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Abstract. The class of frequent hypergraph mining problems is
introduced which includes the frequent graph mining problem class and
contains also the frequent itemset mining problem. We study the com-
putational properties of different problems belonging to this class. In
particular, besides negative results, we present practically relevant prob-
lems that can be solved in incremental-polynomial time. Some of our
practical algorithms are obtained by reductions to frequent graph min-
ing and itemset mining problems. Our experimental results in the domain
of citation analysis show the potential of the framework on problems that
have no natural representation as an ordinary graph.

1 Introduction

The field of data mining has studied increasingly expressive representations in
the past few years. Whereas the original formulation of frequent pattern mining
still employed itemsets [I], researchers have soon studied more expressive rep-
resentations such as sequences and episodes (e.g., [10]), trees (e.g., [4121]), and
more recently, graph mining has become an important focus of research (e.g.,
[I3I18I19]). These developments have been motivated and accompanied by new
and challenging application areas. Indeed, itemsets apply to basket-analysis, se-
quences and episodes to alarm monitoring, trees to document mining, and graph
mining to applications in computational chemistry.

In this paper, we introduce the next natural step in this evolution: the mining
of labeled hypergraphs. In a similar way that tree mining generalizes sequence
mining, and graph mining generalizes tree mining, hypergraph mining is a nat-
ural generalization of frequent pattern mining in wundirected graphs. The pre-
sented framework is especially applicable to problem domains which do not have
a natural representation as ordinary graphs. One such application is used in the
experimental section of this paper. It is concerned with citation analysis, more
specifically, with analyzing bibliographies of a set of papers. The bibliography
of a paper can be viewed as a hypergraph, in which each author corresponds to
a vertex and each paper to the hyperedge containing all authors of the paper.

* An early version of this paper appeared in T. Gartner, G.C. Garriga, and T. Meinl
(Eds.), Proc. of the International Workshop on Mining and Learning with Graphs,
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By mining for frequent subhypergraphs in the bibliographies of a set of papers
(e.g. past KDD conference papers), one should be able to discover common cita-
tion patterns in a particular domain (such as SIGKDD). These patterns might
then be employed in a recommender system that assists scientists while mak-
ing bibliographies. A similar approach in a basket-analysis context allows one to
represent the transactions over a specific period of time of one family as a hyper-
graph, where the products correspond to the vertices and the transactions to the
hyperedges. Mining such data could provide insight into the overall purchasing
behavior of families.

The main contribution of this paper is the introduction of a general frame-
work of mining frequent hypergraphs. The framework can be specialized in a
number of different ways, according to the notion of the generalization relation
employed as well as the class of hypergraphs considered. We consider different
problems where the generalization relation is defined by subhypergraph isomor-
phism, study their computational properties, and present positive and negative
results. More specifically, we show that there is no output-polynomial time al-
gorithm for mining frequent connected subhypergraphs, and even in the case of
strong structural assumptions on the hyperedges, this problem cannot be solved
efficiently by the usual level-wise frequent pattern mining approach (see, e.g.,
[15]). On the other hand, by restricting the functions labeling the vertices, we
achieve positive results. Some of the results are obtained by employing reduc-
tions from frequent hypergraph mining problems to ordinary graph mining and
itemset mining problems. We also present experiments in the above sketched
citation analysis domain which indicate that these reductions can effectively be
applied in practice. Essentially, we gathered the bibliographies of 5 SIGKDD,
30 SIGMOD, and 30 SIGGRAPH conferences and searched for frequent hyper-
graphs in each conference.

The rest of the paper is organized as follows: in Section 2, we introduce the
necessary notions concerning hypergraphs and in Section 3, we define the prob-
lem class of frequent hypergraph mining. In Section 4, we study the frequent
subhypergraph mining problem. In Section 5, we present some experiments us-
ing the citation analysis problem, and finally, in Section 6, we conclude and list
some problems for future work. Due to space limitations, some of the proofs are
only sketched in this version.

2 Notions and Notations

We recall some basic notions and notations related to graphs and hypergraphs
(see, e.g., [206]). For a set S and non-negative integer k, [S]* denotes the family
of all k-subsets of S, i.e., [S]* ={S"C S :|5'| = k}.

