into degradable and nondegradable as Blockesel
SMIREP is quite efficient as compared to alternative €t al?’ That is, compounds considered to degrade are
methods. compounds possessing half-life times of up to 4 weeks,18¢
they are considered nondegradable otherwise. In additionsto
2 METHODS the 2D structure of the chemicals, global attributes are
available like logP and the compound’s molecular weighgs
2.1. Databases. 2.1.1. DSSTox NCTRERhe estrogen 2.2. SMILES and SMARTS. 2.2.1. SMILES.SMILES* 184
database was extracted from the EPA’s DSSTox NCTRER js a well-known linear string representation language fos
Database (http://www.epa.gov/nheerl/dsstox/sdf_nctrer.html).chemical molecules. The SMILES language is commonls
The original data set was published by Fang éf'aind is  used in computational chemistry and is supported by the
specially designed to evaluate QSAR approaches. Themajor software tools in the field, such as the commerciab
NCTRER database provides activity classifications for a total Daylight toolkit and the Open-Source OpenBabel libraryisy
of 232 chemical compounds, which have been tested The SMILES notation of chemical compounds is comso
regarding their binding activities for the estrogen receptor. prised of atoms, bonds, parentheses, and numbers. Atosns
The database contains a diverse set of natural, synthetic, andre represented by their atomic symbols. The four basic band

environmental estrogens and is considered to cover mostypes are represented by the symbols ‘= *‘#, and . 193
known estrogenic classes spanning a wide range of biologicallonic bonds, ordisconnectionsare represented by a *.’.194
activity 24 Branches are specified by enclosing brackets, “(* and “Ybs

The database distributed by the EPA’'s DSSTox is in SDF Cyclic structures are represented by breaking one bonddm
(Structure Data Format) and contains, in addition to the each ring. The atoms adjacent to the bond obtain the same
original database, a number of annotations: 6 indicator number. Here, we refer to these numberscgslic link 198
variables extracted from the original publicat®nlogP numbersThe cyclic link numbers are not necessarily uniques
(octanol/water partition coefficient) values, and chemical within a SMILES representation of a molecule. 200
class assignments (6 main classes, 20 subclasses) as well asTo search for subgraphs in compounds encoded 26m
the activity category ER-RBA (estrogen receptor relative SMILES, one can use the SMARTS langu&genhile 202
binding affinity). This classification yields 131 active and SMILES is a language representing molecules, SMARTS:i8
101 inactive compounds (with regard to their ER-RBA). a language representing SMILES fragments. Althougi
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SMARTS allows the use of wildcards and more complicated Table 1. Confusion Matrix with Four Possible Outcomes: TP, TN,
constraints, SMIREP uses only the SMILES subset of the FP, and FR

SMARTS pattern language, that is, we use the SMILES predicted

notation for fragments. active inactive
2.2.2. Chirality. As the SMIREP approach presented in active TP Fp

this work is very much database driven, we have examined inactive EN N

the databases used for occurrences of stereocisomers with

different activities. We have done this by comparing the main  # TP denotes the number of true positives, and TN denotes the

layer of the InChl codég of all molecules (generated NUMber of true negatives. The number of errors made by predicting a
: . . compound of being active while it is not is denoted by FP (false

with t_he InChl generatlon tool downloaded from httpj// positives), while predicting a compound to be inactive while it is active

www.iupac.org). This allows one to detect molecules having is denoted by FN (false negatives).

the same skeletons and atomic composition as well as

stereoisomers. Table 2. Accuracy and Area Under ROC Curve for the NCTRER
In the DSSTox NCTRER data set, only five compounds ER-Binding Data Set for the Different Settings and Beamsikps (

have a R/S complement, and only one compound hasfrom the 10x 10-Fold Cross-Validatiorts

stereoisomers with different activities. Similarly, in the CPDB  setting k acc training AUC training acctesting AUC testing

data set, we found only one pair of compounds possessing 5 80.34(0.41) 0.832(0.021) 78.96 (1.13) 0.816 (0.087)
the same skeleton and atomic composition but having SAR 10 80.13 (0.51) 0.830(0.021) 78.49 (1.92) 0.810 (0.077)
assigned different activities. In the EFDB we found no 20 80.05(0.29) 0.826(0.018) 77.62(1.56) 0.800 (0.098)
compounds possessing the same skeleton while being clas- 5 80.68(0.63) 0.833(0.024) 76.98 (1.41) 0.795 (0.090)

sified in different categories. This information is insufficient QSAR 10 80.68 (0.47) 0.831 (0.026) 77.69 (2.33) 0.802 (0.098)
for discovering chirality dependent rules. Therefore, we have 20 80.83(0.45) 0.834(0.022) 78.17(1.90) 0.806 (0.074)
chosen to explicitly disregard chirality information in all aThe numbers in brackets denote the standard deviation. Surprisingly,
compounds in the three databases. the predictive performance drops slightly when numerical attributes
2.3. SMIREP. 2.3.1. SettingSMIREP?® aims at automati- are used in this experiment. A similar effect has also been reported by
cally discovering fragments, alerts, or biophores that dis- ;g:;m(?f ﬁf,: '20°2V"3ig ig\e/;ergtttiﬂataitss?il Qgggwigpﬁa\;v?n rt]ﬁi\;eel;(sifimaetgp
criminate the active compounds from the inactive ones. The gy, pep goes overfit slightly.?&n indicator for this s the difference in
discovered fragments are incorporated into IF-THEN rules, the training accuracy when compared to the testing accuracy. The
which essentially test whether a set of fragments is all training accuracy in the QSAR setting is always higher than the one
present. Wherall fragments stated in the IF part of a rule for the SAR setting. However, the testing accuracy shows a higher
are present in a compound, we also say that theauilers drop as in the SAR setting.
the compound. For instance, consider the following two rules:

