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Most approaches to structure-activity-relationship (SAR) prediction proceed in two steps. In the first step,
a typically large set of fingerprints, or fragments of interest, is constructed (either by hand or by some
recent data mining techniques). In the second step, machine learning techniques are applied to obtain a
predictive model. The result is often not only a highly accurate but also hard to interpret model. In this
paper, we demonstrate the capabilities of a novel SAR algorithm, SMIREP, which tightly integrates the
fragment and model generation steps and which yields simple models in the form of a small set of IF-
THEN rules. These rules contain SMILES fragments, which are easy to understand to the computational
chemist. SMIREP combines ideas from the well-known IREP rule learner with a novel fragmentation
algorithm for SMILES strings. SMIREP has been evaluated on three problems: the prediction of binding
activities for the estrogen receptor (Environmental Protection Agency’s (EPA’s) Distributed Structure-
Searchable Toxicity (DSSTox) National Center for Toxicological Research estrogen receptor (NCTRER)
Database), the prediction of mutagenicity using the carcinogenic potency database (CPDB), and the prediction
of biodegradability on a subset of theEnVironmental Fate Database(EFDB). In these applications, SMIREP
has the advantage of producing easily interpretable rules while having predictive accuracies that are comparable
to those of alternative state-of-the-art techniques.

1. INTRODUCTION

In the past few decades, a number of computational
methods to predict structure-activity relationships (SAR)
or quantitative structure-activity relationships (QSAR) based
on 2D or 3D models of molecules have have been proposed
for fast high-throughput screening. Most of these approaches
assume that the relevant fragments, biophores, or fingerprints
are provided by an expert or are calculated apriori and then
induce a predictive model employing these. The commonly
used MDL key sets1,2 can be seen as an example of these
predefined fragments or fingerprint approach. It is also
possible to employ a number of other structural, topological,
or physiochemical descriptors calculated by specialized
software such as Molconn-Z3 and use them for high-
throughput screening of larger databases. However, as the
generation of the relevant structural alerts or fragments is a
nontrivial task, which greatly determines the quality of the
learned model, several recent approaches from the field of
data mining try to automate this generation process.

First, a number of graph-mining methods have been
employed to SAR problems in order to discover the necessary
relevant fragments. The vast majority of these approaches
computes fragments (sometimes called local patterns) that
frequently occur in or are significant with respect to a given
data set, cf. Dehaspe,4 Deshpande et al.,5 Kramer et al.,6,7

Zaki,8 Yan and Han,9 Borgelt and Berthold,10 Inokuchi et
al.,11,12 and Kuramochi and Karypis.13 The earliest ap-
proaches4 to compute such fragments are based on techniques
from inductive logic programming (ILP).14 Whereas ILP

techniques are theoretically appealing because of the use of
expressive representation languages, they exhibit significant
efficiency problems, which in turn implies that their ap-
plication has been restricted to finding relatively small
fragments in relatively small databases. Recently proposed
approaches to mining frequent fragments in graphs such as
gSpan,9 CloseGraph,15 FSG,5 MoFa,10 Gaston,16 and AGM12

are able to mine complex subgraphs more efficiently.
However, the key difficulty with the application of these
techniques issas for other frequent pattern mining ap-
proachessthe number of patterns that are generated. For
instance, Inokuchi et al.11 report on the order of 106 patterns
being discovered. Furthermore, frequent fragments are not
necessarily of interest to a molecular scientist. Therefore,
Kramer et al.6 and Inokuchi and Kashima11 take into account
the classes of the molecules. Kramer et al. compute all simple
patterns that are frequent in the actives and infrequent in
the inactives, whereas Inokuchi et al. compute correlated
patterns.

Second, there exist a few approaches that integrate the
discovery of the fragments with the learning of the predictive
model, most notably the CASE/MULTICASE family17,18and
the more recent LAZAR system by Helma.19 For instance,
the well-known MULTICASE system constructs fixed sized
fragments from the compounds and then uses a divide-and-
conquer strategy (based on statistical tests) to distinguish
between major biophores for classification and modulators
that can regulate activity of a primary biophore as well as
for biophobes indicating inactivity. The generated biophores
or fragments are in principle linear fragments (though
MULTICASE also supports branches around the backbone)
and, hence, do not necessarily capture more complex
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structures of chemical compounds. Furthermore, it is hard
to find detailed information about the way the fragments are
generated. The recent LAZAR approach by Helma19 identi-
fies linear fragments present in a compound database,
identifies the relevant ones (using a statistical test), removes
redundant ones, and predicts activity or inactivity for a given
test compound based on majority vote. Similar to MULTI-
CASE, the employed fragments are linear and include more
complex structures, such as rings, only indirectly within their
predictions. Furthermore, MULTICASE and LAZAR employ
a weighting/scoring scheme on the fragments to make
predictions, which are not always easy to understand or
interpret.

The approach employed in SMIREP20 is different. SMIREP
combines the chemical modeling language SMILES (Simpli-
fied Molecular Input Line Entry System,21 with IREP
(Incremental Reduced Error Pruning), a state-of-the-art
machine learning algorithm that produces a predictive model
in the form of a small set of IF-THEN rules. It is essentially
a specialized learning system for SAR and QSAR applica-
tions and for fast extraction of relevant structural fingerprints
or features. In SMIREP, each IF-THEN rule lists one or more
fragments that must be present in order for a compound to
be active and, hence, describes directly a structural alert that
is easy to interpret. The generation of the fragments is
performed directly on the SMILES representations of the
compounds and is guided by heuristics from the well-known
rule-learner IREP.22,23 We have applied SMIREP to three
SAR problems: the prediction of binding activities for the
estrogen receptor (EPA’s DSSTox NCTRER Database), the
prediction of mutagenicity using the carcinogenic potency
database (CPDB), and the prediction of biodegradability on
a subset of the Environmental Fate Database (EFDB). The
experiments show that SMIREP producessmall rule sets
containing possiblycomplex fragments, that SMIREP is
competitive in terms of predictive accuracy, and that
SMIREP is quite efficient as compared to alternative
methods.