Graphs and Hypergraphs. An (undirected) graph G consists of a finite set
V of vertices and a family € C [V]? of edges. G is bipartite if G has a vertex
2-coloring, i.e., if V admits a partition into V4 and Va such that E ¢ [V1]2U[Vz]?
for every E € €. A hypergraph H is a pair (V, £), where V is a finite set and £ is a
family of nonempty subsets of V' such that | J;.¢ E = V. The elements of V' and
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E are called vertices and edges (or hyperedges), respectively. H is r-uniform for
some integer r > 0 if £ C [V]". The rank of H, denoted r(H), is the cardinality
of its largest hyperedge, i.e., r(H) = maxgeg |E|, and the size of H, denoted
size(H), is the number of hyperedges of H, i.e., size(H) = |£]|.

By definition, a hyperedge may contain one or more vertices. Note that ordi-
nary undirected graphs without isolated vertices form a special case of hyper-
graphs, i.e., the class of 2-uniform hypergraphs. We note that every hypergraph
H = (V, &) can be represented by a bipartite incidence graph B(H) = (VUE, E'),
where &' = {{v,E}:v e V,Ec&, andv € E}.

Labeled Hypergraphs. A labeled hypergraph is a triple H = (V, &, X), where
(V,€) is a hypergraph, and A : V — N is a labeling functiorﬂ. Unless otherwise
stated, by hypergraphs (resp. graphs) we always mean labeled hypergraphs (resp.
labeled graphs), and denote the set of vertices, the set of edges, and the labeling
function of a hypergraph (resp. graph) H by Vi, Eu, and Ay, respectively. The
set of all hypergraphs is denoted by H and H, denotes the set of all r-uniform
hypergraphs. For a hypergraph H € H and subset V' C Vg, we denote the
multiseB {\gr(v) 1 v € V'Y by M (V). A path connecting the vertices u, v € Vi is
a sequence E1, ..., Ey of edges of H such that u € E1,v € Ey, and E;NE; 1 #
for every i = 1,...,k — 1. A hypergraph is connected if there is a path between
any pair of its vertices. The set of connected hypergraphs is denoted by H€.
Clearly, H® C H.

Injective Hypergraphs. Depending on the labeling functions, in this paper we
will consider two special classes of hypergraphs. A hypergraph H € H is node
injective if Ay is injective, and it is edge injective whenever N (E) = M (E’)
if and only if E = E’ for every E, E' € Ef. The sets of node and edge injective
hypergraphs will be denoted by H™ and H*, respectively. Clearly, H™ C H C H.

Hypergraph Isomorphism. Let Hi, Hy € H be hypergraphs. H; and Hs are
called isomorphic, denoted by H; ~ Ha, if there is a bijection ¢ : Vi, — Vg,
such that

—  preserves the labels, i.e., Ay, (v) = Mg, (p(v)) for every v € Vi, and

—  preserves the hyperedges in both directions, i.e., for every E C Vg, it
holds that FE € Eg, if and only if {p(v) :v € E} € Eq,.

Throughout this paper, two hypergraphs H; and Hs are considered to be the
same if H; ~ Ho.

! We will only consider labeling functions defined on the vertex set because any hy-
pergraph H = (V,E,A) with A : VUE — N satisfying A(v) # A(E) for every
v € V and E € £ can be transformed into a hypergraph H' = (V' &' \') with
V =VU{vg: E€&}, & ={FEU{vg}: E €&}, and with \' : V' — N mapping
every new vertex vg € V' \ 'V to A(E) and every v € V to A(v).

2 A multiset M is a pair (S, f), where S is a set and f defines the multiplicity of the
elements of S in M, i.e., f is a function mapping S to the cardinal numbers greater
than 0.
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Subhypergraphs. A subhypergraph of a hypergraph H € H is a hypergraph
H' € H satistying Vi C Vi, Enr C Ex, and Agr (v) = Ag(v) for every v € V.

3 Frequent Hypergraph Mining

Many problems in data mining can be viewed as a special case of the problem of
enumerating the elements of a quasiordered setﬁ, which satisfy some monotone
property (see, e.g., [3[12]). In this section, we define a new class of subproblems
of this enumeration problem, the class of frequent hypergraph mining problems.
In the next section, we then discuss the computational aspects of some problems
belonging to this class. We start with the definition of a more general problem
class.

