1.1

Bayesian Logic Programming:
Theory and Tool

Kristian Kersting

Institute for Computer Science, Machine Learning Lab
Albert-Ludwigs-Universitat, Georges-Kohler-Allee, Gebaude 079
D-79085 Freiburg i. Brg., Germany
kersting@informatik.uni-freiburg.de
http://www.informatik.uni-freiburg.de/~kersting

Luc De Raedt

Institute for Computer Science, Machine Learning Lab
Albert-Ludwigs-Universitat, Georges-Kohler-Allee, Gebaude 079
D-79085 Freiburg i. Brg., Germany
deraedt@informatik.uni-freiburg.de
http://www.informatik.uni-freiburg.de/~deraedt

Introduction

In recent years, there has been a significant interest in integrating probability
theory with first order logic and relational representations [see De Raedt and Ker-
sting, 2003, for an overview]. Muggleton [1996] and Cussens [1999] have upgraded
stochastic grammars towards Stochastic Logic Programs, Sato and Kameya [2001]
have introduced Probabilistic Distributional Semantics for logic programs, and
Domingos and Richardson [2004] have upgraded Markov networks towards Markov
Logic Networks. Another research stream including Poole’s Independent Choice
Logic [1993], Ngo and Haddawy’s Probabilistic-Logic Programs [1997], Jager’s Rela-
tional Bayesian Networks [1997], and Pfeffer’s Probabilistic Relational Models [2000]
concentrates on first order logical and relational extensions of Bayesian networks.

Bayesian networks [Pearl, 1991] are one of the most important, efficient and ele-
gant frameworks for representing and reasoning with probabilistic models. They
have been applied to many real-world problems in diagnosis, forecasting, auto-
mated vision, sensor fusion, and manufacturing control [Heckerman et al., 1995].
A Bayesian network specifies a joint probability distribution over a finite set of

Bayesian Logic Programming: Theory and Tool

random variables and consists of two components:

1. a qualitative or logical one that encodes the local influences among the random
variables using a directed acyclic graph, and

2. a quantitative one that encodes the probability densities over these local influ-
ences.

Despite these interesting properties, Bayesian networks also have a major limitation,
i.e., they are essentially propositional representations. Indeed, imagine to model the
localization of genes/proteins as was the task at the KDD Cup 2001 [Cheng et al.,
2002]. When using a Bayesian network, every gene is a single random variable. There
is no way of formulating general probabilistic regularities among the localizations
of the genes such as

the localization L of gene G is influenced by the localization L' of another gene G’
that interacts with G.

The propositional nature and limitations of Bayesian networks are similar to those
of traditional attribute-value learning techniques, which have motivated a lot of
work on upgrading these techniques within inductive logic programming. This in
turn also explains the interest in upgrading Bayesian networks towards using first
order logical representations.

Bayesian logic programs unify Bayesian networks with logic programming which
allows the propositional character of Bayesian networks and the purely ’logical’
nature of logic programs to be overcome. From a knowledge representation point
of view, Bayesian logic programs can be distinguished from alternative frameworks
by having both logic programs (i.e. definite clause programs, which are sometimes
called 'pure’ Prolog programs) as well as Bayesian networks as an immediate special
case. This is realized through the use of a small but powerful set of primitives.
Indeed, the underlying idea of Bayesian logic programs is to establish a one-to-one
mapping between ground atoms and random variables, and between the immediate
consequence operator and the direct influence relation. Therefore, Bayesian logic
programs can also handle domains involving structured terms as well as continuous
random variables.

In addition to reviewing Bayesian logic programs, this chapter

® contributes a graphical representation for Bayesian logic programs and
® its implementation in the Bayesian logic programs tool BALIOS, and

® shows how purely logical predicates as well as aggregate function are employed
within Bayesian logic programs.

The chapter is structured as follows. We begin by briefly reviewing Bayesian
networks and logic programs in Section 1.2. In Section 1.3, we define Bayesian logic
programs as well as their semantics. Afterwards, in Section 1.4, we discuss several
extensions of the basic Bayesian logic programming framework. More precisely, we
introduce a graphical representation for Bayesian logic programs and we discuss

1.2 On Bayesian Networks And Logic Programs

1.2

bt_dorothy

Figure 1.1 The graphical structure of a Bayesian network modelling the inheri-
tance of blood types within a particular family.

the effective treatment of logic atoms and of aggregate functions. In Section 1.5,
we sketch how to learn Bayesian logic programs from data. Before touching upon
related work and concluding, we briefly present BALIOS, the engine for Bayesian
logic programs.

On Bayesian Networks And Logic Programs

In this section, we first introduce the key concepts and assumptions underlying
Bayesian networks and logic programs. In the next section we will then show how
these are combined in Bayesian logic programs. For a full and detailed treatment
of each of these topics, we refer to [Lloyd, 1989] for logic programming or Prolog
and to [Jensen, 2001] for Bayesian networks.

We will introduce Bayesian logic programs using an example from genetics which
is inspired by Friedman et al. [1999]:

“it 1s a genetic model of the inheritance of a single gene that determines a person’s
X blood type bt(X). Each person X has two copies of the chromosome containing this
gene, one, mc(Y), inherited from her mother m(Y,X), and one, pc(Z), inherited from
her father £(Z,X).”

We will use the following convention: x denotes a (random) variable, = a state and
X (resp.) a set of variables (resp. states). We will use P to denote a probability
distribution, e.g. P(x), and P to denote a probability value, e.g. P(x = z) and
PX=ux).

1.2.1 Bayesian Networks

A Bayesian network [Pearl, 1991] is an augmented, directed acyclic graph, where
each node corresponds to a random variable x; and each edge indicates a di-
rect influence among the random variables. It represents the joint probability
distribution P(x1,...,%,) over a fixed, finite set {xi,...,x,} of random vari-
ables. Each random variable x; possesses a finite set S(x;) of mutually exclusive
states. Figure 1.1 shows the graph of a Bayesian network modelling our blood
type example for a particular family. The familial relationship, which is taken

Bayesian Logic Programming: Theory and Tool

from Jensen’s stud farm example [1996], forms the basis for the graph. The net-
work encodes e.g. that Dorothy’s blood type is influenced by the genetic infor-
mation of her parents Ann and Brian. The set of possible states of bt(dorothy)
is S(bt(dorothy)) = {a,b, ab,0}; the set of possible states of pc(dorothy) and
mc(dorothy) are S(pc(dorothy)) = S(mc(dorothy)) = {a,b,0}. The same holds
for ann and brian. The direct predecessors of a node x, the parents of x are de-
noted by Pa(x). For instance, Pa(bt(ann)) = {pc(ann),mc(ann)}.

A Bayesian network stipulates the following conditional independence assumption.

Proposition 1.1 Independence Assumption of Bayesian Networks
Each node x; in the graph is conditionally independent of any subset A of nodes
that are not descendants of x; given a joint state of Pa(x;), i.e.

P(x; | A, Pa(x;)) = P(x; | Pa(x1)) .

For example, bt(dorothy) is conditionally independent of bt(ann) given a joint
state of its parents {pc(dorothy), mc(dorothy)}. Any pair (x;, Pa(x;)) is called the
family of x; denoted as Fa(x;), e.g. bt(dorothy)’s family is

(bt(dorothy), {pc(dorothy), mc(dorothy)}) .

Because of the conditional independence assumption, we can write down the joint
probability density as

n
P(x;,...,x) = [[P(x: | Pa(xs))
i=1
by applying the independence assumption 1.1 to the chain rule expression of the
joint probability distribution. Thereby, we associate with each node x; of the graph
the conditional probability distribution P(x; | Pa(x;)), denoted as cpd(xi). The
conditional probability distributions in our blood type domain are:

mc(dorothy) pc(dorothy) P(bt(dorothy))

a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
0 0 (0.01,0.01,0.01, 0.97)

(similarly for ann and brian) and

mc(ann) pc(ann) P(mc(dorothy))
a a (0.98,0.01,0.01)
b a (0.01,0.98,0.01)

0 0 (01,0.01,0.98)

1.2 On Bayesian Networks And Logic Programs 5

parent (jef ,paul) . nat (0).
parent (paul,ann) . nat(s(X)) :- nat(X).
grandparent (X,Y) :- parent(X,Z), parent(Z,Y).

Figure 1.2 Two logic programs, grandparent and nat.