2. METHODS

2.1. Databases. 2.1.1. DSSTox NCTRER.The estrogen
database was extracted from the EPA’s DSSTox NCTRER
Database (http://www.epa.gov/nheerl/dsstox/sdf_nctrer.html).
The original data set was published by Fang et al.24 and is
specially designed to evaluate QSAR approaches. The
NCTRER database provides activity classifications for a total
of 232 chemical compounds, which have been tested
regarding their binding activities for the estrogen receptor.
The database contains a diverse set of natural, synthetic, and
environmental estrogens and is considered to cover most
known estrogenic classes spanning a wide range of biological
activity.24

The database distributed by the EPA’s DSSTox is in SDF
(Structure Data Format) and contains, in addition to the
original database, a number of annotations: 6 indicator
variables extracted from the original publication,24 logP
(octanol/water partition coefficient) values, and chemical
class assignments (6 main classes, 20 subclasses) as well as
the activity category ER-RBA (estrogen receptor relative
binding affinity). This classification yields 131 active and
101 inactive compounds (with regard to their ER-RBA).

2.1.2. CPDB.The original carcinogenic potency database
(CPDB: http://potency.berkeley.edu/cpdb.html) provides car-
cinogenic as well as mutagenic classifications as determined
by the Salmonella/microassay for a number of chemical
compounds mainly of industrial and pharmaceutical interest.
The database employed here was published by Helma et al.,7

filtered to eliminate mixtures and undefined structures,
and annotated with SMILES strings for each compound.
The filtered database was downloaded from http://
www.predictive-toxicology.org/data/cpdb_mutagens/.

Overall, the database contains 684 chemical structures (341
mutagens and 343 non-mutagens). Each entry is annotated
with a variety of precalculated numerical attributes as well
as other relevant information such as logP, homo, lumo,
electronegativity, and other numerical properties.

2.1.3. EFDB.This database originates from a study about
biodegradability of a number of commercially available
chemical compounds. The data set was first published by
Howard et al.25 and has been used to evaluate the prediction
capabilities of a number of relational classifications meth-
ods,26,27where a subset of 328 chemicals was used. We have
selected this data set to be able to compare SMIREP’s
performance to some other state-of-the-art approaches from
the machine learning and data-mining community. The data
sets main source is theSyracuse Research Cooperation’s
(SRC)EnVironmental Fate Database(EFDB). The database
contains degradation rates (in form of half-life times) for
chemicals, consideringbiotic, abiotic, andall degradation
within four environmental situations (soil, air, surface water,
and groundwater). Furthermore, these degradation rates are
measured within three environmental conditionsaerobic,
anaerobic,andremoVal in wastewater treatment plants.To
be able to compare our approach to previously published
work,26,27we restrict ourselves to the aqueous biodegradation
in aerobic conditions. We use the same procedure of dividing
the chemicals into degradable and nondegradable as Blockeel
et al.27 That is, compounds considered to degrade are
compounds possessing half-life times of up to 4 weeks, or
they are considered nondegradable otherwise. In addition to
the 2D structure of the chemicals, global attributes are
available like logP and the compound’s molecular weight.

2.2. SMILES and SMARTS. 2.2.1. SMILES.SMILES21

is a well-known linear string representation language for
chemical molecules. The SMILES language is commonly
used in computational chemistry and is supported by the
major software tools in the field, such as the commercial
Daylight toolkit and the Open-Source OpenBabel library.

The SMILES notation of chemical compounds is com-
prised of atoms, bonds, parentheses, and numbers. Atoms
are represented by their atomic symbols. The four basic bond
types are represented by the symbols ‘-‘, ‘)’, ‘#’, and ‘:’.
Ionic bonds, ordisconnections, are represented by a ‘.’.
Branches are specified by enclosing brackets, “(“ and “)”.
Cyclic structures are represented by breaking one bond in
each ring. The atoms adjacent to the bond obtain the same
number. Here, we refer to these numbers ascyclic link
numbers. The cyclic link numbers are not necessarily unique
within a SMILES representation of a molecule.

To search for subgraphs in compounds encoded in
SMILES, one can use the SMARTS language.28 While
SMILES is a language representing molecules, SMARTS is
a language representing SMILES fragments. Although
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SMARTS allows the use of wildcards and more complicated
constraints, SMIREP uses only the SMILES subset of the
SMARTS pattern language, that is, we use the SMILES
notation for fragments.

2.2.2. Chirality. As the SMIREP approach presented in
this work is very much database driven, we have examined
the databases used for occurrences of stereoisomers with
different activities. We have done this by comparing the main
layer of the InChI codes29 of all molecules (generated
with the InChI generation tool downloaded from http://
www.iupac.org). This allows one to detect molecules having
the same skeletons and atomic composition as well as
stereoisomers.

In the DSSTox NCTRER data set, only five compounds
have a R/S complement, and only one compound has
stereoisomers with different activities. Similarly, in the CPDB
data set, we found only one pair of compounds possessing
the same skeleton and atomic composition but having
assigned different activities. In the EFDB we found no
compounds possessing the same skeleton while being clas-
sified in different categories. This information is insufficient
for discovering chirality dependent rules. Therefore, we have
chosen to explicitly disregard chirality information in all
compounds in the three databases.