The Frequent Pattern Mining Problem Class (Crpym ): Each problem belonging
to this class is given by a fized triple (Lp, Lp, <), where Lp is a transaction
language, Lp is a pattern language, and <, called the generalization relation,
is a quasiorder on Lp U Lp. For such a triple, the (Lp, Lp, <)-FREQUENT-
PATTERN-MINING problem is defined as follows: Given a finite set D C Lp
of transactions and an integer ¢t > 0, called frequency threshold, compute the
set Fizp.cp,<)(D,t) of frequent patterns defined by

Fiepep<)Dit)={peLlp:{reD:p<7}>1} .

The transitivity of < implies that frequency is a monotone property, i.e., for every
@,0 € Lp it holds that 0 € F(z,, £, <)(D,t) whenever ¢ € Fizp, £, <)(D,t) and
0 <.

We now define two subclasses of Crppy by restricting the transaction and
pattern languages to hypergraphs (Cpam) and graphs (Crgm)-

The Frequent Hypergraph Mining Problem Class (Cram ): It consists of the set
of (Lp, Lp,<)-FREQUENT-PATTERN-MINING problems, where Lp, Lp CH
(i.e., Lp and Lp are sets of labeled hypergraphs).

The Frequent Graph Mining Problem Class (Cvgm ): It is the set of (Lp, Lp, <X)-
FREQUENT-PATTERN-MINING problems, where Lp, Lp C Ho (i.e., Lp and
Lp are sets of labeled graphs).

Clearly, Cram € Crum S Crpum. It also holds that the frequent itemset mining
problem [I] belongs to Cppn; for this problem we have Lp = Lp = {X C N :
|X| < oo} and < is the subset relation. In fact, the frequent itemset mining
problem is contained by Cpgy. Indeed, this problem can be considered as the
(H3, HYM, <)-FREQUENT-HYPERGRAPH-MINING problem, where < is the sub-
hypergraph relation and the transaction and pattern languages are the set of
1-uniform node injective hypergraphs.

3 A binary relation is a quasiorder (or preorder), if it is reflexive and transitive.
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The parameter of a (Lp, Lp,<)-FREQUENT-HYPERGRAPH-MINING problem
formulated above is the size of D defined by

size(D) = max{ Z size(H),II?énD( T(H)}

HeD

Note that the size of the output, i.e. the set to be enumerated, can be exponential
in the size of the input. Because in such cases, it is impossible to compute them
in time polynomial only in the size of the input, we investigate whether the
enumeration problems can be solved in incremental polynomial time or at least
in output-polynomial time (or polynomial total time) (see, e.g., [OI4]). In the
first, more restrictive case, the algorithm is required to list the first IV elements
of the output in time polynomial in the combined size of the input and the set
of these NV elements for every integer N > 0. In the second, more liberal case,
the algorithm has to solve the problem in time polynomial in the combined
size of the input and the entire set to be enumerated. Note that the class of
output-polynomial time algorithms entails the class of incremental polynomial
time algorithms.

To sketch the relation among frequent pattern mining problems, we need the
notion of polynomial reduction. More precisely, we say that the frequent pattern
mining problem P, = (Lp.1,Lp1,=<1) is polynomially reducible to the frequent
pattern mining problem P = (Lp 2, Lp2, <X2) if there exist functions

g: 2LD’1 x N — 2£D'2 x N and f : Ep,z — £p71
satisfying the following properties:

(1) |‘7:(£D,1,£P,1>%1)<I)| = |‘7:(£D,2,£P,2>%2)<g(1))| for every Ie 2£D1 N,
(ii) f is injective, and
(iii) g and f can be computed in polynomial time.

That is, a pattern ¢ € Lp is frequent for I if and only if it is the image (under
f) of a pattern ¢’ € Lp s which is frequent for g(I). Thus, if P; is polynomial-
time reducible to P then any enumeration algorithm solving P; in incremental
polynomial (resp. output-polynomial) time can be used to solve P; in incremental
polynomial (resp. output-polynomial) time.

Clearly, several frequent hypergraph mining problems, even frequent graph
mining problems, cannot be solved in output-polynomial time (unless P = NP).
In Proposition [Il below we present a simple example of such a hard problem.

Proposition 1. Let Lp C Ho and let Lp C Hay be the set of complete graphs
such that every vertex of every graph in Lp U Lp is labeled by the same symbol,
say 1, and let < be the homomorphism <5 between labeled gmphﬂ. Then, unless
P = NP, the (Lp, Lp, <r)-FREQUENT-GRAPH-MINING problem cannot be solved
in output polynomial time.