(similarly for pc(dorothy)). Further conditional probability tables are associated
with the apriori nodes, i.e., the nodes having no parents:

P(mc(ann)) P(mc(ann)) P(mc(ann)) P(mc(ann))
(0.38,0.12,0.50) (0.38,0.12,0.50) (0.38,0.12,0.50) (0.38,0.12,0.50)

1.2.2 Logic Programs

To introduce logic programs, consider Figure 1.2, containing two programs, grand-
parent and nat. Formally speaking, we have that grandparent/2, parent/2 and
nat/1 are predicates (with their arity i.e., number of arguments listed explic-
itly). Furthermore, jef, paul and ann are constants and X, Y and Z are vari-
ables. All constants and variables are also terms. In addition, there exist struc-
tured terms, such as s(X), which contains the functor s/1 of arity 1 and the
term X. Constants are often considered as functors of arity 0. Atoms are predi-
cate symbols followed by the necessary number of terms, e.g., parent(jef, paul),
nat(s(X)), parent (X, Z), etc. We are now able to define the key concept of a (def-
inite) clause. Clauses are formulas of the form A :—By,...,B, where A and the
B; are logical atoms where all variables are understood to be universally quan-
tified. E.g., the clause grandparent(X,Y) :—parent (X, Z), parent(Z, Y) can be read
as X is the grandparent of Y if X is a parent of Z and Z is a parent of Y.
Let us call this clause ¢. We call grandparent(X,Y) the head(c) of this clause,
and parent(X,Z), parent(Z,Y) the body(c). Clauses with an empty body, such as
parent(jef, paul) are called facts. A (definite) clause program (or logic program for
short) consists of a set of clauses. In Figure 1.2, there are thus two logic programs,
one defining grandparent/2 and one defining nat /1.

The set of variables in a term, atom or clause E, is denoted as Var(E), e.g.,
Var(c) = {X,Y,Z}. A term, atom or clause F is called ground when there is no
variable occurring in E, i.e. Var(E) = 0. A substitution = {V1/t1,...,V,/tn}, e.g.
{X/ann}, is an assignment of terms ¢; to variables V;. Applying a substitution 6 to
a term, atom or clause e yields the instantiated term, atom, or clause ef where all
occurrences of the variables V; are simultaneously replaced by the term t;, e.g. cf
is grandparent(ann, Y) :(—parent(ann, Z), parent(Z,Y).

The Herbrand base of a logic program T, denoted as HB(T), is the set of all
ground atoms constructed with the predicate, constant and function symbols in

1.3

Bayesian Logic Programming: Theory and Tool

the alphabet of T'. E.g., HB(nat) = {nat(0),nat(s(0)),nat(s(s(0))), ...} and

HB(grandparent) =
{parent(ann, ann), parent(jef, jef),
parent(paul, paul), parent(ann, jef), parent(jef, ann), ...,

grandparent(ann, ann), grandparent(jef, jef),...}.

A Herbrand interpretation for a logic program T is a subset of HB(T'). The least
Herbrand model LH(T) (which constitutes the semantics of the logic program)
consists of all facts f € HB(T) such that T logically entails f, i.e. T | f.
Various methods exist to compute the least Herbrand model. We merely sketch its
computation through the use of the well-known immediate consequence operator Tz.
The operator T’z is the function on the set of all Herbrand interpretations of B such
that for any such interpretation Z we have

Tp(Z) = {A0 |there is a substitution 0 and a clause A:—Ay, ..., A, in B such
that AQ:—A40, ..., A0 is ground and for i = 1,...,n: A;0 € T}.

Now, for range restricted clauses, the least Herbrand model can be obtained using
the following procedure:

1: Initialize LH := ()

2: repeat

3: LH := Tg(LH)

4: wuntil LH does not change anymore

At this point the reader may want to verify that LH(nat) = HB(nat) and

LH(grandparent) =
{parent(jef, paul), parent(paul, ann), grandparent(jef, ann)}.

Bayesian Logic Programs

The logical component of Bayesian networks essentially corresponds to a proposi-
tional logic program L. Consider for example the program in Figure 1.3. It encodes
the structure of the blood type Bayesian network in Figure 1.1. Observe that the
random variables in the Bayesian network correspond to logical atoms. Further-
more, the direct influence relation corresponds to the immediate consequence oper-
ator. Now, imagine another totally separated family, which could be described by a
similar Bayesian network. The graphical structure and associated conditional prob-

1. Haddawy [1994] and Langley [1995] have a similar view on Bayesian networks. For
instance, Langley does not represent Bayesian networks graphically but rather uses the
notation of propositional definite clause programs.

1.8 Bayesian Logic Programs 7

pc(ann) .

pc(brian).

mc(ann) .

mc(brian) .

mc(dorothy) :- mc(ann), pc(ann).
pc(dorothy) :- mc(brian), pc(brian).
bt(ann) :- mc(ann), pc(ann).
bt(brian) :- mc(brian), pc(brian).

bt (dorothy) :- mc(dorothy), pc(dorothy).

Figure 1.3 A propositional clause program encoding the structure of the blood
type Bayesian network in Figure 1.1.

ability distribution for the two families are controlled by the same intensional regu-
larities. But these overall regularities cannot be captured by a traditional Bayesian
network. So, we need a way to represent these overall regularities.

Because this problem is akin to that with propositional logic and the structure
of Bayesian networks can be represented using propositional clauses, the approach
taken in Bayesian logic programs is to upgrade these propositional clauses encoding
the structure of the Bayesian network to proper first order clauses.

1.3.1 Representation Language

Applying the above mentioned idea leads to the central notion of a Bayesian clause.

Definition 1.2 Bayesian Clause

A Bayesian (definite) clause c is an expression of the form A | As,..., A, where
n > 0, the AJAy,... A, are Bayesian atoms (see below) and all Bayesian atoms
are (implicitly) universally quantified. When n =0, ¢ is called a Bayesian fact and
expressed as A.

So, the differences between a Bayesian clause and a logical clause are:

1. the atoms p(ti,...,t1) and predicates p/1 arising are Bayesian, which means
that they have an associated (finite2) set S(p/1) of possible states, and

2. we use '|” instead of :—’ to highlight the conditional probability distribution.
For instance, consider the Bayesian clause ¢ bt(X)mc(X), pc(X) where S(bt/1) =
{a,b, ab,0} and S(mc/1) = S(pc/1) = {a,b,0}. Intuitively, a Bayesian predicate

p/1 generically represents a set of random variables. More precisely, each Bayesian
ground atom g over p/l represents a random variable over the states S(g) :=

2. For the sake of simplicity we consider finite random variables, i.e. random variables
having a finite set S of states. However, because the semantics rely on Bayesian networks,
the ideas easily generalize to discrete and continuous random variables (modulo the
restrictions well-known for Bayesian networks).

Bayesian Logic Programming: Theory and Tool

S(p/1). For example, bt(ann) represents the blood type of a person named Ann
as a random variable over the states {a,b, ab,0}. Apart from that, most logical
notions carry over to Bayesian logic programs. So, we will speak of Bayesian
predicates, terms, constants, substitutions, propositions, ground Bayesian clauses,
Bayesian Herbrand interpretations etc. For the sake of simplicity we will sometimes
omit the term Bayesian as long as no ambiguities arise. We will assume that all
Bayesian clauses ¢ are range-restricted, i.e., Var(head(c)) C Var(body(c)). Range
restriction is often imposed in the database literature; it allows one to avoid
the derivation of non-ground true facts (cf. Section 1.2.2). As already indicated
while discussing Figure 1.3, a set of Bayesian clauses encodes the qualitative or
structural component of the Bayesian logic programs. More precisely, ground atoms
correspond to random variables, and the set of random variables encoded by a
particular Bayesian logic program corresponds to its least Herbrand domain. In
addition, the direct influence relation corresponds to the immediate consequence.
In order to represent a probabilistic model we also associate with each Bayesian
clause ¢ a conditional probability distribution cpd(c) encoding P(head(c) |
body(c)), cf. Figure 1.4. To keep the exposition simple, we will assume that cpd(c)
is represented as a table. More elaborate representations such as decision trees
or rules would be possible too. The distribution cpd(c) generically represents the
conditional probability distributions associated with each ground instance cf of the
clause c.