2.3. SMIREP. 2.3.1. Setting.SMIREP20 aims at automati-
cally discovering fragments, alerts, or biophores that dis-
criminate the active compounds from the inactive ones. The
discovered fragments are incorporated into IF-THEN rules,
which essentially test whether a set of fragments is all
present. Whenall fragments stated in the IF part of a rule
are present in a compound, we also say that the rulecoVers
the compound. For instance, consider the following two rules:

These rules are conjunctive and contain SMARTS patterns
as their conditions. Furthermore, together they constitute to
a rule-set, which is a predictive model that is used for
classifying compounds as follows: if there is a rule that
covers the compound, then predict “active”; otherwise predict
“inactive”. The rules are evaluated in SMIREP using the
OpenBabel toolkit (www.openbabel.org) and are also easy
to interpret as one classifies on the basis of the presence (or
absence) of certain fragments. An actual rule set computed
by SMIREP can be found in Table 3.

The problem tackled by SMIREP can now be formulated
as follows:

Given: a set of compounds in SMILES format, where
each compound is classified as eitheractiWe or inactiWe

Find: a rule-set that accurately discriminatesactiVe from
inactiVe compounds.

As the discovered rule set should be used for classification,
SMIREP searches for rules that satisfy many of the actives

and few of the inactive ones. The task of finding rule sets
for classification has been well-studied in the field of machine
learning.22,30,31 The key difference with traditional rule-set
learning problems in machine learning lies in the use of the
SMILES and SMARTS languages for representing com-
pounds and patterns. SMIREP embraces several ideas from
a well-known rule-learner from the field of machine learning,
IREP,22,23 but was adapted for the use of SMILES and
SMARTS as representation languages.

In a previous preliminary publication,20 we have introduced
SMIREP in a computer science context demonstrating
SMIREP’s ability to tackle activity predictions within large
databases of chemical compounds. The work presented here
concentrates on the applicability and performance of SMIREP
within a number of chemical applications.

2.3.2. Overview.SMIREP follows essentially a separate-
and-conquer approach,32 in which one iteratively searches
for a single rule that covers many of the active compounds
and none (or only very few) of the inactive ones. Once such
a rule is found, it is added to the rule set, and the actives
covered by the found rule are deleted. This process is then
repeated until further rules do not yield any improvement
with regard to a scoring function or all actives have been
covered. The main SMIREP algorithm is depicted in
Algorithm 1 (see Chart 1).

In order to search for one rule, SMIREP employs a so-
called seed compound. The SMILES representation of the
seed compound is decomposed in afragment tree, which
then determines the possible steps taken through the search
space by the refinement operators (see section 2.3.4). To

Table 1. Confusion Matrix with Four Possible Outcomes: TP, TN,
FP, and FNa

predicted

active inactive

active TP FP
inactive FN TN

a TP denotes the number of true positives, and TN denotes the
number of true negatives. The number of errors made by predicting a
compound of being active while it is not is denoted by FP (false
positives), while predicting a compound to be inactive while it is active
is denoted by FN (false negatives).

Table 2. Accuracy and Area Under ROC Curve for the NCTRER
ER-Binding Data Set for the Different Settings and Beamsizes (k)
from the 10× 10-Fold Cross-Validationsa

setting k acc training AUC training acc testing AUC testing

5 80.34 (0.41) 0.832 (0.021) 78.96 (1.13) 0.816 (0.087)
SAR 10 80.13 (0.51) 0.830 (0.021) 78.49 (1.92) 0.810 (0.077)

20 80.05 (0.29) 0.826 (0.018) 77.62 (1.56) 0.800 (0.098)

5 80.68 (0.63) 0.833 (0.024) 76.98 (1.41) 0.795 (0.090)
QSAR 10 80.68 (0.47) 0.831 (0.026) 77.69 (2.33) 0.802 (0.098)

20 80.83 (0.45) 0.834 (0.022) 78.17 (1.90) 0.806 (0.074)

a The numbers in brackets denote the standard deviation. Surprisingly,
the predictive performance drops slightly when numerical attributes
are used in this experiment. A similar effect has also been reported by
Helma et al.7 on a different data set. Although, we have used a bin
size of five to avoid overfitting, it still seems that in this experiment
SMIREP does overfit slightly. An indicator for this is the difference in
the training accuracy when compared to the testing accuracy. The
training accuracy in the QSAR setting is always higher than the one
for the SAR setting. However, the testing accuracy shows a higher
drop as in the SAR setting.
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avoid being only dependent on one single compound while
searching for rules, various randomly selected seeds are

considered in the construction process. The search process
for a single rule is composed of two steps: growing and

Table 3. Example Rule Set Induced by SMIREP on the NCTRER ER-Binding Databasea

a The description compares these rules to the rule set published by Fang et al.24
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pruning, which employ different partitions of the training
set. Indeed, the original data set is randomly divided into a
growing and a pruning set. This division is done using a 2:1
split, i.e., two-thirds for growing a rule and one-third for
pruning the rule.

2.3.3. Seeds and Fragments.While searching for a single
rule, SMIREP employs thefragment treeof a seed compound
to guide the search through the space of potential rules. The
fragment tree is obtained by syntactically decomposing the
SMILES representation of the compound and all growing
and pruning operations employ this fragment tree. Further-
more, all rules evaluated (starting from a particular seed)
will also cover that seed.

To obtain the fragment tree, SMIREP splits a SMILES
string into cyclic fragments and branching fragments.
Branching fragments are extracted from a SMILES string
as follows: given a SMILES string of the formA(B)C, find
the first branch, denoted by opening and corresponding
closing brackets. The substring ranging from the start of the
string to the opening branch is defined as fragmentA with
labela, the branch itself as fragmentB with labelb, and the
rest after the branch as fragmentC with label c (cf. Figure
1). EachB and C fragment can contain further branches.
This splitting is applied recursively, until no more branches
can be found. Note that we neither use a unique SMILES
representation nor a canonical form, when fragmenting the
SMILES strings. However, as the fragments are later on
evaluated using the OpenBabel toolkit’s SMARTS matching
feature, any equivalent SMILES fragment would match a
given compound.