. and few of the inactive ones. The task of finding rule sets
IF a compound contains the fragments: for classification has been well-studied in the field of machibss
learning??2°31 The key difference with traditional rule-seps7
learning problems in machine learning lies in the use of thm
SMILES and SMARTS languages for representing coms9
pounds and patterns. SMIREP embraces several ideas fegam
a well-known rule-learner from the field of machine learnings1
IREP?223 but was adapted for the use of SMILES ang2

>cccc? AND ’ccN’ AND ’cc0’ AND ’0C’°
THEN the compund is active

IF a compound contains the substructures:

’cicccccl’ AND ’Ncee’ SMARTS as representation languages. 263
In a previous preliminary publicatiofiwe have introduced 264
THEN the compund is active SMIREP in a computer science context demonstratizey

SMIREP’s ability to tackle activity predictions within largezes

These rules are conjunctive and contain SMARTS patterns databases of chemical compounds. The work presented bere
as their conditions. Furthermore, together they constitute to concentrates on the applicability and performance of SMIREd
a rule-set, which is a predictive model that is used for within a number of chemical applications. 269
classifying compounds as follows: if there is a rule that 2.3.2. Overview.SMIREP follows essentially a separatex7o
covers the compound, then predict “active”; otherwise predict and-conquer approaéh,n which one iteratively searchewr:
“inactive”. The rules are evaluated in SMIREP using the for a single rule that covers many of the active compountis
OpenBabel toolkit (www.openbabel.org) and are also easy and none (or only very few) of the inactive ones. Once suzh
to interpret as one classifies on the basis of the presence (om rule is found, it is added to the rule set, and the actives
absence) of certain fragments. An actual rule set computedcovered by the found rule are deleted. This process is then

by SMIREP can be found in Table 3. repeated until further rules do not yield any improvemervs
The problem tackled by SMIREP can now be formulated with regard to a scoring function or all actives have beerm
as follows: covered. The main SMIREP algorithm is depicted ins
Given: a set of compounds in SMILES format, where Algorithm 1 (see Chart 1). 279
each compound is classified as eitlagtive or inactive In order to search for one rule, SMIREP employs a s
Find: a rule-set that accurately discriminategive from called seed compoundrhe SMILES representation of thexs1
inactive compounds. seed compound is decomposed ifragment tree which 282

As the discovered rule set should be used for classification, then determines the possible steps taken through the segach
SMIREP searches for rules that satisfy many of the actives space by the refinement operators (see section 2.3.4).280
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Table 3. Example Rule Set Induced by SMIREP on the NCTRER ER-Binding Database

No Rules Description

This rule seems to be be related to the Fang et al.
rule set by enforcing the presence of an aromatic

ceceO A C(cleccecl)(C)C

ring structure, as well as the presence of an oxy-

>_C> gen attached to an aromatic ring structure (first
NN part of the rule). Overall this rule also implies a
certain hydrophobicity due to the large amount of

aromatic bonds.

This rule seems to imply a certain size and hy-
CCCCCCelececel drophobicity of the molecule but no precise infor-
mation about the required H-bonding capabilities.
In fact this rule covers only a fraction of features
which active ER-binding substances should pos-

Sess.

The rule depicts a 2D chemical structure similar

to the DES skeleton used in Hong et al.,** and

cle(oce2eee(ce2)O)eccel describes an aromatic ring connected to a phenolic

ring structure by two atoms, oxygen and carbon

Q via aromatic bonds. This is not exactly the DES
\_< >—o

skeleton, as firstly the bonds are not variable and

secondly not both atoms are carbons.

This rule does not correspond to any rule in the
Fang et al. rules. The two facts correspond to
Oce A C=Cecce some particular parts of those rules: the Occ frag-
ment implies the presence of at least one of two
SRS required H-bonding sites, while the C'=Cecce frag-

ment implies some larger aromatic structures, es-

pecially in combination with the first fragment.

ceeleee(eel)O Rule 5 as well as rules 6 capture the

5 existence of an phenolic ring structure within

f > ° a compound, that matches some part of the

rule system by Fang et al.

ceeleee(eel)O

-

This rule is similar to rule 4. In addition to the

Occee A CCCO

two features noted above, this rule implies two OH
groups instead of one, separated by a relatively
/\/\° /\ \/\D

long chain - or even one ore more rings, partly

aromatic and partly non-aromatic.

aThe description compares these rules to the rule set published by Fanf et al.

285 avoid being only dependent on one single compound while considered in the construction process. The search proeess
286 searching for rules, various randomly selected seeds arefor a single rule is composed of two steps: growing apsk
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USER: ckt69

Chart 1. Algorithm 1: SMIREP
Algorithm 1 SMIREP

DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i06/DIV_ci060159g

1: /* INPUT: Databases Act and InAct in SMILES */

2: /* OUTPUT: A set of rules for Act */

3: Rule Set := {}

4: while Act # {} do

5:

6:

split (Act,InAct) into (GrowPos, GrowNeg, PrunePos, PruneNeg)

select randomly k seeds € GrowPos

PrunedRules := {}

for all seed in seeds do
GrownRule := GROW(seed, GrowPos, GrowNeg)
PrunedRule := PRUNE(GrownRules, PrunePos, PruneNeg)
PrunedRules = PrunedRules U PrunedRule

end for

select BestRule in PrunedRules by score

if error rate of BestRule on (PrunPos, PruneNeg) > 50% then
Rule Set := Rule Set U {Rule}
remove examples covered by Rule from (Pos, Neg)

else

return Rule Set

DATE: September 6, 2006
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" (_Ocleco(ce)CEOIIMHEIRION