In general, one may have many clauses. Consider clauses ¢; and ca

bt (X) | mc(X).
bt (X) | pc(X).

and assume corresponding substitutions 6; that ground the clauses ¢; such that
head(c1601) = head(ca62). In contrast to bt(X)|mc(X), pc(X), they specify cpd(c161)
and cpd(ca62), but not the desired distribution P (head(c161) | body(ci)Ubody(ca)).
The standard solution to obtain the distribution required are so called combining
rules.

Definition 1.3 Combining Rule

A combining rule is a function that maps finite sets of conditional probability
distributions {P(A | Ai1,...,Asn,) | 4 = 1,...,m} onto one (combined) conditional
probability distribution P(A | By,...,Bx) with {Bs,...,Bx} C U/" {Ai1, ..., Aun, }-

We assume that for each Bayesian predicate p/I there is a corresponding combining
rule cr(p/l), such as noisy_or [see e.g., Jensen, 2001] or average. The latter assumes
ny =...= Ny, and S(A;5) = S(Axj), and computes the average of the distributions
over S(A) for each joint state over @); S(A;), see also the next Section 1.3.2.

By now, we are able to formally define Bayesian logic programs.

Definition 1.4 Bayesian Logic Program
A Bayesian logic program B consists of a (finite) set of Bayesian clauses. For each
Bayesian clause ¢ there is exactly one conditional probability distribution cpd(c),

1.8 Bayesian Logic Programs 9

mc(X) pe(X) P(bt(X))

a (0.97,0.01,0.01,0.01)
m(ann, dorothy). b a (0.01,0.01,0.97,0.01)
f(brian, dorothy). .
pe(ann) 0 0 (0.01,0.01,0.01,0.97)
pc(brian)
mc(ann)
mc(brian). n(Y,X) mc(Y) pec(Y) P (mc(X))

true a a (0.98,0.01,0.01)
me(X)[m(Y, X), me(Y), pe(¥) true b a (0.01,0.98,0.01)
po(X)|£(¥. X),me(¥), po(¥)
bt (X)[mc(X), pe(X).

false a a (0.33,0.33,0.33)

Figure 1.4 The Bayesian logic program blood type encoding our genetic domain.
For each Bayesian predicate, the identity is the combining rule. The conditional
probability distributions associated with the Bayesian clauses bt(X)[mc(X),pc(X)
and mc(X)|m(Y, X),mc(X), pc(Y) are represented as tables. The other distributions are
correspondingly defined. The Bayesian predicates m/2 and £/2 have as possible states
{true, false}.

and for each Bayesian predicate p/l there is exactly one combining rule cr(p/I).

A Bayesian logic program encoding our blood type domain is shown in Figure 1.4.
1.3.2 Declarative Semantics

Intuitively, each Bayesian logic program represents a (possibly infinite) Bayesian
network, where the nodes are the atoms in the least Herbrand model of the Bayesian
logic program. These declarative semantics can be formalized using the annotated
dependency graph. The dependency graph DG(B) is that directed graph whose nodes
correspond to the ground atoms in the least Herbrand model LH(B). It encodes the
direct influence relation over the random variables in LH(B): there is an edge from
a node x to a node y if and only if there exists a clause ¢ € B and a substitution
0, s.t. y = head(ch), x € body(ch) and for all ground atoms z in cf : z € LH(B).
Figures 1.5 and 1.6 show the dependency graph for our blood type program. Here,
mc(dorothy) directly influences bt(dorothy). Furthermore, defining the influence
relation as the transitive closure of the direct influence relation, mc(ann) influences
bt(dorothy) .

The Herbrand base HB(B) constitute the set of all random variables we can talk
about. However, only those atoms that are in the least Herbrand model LH(B) C
HB(B) will appear in the dependency graph. These are the atoms that are true in
the logical sense, i.e., if the Bayesian logic program B is interpreted as a logical
program. They are the so-called relevant random variables, the random variables
over which a probability distribution is well-defined by B, as we will see. The atoms

10

Bayesian Logic Programming: Theory and Tool

m(ann,dorothy) .

f (brian,dorothy).

pc(ann) .

pc(brian).

mc (ann) .

mc (brian) .

mc(dorothy) | m(ann, dorothy),mc(ann),pc(ann).

pc(dorothy) | f(brian, dorothy),mc(brian),pc(brian).

bt(ann) | mc(ann), pc(ann).

bt(brian) | mc(brian), pc(brian).

bt (dorothy) | mc(dorothy),pc(dorothy).

Figure 1.5 The grounded version of the blood type Bayesian logic program of
Figure 1.4 where only clauses ¢ with head(c) € LH(B) and body(c) ¢ LH(B) are
retained. It (directly) encodes the Bayesian network as shown in Figure 1.6. The
structure of the Bayesian network coincides with the dependency graph of the blood

type Bayesian logic program.

not belonging to the least Herbrand model are irrelevant. Now, to each node x in
DG(B) we associate the combined conditional probability distribution which is
the result of applying the combining rule cr(p/n) of the corresponding Bayesian
predicate p/n to the set of cpd(ch)’s where head(cf) = x and {x} U body(cf) C
LH(B). Consider

cold. fever | cold.
flu. fever | flu.
malaria. fever | malaria.

where all Bayesian predicates have true, false as states and noisy_or as combining
rule. The dependency graph is

N

G

and noisy or{P(fever|flu), P(fever|cold), P(fever|malaria)} is associated with
fever [see Russell and Norvig, 1995, pq. 444]. Thus, if DG(B) is acyclic and
not empty, and every node in DG(B) has a finite indegree then DG(B) encodes
a (possibly infinite) Bayesian network, because the least Herbrand model always
exists and is unique. Consequently, the following independence assumption holds:

Proposition 1.5 Independence Assumption of Dependency Graph
Each node x is independent of its non-descendants given a joint state of its parents
Pa(x) in the dependency graph.

For instance the dependency graph of the blood type program as shown in Figures 1.5
and 1.6 encodes that the random variable bt(dorothy) is independent from pc(ann)
given a joint state of pc(dorothy), mc(dorothy). Using this assumption the following
proposition [taken from Kersting and De Raedt, 2001b] holds:

1.8 Bayesian Logic Programs 11

Proposition 1.6 Semantics
Let B be a Bayesian logic program. If

1. LH(B) # 0,
2. DG(B) is acyclic, and

3. each node in DG(B) is influenced by a finite set of random variables
then B specifies a unique probability distribution P g over LH(B).

To see this, note that the least Herbrand LH(B) always exists, is unique and
countable. Thus, DG(B) exists and is unique, and due to condition (3) the combined
probability distribution for each node of DG(B) is computable. Furthermore,
because of condition (1) a total order m on DG(B) exists, so that one can see
B together with 7 as a stochastic process over LH(B). An induction argument
over m together with condition 2 allow one to conclude that the family of finite-
dimensional distributions of the process is projective (cf. Bauer [1991]), i.e. ,
the joint probability distribution over each finite subset S C LH(B) is uniquely
defined and }° P(S,x = y) = P(S). Thus, the preconditions of Kolmogorov’s
theorem [Bauer, 1991, page 307] hold, and it follows that B given 7 specifies a
probability distribution P over LH(B). This proves the proposition because the
total order 7 used for the induction is arbitrary.

A program B satisfying the conditions (1), (2) and (3) of Proposition 1.6 is called
well-defined. A well-defined Bayesian logic program B specifies a joint distribution
over the random variables in the least Herbrand model LH(B). As with Bayesian
networks, the joint distribution over these random variables can be factored to

P(LH(B)) = erLH(B) P (x|Pa(x))

where the parent relation Pa is according to the dependency graph.

The blood type Bayesian logic program in Figure 1.4 is an example of a well-defined
Bayesian logic program. Its grounded version is shown in Figure 1.5. It essentially
encodes the original blood type Bayesian network of Figures 1.1 and 1.3. The only
differences are the two predicates m/2 and £ /2 which can be in one of the logical set
of states true and false. Using these predicates and an appropriate set of Bayesian
facts (the ’extension’) one can encode the Bayesian network for any family. This
situation is akin to that in deductive databases, where the ’intension’ (the clauses)
encode the overall regularities and the ’extension’ (the facts) the specific context
of interest. By interchanging the extension, one can swap contexts (in our case,
families).

1.3.3 Procedural Semantics
Clearly, any (conditional) probability distribution over random variables of the

Bayesian network corresponding to the least Herbrand model can — in principle —
be computed. As the least Herbrand model (and therefore the corresponding

12

Bayesian Logic Programming: Theory and Tool

bt (dorothy)

Figure 1.6 The structure of the Bayesian network represented by the grounded
blood type Bayesian logic program in Figure 1.5. The structure of the Bayesian
network coincides with the dependency graph. Omitting the dashed nodes yields
the original Bayesian network of Figure 1.1.