Cyclic fragments are extracted in order to be able to
represent ring structures and other types of cyclic structures.
To ease the parsing of the string, each cycle number in the

SMILES string is first assigned a unique value, as the
SMILES language allows the ‘reuse’ of cycle numbers. To
split a string into cyclic fragments, we extract the substrings
within the corresponding numbers. The fragments are
‘cleaned’ before testing their coverage on the database, i.e.,
other link numbers not denoting a full ring are removed as
well as redundant opening or closing brackets. Examples of
cyclic fragments are shown in Figure 1 colored in blue. Like
the branching fragments, the extraction of cyclic fragments
is done recursively.

Please note that not all possible rings in a compound can
be found this way. For instance, if a compound’s SMILES
representation containsS) “c12ocnc2cccc1”, the fragment
decomposition will only extract one fragment containing both
rings (CF1 ) “c12ocnc2cccc1”) and one containing the inner
ring alone (CF2 ) “c1ocnc1”). [Here, “inner ring” is used
in the sense that one ring is within the other in the SMILES
representation.]

The cyclic and branching fragments found in the above
way form a tree, a so-calledfragment tree. The leaves in
the tree are fragments, which cannot be decomposed any
further. We call these fragmentsground fragments. Figure
1 shows such a tree for a small example compound.

2.3.4. Growing. For each of the growing iterations,
SMIREP first selects a seed example, computes the corre-
sponding fragment tree, and learns a rule as follows. First,
the algorithm uses each ground fragment as an initial rule
and evaluates it on the data set. The topk most promising
rules (wherek is a positive integer) are selected for the next
refinement iteration. The parameterk is later on referred to
as thebeamsize.

The scoring heuristic used in SMIREP is weighted
information gain (WIG), as originally suggested by Fu¨rn-
kranz.22 It is defined as follows33

Chart 1. Algorithm 1: SMIREP

Figure 1. An example fragment tree of 4,4′-dihydoxybenzophe-
none. The original SMILES string for this molecule isOc1ccc-
(cc1)C(dO)c2ccc(cc2)O, which is shown at the top of the tree.
The first three fragments in the second line (colored gray) result
from the branching decomposition, the other ones (colored blue)
from the cycle identification. After the first decomposition, only
one fragment can further be decomposed, namely the fragment with
ID c shown in the third level of the tree. Again only the fragment
with ID cc can be decomposed further, resulting in the final level
of the tree. After the last decomposition, no more fragments can
be generated. The leaves of the tree, namely fragmentsa, b, 1, 2,
ca, cb, c1, cca, ccb, ccc,andcc1are the so-called ground fragments.
Please note that the IDs last character denotes the label of the
fragment. The IDs given here are purely used for clarity; they are
neither constructed nor used in SMIREP.

WIG(r) ) -p(r)(IC(r) - IC(r′))
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wherep(x) denotes the number of active examples covered
by the rulex, IC(x) denotes the information content of a rule
x, r denotes the current rule, andr′ denotes the predecessor
of current rule, i.e., the current rule before the last refinement.
The information content (IC) is defined as

wherep(x) denotes the number of active examples covered
by rulex, andn(x) denotes the number of inactive examples
covered by rulex. For the WIG measure, the difference in
the information content of a rule and the same rule after
refinement is weighted by the number of covered active
examples.

Like many machine learning algorithms, SMIREP uses a
refinement operator. A refinement operator essentially
generalizes or specializes an existing rule or pattern. The
refinement operator used in SMIREP is defined in Figure 3.
In principle, refinement proceeds in a bottom-up manner,
i.e., specializing a rule each time the operator is employed.
In SMIREP new rules are constructed by either combining
corresponding fragments from the tree (Ascending) or by
adding new fragments to an existing rule (Lengthening).

While theAscendingrefinement operator allows only to
learn rules based on the fragments siblings and parents, the
Lengtheningrefinement operator allows more complex rules
to be learned. TheLengtheningrefinement operator allows
the addition of new fragments to an existing rule. Consider
the example where fragmentcc (taken from the example
fragment tree in Figure 1) does not perform better than
cca_ccb. Fragmentcc is therefore not further refined using

theAscendingoperator. However, combining it with another
ground fragment might potentially perform better than the
fragment itself. Therefore theLengtheningrefinement can
add new fragments (in the form of ground fragments) to an
existing rule. The meaning of such a composite rule is that
both fragments have to occur simultaneously within a
compound to be classified as active.

Furthermore, SMIREP allows the use of numerical at-
tributes. This has been incorporated in the algorithm by
generating new types of fragments,numerical fragments,
denoting that a particular numerical attribute isless thanor
greater or equal tosome numerical value. Only those values
which are true on the current seed are considered. These
fragments can only be added during theLengtheningrefine-
ment of the growing stage. By adding more than one
numerical constraint using the same attribute, it is possible
for SMIREP to use intervals, i.e., it is possible to have rules
containing the following constraint: ‘logP> -1.11’∧ ‘logP
e 3.21’. These numerical constraints allow SMIREP to be

Figure 2. A hypothetical refinement example trace of anAscending
refinement, reflecting the example fragment tree in Figure 1. The
green nodes correspond to the fragment or combined fragment
evaluated during theAscending refinement. Assume that the
fragment cca is interesting according to the scoring function.
Possible refinements would be combining fragmentccawith ccb,
resulting in a fragmentcca_ccb. If either of the two new fragments
receive a good score, the next refinement is to combine all three
fragmentscca_ccb_ccc, which is actually the same as fragment
cc, which is then the next one to be evaluated.