@ () & (=0) = cloco('ccliﬁ) o1 (_clccSEil)

cca |_’E wm@ coe \@ cel (¢l

() fragment from branches L cor ding part from t

() fragment from cycles ;.. corresponding part from cycles

x  fragments IDs
Figure 1. An example fragment tree of 4;dihydoxybenzophe-
none. The original SMILES string for this molecule Gclccc-
(cc1)CEO)c2ccec(cc2)Qwhich is shown at the top of the tree.
The first three fragments in the second line (colored gray) result
from the branching decomposition, the other ones (colored blue)
from the cycle identification. After the first decomposition, only
one fragment can further be decomposed, namely the fragment with
ID c shown in the third level of the tree. Again only the fragment
with ID cc can be decomposed further, resulting in the final level
of the tree. After the last decomposition, no more fragments can
be generated. The leaves of the tree, namely fragneeris1, 2,
ca, cb, c1, cca, ccb, ccendcclare the so-called ground fragments.
Please note that the IDs last character denotes the label of the
fragment. The IDs given here are purely used for clarity; they are
neither constructed nor used in SMIREP.

19: end if
SMILES string is first assigned a unique value, as the

SMILES language allows the ‘reuse’ of cycle numbers. Bes
split a string into cyclic fragments, we extract the substrings
within the corresponding numbers. The fragments aps
‘cleaned’ before testing their coverage on the database, i#.,
other link numbers not denoting a full ring are removed a&
well as redundant opening or closing brackets. Examplessof
cyclic fragments are shown in Figure 1 colored in blue. Likes
the branching fragments, the extraction of cyclic fragments
is done recursively. 331
Please note that not all possible rings in a compound Gan
e found this way. For instance, if a compound’s SMILES3
epresentation contairs= “cl2ocnc2ccccl”, the fragmentss4
decomposition will only extract one fragment containing botbs

20: end while

pruning, which employ different partitions of the training
set. Indeed, the original data set is randomly divided into a
growing and a pruning set. This division is done using a 2:1
split, i.e., two-thirds for growing a rule and one-third for
pruning the rule.

2.3.3. Seeds and Fragment§Vhile searching for a single
rule, SMIREP employs thiteagment treef a seed compound
to guide the search through the space of potential rules. The
fragment tree is obtained by syntactically decomposing the b
SMILES representation of the compound and all growing r
and pruning operations employ this fragment tree. Further-

more, all rules evaluated (starting from a particular seed) rings (CF: = “c120cnc2ccccl”) and one containing the inness
will also cgver that seed. ) ring alone CF, = “clocncl”). [Here, “inner ring” is used 337

To obtain the fragment tree, SMIREP splits @ SMILES i, the sense that one ring is within the other in the SMILESs
string into cyclic fragments and branching fragments. yopresentation.] 339
Branching fragments are extracted from a SMILES string  The cyclic and branching fragments found in the above
as follows: given a SMILES string of the fori(B)C, find  \yay form a tree, a so-calleflagment tree The leaves in 341
the first branch, denoted by opening and corresponding the tree are fragments, which cannot be decomposed amy
closing brackets. The substring ranging from the start of the fyrther. We call these fragmenggound fragmentsFigure s43
string to the opening branch is defined as fragmemtith 1 shows such a tree for a small example compound. 344
labela, the branch itself as fragmeBtwith labelb, and the 2.3.4. Growing. For each of the growing iterationsgss
rest after the branch as fragmewith label c (cf. Figure  gMIREP first selects a seed example, computes the cosse-
1). EachB and C fragment can contain further branches. sponding fragment tree, and learns a rule as follows. Firat,
This splitting is applied recursively, until no more branches the algorithm uses each ground fragment as an initial raie
can be found. Note that we neither use a unique SMILES anq evaluates it on the data set. The komost promising 349
representation nor a canonical form, when fragmenting the ryjes (where is a positive integer) are selected for the nexto
SMILES strings. However, as the fragments are later on refinement iteration. The parameteis later on referred to 351
evaluated using the OpenBabel toolkit's SMARTS matching 55 thebeamsize 359
feature, any equivalent SMILES fragment would match @ The scoring heuristic used in SMIREP is weighteds
given compound. information gain (WIG), as originally suggested byrfu 354

Cyclic fragments are extracted in order to be able to kranz?? It is defined as follow® 355
represent ring structures and other types of cyclic structures.

To ease the parsing of the string, each cycle number in the WIG(r) = —p(r)(IC(r) — I1C(r")
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1.)caa Input: a conjunction of fragments X and corresponding labels of all fragments
in the conjunction, and the fragment tree 7'
Output: the refinements X; from the Lengthening refinement and the refine-

ment X/ from the Ascending refinement.

e Lengthening:
2b.) caa_cch 2b.) caa_ccb A ground fragment or a numerical fragment f is added to the existing
conjunctions of fragments, that is X] := X A f for all f’s.
o Ascending:
The last fragment of the conjunction is refined with respect to its label
and parent (taken from T'). Depending on the label of the last fragment
of X, the following patterns are constructed (where A(B) for example
3)cc denotes the SMILES code generated by combining the SMILES codes
of the fragments labeled a and its sibling labeled b):

If the fragment label was:

ﬁ :\ — a: then construct new fragments A(B) and AC, with labels ab

and ac respectively.
Figure 2. A hypothetical refinement example trace of&scending

refinement, reflecting the example fragment tree in Figure 1. The — b: then construct a new fragment A(B) with label ba

green nodes correspond to the fragment or combined fragment

evaluated during theAscendingrefinement. Assume that the — ¢ then construct a new fragment AC with label ca
fragmentcca is interesting according to the scoring function. ) o ) )