Bayesian network) can become (even infinitely) large, the question arises as to
whether one needs to construct the full least Herbrand model (and Bayesian
network) to be able to perform inferences. Here, inference means the process of
answering probabilistic queries.

Definition 1.7 Probabilistic Query
A probabilistic query to a Bayesian logic program B is an expression of the form

?-di,-.-,0n |€1 =€1,...,8n = €m

where n > 0, m > 0. It asks for the conditional probability distribution
P(qi,...,n|e1=¢€1,...,en =€)

of the query variables qy,...,q, where {qi,...,Qn,€1,...,en} C HB(B).

To answer a probabilistic query, one fortunately does not have to compute the
complete least Herbrand model. It suffices to consider the so-called support network.

Definition 1.8 Support Network
The support network N of a random variable x € LH(B) is defined as the induced
subnetwork of

{x}U{y |y € LH(B) and y influences x} .

The support network of a finite set {x1,...,xx} C LH(B) is the union of the
networks of each single x;.

For instance, the support network for bt(dorothy) is the Bayesian network shown
in Figure 1.6. The support network for bt(brian) is the subnetwork with root
bt(brian), i.e.

G eillp G2
Gty

1.8 Bayesian Logic Programs 18

That the support network of a finite set X C LH(B) is sufficient to compute P(X)
follows from the following Theorem [taken from Kersting and De Raedt, 2001b]:

Theorem 1.9 Support Network

Let N be a possibly infinite Bayesian network, let Q be nodes of N and E = e,
E C N, be some evidence. The computation of P(Q | E = e) does not depend on
any node x of N which is not a member of the support network N(Q U E).

To compute the support network N({q}) of a single variable q efficiently, let us
look at logic programs from a proof theoretic perspective. From this perspective,
a logic program can be used to prove that certain atoms or goals (see below) are
logically entailed by the program. Provable ground atoms are members of the least
Herbrand model.

Proofs are typically constructed using the SLD-resolution procedure which we will
now briefly introduce. Given a goal :-G4, Gy . . ., G, and a clause G:-Ly, . .., L, such that
G160 = GO, applying SLD resolution yields the new goal :-L10,...,L,0,Go0 ... ,G,0 .
A successful refutation, i.e., a proof of a goal is then a sequence of resolution steps
yielding the empty goal, i.e. :- . Failed proofs do not end in the empty goal. For
instance in our running example, bt(dorothy) is true, because of the following
refutation:

:-bt(dorothy)

:-mc(dorothy), pc(dorothy)

:-m(ann, dorothy), mc(ann), pc(ann), pc(dorothy)
:-mc(annn), pc(ann), pc(dorothy)

:-pc(ann), pc(dorothy)

:-pc(dorothy)

:-f(brian, dorothy),mc(brian), pc(brian)
:-mc(brian), pc(brian)

:-pc(brian)

Resolution is employed by many theorem provers (such as Prolog). Indeed, when
given the goal bt(dorothy), Prolog would compute the above successful resolution
refutation and answer that the goal is true.

The set of all proofs of :-bt(dorothy) captures all information needed to compute
N ({bt(dorothy)}). More exactly, the set of all ground clauses employed to prove
bt(dorothy) constitutes the families of the support network N({bt(dorothy)}).
For :-bt(dorothy), they are the ground clauses shown in Figure 1.5. To build the
support network, we only have to gather all ground clauses used to prove the query
variable and have to combine multiple copies of ground clauses with the same head
using corresponding combining rules. To summarize, the support network N({q})
can be computed as follows:

14

1.4

Bayesian Logic Programming: Theory and Tool

bt_dorothy

mc_dorothy pc_dorothy P(bt_dorothy)
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)

0 0 (0.01,0.01,0.01,0.97)

Figure 1.7 The rule graph for the blood type Bayesian network. On the right-
hand side the local probability model associated with node R9 is shown, i.e.,
the Bayesian clause bt_dorothy|mc_dorothy, pc_dorothy with associated conditional
probability table.

1: Compute all proofs for :-q.

2: Extract the set S of ground clauses used to prove :-q.

3: Combine multiple copies of ground clauses h|b € S with the same head h
using combining rules.

Applying this to :-bt(dorothy) yields the support network as shown in Figure 1.6.
Furthermore, the method can easily be extended to compute the support network
for P(Q | E = e) . We simply compute all proofs of :-q, q € Q, and :-e, e € E . The
resulting support network can be fed into any (exact or approximative) Bayesian
network engine to compute the resulting (conditional) probability distribution of the
query. To minimize the size of the support network, one might also apply Schachter’s
Bayes’ Ball algorithm [1998].

Extensions of the Basic Framework

So far, we described the basic Bayesian logic programming framework and defined
the semantics of Bayesian logic programs. Various useful extensions and modifica-
tions are possible. In this section, we will discuss a graphical representation, efficient
treatment of logical atoms, and aggregate functions. At the same time, we will also
present further examples of Bayesian logic programs such as hidden Markov mod-
els [Rabiner, 1989] and probabilistic grammars [Manning and Schiitze, 1999].

1.4.1 Graphical Representation

Bayesian logic programs have so far been introduced using an adaption of a
logic programming syntax. Bayesian network are, however, also graphical models
and owe at least part of their popularity to their intuitively appealing graphical
notation [Jordan, 1998)]. Inspired by Bayesian networks, we develop in this section

1.4 FEztensions of the Basic Framework 15

. ann P(mc(ann))
mc(Person) pc(Person) P(bt(Person))
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
0 0 (0.01,0.01,0.01,0.97)

f(Father,Person) mc(Father) pc(Father) P(pc(Person))

true a a (0.98,0.01,0.01)
true b a (0.01,0.98,0.01)
false a a (0.33,0.33,0.33)

Figure 1.8 The graphical representation of the blood type Bayesian logic
program. On the right-hand side, some local probability models associ-
ated with Bayesian clause nodes are shown, e.g. , the Bayesian clause
R7 pc(Person)|f(Father, Person), mc(Father), pc(Father) with associated conditional
probability distribution. For the sake of simplicity, not all Bayesian clauses are
shown.

a graphical notation for Bayesian logic programs.

In order to develop a graphical representation for Bayesian logic programs, let us
first consider a more redundant representation for Bayesian networks: augmented
bipartite (directed acyclic) graphs as shown in Figure 1.7. In a bipartite graph, the
set of nodes is composed of two disjoint sets such that no two nodes within the
same set are adjacent. There are two types of nodes, namely

1. gradient gray ovals denoting random variables, and

2. black boxes denoting local probability models.

There is a box for each family Fa(x;) in the Bayesian network. The incom-
ing edges refer to the parents Pa(x;); the single outgoing edge points to Xj.
Each box is augmented with a Bayesian network fragment specifying the con-
ditional probability distribution P(x;|Pa(x;)). For instance in Figure 1.7, the
fragment associated with R9 specifies the conditional probability distribution of
P(bt(dorothy)mc(dorothy), pc(dorothy)). Interpreting this as a propositional
Bayesian logic program, the graph can be viewed as a rule graph as known from
database theory. Ovals represent Bayesian predicates, and boxes denote Bayesian
clauses. More precisely, given a (propositional) Bayesian logic program B with
Bayesian clauses R; = hi|bs,,...,b;, , there are edges from from R; to h; and
from b;; to R; . Furthermore, to each Bayesian clause node, we associate the cor-

16

Bayesian Logic Programming: Theory and Tool

R1

Figure 1.9 A dynamic Bayesian logic program modeling a hidden Markov model.
The functor next/1 is used to encode the discrete time.

responding Bayesian clause as a Bayesian network fragment. Indeed, the graphical
model in Figure 1.7 represents the propositional Bayesian logic program of Fig-
ure 1.5.

In order to represent first order Bayesian logic programs graphically, we have
to encode Bayesian atoms and their variable bindings in the associated local
probability models. Indeed, logical terms can naturally be represented graphically.
They form trees. For instance, the term t(s(1,2),X) corresponds to the tree

Logical variables such as X are encoded as white ovals. Constants and functors such
as 1, 2, s, and t are represented as white boxes. Bayesian atoms are represented
as gradient grays ovals containing the predicate name such as pc. Arguments of
atoms are treated as placeholders for terms. They are represented as white circles
on the boundary of the ovals (ordered from left to right). The term appearing in the
argument is represented by an undirected edge between the white oval representing
the argument and the 'root’ of the tree encoding the term (we start in the argument
and follow the tree until reaching variables).