IC(x) ) -log
p(x)

p(x) + n(x)

Figure 3. The refinement operator used in SMIREP. In each
iteration of the algorithm, both refinements of the operator can be
applied. During the search, the rule with the bestscore(see text)
is selected. Please note, that in the ascending part of the operator,
no construction of a new fragment labeledb and c alone is
performed, as both fragments rely on an atom and bond from
fragment labeleda. Consider the fragmentC(Cl)Cl, with subfrag-
mentsa ) C, b ) Cl, andc ) Cl. Combiningb andc would require
the carbon atomC from fragmenta.
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used in the quantitative structure-activity relationships
(QSAR) setting. To avoid overfitting, SMIREP first dis-
cretizes the numerical attributes into equal frequency bins.
During each iteration of the growing stage, all borders of
these bins are dynamically evaluated on the current growing
set, and the borders are added as new attributes. If a particular
seed possesses alogPvalue of 3.24, and the binning resulted
in the four bordersBs ) [0.33, 2.66, 4.99, 7.32], then the
following attributes are evaluated: ‘logP> 0.33’, ‘logP >
2.66’, ‘logPe 4.99,’ and ‘logPe 7.32’. The number of bins
used in this work has arbitrarily been set to five.

2.3.5. Pruning.To avoid overfitting of the rules learned
in the growing stage of the algorithm, the rules are pruned
using the pruning set. The pruning is performed in reverse
order of the growing of rules, i.e., the refinements are
“undone”. To this aim, the actual refinement history is stored
for each rule. All rules resulting from this reverse refinement
are evaluated using the scoring function on the examples in
the pruning set, and thebestone is selected as the rule learned
for the particular seed.

The pruning metric (or scoring function) used is the
improved pruning methodν* as suggested by Cohen23 and
is defined as follows

wherep(r) denotes the number of active examples covered
by rule r, andn(r) denotes the number of inactive examples
covered byr. The ν* measure is equivalent to precision.32

2.4. Implementation. The SMIREP system has been
developed in the programming language Python (version 2.3).
Python allows rapid prototype development, due to a wide
range of available libraries. For SMARTS matching, the
open-source chemical library OpenBabel (version 1.100,
http://openbabel.sourceforge.net) is employed. All experi-
ments were run on a PC running Suse Linux 9.2 with an
Intel Pentium IV-3.2 GHz CPU and 2 GB of main memory.
The SMIREP source code is freely available under the GNU
General Public License (see section 7 for details).

3. RESULTS

3.1. Validation. 3.1.1. Cross-Validation.Tenfold cross-
validation was used to evaluate the performance of SMIREP
on the three different databases. This means that each
complete database was randomly divided into 10 equally
sized parts. Each part was once removed from the complete
database as a hold out test set, while the remaining other 9
parts were used as a training set for the model. Predictions
for the test sets were compared to the actual classifications,
to estimate the predictive accuracy. This process was repeated
for all 10 parts, so that each part served once as a test set,
and predictions for all compounds in the data set are
available. As SMIREP’s algorithm is heuristic, we repeated
the 10-fold cross-validation 10 times to obtain a good
estimate of the algorithm’s mean accuracy. We call this a
10× 10-fold cross-validation. In the following sections, we
report on the mean predictive accuracies as well as the mean
area under ROC curve (see below).

3.1.2. ROC Analysis.A common way to evaluate the
performance of a classifier is to employ a confusion matrix.

In a confusion matrix the four different possible outcomes
(see Table 1) of a single prediction for a two-class problem
are displayed in a two-by-two matrix, where the rows
represent the number of entries belonging to the actual class,
while the columns represent the entries belonging to the
predicted class.

Often however, a simple confusion matrix does not
properly reflect the classifier’s performance. For a more
detailed and proper analysis of a classifier, receiver operating
characteristics (ROC) curves are employed. ROC curves were
first developed for signal detection.34-37 They are substan-
tially employed in medical tests and have become a standard
in the data-mining and machine learning communities to
compare different classifiers.

To construct an ROC curve for a classifier, one orders
the classifier’s predictions by some criterion (typically
confidence of a prediction) and then plots thetrue positiVe
rate (defined as TPr) TP/TP+FN) along they-axis against
the false positiVe rate(defined as FPr) FP/TN+FP) along
thex-axis for all possible cutoff values of the criterion values.
The resulting curve lies within the unit-square (the ROC
space). An ideal ROC curve would be a line along the top
left-hand corner (0,1) in ROC space, as it would not produce
any false positives (or false actives). In real-world applica-
tions this occurs only rarely. The ROC curve for a good
prediction should however always be to the left of the
diagonal between the two axes. The closer the curve tends
toward (0,1), the more accurate are the predictions made.

To compare two different prediction methods, both ROC
curves are plotted in the same ROC space. The curve running
closer to the left and top border is considered to provide a
better predictor. Another good measurement to compare
ROC curves analysis is that of thearea under the ROC curVe
(AUC).37,38 The AUC gives an overall measure of accuracy
of a predictor.

For a more detailed introduction to ROC curves and the
construction of ROC curves for rule learner, we refer the
reader to Appendix A (Supporting Information).

3.2. Experiments.We evaluated SMIREP on the three
databases described in section 2.1. The aim of these
experiments was 2-fold: first to demonstrate that activity
classification using SMIREP yields accurate rules, and
second, to show that meaningful rules can be found, which
are sometimes in consensus with the published literature.

3.2.1. Settings.For each of the following experiments,
we have chosen arbitrarily the number of seeds such that
10% of compounds classified as active in the database are
employed during the growing stage of SMIREP. For
example, if the database contain 120 active compounds and
150 inactive ones, we chose the number of seeds to be 12.
That means, that SMIREP induces 12 rules for each iteration.
To test the effect of different beamsizes, we evaluated
SMIREP for each experiment using beamsizes fork ) 5,
10, and 20. To examine the influence of numerical attributes,
we performed two separate experiments, one using only
structural information (SAR-setting) and one using the
structural information together with logP values and the
overall molecular weight of the compounds (QSAR-setting).