* A homomorphism from a hypergraph H; € H to a hypergraph H» € H, denoted
Hy < Ha, is a function ¢ : Vi, — Vg, preserving the labels and edges.
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Proof. Let G = (V,€) be an unlabeled graph and let G’ be the labeled graph
obtained from G by assigning 1 to each vertex of G. Then, for D = {G’'} and
t = 1, we have that G has a clique of size k if and only if there is a pattern C' €
Fiep.cp,<n)(D;t) with k vertices. Since | F (£, £, <,)(D,t)| < [V], the size of the
output is bounded by a polynomial of the input parameters. But this implies that
the (Lp, Lp,<n)-FREQUENT-GRAPH-MINING problem cannot be computed in
output polynomial time (unless P = NP), as otherwise the maximum clique prob-
1enﬁ could be decided in polynomial time by computing first Fz,, r, <) (D, 1)
and then the pattern of maximum size from F(z,, £, <,)(D,t). O

4 Frequent Subhypergraph Mining

By Proposition [l the class Crgym, and thus the more general class Crpy as
well, contains problems that cannot be solved in output polynomial time (un-
less P = NP). This negative result raises the challenge of identifying practically
relevant and tractable problems belonging to Crmy. In this section, we take a
first step towards this direction by considering the problem of frequent hyper-
graph mining w.r.t. subhypergraph isomorphism. This problem, called frequent
subhypergraph mining, is a natural problem of the frequent hypergraph mining
problem class Crpym and can be applied to many practical problems. In Section [,
we will employ this setting to tackle the citation analysis problem sketched in
the introduction.

We start with the definition of the generalization relation used in this section.
Let Hi1,Hy € H. Hy can be embedded into Hy by subhypergraph isomorphism,
denoted by Hy <; Ho, if Hy has a subhypergraph isomorphic to H;. Note that
<; generalizes the notion of subgraph isomorphism between ordinary labeled
graphs to hypergraphs. Since <; is a partial order on H, it is a generalization
relation on every subset of H. Using =, in this section we consider the

(H,H¢, %;)-FREQUENT-HYPERGRAPH-MINING

problem of Cpuy and will refer to this problem as the frequent subhypergraph
maining problem.

Although the pattern language in the frequent subhypergraph mining prob-
lem is restricted to connected hypergraphs, any enumeration algorithm for this
problem can in fact be used to enumerate frequent, not necessarily connected,
subhypergraphs as well. Indeed, for a set D C H of hypergraphs, one can consider
the set of connected hypergraphs obtained from D by the following transforma-
tion: Let £ € N be a label not used in any of the hypergraphs in D. For every
H € D, introduce a new vertex v, label it by ¢, and add v to each edge of
H. Clearly, any subhypergraph of the obtained hypergraph is connected and
uniquely represents a (not necessarily connected) subhypergraph of H.

5 Given an unlabeled graph G = (V,£), find a clique of maximum size in G. This
problem is NP-complete [I1]. A clique of G is a subset V' C V such that each pair
of vertices in V' are joined by and edge in £.
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4.1 Negative Results

In this section we show that the frequent subhypergraph mining problem can-
not be solved in output-polynomial time. This follows directly from Theorem [2]
below which states that even for ordinary graphs (i.e., 2-uniform hypergraphs),
the frequent subhypergraph mining problem is intractable in output-polynomial
time. Since this is one of the most frequently considered frequent graph mining
problems, this negative result may be of interest in itself.

Theorem 2. If P # NP, there is no output-polynomial time algorithm solving
the frequent subhypergraph mining problem even in the case of 2-uniform hyper-
graphs (i.e., ordinary graphs).

Proof. We show that if such an algorithm would exist then the NP-complete
Hamiltonian path problem could be decided in polynomial time. Let G = (V, €)
be an ordinary undirected graph with n vertices. Let Hg, H € H2 be labeled
graphs such that

- VHG’ =V, SHG =¢,

— |Vu| = n, and £y consists of n — 1 (hyper)edges that form a simple path
(i.e., each vertex of H occurs exactly once in the path), and

— each vertex in Hg and H has the same label.