Possible refinements would be combining fragmees with ccb, — 4, where i is an integer (the unique cyclic number from the ex-
resu!ting ina fragmemca_CCb If either of the_two new fr_agments tracted cyclic fragment): then construct a new fragment, where
receive a good score, the next refinement is to combine all three

fragmentscca_cch_cccwhich is actually the same as fragment the fragment is the parent’s fragment. (this indicates ring struc-

cc, which is then the next one to be evaluated. tures)

wherep(x) denotes the number of active examples covered — ab, ac, ba, or ca: Construct a fragment A(B)C, where A(B)C is
by the rulex, IC(x) denotes the information content of a rule the parent of A, B, or C.
X, r denotes the current rule, anddenotes the predecessor
of current rule, i.e., the current rule before the last refinement. — r: then do not construct a new fragment as the last fragment
The information content (IC) is defined as was a root node.
Figure 3. The refinement operator used in SMIREP. In each
p(x) iteration of the algorithm, both refinements of the operator can be
IC(X) = —log———— applied. During the search, the rule with the bestre(see text)
P(x) + n(x) is selected. Please note, that in the ascending part of the operator,

no construction of a new fragment labelédand c alone is

wherep(x) denotes the number of active examples covered performed, as both fragments rely on an atom and bond from
by rulex, andn(x) denotes the number of inactive examples 2%%?;@ 'ébﬁ'f%cfr?fc'dfrérecg%%'ﬂ?rﬁﬁﬁ%ﬁ'c’ vv\\//gclgl:gfr&?é
covgred by (ule<. For the WIG measure, the difference in = = 01 "atone from fragmenta. g q
the information content of a rule and the same rule after
refinement is weighted by the number of covered active the Ascendingperator. However, combining it with anothess4
examples. ground fragment might potentially perform better than thes

Like many machine learning algorithms, SMIREP uses a fragment itself. Therefore theengtheningrefinement can 3se
refinement operator A refinement operator essentially add new fragments (in the form of ground fragments) to asr
generalizes or specializes an existing rule or pattern. Theexisting rule. The meaning of such a composite rule is that
refinement operator used in SMIREP is defined in Figure 3. both fragments have to occur simultaneously within sge
In principle, refinement proceeds in a bottom-up manner, compound to be classified as active. 390
i.e., specializing a rule each time the operator is employed. Furthermore, SMIREP allows the use of numerical a1
In SMIREP new rules are constructed by either combining tributes. This has been incorporated in the algorithm kep
corresponding fragments from the tre&s¢ending or by generating new types of fragmentsimerical fragments, 393
adding new fragments to an existing rulee(igtheniny denoting that a particular numerical attributddss thanor 394

While the Ascendingrefinement operator allows only to  greater or equal tsome numerical value. Only those valuess
learn rules based on the fragments siblings and parents, thavhich are true on the current seed are considered. These
Lengtheningefinement operator allows more complex rules fragments can only be added during trengtheningefine- 397
to be learned. Theengtheningefinement operator allows ment of the growing stage. By adding more than ones
the addition of new fragments to an existing rule. Consider numerical constraint using the same attribute, it is possikde
the example where fragmesot (taken from the example for SMIREP to use intervals, i.e., it is possible to have rules
fragment tree in Figure 1) does not perform better than containing the following constraint: ‘logP —1.11' A ‘logP 401
cca_cch Fragmentc is therefore not further refined using =< 3.21'. These numerical constraints allow SMIREP to ez
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used in the quantitative structuractivity relationships In a confusion matrix the four different possible outcomesy
(QSAR) setting. To avoid overfitting, SMIREP first dis- (see Table 1) of a single prediction for a two-class problewo
cretizes the numerical attributes into equal frequency bins. are displayed in a two-by-two matrix, where the rowsi
During each iteration of the growing stage, all borders of represent the number of entries belonging to the actual class,
these bins are dynamically evaluated on the current growingwhile the columns represent the entries belonging to tse
set, and the borders are added as new attributes. If a particulapredicted class. 464
seed possessesogP value of 3.24, and the binning resulted Often however, a simple confusion matrix does nots
in the four bordersBs = [0.33, 2.66, 4.99, 7.32], then the properly reflect the classifier's performance. For a moses

following attributes are evaluated: ‘logP 0.33’, ‘logP > detailed and proper analysis of a classifier, receiver operatisg
2.66’, ‘logP < 4.99," and ‘logP< 7.32’. The number of bins  characteristics (ROC) curves are employed. ROC curves wgge
used in this work has arbitrarily been set to five. first developed for signal detectifi.3” They are substan-469

2.3.5. Pruning. To avoid overfitting of the rules learned tially employed in medical tests and have become a standand
in the growing stage of the algorithm, the rules are pruned in the data-mining and machine learning communities 4o
using the pruning set. The pruning is performed in reverse compare different classifiers. 472
order of the growing of rules, i.e., the refinements are  To construct an ROC curve for a classifier, one orders
“undone”. To this aim, the actual refinement history is stored the classifier's predictions by some criterion (typicallyrs
for each rule. All rules resulting from this reverse refinement confidence of a prediction) and then plots thee positve 475
are evaluated using the scoring function on the examples inrate (defined as TP+ TP/TP+FN) along they-axis against 476
the pruning set, and tHeestone is selected as the rule learned thefalse positie rate(defined as FP+= FP/TN+-FP) along 477
for the particular seed. thex-axis for all possible cutoff values of the criterion valueszs