As an example, consider the Bayesian logic program in Figure 1.8. It models the
blood type domain. The graphical representation indeed conveys the meaning of the
Bayesian clause RT7: the paternal genetic information pc(Person) of a person is
influenced by the maternal mc(M) and the paternal pc(M) genetic information of the
person’s Father.

As another example, consider Figure 1.9 which shows the use of functors to rep-
resent dynamic probabilistic models. More precisely, it shows a hidden Markov
model (HMM) [Rabiner, 1989]. HMMs are extremely popular for analyzing sequen-
tial data. Application areas include computational biology, user modeling, speech

1.4 FEztensions of the Basic Framework 17

@ P (mc(Person)|founder(Person))

(0.38,0.12,0.50)

mc(Father) pc(Father) P(mc(Person))
a a (0.98,0.01,0.01)
b a (0.01,0.98,0.01)
a a (0.33,0.33,0.33)

Figure 1.10 The blood type Bayesian logic program distinguishing between
Bayesian (gradient gray ovals) and logical atoms (solid gray ovals).

recognition, empirical natural language processing, and robotics.

At each Time, the system is in a state hidden(Time). The time-independent prob-
ability of being in some state at the next time next(Time) given that the system
was in a state at TimePoint is captured in the Bayesian clause R2. Here, the
next time point is represented as functor next/1 . In HMMs, however, we do not
have direct access to the states hidden(Time). Instead, we measure some properties
obs(Time) of the states. The measurement is quantified in Bayesian clause R3. The
dependency graph of the Bayesian logic program directly encodes the well-known
Bayesian network structure of HMMs:

hidden (next (0)) hidden (next (next (0)))
Cobs (0)D obs (next (0)) obs (next (next (0)))

1.4.2 Logical Atoms

Reconsider the blood type Bayesian logic program in Figure 1.8. The mother/2
and father/2 relations are not really random variables but logical ones because
they are always in the same state, namely true, with probability 1 and can de-
pend only on other logical atoms. These predicates form a kind of logical back-
ground theory. Therefore, when predicates are declared to be logical, one need not
to represent them in the conditional probability distributions. Consider the blood
type Bayesian logic program in Figure 1.10. Here, mother/2 and father/2 are
declared to be logical. Consequently, the conditional probability distribution asso-
ciated with the definition of e.g. pc/1 takes only pc(Father) and mc(Father) into
account but not f(Father, Person). It applies only to those substitutions for which

18

Bayesian Logic Programming: Theory and Tool

Figure 1.11 Two dynamic Bayesian logic programs. (a) The generic struc-
ture of a hidden Markov model more elegantly represented as in Figure 1.9
using next(X,Y) : —integer(Y),Y > 0,X is Y—1.. (b) A probabilistic context-free
grammar over {a"b"}. The logical background theory defines terminal/3 as
terminal([A|B], A, B).

f(Father,Person) is true, i.e., in the least Herbrand model. This can efficiently be
checked using any Prolog engine. Furthermore, one may omit these logical atoms
from the induced support network. More importantly, logical predicates provide
the user with the full power of Prolog. In the blood type Bayesian logic program of
Figure 1.10, the logical background knowledge defines the founder/1 relation as

founder(Person):-\+(mother(_, Person); father(_,Person)).

Here, \+ denotes negation, the symbol _ represents an anonymous variable which is
treated as new, distinct variable each time it is encountered, and the semicolon
denotes a disjunction. The rest of the Bayesian logic program is essentially as
in Figure 1.4. Instead of explicitly listing pc(ann), mc(ann), pc(brian),mc(brian)
in the extensional part we have pc(P)|founder(P) and mc(P)|founder(P) in the
intensional part.

The full power of Prolog is also useful to elegantly encode dynamic probabilistic
models. Figure 1.11 (a) shows the generic structure of an HMM where the discrete

1.4 FEztensions of the Basic Framework 19

time is now encoded as next/2 in the logical background theory using standard
Prolog predicates:

next(X,Y):-integer(Y),Y > 0,X is Y — 1.

Prolog’s predefined predicates (such as integer/1) avoid a cumbersome representa-
tion of the dynamics via the successor functor 0,next(0), next(next(0)),... Imagine
querying 7- obs(100) using the successor functor,

7- obs(next(next(...(next(0))...))) .

Whereas HMMs define probability distributions over regular languages, probabilistic
context-free grammars (PCFGs) [Manning and Schiitze, 1999] define probability
distributions over context-free languages. Application areas of PCFGs include
e.g. natural language processing and computational biology. For instance, mRNA
sequences constitute context-free languages. Consider e.g. the following PCFG

terminal([A|B], A,B).

0.3 : sentence(A,B):-terminal(4,a,C), terminal(C,b,B).

0.7 : sentence(A,B):-terminal(4,a,C), sentence(C,D), terminal(D, b, B).
defining a distribution over {a™b"} . The grammar is represented as probabilistic
definite clause grammar where the terminal symbols are encoded in the logical
background theory via the first rule terminal([A|B], A,B) .

A PCFG defines a stochastic process with leftmost rewriting, i.e., refutation steps as
transitions. Words, say aabb, are parsed by querying ?- sentence([a, a, b, b],[]). The
third rule yields ?- terminal([a,a,b,b],a,C), sentence(C,D), terminal(D,Db,[]).
Applying the first rule yields ?- sentence([a,b,b],D), terminal(D,b,[]) and the
second rule 7- terminal([a,b,b],a,C), terminal(C, b,D), terminal(D, b, []). Apply-
ing the first rule three times yields a successful refutation. The probability of a
refutation is the product of the probability values associated with clauses used in
the refutation; in our case 0.7 - 0.3. The probability of aabb then is the sum of
the probabilities of all successful refutations. This is also the basic idea underlying
Muggleton’s stochastic logic programs 1996 which extend the PCFGs to definite
clause logic.

Figure 1.11 (b) shows the {a"b"} PCFG represented as Bayesian logic program.
The Bayesian clauses are the clauses of the corresponding definite clause grammar.
In contrast to PCFGs, however, we associate a complete conditional probability
distribution, namely (0.3,0.7) and (0.7,0.3; 0.0, 1.0) to the Bayesian clauses. For the
query ?- sentence([a, a,b,b],[]), the following Markov chain is induced (omitting
logical atoms):

sentence([a,b,b], [b]) sentence([a,a,b,b], [])

20

Bayesian Logic Programming: Theory and Tool

teachingAbility/1

avgSatisfaction/1

Grade/2
‘

R5

avgGrade/1
intelligence/1

P(avgGrade(Student) = a)
{1,0 : a = avg{grade(Student, Course|}

registered(Student, Course}

0.0 :otherwise

W avgGrade(Student) P(rank(Student))
a (0.1,0.2,0.7)
b (0.2,0.4,0.4)
c (0.6,0.3,0.1)

Figure 1.12 The Bayesian logic program for the wuniversity domain. Octagonal
nodes denote aggregate predicates and atoms.

1.4.3 Aggregate Functions

An alternative to combining rules are aggregate functions. Consider the university
domain due to Getoor et al. [2001]. The domain is that of a university, and contains
professors, students, courses, and course registrations. Objects in this domain have
several descriptive attributes such as intelligence/1 and rank/1 of a student/1.
A student will typically be registered in several courses; the student’s rank depends
on the grades she receives in all of them. So, we have to specify a probabilistic
dependence of the student’s rank on a multiset of course grades of size 1, 2, and so
on.

In this situation, the notion of aggregation is more appropriate than that of a
combining rule. Using combining rules, the Bayesian clauses would describe the
dependence for a single course only. All information of how the rank probabilistically
depends on the multiset of course grades would be "hidden’ in the combining rule.
In contrast, when using an aggregate function, the dependence is interpreted as
a probabilistic dependence of rank on some deterministically computed aggregate
property of the multiset of course grades. The probabilistic dependence is moved
out of the combining rule.

