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ABSTRACT
Inductive databases tightly integrate databases with data
mining. The key ideas are that data and patterns (or mod-
els) are handled in the same way and that an inductive query
language allows the user to query and manipulate the pat-
terns (or models) of interest.

This paper proposes a simple and abstract model for induc-
tive databases. We describe the basic formalism, a simple
but fairly powerful inductive query language, some basics of
reasoning for query optimization, and discuss some memory
organization and implementation issues.
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1. INTRODUCTION
Ever since the start of the field of data mining, it has been
realized that the data mining process should be supported
by database technology. In recent years, this idea has been
formalized in the concept of inductive databases [28]. In-
ductive databases are databases that, in addition to data,
also contain patterns, i.e., generalizations extracted from the
data. Within the inductive database framework knowledge
discovery in databases is modelled as an interactive process
in which users can query data as well as patterns. To this
aim a so-called inductive query language is used.

A number of specialized inductive query languages have
been proposed and implemented, e.g., MINE RULE [35],
MSQL [29], DMQL [22] and XMine [10]. Most of these in-
ductive query languages extend an existing database query
(SQL or XML) language with some primitives to support
data mining. The combination of a data mining algorithm
(usually some variant of Apriori [1]) with a language such
as SQL offers some interesting querying abilities. Other re-
searchers have argued that data mining primitives should be
as close as possible to those of traditional query languages
[20; 6].

The work on inductive query languages has been comple-
mented by several approaches to constraint based mining
[3; 23; 24; 38; 31; 16]. Constraint based mining provides the
user with certain primitives (such as frequency and syntactic
constraints) to specify the patterns of interest. This line of
research has focussed on discovering useful constraints that

can be processed efficiently.

Despite these many interesting contributions, we are still far
away from a deep understanding of inductive databases. It
appears to the author that several important components
of inductive databases (such as traditional databases and
constraint based mining techniques) are already well under-
stood, but that the overall picture is still unclear. Indeed,
with a few notable exceptions [5; 28; 18; 16], few works
have addressed architectural or design issues in inductive
databases. A simple theory that gives a clear answer to
simple questions such as ”What is an inductive database?”
and ”What is the functionality of an inductive database?”
seems to be missing and yet of central importance to the
further development of this idea.

Although it is probably too early to give a final answer to
the above questions, this paper wants to contribute a partial
answer to this question that is grounded in database theory
and logic. The answer consists of a simple but fairly power-
ful inductive database concept that clearly exemplifies the
nature as well as the functionality of an inductive database.

In formulating this answer, we start from first principles
rather than from complex state-of-the-art techniques and
algorithms, so that we do not get lost in technical details
and are, we hope, able to address the true design issues in
inductive databases. The resulting design does not pretend
to be realistic and is − from a practical perspective − overly
simple. It is merely meant to give insight into the possible
nature and properties of inductive databases and these prin-
ciples are generally applicable. One specific context in which
they are successfully being applied is that of the molecular
feature miner MolFea [13; 31], in which the user can query
for molecular patterns or fragments of interest using primi-
tives such as frequency and generality.

The paper is organized as follows: Section 2 introduces the
data and pattern components of inductive databases and
illustrates them using MolFea; Section 3 introduces the in-
ductive query language for specifying patterns of interest;
in Section 4 it is shown how queries can be used to cre-
ate, update and modify data and pattern sets; Section 5
is concerned with reasoning about queries with the aim of
query evaluation and optimization; Section 6 contains some
ideas and challenges concerned with memory organization
and data structures, and finally, in Section 7, we conclude.

2. INDUCTIVE DATABASES
Inductive databases do not only store data but also pat-
terns: the patterns are first class objects. Thus an induc-
tive database I(D,P) consists of a data component D and
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a pattern component P. We assume that both the data
and the pattern components D and P are sets of sets. This
assumption is motivated by an analogy with traditional re-
lational databases. A relational database can be considered
a set of relations where each relation is a set of tuples. So,
relational databases are - as our data component - sets of
sets. The assumption is further justified because in data
mining one is often coping with different data sets. Indeed,
one distinguishes the training from the test set, the set of
positives from the set of negatives, the set of instances in
a given cluster, the correctly classified examples from the
incorrectly classified ones, etc. This justifies the assumption
that D is a collection of data sets. Each data set D ∈ D con-
tains different examples or instances, which will be denoted
by e or i.

Everything that was said about the data component also ap-
plies to the pattern component. Indeed, during the knowl-
edge discovery process, one will often work with different
sets of patterns, each of which may reside in the inductive
database. These different sets may correspond to different
hypotheses constructed on different data sets during cross-
validation, to hypotheses constructed under various param-
eter settings (e.g., levels of frequency), to user supplied pat-
terns, post-processed patterns, etc. Pattern sets will be de-
noted by P and their elements, i.e., the patterns, by p, pi, . . ..