The pruning metric (or scoring function) used is the The resulting curve lies within the unit-square (the ROGs
improved pruning method* as suggested by Coh&mand space). An ideal ROC curve would be a line along the teq

is defined as follows left-hand corner (0,1) in ROC space, as it would not produse
any false positives (or false actives). In real-world applices2

p(r) — n(r) tions this occurs only rarely. The ROC curve for a goads

v*(r) = o) + n(n) prediction should however always be to the left of thes

diagonal between the two axes. The closer the curve temds
d toward (0,1), the more accurate are the predictions madse.
To compare two different prediction methods, both ROg7
curves are plotted in the same ROC space. The curve runnisg
closer to the left and top border is considered to providesa
better predictor. Another good measurement to compase
ROC curves analysis is that of taeea under the ROC cue 491
(AUC).*"%8The AUC gives an overall measure of accuraay2
of a predictor. 493
For a more detailed introduction to ROC curves and the
construction of ROC curves for rule learner, we refer thes
reader to Appendix A (Supporting Information). 496
3.2. Experiments.We evaluated SMIREP on the threeo?
databases described in section 2.1. The aim of these
experiments was 2-fold: first to demonstrate that activitye
classification using SMIREP vyields accurate rules, apa
second, to show that meaningful rules can be found, whioh
3.1. Validation. 3.1.1. Cross-Validation.Tenfold cross- are sometimes in consensus with the published literatursnz
validation was used to evaluate the performance of SMIREP  3.2.1. Settings.For each of the following experiments;o3
on the three different databases. This means that eachwe have chosen arbitrarily the number of seeds such that
complete database was randomly divided into 10 equally 10% of compounds classified as active in the database sase
sized parts. Each part was once removed from the completeemployed during the growing stage of SMIREP. Faues
database as a hold out test set, while the remaining other 9example, if the database contain 120 active compounds sird
parts were used as a training set for the model. Predictions150 inactive ones, we chose the number of seeds to besi.
for the test sets were compared to the actual classifications,That means, that SMIREP induces 12 rules for each iteratigmn.
to estimate the predictive accuracy. This process was repeatedo test the effect of different beamsizes, we evaluated
for all 10 parts, so that each part served once as a test setSMIREP for each experiment using beamsizesker 5, 511
and predictions for all compounds in the data set are 10, and 20. To examine the influence of numerical attributes;
available. As SMIREP’s algorithm is heuristic, we repeated we performed two separate experiments, one using osly
the 10-fold cross-validation 10 times to obtain a good structural information (SAR-setting) and one using thes
estimate of the algorithm’s mean accuracy. We call this a structural information together with logP values and thes
10 x 10-fold cross-validation. In the following sections, we overall molecular weight of the compounds (QSAR-setting)s
report on the mean predictive accuracies as well as the mean 3.2.2. DSSTox NCTRER.The database of the 23217
area under ROC curve (see below). chemical compounds from the EPA’'s DSSTox NCTRE#Rs
3.1.2. ROC Analysis.A common way to evaluate the Database was downloaded from http://www.epa.gov/nheert/
performance of a classifier is to employ a confusion matrix. dsstox/sdf_nctrer.html. We translated this database to SMILE£&5

wherep(r) denotes the number of active examples covere
by ruler, andn(r) denotes the number of inactive examples
covered byr. The v* measure is equivalent to precisiéh.

2.4. Implementation. The SMIREP system has been
developed in the programming language Python (version 2.3).
Python allows rapid prototype development, due to a wide
range of available libraries. For SMARTS matching, the
open-source chemical library OpenBabel (version 1.100,
http://openbabel.sourceforge.net) is employed. All experi-
ments were run on a PC running Suse Linux 9.2 with an
Intel Pentium 1V-3.2 GHz CPU and 2 GB of main memory.
The SMIREP source code is freely available under the GNU
General Public License (see section 7 for details).

3. RESULTS
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ROC curves for the SAR setting on the ER-binding DB ROC curves for the QSAR setting on the ER-binding DB
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Figure 4. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the ER-binding
database with a beamsike= 5. The ROC curves are averaged over thex100 ROC curves resulting from performing ten times a 10-fold
cross-validation. The black line indicates the diagonal.

ROC curves for the SAR setting on the CPDB ROC curves for the QSAR setting on the CPDB
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Figure 5. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the CPDB mutagenicity
database with beamsixe= 5. The black line indicates the diagonal.

521 codes using the OpenBabel toolkit. This procedure was number of decision trees and builds a consensus modeksin
522 necessary, as some SMILES codes provided in the databaseomparison of the original decision tree approach by Hosg
523 were corrupt. Furthermore, we removed chiralities (see et al3® to SMIREP, no preselection of structural alerts hast
524 section 2.2.2) and bond directions from the SMILES strings, been performed, as SMIREP is able to extract the relevasat
525 as the current version of SMIREP cannot deal with this information during the learning stage. An example set 0B
526 information. We believe (and the experiments will show) rules found during one round of a 10-fold cross-validaticm
527 that omitting this information provides SMIREP with enough is shown in Figure 3. 545
528 structure information to induce meaningful and accurate The computation time varies between the SAR and the
529 patterns. guantitative SAR (QSAR) setting. While one complete 1647
530 The results are depicted in Table 2. Overall, SMIREP fold cross-validation using beamsike= 5 averages at arounds4s
531 seems to perform comparably to the decision tree approach75 s in the SAR-setting, while SMIREP requires 513 s fex
532 of Hong et af® Although, no specific accuracy is given, Tong a 10-fold cross-validation in the QSAR setting. 550
533 et al®® report on accuracies of a 3-fold cross-validation  Figure 4 depicts the two averaged ROC curves fon
534 experiment resulting roughly in the same prediction accura- SMIREP for the SAR setting and the QSAR setting whese
535 cies on the training set (approximately 76%, taken from predicting the ER-binding database for beamg&ize5. The 553
536 Figure 13.8, p 302). In another recent publication, Hong et curves represent the averaged=1Q0-fold cross-validation 554
537 al#! report on accuracies of 96.6% employing a method results. The averaged area under the ROC curve (AUC) was

538 called decision forest (DF). DF essentially induces a large 0.832 (SAR) and 0.833 (QSAR) for the training sets ansh
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ROC curves for the SAR setting on the EFDB ROC curves for the QSAR setting on the EFDB
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Figure 6. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the ER-binding

database with a beamsike= 20. The ROC curves are averaged over all fold experiments.