H will be used to make sure the size of the output is small. One can easily
check that G has a Hamiltonian path if and only if there is a path of length
n—1in F = Fpype <,)({Ha, H},2). Since |F| < n, this can be decided in time
polynomial in n if F' can be enumerated in output-polynomial time. ]

As another restriction, we consider the frequent subhypergraph mining problem
restricted to acyclic hypergraphs [10] because several NP-hard problems on hy-
pergraphs become polynomial for acyclic hypergraphs. A hypergraph H € H
is a-acyclic if one can remove all of its vertices and edges by deleting re-
peatedly either an edge that is empty or is contained by another edge, or a
vertex contained by at most one edge [20]. Note that a-acyclicity is not a
hereditary property, that is, a-acyclic hypergraphs may have subhypergraphs
that are not a-acyclic. Consider for example the hypergraph H € H such that
En = {{a,b},{b,c},{a,c},{a,b,c}}. While H is a-acyclic, its subhypergraph ob-
tained by removing the edge {a, b, ¢} is not a-acyclic. To overcome this anomaly,
the following proper subclass of a-acyclic hypergraphs is introduced in [I0]: An
a-acyclic hypergraph is B-acyclic, if each of its subhypergraphs is also a-acyclic.
Note that forests are 2-uniform g-acyclic hypergraphs.

Let Bs denote the set of 3-uniform (-acyclic hypergraphs. For connected sub-
hypergraphs of 3-uniform (-acyclic hypergraphs, the following negative result
holds:

Proposition 3. Given a finite set D C Bs and integer t > 0, deciding whether
H € Fi, ne,<)(D,t) is NP-hard.



Frequent Hypergraph Mining 251

Proof (sketch). We use a polynomial reduction from the subforest isomorphism
problenﬁ. Let F be a forest and T be a tree and consider the hypergraph F’
(resp. T") obtained from F' (resp. T') by introducing a new vertex labeled by a
symbol ¢ € N used neither in F' nor in 7', and by adding the new vertex to each
edge of F' (resp. T). Clearly, F', T’ € B3 and there is a subgraph isomorphism
from F to T if and only if F’ <; T, from which the statement follows. O

Proposition Blabove indicates that for the frequent subhypergraph mining prob-
lem, the usual frequent pattern mining approaches (such as the level-wise one)
will not work in incremental polynomial time (unless P = NP) because they
repeatedly test whether candidate patterns satisfy the frequency threshold (see,
e.g., [12/15]).

4.2 A Naive Algorithm

Despite the negative worst-case result stated in the previous section, in this
section we present a naive algorithm for the frequent subhypergraph mining
problem. The algorithm is based on a reduction to mining frequent subgraphs
from labeled bipartite graphsE

More precisely, for an instance (D, t) of the frequent subhypergraph mining
problem, let n € N be an upper bound on the labels occurring in the hypergraphs
of D and let p be an injection assigning an integer greater than n to every finite
multiset of N. For a hypergraph H € D, let LB(H) € Hz be the (labeled)
bipartite graph such that

(i) (Viem),ELp(a)) is the unlabeled bipartite incidence graph of the unlabeled
hypergraph (Vi Epr), and
(i) for every v € VLB(H) = Vg U&p,

A . AH (U) ifveVy
ea(n (v) = p(AE (v)) otherwise (i.e., v € Ex) .

Clearly, a subgraph G of LB(H) represents a subhypergraph of H if and only
if each vertex of G corresponding to a hyperedge E € g is connected with
exactly |E| vertices in G. Using the above transformation and considerations,
the set Fy, 3 <,)(D,t) of t-frequent subhypergraphs for the instance (D, t) can
be computed by Algorithm [I1

Although by Theorem 2] Algorithm [ does not work in output-polynomial
time in the worst case, using a state-of-the-art frequent graph mining algorithm
it proved to be effective in time on the citation analysis domain (see Section [Hl).

5 Given a forest F and a tree T, decide whether T has a subgraph isomorphic to F.
This problem is known to be NP-complete [11].