In order to illustrate the key concepts of our inductive database
design, we will employ the pattern domain of strings. This
pattern domain, as many of the other ideas presented in
this paper, are motivated by the domain specific inductive
database MolFea [31]. We will therefore first briefly review
the MolFea setting and then abstract from MolFea in defin-
ing the pattern domain of strings. At the same time, we
hope that the MolFea experiences and setting will convince
the reader of the practical relevance of the presented induc-
tive database concepts.

MolFea is a domain specific inductive database for mining
features of interest in sets of molecules. The examples in
MolFea are thus molecules, and the patterns are molecu-
lar fragments. More specifically, in [31] we employed the
2D (graph) structure of molecules, and linear sequences of
atoms and bonds as fragments. An example molecule named
Azidothymidine (AZT), a commonly used drug against HIV,
is illustrated in Figure 1. Two interesting molecular frag-
ments discovered using MolFea are:

N=N=N-C-C-C-n:c:c:c=O

N=N=N-C-C-C-n:c:n:c=O

In these fragments, ’C’, ’N’, ’Cl’, etc. denote elements1,
and ’-’ denotes a single bond, ’=’ a double bond, ’#’ a
triple bond, and ’:’ an aromatic bond. The two fragments
occur in AZT because there exist labelled paths in the graph
AZT that correspond to these fragments.

Let us now introduce the string pattern domain, which is an
abstraction of MolFea. This pattern domain should also be
useful for other applications in bioinformatics involving, e.g.,
DNA/RNA or proteins. In the string pattern domain, exam-
ples as well as patterns are strings expressed in a language
LΣ over an alphabet Σ. Furthermore, a pattern p matches
or covers an example e if and only if p is a substring of e,
i.e. the symbols of p occur at consecutive positions in e. An

1Elements involved in aromatic bonds are written in lower-
case.

Figure 1: Chemical Structure of Azidothymidine

example toy database in this context could be:

• e1 = aabbcc; e2 = abbc; e3 = bb; e4 = abc; e5 = bc;
e6 = cc

• D1 = {e1, e2, e3} = {aabbcc, abbc, bb};
D2 = {e4, e5, e6} = {abc, bc, cc};
D3 = D1 ∪D2

• p1 = abb; p2 = bb; p3 = cc

• P1 = {p1, p2, p3}.

• D = {D1, D2, D3} and P = {P1}

Instead of using the pattern domain of strings, one could
also employ other domains such as the data miner’s favorite
item sets. Then, if I is the set of items considered, examples
e as well as patterns p are subsets of I. Data and pattern
sets are then sets of item-sets.

3. AN INDUCTIVE QUERY LANGUAGE
One of the crucial reasons behind the success of relational
databases is that relational query languages, such as the re-
lational algebra, are fairly powerful but yet reasonably sim-
ple.2

What should an inductive query language look like? We
will assume that the result of an inductive query is either a
pattern set or a data set. This assumption guarantees the
so-called closure property [28; 6]. The closure property is
again justified by analogy with relational databases, where
the result of a query is always a relation; one can argue that
the reason for the success of relational algebra was due to
the closure property and not to its inherent strength.

Given that we distinguish data sets from pattern sets, we
need two types of queries: those that generate data sets and
those that generate pattern sets. Queries that start from
both data sets as well as pattern sets are sometimes called
cross-over operations [6].

Motivated by the use of logic for both databases and con-
straint based mining as well as by the intimate relationship
between logic and set theory, we propose to use logic to
design inductive query languages. Using logic should facil-
itate the definition of the semantics of the query language,

2It is easy to give examples of queries that one cannot
express using relational algebra; just consider aggregates.
Thus having simple examples that fall outside the query lan-
guage does not necessarily mean that the language is fatally
flawed.
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should allow to reason about queries and their execution,
and should also result in declarative querying possibilities.

In our example inductive query language, we allow for queries
q that either contain no variables or contain exactly one vari-
able τ as in q(τ). Queries without variables will be inter-
preted as true or false; queries q(τ) with a single variable τ

will be interpreted as sets {i | q(i) is true}; queries with two
or more variables are not allowed. Let us now define a sim-
ple though powerful query language (inspired on MolFea) for
our inductive database. Again, we wish to stress that the
list of primitives sketched is by no means exhaustive, it is
meant for illustrative purposes and it can easily be extended
with other primitives, with other pattern domains (such as
item sets [1], episodes [34], Datalog queries [12], etc.), and
even with primitives for other data mining tasks (such as
clustering [42]).

• Let g and s be strings. Then g is more general than

s, notation g 4 s, if and only if g is a substring of s.
E.g., on our earlier example, p2 4 p1 evaluates to true,
and p3 4 p1 to false. This primitive − defined in the
context of strings − applies to virtually any pattern
domain.

• The 4 relation can now be used in primitive con-
straints of the type p 4 p′, τ 4 p, ¬(τ 4 p), p 4 τ ,
and ¬(p 4 τ), where τ denotes the target pattern and
p and p′ specific patterns. E.g., τ 4 ab yields as solu-
tions the set of substrings of ab, i.e., {ε, a, b, ab}.

• Let p be a pattern and D a data set, i.e., a set of
examples. Then freq(p,D) = card{e ∈ D | p 4 e},
where card(S) denotes the cardinality of the set S.
So, freq(p,D) denotes the number of instances in D

covered by p, i.e., the frequency of p in D. E.g.,
freq(p3, D2) = 1.