To model this, we introduce aggregate predicates. They represent deterministic
random variables, i.e., the state of an aggregate atom is a function of the joint
state of its parents. As an example, consider the university Bayesian logic program
as shown in Figure 1.12. Here, avgGrade/1 is an aggregate predicate, denoted

1.5 Learning Bayesian Logic Programs 21

1.5

as an octagonal node. As combining rule, the average of the parents’ states is
deterministically computed, cf. Bayesian clause R5. In turn, the student’s rank/1
probabilistically depends on her averaged rank, cf. R6.

The use of aggregate functions is inspired by probabilistic relational models [Pleffer,
2000]. As we will show in the related work section, using aggregates in Bayesian
logic programs, it is easy to model probabilistic relational models.

Learning Bayesian Logic Programs

When designing Bayesian logic programs, the expert has to determine the structure
of the Bayesian logic program by specifying the extensional and intensional predi-
cates, and by providing definitions for each of the intensional predicates. Given this
logical structure, the Bayesian logic program induces a Bayesian network whose
nodes are the relevant random variables. It is well-known that determining the
structure of a Bayesian network, and therefore also of a Bayesian logic program,
can be difficult and expensive. On the other hand, it is often easier to obtain a set
D ={D,...,D,} of data cases, which can be used for learning.

1.5.1 The Learning Setting

For Bayesian logic programs, a data case D; € D has two parts, a logical and a
probabilistic part. The logical part of a data case is a Herbrand interpretation. For
instance, the following set of atoms constitute a Herbrand interpretation for the
blood type Bayesian logic program.

{m(ann, dorothy), f(brian,dorothy), pc(ann), mc(ann), bt(ann),
pc(brian),mc(brian), bt(brian), pc(dorothy), mc(dorothy), bt(dorothy)}

This (logical) interpretation can be seen as the least Herbrand model of an unknown
Bayesian logic program. In general, data cases specify different sets of relevant
random variables, depending on the given “extensional context”. If we accept that
the genetic laws are the same for different families, then a learning algorithm should
transform such extensionally defined predicates into intensionally defined ones, thus
compressing the interpretations. This is precisely what inductive logic programming
techniques [Muggleton and De Raedt, 1994] do. The key assumption underlying any
inductive technique is that the rules that are valid in one interpretation are likely
to hold for other interpretations. It thus seems clear that techniques for learning
from interpretations can be adapted for learning the logical structure of Bayesian
logic programs.

So far, we have specified the logical part of the learning problem: we are looking for
a set H of Bayesian clauses given a set D of data cases such that all data cases are
a model of H. The hypotheses H in the space H of hypotheses are sets of Bayesian
clauses. However, we have to be more careful. A candidate set H € H has to be

22

Bayesian Logic Programming: Theory and Tool

acyclic on the data which implies that for each data case the induced Bayesian
network has to be acyclic.

Let us now focus on the quantitative components. The quantitative component
of a Bayesian logic program is given by the associated conditional probability
distributions and combining rules. For the sake of simplicity, we assume that the
combining rules are fixed. Each data case D; € D has a probabilistic part which is a
partial assignment of states to the random variables in D;. As an example consider
the following data case:

{m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = a,mc(ann) = a,
bt(ann) = a,pc(brian) = a,mc(brian) = b, bt(brian) = ab,

pc(dorothy) = b,mc(dorothy) =7, bt(dorothy) = ab}

where 7 denotes an unknown state of a random variable. The partial assignments
induce a joint distribution over the random variables. A candidate H € H should
reflect this distribution. In Bayesian networks the conditional probability distribu-
tions are typically learned using gradient descent or EM for a fixed structure of the
Bayesian network. A scoring function scorep(H) that evaluates how well a given
structure H € H matches the data is maximized.

To summarize, the learning problem is a probabilistic extension of the learning from
interpretations setting from inductive logic programming and can be formulated as
follows:

Given a set D of data cases, a set ‘H of Bayesian logic programs and a scoring
function scorep.

Find a candidate H* € H which is acyclic on the data cases such that the data
cases D; € D are models of H* (in the logical sense) and H* matches the data D
best according to scorep.

Here, the best match refers to those parameters of the associated conditional
probability distributions which maximize the scoring function.

The learning setting provides an interesting link between inductive logic program-
ming and Bayesian network learning as we will show in the next section.

1.5.2 Maximum Likelihood Learning

Consider the task of performing mazimum likelihood learning, i.e., scorep(H) =
P(D|H). As in many cases, it is more convenient to work with the logarithm of
this function, i.e., scorep(H) = LL(D,H) := logP(D|H). It can be shown [see
Kersting and De Raedt, 2001a, for more details] that the likelihood of a Bayesian
logic program coincides with the likelihood of the support network induced over D.
Thus, learning of Bayesian logic programs basically reduces to learning Bayesian
networks. The main differences are the ways to estimate the parameters and to
traverse the hypotheses space.

1.5 Learning Bayesian Logic Programs 23

Figure 1.13 Decomposable combining rules can be expressed within support
networks. The nodes h; have the domain of h and cpd(c) associated. The node
h becomes a deterministic node, i.e., its parameters are fixed. For example for
noisy_or, logical or is associated as function with h. Note that the h;’s are never
observed; only h might be observed.

1.5.2.1 Parameter Estimation

The parameters of non-ground Bayesian clauses have to be estimated. In order to
adapt techniques traditionally used for parameter estimation of Bayesian networks
such as the EM algorithm [Dempster et al., 1977], combining rules are assumed to be
decomposable 3 [Heckerman and Breese, 1994]. Decomposable combining rules can
be completely expressed by adding extra nodes to the induced support network, cf.
Figure 1.13. These extra nodes are copies of the (ground) head atom which becomes
a deterministic node. Now, each node in the support network is “produced” by
exactly one Bayesian clause ¢, and each node derived from ¢ can be seen as a separate
“experiment” for the conditional probability distribution c¢pd(c). Therefore, the EM
estimates the improved parameters as the following ratio:

S >, P(head(ch), body(ch) | Dy)
Y121 229 P(body(ch) | Dy)

where 6 denotes substitutions such that D; is a model of cf.

1.5.2.2 Traversing the Hypotheses Space

Instead of adding, deleting, or flipping single edges in the support network, we
employ refinement operators traditionally used in inductive logic programming to
add, delete, or flip several edges in the support network at the same time. More
specifically, according to some language bias — say, we consider only functor-free
and constants-free clauses — we use the two refinement operators p, : 2" — H
and p, : 2" — H. The operator ps(H) adds constant-free atoms to the body of
a single clause ¢ € H, and py(H) deletes constant-free atoms from the body of
a single clause ¢ € H. Other refinement operators such as deleting and adding
logically valid clauses, instantiating variables, and unifying variables are possible,

3. Most combining rules commonly employed in Bayesian networks such as moisy_or are
decomposable.

24 Bayesian Logic Programming: Theory and Tool

Balios
File Options Tools Window Help
=@

(a) eoe bl
| N B [F] [m]r«|rand _satistaction_: T

Graph | _Program pportnetwork }
course/1

course_difficulty/ 1
course_rating/ 1 prof_popularity/t
prof/1
prof_popularity/1
prof_teaching_ability/1
registered/2
R10 Rt

| VYW T

I gra...| a I

rof_teaching_a...| low |mid..] high],
%} 5 03 01

rogistration satistaction avg/1

b
Tow Jmid.
7 05

o o.
middle_— Jo.4 0.4 02 02 0.4
(T — R 01 01

registration_grade /2
registration_grade_avg/1
registration_satisfaction/2
registration_satisfaction_avg/1
student/1
student_intelligence /1
student_ranking/1

teached/2

prof_teaching ability/t

T e e e T

;lr";f‘j'me Options Tools Window Help
T Dle(me]
e o6 registration.blp
o OOl B (% |m|«|rand _satisfaction_: i tration
Graph | Program [SupGeReeS
I TEE BRSSIQIAIE] [Fhotcd [sampi]
@ course_afcaiocD
93 low
L w0707 hign
@ course_raunaict)

= prof_teaching_abllity(p1)
101 low
W 10391 middel
. 10.509 high
= registration_grade(s1,c1)
054 a I
W 10324 b
L 10136 ¢
@ registration_grade(s2,c1)

W 10357 b
L1014 ¢

- registration_grade(s3,c1)
0531 a
W 10327 b

[==rEvE
(€) @ regsuaton gragesa.cty
28

Figure 1.14 Batwios - the engine for Bayesian logic programs. (a) Graphical rep-
resentation of the university Bayesian logic program. (b) Textual representation of
Bayesian clauses with associated conditional probability distributions. (¢) Com-
puted support network and probabilities for a probabilistic query.

too, cf. [Nienhuys-Cheng and de Wolf, 1997].