" Another naive approach could be the following algorithm: Select a hyperedge E of a
frequent pattern, attach a hyperedge E’ to E, and compute the support count of the
obtained pattern. Beside the intractability of deciding subhypergraph isomorphism,
the number of possible attachments of E’ to E can be exponential in their cardinality.
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Algorithm 1. FREQUENT SUBHYPERGRAPH MINING

Require: an instance (D,t) € 2" x N
Ensure: F(3 3 <,)(D,t)

1. F:i=10
2: Bp:={LB(H): H € D}
3: Compute a next t-frequent connected bipartite subgraph B of the set Bp if it exists;
otherwise return F
4: if B corresponds to some hypergraph Hp then
F:=FU{Hg}
5: goto 3

4.3 Tractable Cases

In this section we present positive results for two special cases of the frequent
subhypergraph mining problem obtained by making assumptions on the labeling
functions of the transaction hypergraphs. We first consider the problem for node
injective hypergraphs, i.e., where the labeling functions are injective. We show
that for this case, the frequent subhypergraph mining problem is polynomially
reducible to the frequent itemset mining problem and hence, it can be solved in
incremental-polynomial time [I]. We then generalize this positive result to edge
injective hypergraphs, i.e., to hypergraphs not containing two different hyper-
edges that are mapped to the same multiset by the labeling function. Although
node injective hypergraphs are a special case of edge injective hypergraphs, we
discuss the two cases separately because node injective hypergraphs can be used
to model many practical problems and they permit a simplified algorithmic
approach.

Node Injective Hypergraphs. As mentioned above, many practical data min-
ing problems can be modeled by node injective hypergraphs, i.e., by hypergraphs
from H™. Such applications include problem domains consisting of a finite set
of objects (vertices) with a unique identifier. For node injective hypergraphs, we
consider the (K™, H", <;)-FREQUENT-HYPERGRAPH-MINING problem which is
a special case of the frequent subhypergraph mining problem.

As an example of a practical application of this problem, we consider the
citation analysis task mentioned in the introduction (see also Section [l): Given
a set D of articles and a frequency threshold ¢ > 0, compute each family F of
groups of authors satisfying the following property: there exists a subset D’ C D
of articles of cardinality at least ¢ such that for every group F' € F of authors and
for every article D € D’ it holds that D cites some article written by (exactly)
the authors belonging to F'. In this enumeration problem, we can assign a unique
non-negative integer to each author, whose papers are cited by at least one article
in D.

We can use the node injective hypergraph representation of a paper’s bibliog-
raphy defined as follows. For each author cited in the bibliography, introduce a
vertex and label it by the integer assigned to the author. Furthermore, for each
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. R. Agrawal, R. Srikant. Publication 1.

. H. Mannila, H. Toivonen. Publication 2. Mannila

. J. Quinlan. Publication 3.
. H. Toivonen, R. Srikant, R. Agrawal. Publica- HToivonenJ {Srikant Agrawal }J
tion 4.

O N

Fig. 1. An example reference-list and the according hypergraph

cited work add a hyperedge F to the set of hyperedges, where F consists of the
vertices representing the cited work’s authors. Clearly, the hypergraph obtained
in this way is always node injective, similar to the example in Figure Our
database D is a set of such node injective hypergraphs.

Theorem M below states that for node injective hypergraphs, the frequent
subhypergraph mining problem is polynomially reducible to the frequent itemset
mining problem. We recall that the frequent itemset mining problem can be
considered as a problem belonging to the class Crum (see Section 3). Notice
that in the theorem below, subhypergraphs may be non-connected. The theorem
is based on the fact that for every node injective hypergraphs Hi, Hy € H™,
H, <, Hj if and only if for every E; € Eg,, there is a hyperedge Es € Ep, such
that )\Hl (El) = )\H2 (Eg), i.e.,

Hy < Hy <= {M(E):Ec&y,} C{\N2(E): Ecé&p,) .

Note that the above equivalence implies that <; can be decided efficiently for
node injective hypergraphs.

Theorem 4. The frequent subhypergraph mining problem for node injective hy-
pergraphs is polynomially reducible to the frequent itemset mining problem.

Proof (sketch). The proof follows by considering the set of vertex labels of a
hyperedge as an item for every hyperedge occurring in the transaction hyper-
graphs. O

Combining the above theorem with the results of [I], we have the following result
on listing frequent subhypergraphs for node injective hypergraphs.

Corollary 5. The frequent subhypergraph mining problem for node injective hy-
pergraphs can be solved in incremental polynomaial time.