3.2.2. DSSTox NCTRER. The database of the 232
chemical compounds from the EPA’s DSSTox NCTRER
Database was downloaded from http://www.epa.gov/nheerl/
dsstox/sdf_nctrer.html. We translated this database to SMILES

ν*( r) )
p(r) - n(r)

p(r) + n(r)
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codes using the OpenBabel toolkit. This procedure was
necessary, as some SMILES codes provided in the database
were corrupt. Furthermore, we removed chiralities (see
section 2.2.2) and bond directions from the SMILES strings,
as the current version of SMIREP cannot deal with this
information. We believe (and the experiments will show)
that omitting this information provides SMIREP with enough
structure information to induce meaningful and accurate
patterns.

The results are depicted in Table 2. Overall, SMIREP
seems to perform comparably to the decision tree approach
of Hong et al.39 Although, no specific accuracy is given, Tong
et al.40 report on accuracies of a 3-fold cross-validation
experiment resulting roughly in the same prediction accura-
cies on the training set (approximately 76%, taken from
Figure 13.8, p 302). In another recent publication, Hong et
al.41 report on accuracies of 96.6% employing a method
called decision forest (DF). DF essentially induces a large

number of decision trees and builds a consensus model. In
comparison of the original decision tree approach by Hong
et al.39 to SMIREP, no preselection of structural alerts has
been performed, as SMIREP is able to extract the relevant
information during the learning stage. An example set of
rules found during one round of a 10-fold cross-validation
is shown in Figure 3.

The computation time varies between the SAR and the
quantitative SAR (QSAR) setting. While one complete 10-
fold cross-validation using beamsizek ) 5 averages at around
75 s in the SAR-setting, while SMIREP requires 513 s for
a 10-fold cross-validation in the QSAR setting.

Figure 4 depicts the two averaged ROC curves for
SMIREP for the SAR setting and the QSAR setting when
predicting the ER-binding database for beamsizek ) 5. The
curves represent the averaged 10× 10-fold cross-validation
results. The averaged area under the ROC curve (AUC) was
0.832 (SAR) and 0.833 (QSAR) for the training sets and

Figure 4. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the ER-binding
database with a beamsizek ) 5. The ROC curves are averaged over the 10× 10 ROC curves resulting from performing ten times a 10-fold
cross-validation. The black line indicates the diagonal.

Figure 5. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the CPDB mutagenicity
database with beamsizek ) 5. The black line indicates the diagonal.
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0.816 (SAR) and 0.795 (QSAR) for the corresponding test
sets. The ROC curves for testing and training are similar,
which indicates that SMIREP does not overfit.

As mentioned above, Tong et al.39 have identified a
number of structural features contributing to the ER-binding
activity of chemical compounds. Three structural alerts, the
steroid skeleton, the steroid diethylstilbestrol (DES) skeleton,
and the phenolic ring skeleton, were manually selected as
structural alerts, in order to predict the activity class of a
potential ER-binding compound. In an earlier publication,
Fang et al.24 have used information about the presence of a
ring structure, an aromatic and possibly a phenolic ring
structure, and the DES skeleton to build a rule system
evaluating the likeliness of a compound being a possible ER
ligand. The handcrafted rule system by Fang et al. is as
follows:

1. If a chemical contains no ring structure, then it is
unlikely to be an ER ligand.

2. If a chemical has a nonaromatic ring structure, then it
is unlikely to be an ER ligand if it does not contain an O, S,
N, or other heteroatom for bonding. Otherwise its binding
potential is dependent on the existence of the key structural
features.

3. If a chemical has a non-OH aromatic structure, then its
binding potential is dependent on the existence of key
structural features (e.g., logP, precise O-O distance, etc.).

4. If a chemical contains a phenolic ring, then it tends to
be an ER ligand if it contains any additional key structural
features. For the chemical containing a phenolic ring
separated from another benzene ring with the number of
bridge atoms ranging from none to three, it will be most
likely an ER ligand.

The main structural rule in this system is rule number 4,
which translates into the following: “if a compound pos-
sesses an aromatic ring connected by one to three atoms to
a phenolic ring, then the compound is likely to be an ER
ligand”. We have assessed this rule using the OpenBabel
tool obgrep. obgrep works similar to the UNIX grep
command, but instead of using regular expressions it
performs a SMARTS search though a database of chemical

structures. Overall, this single rule matches 33 of the
classified as active compounds, while matching 15 of the
non-ER ligands. This however, does not seem to be a very
good structural rule when predicting the activity class of
unseen compounds. We have compared an example SMIREP
rule set with the rule set by Fang et al. This discussion is
included in Table 3. Overall, a number of rules correspond
to these expert rules.

We believe that this example rule set could aid initially
in the construction of an expert rule system for classifying
potential ER-binding molecules, like the one presented by
Fang et al.24 Although the discovered rules do not present
previously unknown knowledge, they can be used as a first
step and guideline for experts.

3.2.3. CPDB.The second data set we evaluated SMIREP
on was derived from the carcinogenic potency database
(CPDB). The settings used were the default settings described
in section 3.2.1. The number of seeds was set to30, which
corresponds to 10% of compounds classified as active in the
training set.

The results are depicted in Table 4. Overall, the predictive
performance does not vary as much as in the ER-binding
experiment and results also in a lower predictive perfor-
mance. This might be due to the nature of the application:
the CPDB database contains more heterogeneous molecules
when compared to the NCTRER database. When comparing

Figure 6. The ROC curves from the SAR and QSAR experiments for training (blue) and testing (green) on predicting the ER-binding
database with a beamsizek ) 20. The ROC curves are averaged over all fold experiments.