Combining these ideas, a basic greedy hill-climbing algorithm for learning Bayesian
logic programs can be sketched as follows. Assuming some data cases D, we take
some Hj as starting point (for example computed using some standard inductive
logic programming system) and compute the parameters maximizing LL(D, H).
Then, we use ps(H) and py(H) to compute the legal 'neighbours’ of H in H and
score them. If LL(D,H) < LL(D, H’), then we take H' as new hypothesis. The
process is continued until no further improvements in score are obtained.

1.6 BAL1OS - The Engine for BLPs 25

1.6

1.7

Balios — The Engine for BLPs

An engine for Bayesian logic programs featuring a graphical representation, log-
ical atoms, and aggregate functions has been implemented in the BALIOS sys-
tem Kersting and Dick [2004], which is freely available for academic use at
http://www.informatik.uni-freiburg.de/ “kersting/achilleus/. BALIOS is
written in JAVA. It calls S1cSTUS Prolog to perform logical inference and a BN
inference engine to perform probabilistic inference. BALIOS features a GUI graphi-
cally representing BLPs, cf. Figure 1.14, computing the most likely configuration,
approximative inference methods (rejection, likelihood and Gibbs sampling), and
parameter estimation methods (hard EM, EM, and conjugate gradient).

Related Work

In the last ten years, there has been a lot of work lying at the intersection of proba-
bility theory, logic programming and machine learning [Poole, 1993, Haddawy, 1994,
Sato, 1995, Muggleton, 1996, Ngo and Haddawy, 1997, Jaeger, 1997, Koller and
Pfeffer, 1998, Anderson et al., 2002, Kersting et al., 2003, Domingos and Richard-
son, 2004], see [De Raedt and Kersting, 2003] for an overview. Instead of giving a
probabilistic characterization of logic programming such as Ng and Subrahmanian
[1992], this research highlights the machine learning aspect and is known under the
names of statistical relational learning (SRL) [Getoor and Jensen, 2003, Dietterich
et al., 2004], probabilistic logic learning (PLL) [De Raedt and Kersting, 2003], or
probabilistic inductive logic programming (PILP) [De Raedt and Kersting, 2004].
Bayesian logic programs belong to the SRL line of research which extends Bayesian
networks. They are motivated and inspired by the formalisms discussed in [Poole,
1993, Haddawy, 1994, Ngo and Haddawy, 1997, Jaeger, 1997, Friedman et al., 1999,
Koller, 1999]. We will now investigate these relationships in more details.

Probabilistic logic programs [Ngo and Haddawy, 1995, 1997] also adapt a logic
program syntax, the concept of the least Herbrand model to specify the relevant
random variables, and SLD resolution to develop a query-answering procedure.
Whereas Bayesian logic programs view atoms as random variables, probabilistic-
logic programs view them as states of random variables. For instance,

P(burglary(Person, yes) | neighbourhood(Person, average)) = 0.4

states that the aposteriori probability of a burglary in Person’s house given
that Person has an average neighbourhood is 0.4. Thus, instead of conditional
probability distributions, conditional probability values are associated with clauses.
Treating atoms as states of random variables has several consequences: (1) Exclu-

26

Bayesian Logic Programming: Theory and Tool

sivity constraints such as
false « neighbourhood(X, average),neighbourhood(X, bad)

have to be specified in order to guarantee that random variables are always in
exactly one state. (2) The inference procedure is exponentially slower in time for
building the support network than that for Bayesian logic programs because there
is a proof for each configuration of random variable. (3) It is more difficult — if not
impossible — to represent continuous random variables. (4) Qualitative, i.e., the
logical component, and quantitative information, i.e., the probability values, are
mixed. Just this separation of both information made the graphical representation
for Bayesian logic programs possible.

Probabilistic and Bayesian logic programs are also related to Poole’s framework of
probabilistic Horn abduction [1993], which is “a pragmatically-motivated sim-
ple logic formulation that includes definite clauses and probabilities over hypothe-
ses” [Poole, 1993]. Poole’s framework provides a link to abduction and assumption-
based reasoning. However, as Ngo and Haddawy point out, probabilistic and there-
fore also Bayesian logic programs have not as many constraints on the representa-
tion language, represent probabilistic dependencies directly rather than indirectly,
have a richer representational power, and their independence assumption reflects
the causality of the domain.

Koller et. al. [Friedman et al., 1999, Koller, 1999] define probabilistic relational
models, which are based on the well-known entity/relationship model. In prob-
abilistic relational models, the random variables are the attributes. The relations
between entities are deterministic, i.e. they are only true or false. Probabilistic
relational models can be described as Bayesian logic programs.

Indeed, each attribute a of an entity type E is a Bayesian predicate a(E) and each
n-ary relation r is an n-ary logical Bayesian predicate r/n. Probabilistic relational
models consist of a qualitative dependency structure over the attributes and their
associated quantitative parameters (the conditional probability densities). Koller
et. al. distinguish between two types of parents of an attribute. First, an attribute
a(X) can depend on another attribute b(X), e.g. the professor’s popularity depends
on the professor’s teaching ability in the university domain. This is equivalent to
the Bayesian clause a(X) | b(X). Second, an attribute a(X) possibly depends on an
attribute b(Y) of an entity Y related to X, e.g. a student’s grade in a course depends
on the difficulty of the course. The relation between X and Y is described by a slot
or logical relation s(X,Y). Given these logical relation, the original dependency is
represented by a(X) | s(X,Y),b(Y). To deal with multiple ground instantiations of
a single clause (with the same head ground atom), probabilistic relational models
employ aggregate functions as discussed earlier.

Clearly, probabilistic relational models employ a more restricted logical compo-
nent than Bayesian logic programs do: it is a version of the commonly used en-
tity /relationship model. Any entity/relationship model can be represented using a
(range-restricted) definite clause logic. Furthermore, several extensions to treat exis-

1.7 Related Work 27

tential uncertainty, referential uncertainty, and domain uncertainty exists. Bayesian
logic programs have the full expressivity of definite clause logic and, therefore, of
a universal Turing machine. Indeed, general definite clause logic (using functors) is
undecidable. The functor-free fragment of definite clause logic, however, is decid-
able.

Jager [1997] introduced relational Bayesian networks. They are Bayesian net-
works where the nodes are predicate symbols. The states of these random vari-
ables are possible interpretations of the symbols over an arbitrary, finite domain
(here we only consider Herbrand domains), i.e. the random variables are set-
valued. The inference problem addressed by Jéger asks for the probability that
an interpretation contains a ground atom. Thus, relational Bayesian networks are
viewed as Bayesian networks where the nodes are the ground atoms and have
the domain {true, false}4. The key difference between relational Bayesian net-
works and Bayesian logic programs is that the quantitative information is spec-
ified by so called probability formulas. These formulas employ the notion of com-
bination functions, functions that map every finite multiset with elements from
[0,1] into [0,1], as well as that of equality constraints®. Let F(cancer)(z) be
noisy-or{ combr{ exposed(x,y, z) | z;true} | y;true} . This formula states that that
for any specific organ y, multiple exposures to radiation have a cumulative but in-
dependent effect on the risk of developing cancer of y. Thus, a probability formula
not only specifies the distribution but also the dependency structure. Therefore
and because of the computational power of combining rules, a probability formula
is easily expressed as a set of Bayesian clauses: the head of the Bayesian clauses
is the corresponding Bayesian atom and the bodies consist of all maximally gen-
eralized Bayesian atoms occurring in the probability formula. Now the combining
rule can select the right ground atoms and simulate the probability formula. This
is always possible because the Herbrand base is finite. E.g. the clause cancer (X) |
exposed(X,Y,Z) together with the right combining rule and associated conditional
probability distribution models the example formula.

In addition to extensions of Bayesian networks, several other probabilistic models
have been extended to the first-order or relational case: Sato [1995] introduces
distributional semantics in which ground atoms are seen as random variables
over {true, false}. Probability distributions are defined over the ground facts of
a program and propagated over the Herbrand base of the program using the
clauses. Stochastic logic programs [Muggleton, 1996, Cussens, 1999] introduced
by Muggleton lift context-free probabilistic grammars to the first order case.
Production rules are replaced by clauses labeled with probability values. Recently,
Domingos and Richardson [2004] introduced Markov logic networks which upgrade
Markov networks to the first order case. The features of the Markov logic network
are weights attached to first-order predicate logic formulas. The weights specify a

4. Tt is possible, but complicated to model domains having more than two values.
5. To simplify the discussion, we will further ignore these equality constraints here.