Edge Injective Hypergraphs. In Theorem [ below we generalize the previous
positive result to edge injective hypergraphs. Since edge injective hypergraphs
may contain different vertices with the same label, they are not determined by
a family of multisets of vertex labels (in contrast to the previous case). Hence, a
polynomial reduction to frequent itemset mining is not applicable to this case.

8 To facilitate better comprehensibility the artificial node connecting all hyperedges
is omitted in this example.



254 T. Horvath, B. Bringmann, and L. De Raedt

Algorithm 2. MINING EDGE INJECTIVE HYPERGRAPHS

Require: an instance (D,t) € 2"« N
Ensure: f(Hci7HQi7<i)(D, t)

1. X = UHeb{)\H(E) :Ee€én}
2: F:=10
3: k=0
4: while k =0V L, # 0 do
5  k:=k+1
6 O {X ) itk =1
{YiUY2 € [X]":Y1,Y2 € Ly_1} otherwise
7. Lk = @
8: forall X' € C}, do
9: Q:=0
10: forall H € D do
11: if H has a subhypergraph H' s.t. X’ = {\*?'(E): E € £y} then
12: if 3I(H",f) € Q s.t. H' ~ H' then
13: change (H”, f) in Q to (H", f + 1)
14: else Q := QU {(H',1)}
15: endfor
16: flag := TRUE
17: forall (H,f) € Q@ st. f >t do
18: F:=FU{H}
19: if flag then
20: Ly =Ly U {X’}
21: flag := FALSE
22: endif
23: endfor
24:  endfor
25: endwhile
26: return F'

Theorem 6. The frequent subhypergraph mining problem for edge injective hy-
pergraphs can be solved in incremental polynomaial time.

Proof (sketch). Due to space limitations, we only sketch the proof. Without
proof we first note that subhypergraph isomorphism between edge injective hy-
pergraphs can be decided in polynomial time. To compute the set of frequent
hypergraphs, we use a level-wise algorithm given in Algorithm

In line 1 of the algorithm, X is initialized as the set of multisets corresponding
to the edges in the transaction hypergraphs. In Cj, (line 6), we compute a family
of candidate sets of multisets; the elements of C} consist of & multisets corre-
sponding to the vertex labels of k hyperedges. For every X’ in C}, (see the loop
starting at line 8), we check for every H € D whether H has a subhypergraph
H’ such that the set of multisets defined by the vertex labels of the edges of
H'’ is equal to X'. Since edges are injectively labeled, H must contain exactly
k hyperedges. If H has such a subhypergraph H’ then we check whether we
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have already found another hypergraph in the database which has a subhyper-
graph isomorphic to H'. If so, we increment the counter of this subhypergraph
(line 13); otherwise we add H' with frequency 1 to the set @ (line 14). In the
loop (17-23) we update the set of frequent hypergraphs and Lj. One can show
that this algorithm works in incremental polynomial time. ]

5 Experimental Evaluation

In this section, we empirically evaluate (i) the naive algorithm (see Sect. F2)
and (ii) the method based on the reduction of the node injective case to fre-
quent itemset mining (see Sect. [L3) on the citation analysis problem discussed
earlier.

5.1 Bibliographic Datasets

Three different bibliographic data sets were constructed from the ACM Digital
1ibraryﬁ: KDD, SIGMOD, and SIGGRAPH. They correspond to the set of all
reference lists of papers found in the proceedings of the respective conferences.
The characteristics of the data-sets are listed in Table [1l

Table 1. Datasets used. We list the total number of papers in the proceedings and the
number of authors occurring in the reference lists of the corresponding papers.

dataset years papers authors
KDD 99-04 499 6966
SIGMOD 74-04 1404 11984
SIGGRAPH 74-04 1519 13192

A simple parser was used to extract the authors and cited papers occurring in
the reference lists. Each paper was then represented as a hypergraph, as already
discussed above. The resulting hypergraphs are node injective and disconnected
in almost all cases. Most existing graph miners only consider connected graphs.
Hence, we added one special hyperedge to each paper, which connects all authors
cited in that paper such that the naive algorithm could be employed.

All experiments were run on a workstation, running Suse Linux 9.2, 3.2 GHz,
2GB of RAM. As graph miner for the naive algorithm, we employed Siegfried Ni-
jssen’s implementation of GASTON [18] and as item-set miner for the reduction
method, Bart Goethals’ implementation of Aprior. Since we did not employ
a specialized hypergraph or graph miner, the data had to be pre- and post-
processed. The pre- and post-processing steps run in time linear in the number
of hypergraphs.