Table 4. Accuracy and Area under ROC Curve for the CPDB Data

557 0.816 (SAR) and 0.795 (QSAR) for the corresponding test Set for Different Beamsize) from the 10 10-Fold

558 sets. The ROC curves for testing and training are similar, cyoss-validatiorss
zzz Wr;l\(;h r{::rl](;?otsj dth:tt)osvl\él’lR_II_EOI::];O:tS%nl?;aC:/VeeTg'emi fied a setting k acctraining AUC training acc testing AUC testing
561 numper of strucyural features contributing to the ER-binding SAR 150 7765'.&((00'_2186)) %_88%1((00'%1121)) 7722'_%2((11'%?) %.77%81((00'.%%65))
562 activity of chemical comp.oun'ds. Thr_ee structural alerts, the 20 76.07 (0.23) 0.803 (0.010) 72.60 (0.50) 0.765 (0.057)
563 steroid skeleton_, the steroid diethylstilbestrol (DES) skeleton, 5 79.73(0.26) 0.825(0.015) 73.90 (0.99) 0.764 (0.055)
564 and the phenolic ring skeleton, were manually selected asQsar 10 79.61(0.52) 0.821 (0.016) 74.26 (1.53) 0.766 (0.054)
565 structural alerts, in order to predict the activity class of a 20 78.58 (0.44) 0.811(0.019) 74.20 (1.30) 0.766 (0.040)
566 potential ER-binding compound. In an earlier publication, ) o ]
567 Fang et ak* have used information about the presence of a , ° 1€ humbers in brackets denote the standard deviation. Increasing
. . . S the beamsizes in the CPDB experiment does not yield any significant
568 ring structure, an aromatic and possibly a phenolic ring change in the performance of SMIREP.
569 structure, and the DES skeleton to build a rule system
570 evaluating the likeliness of a compound being a possible ER .
571 ligand. The handcrafted rule system by Fang et al. is asStructures. Overall, this single rule matches 33 of ther
579 follows: classified as active compounds, while matching 15 of thm
573 1. If a chemical contains no ring structure, then it is NON-ER ligands. This however, does not seem to be a very
574 unlikely to be an ER ligand. good structural rule when predicting the activity class edo
575 2. If a chemical has a nonaromatic ring structure, then it unseen co_mpounds. We have compared an v_axar_nple S.MIREP
576 is unlikely to be an ER ligand if it does not contain an O, S, _rule set V.V'th the rule set by Fang et al. This discussionsig
577 N, or other heteroatom for bonding. Otherwise its binding included in Table 3. Overall, a number of rules corresposs
578 potential is dependent on the existence of the key structural© hese expert rules. 604
579 features. We believe that this example rule set could aid initialkos
580 3. If a chemical has a non-OH aromatic structure, then its In the construction of an expert rule system for classifyings
581 binding potential is dependent on the existence of key Potential ER-binding molecules, like the one presented doy
582 structural features (e.g., logP, precise-O distance, etc.). = Fang et ak* Although the discovered rules do not presess
583 4. If a chemical contains a phenolic ring, then it tends to Previously unknown knowledge, they can be used as a fist
584 be an ER ligand if it contains any additional key structural St€P @nd guideline for experts. 610
585 features. For the chemical containing a phenolic ring 3.2.3. CPDB.The second data set we evaluated SMIRER
586 separated from another benzene ring with the number ofon was derived from the carcinogenic potency database
587 bridge atoms ranging from none to three, it will be most (CPDB). The settings used were the default settings descrited
588 likely an ER ligand. in section 3.2.1. The number of seeds was s&0ovhich 614
589 The main structural rule in this system is rule number 4, corresponds to 10% of compounds classified as active in ¢ive
590 which translates into the following: “if a compound pos- training set. 616
591 sesses an aromatic ring connected by one to three atoms to The results are depicted in Table 4. Overall, the predictiase
592 a phenolic ring, then the compound is likely to be an ER performance does not vary as much as in the ER-binding
593 ligand”. We have assessed this rule using the OpenBabelexperiment and results also in a lower predictive perfeto
594 tool obgrep obgrep works similar to the UNIX grep mance. This might be due to the nature of the applicatiezo
595 command, but instead of using regular expressions it the CPDB database contains more heterogeneous moleaites

596 performs a SMARTS search though a database of chemicalwhen compared to the NCTRER database. When compasizg
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Table 5. Performance of SAR Models fd@almonellaMutagenicity differences are not statistically significant. In contrast &
Reported in the Literature MOLFEA, however, the produced rules by SMIREP are easy
author citation method accuracy to understand, and SMIREP’s ability to employ momas
Perrotta et al. 42 73.9 complex structures than just linear fragments seems to eitl
Klopman and Rosenkranz 18  CASE 72 in the rule induction. An example set of rules is presenteg
Klopman and Rosenkranz 18 ~ MULTICASE 80 in Table 6. Some parts of the fragments used in this examgle
Egﬁga; grd Rosenkranz 718 M%’?‘_IS:EEB 18 7;75 rule set were also identified in the MOLFEA approachz
Helma et al. 7 MOLFEA/PART 75.0 However, many of the SMIREP rule sets contain tlses
Helma et al. 7  MOLFEA/SMO,E1  76.1 fragments 'C10OCL1’ (coding for epoxide, a structure that 4
Helma et al. 7 MOLFEA/SMO.E2 737 often associated with mutagenicity) or more complex frages

a2 The accuracies for the different MOLFEA approaches were the .ments like ‘clc2nceec2eccl’, like in the example rules set

results on unoptimized structures and averaged overall four different IN rulés 8 and 4, respectively, which can neither be fousd
settings. nor represented using linear fragments. 648
3.2.4. EFDB.For prediction of the biodegradability ine49
these results to the literature, i.e., to the MOLFEA data- terms of biodegradable or nonbiodegradable, we have us®d
mining systemand to CASE’ and MULTICASE8this drop 328 compounds, 185 considered active (biodegradable) end
in predicted accuracy has to be seen in a different perspective 143 inactive (nondegradable) compounds. As with the otlagr