28

1.8

Bayesian Logic Programming: Theory and Tool

bias for ground instances to be true in a logical model.

Finally, Bayesian logic programs are related — to some extent — to the BUGS
language [Gilks et al., 1994] which aims at carrying out Bayesian inference using
Gibbs sampling. It uses concepts of imperative programming languages such as for-
loops to model regularities in probabilistic models. Therefore, the relation between
Bayesian logic programs and BUGS is akin to the general relation between logical
and imperative languages. This holds in particular for relational domains such as
those used in this chapter. Without the notion of objects and relations among
objects family trees are hard to represent: BUGS uses traditional indexing to group
together random variables (e.g. X7, X2, X3 ... all having the same distribution),
whereas Bayesian logic programs use definite clause logic.

Conclusions

We have described Bayesian logic programs, their representation language, their se-
mantics, and a query-answering process, and briefly touched upon learning Bayesian
logic programs from data.

Bayesian logic programs combine Bayesian networks with definite clause logic.
The main idea of Bayesian logic programs is to establish a one-to-one mapping
between ground atoms in the least Herbrand model and random variables. The
least Herbrand model of a Bayesian logic program together with its direct influence
relation is viewed as a (possibly infinite) Bayesian network. Bayesian logic programs
inherit the advantages of both Bayesian networks and definite clause logic, including
the strict separation of qualitative and quantitative aspects. Moreover, the strict
separation facilitated the introduction of a graphical representation, which stays
close to the graphical representation of Bayesian networks.

Indeed, Bayesian logic programs can naturally model any type of Bayesian network
(including those involving continuous variables) as well as any type of “pure” Prolog
program (including those involving functors). We also demonstrated that Bayesian
logic programs can model hidden Markov models and stochastic grammars, and
investigated their relationship to other first order extensions of Bayesian networks.
We have also presented the BALIOS tool, which employs the graphical as well as
the logical notations for Bayesian logic programs. It is available at

http://www.informatik.uni-freiburg.de/ kersting/achilleus/,

and the authors would like to invite the reader to employ it.
Acknowledgements

The authors would like to thank Uwe Dick for implementing the BALIOS system.
This research was partly supported by the European Union IST programme under
contract number IST-2001-33053 and FP6-508861, APRIL I & II (Application of
Probabilistic Inductive Logic Programming).

References

C. R. Anderson, P. Domingos, and D. S. Weld. Relational Markov Models and their
Application to Adaptive Web Navigation. In D. Hand, D. Keim, O. R. Zaine,
and R. Goebel, editors, Proceedings of the Fighth International Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 143152, Edmonton,
Canada, 2002. ACM Press.

Heinz Bauer. Wahrscheinlichkeitstheorie. Walter de Gruyter, Berlin, New York, 4.
edition, 1991.

J. Cheng, C. Hatzis, M.—A. Krogel, S. Morishita, D. Page, and J. Sese. KDD Cup
2002 Report. SIGKDD Ezxplorations, 3(2):47 — 64, 2002.

J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proceedings
of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-1999), 1999.

L. De Raedt and K. Kersting. Probabilistic Logic Learning. ACM-SIGKDD
Ezplorations: Special issue on Multi-Relational Data Mining, 5(1):31-48, 2003.

L. De Raedt and K. Kersting. Probabilistic Inductive Logic Programming. In
S. Ben-David, J. Case, and A. Maruoka, editors, Proceedings of the 15th Inter-
national Conference on Algorithmic Learning Theory (ALT-2004), pages 19-36,
Padova, Italy, October 2—-5 2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. Royal Stat. Soc., B 39:1-39, 1977.

T. Dietterich, L. Getoor, and K. Murphy, editors. Working Notes of the ICML-200/
Workshop on Statistical Relational Learning and its Connections to Other Fields
(SRL-04), 2004.

P. Domingos and M. Richardson. Markov Logic: A Unifying Framework for
Statistical Relational Learning. In Proceedings of the ICML-2004 Workshop on
Statistical Relational Learning and its Connections to Other Fields, pages 49-54,
2004.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In T. Dean, editor, Proceedings of the Sixzteenth International Joint
Conferences on Artificial Intelligence (IJCAI-99), pages 1300-1309, Stockholm,
Sweden, 1999. Morgan Kaufmann.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Relational Data Mining, chapter

30

References

Learning Probabilistic Relational Models. S. Dzeroski and N. Lavra¢, 2001. (to
appear).

L. Getoor and D. Jensen, editors. Working Notes of the IJCAI-2003 Workshop on
Learning Statistical Models from Relational Data (SRL-03), 2003.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for
complex bayesian modelling. The Statistician, 43, 1994.

P. Haddawy. Generating Bayesian networks from probabilistic logic knowledge
bases. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-199/4), 1994.

D. Heckerman and J. Breese. Causal Independence for Probability Assessment and
Inference Using Bayesian Networks. Technical Report MSR-TR-94-08, Microsoft
Research, 1994.

D. Heckerman, A. Mamdani, and M. P. Wellman. Real-world applications of
Bayesian networks. Communications of the ACM, 38(3):24-26, March 1995.

M. Jaeger. Relational Bayesian networks. In D. Geiger and P. P. Shenoy, editors,
Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-97), pages 266-273, Providence, Rhode Island, USA, 1997.
Morgan Kaufmann.

F. V. Jensen. An introduction to Bayesian Networks. UCL Press Limited, 1996.
Reprinted 1998.

F. V. Jensen. Bayesian networks and decision graphs. Springer-Verlag, 2001.
M. I. Jordan, editor. Learning in Graphical Models. MIT Press, 1998.

K. Kersting and L. De Raedt. Adaptive Bayesian Logic Programs. In C. Rouveirol
and M. Sebag, editors, Proceedings of the FEleventh Conference on Inductive
Logic Programming (ILP-01), volume 2157 of LNCS, Strasbourg, France, 2001a.
Springer.

K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report 151,
University of Freiburg, Institute for Computer Science, April 2001b.

K. Kersting and U. Dick. Balios - The Engine for Bayesian Logic Programs. In J.-F.
Boulicaut, F. Esposito anf F. Giannotti, and D. Pedreschi, editors, Proceedings of
the 8th European Conference on Principles and Practice of Knowledege Discovery
in Databases (PKDD-2004), pages 549-551, Pisa, Italy, September 20-25 2004.

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering structural
signatures of protein folds based on logical hidden markov models. In R.
B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors,
Proceedings of the Pacific Symposium on Biocomputing, pages 192 — 203, Kauai,
Hawaii, USA, 2003. World Scientific.

D. Koller. Probabilistic relational models. In S. Dzeroski and P. Flach, editors,
Proceedings of Ninth International Workshop on Inductive Logic Programming
(ILP-99), volume 1634 of LNAI pages 3-13, Bled, Slovenia, 1999. Springer.

References 31

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pages 580-587, Madison,
Wisconsin, USA, July 1998. AAAT Press.

P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1995.
J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2. edition, 1989.

C. H. Manning and H. Schiitze. Foundations of Statistical Natural Language
Processing. The MIT Press, 1999.

S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances in
Inductive Logic Programming. 10S Press, 1996.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19(20):629-679, 1994.

R. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and
Computation, 101(2):150-201, 1992.

L. Ngo and P. Haddawy. Probabilistic logic programming and Bayesian networks.
In Algorithms, Concurrency and Knowledge: Proceedings of the Asian Computing
Science Conference 1995, Pathumthai, Thailand, December 1995.

L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171:147-177, 1997.

S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. Springer, 1997.

J. Pearl. Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 2. edition, 1991.

A. J. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford
University, 2000.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, 64:81-129, 1993.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Inc., 1995.

T. Sato. A Statistical Learning Method for Logic Programs with Distribution
Semantics. In Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP-1995), pages pp. 715 — 729, 1995.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391-454, 2001.

R. D. Schachter. Bayes-Ball: The Rational Pasttime (for Determining Irrelevance
and Requisite Information in Belief Networks and Influence Diagrams). In
G. F. Cooper and S. Moral, editors, Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence (UAI-98), pages 480-487, Madison,
Wisconsin, USA, 1998. Morgan Kaufmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