9 http://www. acm.org/
10 http: / fwww. cs. helsinki. fi/u/goethals /software/
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5.2 Experimental Results

As mentioned above, we performed experiments employing reductions to fre-
quent bipartite graph mining and to frequent item-set mining. The empirical
results are given in Figures [2] and Bl

The runtime of the method based on the reduction to frequent item-set mining
was always below 0.01 seconds. Different from that, the naive approach based
on the reduction to frequent bipartite graph mining shows much higher run-
times. In detail, the 1% settings required 20.36, 4.55, and 0.4 seconds for KDD,
SIGMOD, and SIGGRAPH respectively. The higher runtimes for the naive
approach are essentially due to the problem that only a fraction of the frequent
bipartite graphs are in fact subhypergraphs (see line 4 of Algorithm[I]). As usual
for frequent pattern mining techniques, the runtime and size of the frequent pat-
tern space increase exponentially with a decreasing level of minimum support
(see Figures 2l and [3). One of the frequent subhypergraphs in the KDD dataset
was {{Agrawal, Srikant},{ Agrawal, Swami, Imielinski}}, while in the SIG-
GRAPH dataset the hypergraph {{Sproull, Newmann}} was very frequent.
The experimental results reveal that the reduction approach can be successfully
employed in practice. As expected due to the theoretical results, the reduction
to item-set mining for injective subhypergraphs is much less computationally
expensive. All experiments w.r.t. node injective subhypergraphs were finished in
less than a fraction of a second, which — in our opinion — indicates that it is not
worth-while to implement a special purpose data mining system for this task.

6 Conclusion and Further Research

In this paper the problem class Cpuym of frequent hypergraph mining was intro-
duced. It forms a natural extension of traditional frequent itemset and graph
mining. Several problems of Cppy were studied and positive and negative com-
plexity results were obtained.

In our first step of studying some problems of Cryn we deliberately did not
develop and implement a special hypergraph mining algorithm, because there
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are many problems of Cpppy that are interesting (which implies the need for im-
plementing many variants and optimizations). Instead, some of our theoretical
and practical results have been obtained by reductions to frequent graph mining
and itemset mining problems. The experiments clearly indicate that — at least for
the citation analysis problems studied — these reductions can be quite effective
in practice. In addition, these experiments provide evidence that frequent hy-
pergraph mining is indeed a useful generalization of frequent itemset and graph
mining and is likely to yield many interesting applications.
Finally we list some open questions.

(i)

One of the challenges is to identify further problems of Cryy that are enu-
merable in incremental or at least in output-polynomial time.

Besides subhypergraph isomorphism, it would be interesting to investigate
frequent hypergraph mining problems, where the generalization relation is
defined by (constrained) homomorphisms.

Since many problems of Crpy can be reduced to frequent graph mining in
bipartite graphs, it would be interesting to develop frequent graph mining
algorithms specific to bipartite graphs.

The work on frequent hypergraph mining can be related to multi-relational
data mining [7], where each instance consists of multiple tuples over multiple
tables in a relational database. Multi-relational data mining techniques have
been applied to graph mining problems. Hence, the question arises if they
are also applicable to hypergraph mining, and vice versa.

In a similar way that frequent hypergraph mining generalizes frequent graph
mining in undirected graphs, frequent pattern mining in relational structures
(see, e.g., [8]) can be considered as a generalization of frequent graph min-
ing in directed graphs. Similarly to the problem class Crun, the Frequent
Relational Structure Mining Problem Class (Crrsm) can be defined as the
set of (Lp, Lp, <)-FREQUENT-PATTERN-MINING problems, where £p and
Lp are classes of relational T-structures over some vocabulary 7. Thus, the
(Lp, Lp,<)-FREQUENT-RELATIONAL-STRUCTURE-MINING problem can be
defined as follows: Given a finite set D C Lp of relational 7-structures and
an integer ¢t > 0, compute the set of relational T-structures from Lp that
generalize at least ¢ structures of D with respect to <. To the best of our
knowledge, there are only a few results towards this direction. In particular,
related problems have been considered only for the generalization relations
relational homomorphism [5] and relational substructure isomorphism [17].
The challenge is to identify tractable problems of Crrsm-
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