Table 4. Accuracy and Area under ROC Curve for the CPDB Data
Set for Different Beamsizes (k) from the 10× 10-Fold
Cross-Validationsa

setting k acc training AUC training acc testing AUC testing

5 76.11 (0.28) 0.804 (0.012) 72.87 (1.21) 0.768 (0.056)
SAR 10 75.95 (0.16) 0.801 (0.011) 72.16 (1.05) 0.761 (0.055)

20 76.07 (0.23) 0.803 (0.010) 72.60 (0.50) 0.765 (0.057)

5 79.73 (0.26) 0.825 (0.015) 73.90 (0.99) 0.764 (0.055)
QSAR 10 79.61 (0.52) 0.821 (0.016) 74.26 (1.53) 0.766 (0.054)

20 78.58 (0.44) 0.811 (0.019) 74.20 (1.30) 0.766 (0.040)

a The numbers in brackets denote the standard deviation. Increasing
the beamsizes in the CPDB experiment does not yield any significant
change in the performance of SMIREP.
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these results to the literature, i.e., to the MOLFEA data-
mining system7 and to CASE17 and MULTICASE,18 this drop
in predicted accuracy has to be seen in a different perspective.
The results published by Helma7 and others18,42 are sum-
marized in Table 5. Although SMIREP achieves similar,
though slightly lower, accuracies than the other methods, it
is not quite clear whether these differences are statistically
significant, as it is not possible to test for statistical
significance purely based on accuracies from 10-fold cross
experiments without the standard deviations. Therefore, we
have calculated a 99% confidence interval for the best result
from SMIREP. The accuracy of the best MOLFEA approach
(SMO/E1) lies within the interval, indicating that the

differences are not statistically significant. In contrast to
MOLFEA, however, the produced rules by SMIREP are easy
to understand, and SMIREP’s ability to employ more
complex structures than just linear fragments seems to aid
in the rule induction. An example set of rules is presented
in Table 6. Some parts of the fragments used in this example
rule set were also identified in the MOLFEA approach.
However, many of the SMIREP rule sets contain the
fragments ’C1OC1’ (coding for epoxide, a structure that is
often associated with mutagenicity) or more complex frag-
ments like ‘c1c2ncccc2ccc1’, like in the example rules set
in rules 8 and 4, respectively, which can neither be found
nor represented using linear fragments.

3.2.4. EFDB.For prediction of the biodegradability in
terms of biodegradable or nonbiodegradable, we have used
328 compounds, 185 considered active (biodegradable) and
143 inactive (nondegradable) compounds. As with the other
experiments, we evaluated the results in terms of accuracy
as well as using ROC analysis. The accuracies are compared
to previously published results.

To compare to other published approaches we have
modified the evaluation and performed a 5× 10-fold cross-
validation (using the original folds published by Blockeel et
al.27). We repeated each of these fold-wise experiments
arbitrarily five times to allow for a more accurate estimate
on the accuracy due to the selection of seeds in SMIREP.
We have selected the same folds as Blockeel et al.27 The

Table 5. Performance of SAR Models forSalmonellaMutagenicity
Reported in the Literature7 a

author citation method accuracy

Perrotta et al. 42 73.9
Klopman and Rosenkranz 18 CASE 72
Klopman and Rosenkranz 18 MULTICASE 80
Klopman and Rosenkranz 18 CASE/GI 47
Helma et al. 7 MOLFEA/J48 75.5
Helma et al. 7 MOLFEA/PART 75.0
Helma et al. 7 MOLFEA/SMO,E1 76.1
Helma et al. 7 MOLFEA/SMO,E2 73.7

a The accuracies for the different MOLFEA approaches were the
results on unoptimized structures and averaged overall four different
settings.

Table 6. Example Rule Set Induced by SMIREP on the CPDB
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results of the SMIREP experiments are depicted in Table 7.
The performance of SMIREP to other approaches on this
data set can be seen in Table 8. Here, we can only compare
the accuracies and not the average AUC. In their publication,
Blockeel et al.27 have tested a number of relational learning
methods on this data set, with varying background knowl-
edge. The information about the compounds contained in
the database is organized into four types of background
knowledge:Global, P1, P2, andR. TheGlobal information

reflects global information about a molecule such as the
molecular weight and logP. TheR type encapsulate the atom
and bond information, while the typesP1 andP2 are used
as aggregates reflecting information about the frequencies
of certain substructures occurring in a given compound (P2
employs a set of 59 predefined substructures). We have
compared the performance of SMIREP against the algorithms
used by Blockeel et al.27 in the Global andR type setting,
as this is the closest to SMIREP in the QSAR setting. The
relational learning approaches tested by Blockeel et al. were
not evaluated on the pure atom/bond information R. Com-
paring the mean accuracies of SMIREP against the ones from
Blockeel et al.27 (in Table 8) shows that SMIREP achieves
comparable performance to that of relational learning
methods on the classification task.

Although the prediction accuracies of SMIREP when
compared to other approaches are quite similar, the perfor-
mance of SMIREP comes to some extent as a surprise. As
SMIREP is neither able to induce rules for both activity
classes at the same time nor isscurrentlysable to incorporate
the absence of a fragment within a compound, the good
results are hard to explain. However, in the light of this
application, these features would very much be required to
predict readily degradable compounds and specific half-life
times.

4. DISCUSSION

SMIREP is essentially a QSAR based approach able to
extract relevant structural fingerprints quickly. Obviously,
modeling chemical problems on this level has certain
drawbacks. Other approaches in activity prediction employ,
for example, the docking site of the protein under consid-
eration. However, in most cases, this information is not or

Table 7. Average Accuracies and Areas Under ROC Curve for the
EFDB Data Set for a Number of Different Beamsizes (k)a

setting k acc training AUC training acc testing AUC testing

5 77.68 (1.41) 0.811 (0.016) 71.81 (5.61) 0.747 (0.078)
SAR 10 77.05 (1.02) 0.811 (0.015) 71.53 (6.27) 0.756 (0.086)

20 77.07 (1.18) 0.810 (0.015) 71.65 (6.29) 0.754 (0.084)

5 79.90 (1.06) 0.826 (0.014) 73.51 (5.08) 0.744 (0.081)
QSAR 10 79.50 (1.25) 0.826 (0.015) 73.14 (5.99) 0.743 (0.079)

20 79.02 (1.55) 0.822 (0.016) 74.32 (5.83) 0.756 (0.080)

a The accuracies of SMIREP in the QSAR setting are comparable
to that published by Blockeel et al.27 when using theGlobal and R
information.