The results published by Helrhand other$42 are sum- experiments, we evaluated the results in terms of accurasy
marized in Table 5. Although SMIREP achieves similar, as WeII_as using R_OC analysis. The accuracies are compased
though slightly lower, accuracies than the other methods, it to previously published results. 655

is not quite clear whether these differences are statistically To compare to other published approaches we have
significant, as it is not possible to test for statistical modified the evaluation and performed a5L0-fold cross- 657
significance purely based on accuracies from 10-fold cross validation (using the original folds published by Blockeel e$s
experiments without the standard deviations. Therefore, weal?’). We repeated each of these fold-wise experiments
have calculated a 99% confidence interval for the best resultarbitrarily five times to allow for a more accurate estimatso
from SMIREP. The accuracy of the best MOLFEA approach on the accuracy due to the selection of seeds in SMIRE&.
(SMO/E1) lies within the interval, indicating that the We have selected the same folds as Blockeel ét @he 662

Table 6. Example Rule Set Induced by SMIREP on the CPDB

No Rules (SMILES) Rules (2D)
1 nceeenc N NN
2 N=0O n—

3 | ccce A ceN A ccO A OC SNOA SN AN A

4 clc2nccecc2ecel @

5 CBr c

6 CCl A CN c—a N\ e—un

7 =0 A clocceel O
o /\

8 C10C1 A

9 cleceeel A Necee O
JAN "\/\-

10 N A CCOC A SO

11 NN .

12 clcc2cccec2ecl
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Table 7. Average Accuracies and Areas Under ROC Curve for the  reflects global information about a molecule such as tée
EFDB Data Set for a Number of Different Beamsiz&g' ( molecular weight and logP. THetype encapsulate the atons73
setting k acc training AUC training acctesting AUCtesting and bond information, while the typéxl andP2 are used 674
5 77.68(1.41) 0.811(0.016) 71.81(5.61) 0.747(0.078) as aggregates reflecting information about the frequencies

SAR 10 77.05(1.02) 0.811(0.015) 71.53(6.27) 0.756 (0.086) of certain substructures occurring in a given compourl (676
20 77.07(1.18) 0.810(0.015) 71.65(6.29) 0.754(0.084) employs a set of 59 predefined substructuré¥e have 677

5 79.90(1.06) 0.826 (0.014) 73.51(5.08) 0.744(0.081) compared the performance of SMIREP against the algorithens

QSAR 10 79.50(1.25) 0.826 (0.015) 73.14(5.99) 0.743(0.079) ysed by Blockeel et & in the Global andR type setting, 679
20 79.02(1.55) 0.822(0.016) 74.32(5.83) 0.756 (0.080) 44 this'is the closest to SMIREP in the QSAR setting. Th®

2The accuracies of SMIREP in the QSAR setting are comparable 'elational learning approaches tested by Blockeel et al. wese

to that published by Blockeel et #l.when using theGlobal and R not evaluated on the pure atom/bond information R. Conss
information. paring the mean accuracies of SMIREP against the ones fiamn

Blockeel et aP’ (in Table 8) shows that SMIREP achievess4
Table 8. Mean Accuracies on the & 10-Fold Cross-Validation of comparable performance to that of relational learnimgp

a Number of Relational Learning Approaches Published by Blockeel yathods on the classification task 636

et al?” Using theGlobal as Well as the Atom/Bond Information o "

(R? Although the prediction accuracies of SMIREP whess7
method accuracy compared to other approaches are quite similar, the perﬁss—
oL 32 mance of SMIREP comes to some extent as a surprise.6#s
Tide 741 SMIREP is neither able to induce rules for both activiiggo

S-CART 71.9 classes at the same time not-urrently—able to incorporate 691

the absence of a fragment within a compound, the gosd

@The SMIREP QSAR approach performs comparably to these results are hard to explain. However, in the light of théss

approaches with a mean accuracy on the test data ranging from 73'81(y‘application these features would very much be requiredste
to 74.32% depending on the beamskze . i i .

predict readily degradable compounds and specific half-lég

times. 696
663 results of the SMIREP experiments are depicted in Table 7.
664 The performance of SMIREP to other approaches on this 4. DISCUSSION 697
665 data set can be seen in Table 8. Here, we can only compare
666 the accuracies and not the average AUC. In their publication, SMIREP is essentially a QSAR based approach ables¢e
667 Blockeel et aP” have tested a number of relational learning extract relevant structural fingerprints quickly. Obviouslyge
668 methods on this data set, with varying background knowl- modeling chemical problems on this level has certaim
669 edge. The information about the compounds contained in drawbacks. Other approaches in activity prediction emplay;
670 the database is organized into four types of backgroundfor example, the docking site of the protein under consig
671 knowledge: Global, P1, P2, andR. TheGlobalinformation eration. However, in most cases, this information is not os

Table 9. Example Rule Set Discovered on the EFDB Data Using the QSAR Sétting

No Rules (SMILES) Rules (2D)