Table 8. Mean Accuracies on the 5× 10-Fold Cross-Validation of
a Number of Relational Learning Approaches Published by Blockeel
et al.27 Using theGlobal as Well as the Atom/Bond Information
(R)a

method accuracy

ICL 73.2
Tilde 74.1
S-CART 71.9

a The SMIREP QSAR approach performs comparably to these
approaches with a mean accuracy on the test data ranging from 73.81%
to 74.32% depending on the beamsizek.

Table 9. Example Rule Set Discovered on the EFDB Data Using the QSAR Settinga

a The rules predict nonbiodegradation. The accuracy of this specific rule set is 81.8% (correctly predicting 11 out of 14 examples on the corresponding
test set).
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only partially available. And, equally important, these more
sophisticated approaches typically require substantially more
computation time.

SMIREP is, to some extent, similar to MULTICASE,17

in that it constructs fragments based on the structure of
chemical compounds and uses these fragments as an integral
part of the machine learning approach. However, MULTI-
CASE constructs all possible linear (and to some extent
branched) fragments up to a fixed length of 10 non-hydrogen
atoms. Using statistical testing, the found fragments are
divided into significantly activating fragments (biophores)
and significantly deactivating fragments (biophobes). MUL-
TICASE then automatically defines major biophore classes,
and within each class it identifies fragments modifying the
overall class activity. These modifying fragments together
with calculated numerical attributes, such as logP, octanol-
water, charges, densities, etc., are used as so-calledmodula-
tors to refine an activity model of a biophore using a divide-
and-conquer search strategy.

The differences between MULTICASE and SMIREP are
3-fold: First, SMIREP does not use biophobes to indicate
inhibition (or inactivity), as the use of deactivating fragments
is typically not desired within the SAR setting. Second, to
avoid overfitting of rules, SMIREP does not employ modula-
tors to fine-tune activities of found biophores. Third, in
contrast to MULTICASE, SMIREP is able to employ more
complex structures, including rings, and it does not impose
a restriction on the overall length of fragments.

The difference of SMIREP with regard to other QSAR
approaches can be seen in SMIREP’s ability to extract
relevant knowledge in the form of structural alerts on during
the learning stage. Other approaches rely on precalculated
fingerprints, like MDL keys,1,2 or use physiochemical and
structural indeces calculated by specialized software like
Molconn-Z.3 Here, we have presented a system, able to focus
on only the important structural features hidden in the
database.

In a previous publication,20 we have compared SMIREP
to graph mining approaches which have been employed in
SAR. The advantage of SMIREP over most of these systems
lies in the small set of rules produced. While approaches
such as gSpan, closeGraph,15 FSG,5 and AGM12 typically
find a large set of patterns satisfying a minimum frequency
threshold, which are not necessarily predictive, SMIREP
directly builds asmall set of predictive rules. Furthermore,
as these graph based approaches traverse the complete search
space of possible patterns, they tend to be inefficient.
SMIREP, on the other hand, is a heuristic approach and is
able to induce rules faster.

Several improvements are possible for the SMIREP
system. As SMIREP employs principle ideas from the
machine learning algorithm IREP,22,23 a next step could be
the upgrade of the underlying learning algorithm to some of
its successors, for instance RIPPER23 (Repeated Incremental
Pruning to Produce Error Reduction). RIPPER employs the
rules found by IREP and repeatedly grows and prunes the
found rules to improve the prediction accuracy on different
splits for the training and validation sets. Compared to a
number of other approaches, SMIREP only induces rules for
compounds considered to be active, and no rules are found
specifically for inactive compounds. That means that SMIREP
has no mechanism to filter out obvious inactive compounds,

as done in the decision tree approach by Hong et al.39 This
is clearly a disadvantage when comparing predictive per-
formance. One possible way to overcome this limitation is
to employ the fragmentation approach together with a
decision tree learner as the underlying learning algorithm or
to learn rules for more than one class. For the actual
application of SMIREP to SAR, learning rules from active
compounds only is less problematic, as one is typically more
interested in the understanding of activity rather than
inactivity.

In the current implementation, SMIREP does not cater for
stereoisomers possessing different activity levels. Indeed, the
chirality information is disregarded during learning. How-
ever, this information is a major factor when investigating
the activity levels of natural compounds. In future versions
of SMIREP, we intend to incorporate the chirality informa-
tion encoded in the compound’s SMILES codes into the
system.

To accommodate the possibility to incorporate some sort
of background or domain knowledge, it is further possible
to add predefined structural alerts as new fragments during
the growing stage of SMIREP. Although this would be in
contrast to the idea of inducing alerts without any prior
knowledge, it could overcome some limitations of SMIREP
regarding larger ring structures.

5. CONCLUSION

In this paper we have presented a number of applications
of a novel system, SMIREP, to predict activity classification
in the SAR and QSAR problem setting. SMIREP combines
principles of the chemical representation language SMILES
with the inductive rule learner IREP. The novelty behind
the SMIREP approach is the use of linear strings to induce
rules containing complex structures such as trees and cycles.
The applicability of SMIREP to classify chemical compounds
was demonstrated on three diverse data sets. Overall, the
predictive performance of SMIREP is comparable to existing
methods. In contrast to other methods,24,39 there is no need
to employ preselected structural alerts or fingerprints for the
classification task. Furthermore, as SMIREP is able to induce
these alerts ab initio, the found rules can be employed to
construct more fine-grained rules sets. We believe, therefore,
that SMIREP is a valuable tool to analyze chemical
databases.

The SMIREP system is available from http://
www.karwath.org/systems/smirep/ under the GNU General
Public License. The Web page also contains the data files
used in the Experimental Section. The system is provided
in Python and C source code, including the required Python
OpenBabel module OBGrep.
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