1 clcec2eceec2cel O‘
2 logP > 2.97 A clecceecl[Cl] ;—Q
logP > 2.97 A

3 C1CCCCC1 O

o c

4 cenel ~
5 O=NN N

6 N=0 —o

7 cce A Q] N AN

8 | mweight > 118.175 A logP < 2.97 A Nec | mweight > 118.175 A logP < 2.97 A o

aThe rules predict nonbiodegradation. The accuracy of this specific rule set is 81.8% (correctly predicting 11 out of 14 examples on the corresponding
test set).
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only partially available. And, equally important, these more as done in the decision tree approach by Hong &t ahis 766
sophisticated approaches typically require substantially moreis clearly a disadvantage when comparing predictive pest
computation time. formance. One possible way to overcome this limitation s

SMIREP is, to some extent, similar to MULTICASE, to employ the fragmentation approach together with7@
in that it constructs fragments based on the structure of decision tree learner as the underlying learning algorithmzas
chemical compounds and uses these fragments as an integrdb learn rules for more than one class. For the actua
part of the machine learning approach. However, MULTI- application of SMIREP to SAR, learning rules from activer2
CASE constructs all possible linear (and to some extent compounds only is less problematic, as one is typically more
branched) fragments up to a fixed length of 10 non-hydrogen interested in the understanding of activity rather tha

atoms. Using statistical testing, the found fragments are inactivity. 775
divided into significantly activating fragmentbipphorey In the current implementation, SMIREP does not cater fag
and significantly deactivating fragmentsigphobey MUL- stereoisomers possessing different activity levels. Indeed, thve

TICASE then automatically defines major biophore classes, chirality information is disregarded during learning. Hows
and within each class it identifies fragments modifying the ever, this information is a major factor when investigatingo
overall class activity. These modifying fragments together the activity levels of natural compounds. In future versions
with calculated numerical attributes, such as logP, octanol of SMIREP, we intend to incorporate the chirality informars1

water, charges, densities, etc., are used as so-cabeldla-  tion encoded in the compound’s SMILES codes into the
torsto refine an activity model of a biophore using a divide- system. 783
and-conquer search strategy. To accommodate the possibility to incorporate some sot

The differences between MULTICASE and SMIREP are of hackground or domain knowledge, it is further possibtes
3-fold: First, SMIREP does not use biophobes to indicate to add predefined structural alerts as new fragments durisg
inhibition (or inactivity), as the use of deactivating fragments  the growing stage of SMIREP. Although this would be ire7
is typically not desired within the SAR setting. Second, 0 contrast to the idea of inducing alerts without any priogs
avoid overfitting of rules, SMIREP does not employ modula- knowledge, it could overcome some limitations of SMIRER9

tors to fine-tune activities of found biophores. Third, in  yegarding larger ring structures. 790
contrast to MULTICASE, SMIREP is able to employ more
complex structures, including rings, and it does not impose 5. CONCLUSION 701

a restriction on the overall length of fragments.

The difference of SMIREP with regard to other QSAR In this paper we have presented a number of applications
approaches can be seen in SMIREP’s ability to extract of a novel system, SMIREP, to predict activity classificatiomns
relevant knowledge in the form of structural alerts on during in the SAR and QSAR problem setting. SMIREP combines:
the learning stage. Other approaches rely on precalculatedprinciples of the chemical representation language SMILES
fingerprints, like MDL keys,? or use physiochemical and with the inductive rule learner IREP. The novelty behinds
structural indeces calculated by specialized software like the SMIREP approach is the use of linear strings to induoe
Molconn-Z2 Here, we have presented a system, able to focusrules containing complex structures such as trees and cycies.
on only the important structural features hidden in the The applicability of SMIREP to classify chemical compoundsy
database. was demonstrated on three diverse data sets. Overall,sthe

In a previous publicatio® we have compared SMIREP  predictive performance of SMIREP is comparable to existisg
to graph mining approaches which have been employed inmethods. In contrast to other methdd&’ there is no need so2
SAR. The advantage of SMIREP over most of these systemsto employ preselected structural alerts or fingerprints for ths
lies in the small set of rules produced. While approaches classification task. Furthermore, as SMIREP is able to induoe
such as gSpan, closeGrafjH-SG? and AGM? typically these alerts ab initio, the found rules can be employedste
find alarge set of patterns satisfying a minimum frequency construct more fine-grained rules sets. We believe, therefae,
threshold, which are not necessarily predictive, SMIREP that SMIREP is a valuable tool to analyze chemicsd7
directly builds asmall set of predictive rules. Furthermore, databases. 808
as these graph based approaches traverse the complete searchThe SMIREP system is available from http:&og
space of possible patterns, they tend to be inefficient. www.karwath.org/systems/smirep/ under the GNU Genegal
SMIREP, on the other hand, is a heuristic approach and isPublic License. The Web page also contains the data fdes
able to induce rules faster. used in the Experimental Section. The system is providad

Several improvements are possible for the SMIREP in Python and C source code, including the required Pythan
system. As SMIREP employs principle ideas from the OpenBabel module OBGrep. 814
machine learning algorithm IRE®Z% a next step could be
the upgrade of the underlying learning algorithm to some of ACKNOWLEDGMENT 815
its successors, for instance RIPPEfRepeated Incremental . _ _
Pruning to Produce Error Reduction). RIPPER employs the _ The authors would like to thank Christoph Helma, Davide

rules found by IREP and repeatedly grows and prunes theP. Enot, Ross D. King, a_md Siegfried Nijssen for helpfel7
found rules to improve the prediction accuracy on different discussions and suggestions. This research was suppanted
splits for the training and validation sets. Compared to a PY the EU grant FP6-516169 Inductive Querying. 819

number of other approaches, SMIREP only induces rules for
. ! . Supporting Information Available: Appendix A describ- 820
compounds considered to be active, and no rules are founo&ng the generation of ROC curves and a more detailed 821

specifically for in_aCtive C_ompounds. _That_mea_ns that SMIREP gescription of ROC analysis. This material is available free of 822
has no mechanism to filter out obvious inactive compounds, charge via the Internet at http:/pubs.acs.org. 823
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