• The freq(p,D) construct can be used in the following
type of constraints: freq(p,D) ≥ t, freq(p,D) ≤ t,
freq(τ,D) ≥ t and freq(τ,D) ≤ t where t is a nu-
merical threshold, τ is the queried pattern or string, p
is a specific pattern and D is a data set. Notice that
freq is usually involved in cross-over operations. E.g.,
freq(τ,D2) ≥ 2 yields the set of all substrings of bc.

• Given that we work with sets it will be useful to employ
traditional set operations: i ∈ I, i 6∈ I, τ ∈ I as well
as τ 6∈ I where τ is the queried pattern, i an element
and I a set.

• Finally, the language IL consists of any boolean ex-
pression b involving the above introduced primitives.
We allow for the usual boolean connectives ∧,∨,¬3.

So, within the sketched language, we can formulate the fol-
lowing queries:

• All traditional set operations can be performed; e.g.
the query (τ ∈ D1) ∨ (τ ∈ D2) denotes the set D1 ∪
D2. For ease of expression and compactness, we will
sometimes use the (simpler) set notation in queries.

• Traditional minimal frequency queries can be performed,
e.g., freq(τ,D1) ≥ 2.

3If desired, one might also use =⇒ and ⇐⇒.

• One can also obtain the set of examples in D3 cov-
ered by a given pattern p2 using (τ ∈ D3) ∧ (p2 4 τ);
given the example inductive database listed above, this
query returns the set D1.

• A complex query such as

(freq(τ,Dpos) ≥ n) ∧ (freq(τ,Dneg) ≤ m)

asks for the set of patterns that are frequent on the
positive examples Dpos and infrequent on the negatives
in Dneg. On our toy database, the query

(τ ∈ P1) ∧ (freq(τ,D1) ≤ 0) ∧ (freq(τ,D2) ≥ 1)

would yield the set {cc}.

The data mining primitives are an extension of those em-
ployed in the MolFea system for mining molecular features
[31]. The key differences are that MolFea does not support
the set oriented primitives and that it only allows for con-
junctive queries. Here, arbitrary boolean queries are sup-
ported.

Notice that even though the inductive query language is
simple, the range of queries that can be expressed is quite
large. Two features are especially important and distin-
guish our language from other ones: the use of arbitrary
boolean queries (introduced in [16]) and the ability to for-
mulate minimum as well as maximum frequency constraints
over multiple data sets (introduced in [13]). For building
efficient query solvers, it is crucial that the key primitives
(frequency and generality) satisfy the monotonicity or anti-
monotonicity property4. A constraint c is anti-monotonic

(resp. monotonic) w.r.t. generality whenever

∀ patterns s, g : (g 4 s) ∧ (s ∈ sol(c))→ (g ∈ sol(c))

(resp. (g ∈ sol(c)) → (s ∈ sol(c))). Anti-monotonic (resp.
monotonic) constraints have the property that whenever a
pattern s satisfies the constraint, all its generalizations (resp.
specializations) will also satisfy the constraint. The basic
anti-monotonic constraints in our framework are: (τ 4 p)
and freq(τ,D) ≥ m, the basic monotonic ones are (p 4

τ) and freq(τ,D) ≤ m. Furthermore the negation of a
monotonic constraint is anti-monotonic and vice versa. It
would be relatively straightforward to extend our language
and solvers with other primitives that are monotonic or anti-
monotonic. One important challenge for inductive querying
concerns the use of primitives that are neither monotonic nor
anti-monotonic (cf. [40]). As an example constraint consider
acc(τ,Dpos, Dneg) ≥ 0.8. The answer set of this constraint
contains all patterns τ that have a minimum accuracy of 80
per cent on the data sets Dpos and Dneg. Here, we could
define the accuracy as

acc(τ,Dpos, Dneg) =
freq(τ,Dpos)

freq(τ,Dpos) + freq(τ,Dneg)

(provided that the frequencies are not equal to 0).

Efficiently evaluating queries within inductive database lan-
guages such as IL is one of the most important challenges
in inductive databases. From a logical point of view, in-
ductive database queries can - as their traditional counter
parts - be decomposed into their constituents, which cor-
respond - for IL - to the primitives outlined above. The

4Interesting variants and extensions of these notions are
studied in a recent paper by [40].
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problem is then to combine them in such a way that 1) the
available solvers can compute the answers, and 2) the com-
putational resources needed in this process are minimized.
To illustrate this problem, consider the query (freq(τ,D) ≥
td) ∧ (freq(τ, E) ≥ te). There are various ways of finding
the solution set to this query. First, one could compute
(freq(τ,D) ≥ td) and then remove those elements not satis-
fying (freq(τ, E) ≥ te) (or the other way around). Secondly,
one could compute the answers to each of the conjuncts in-
dependently and then compute the intersection. Thirdly one
could compute the result using the overall conjunction di-
rectly (e.g., using a level wise search using the conjunction
as the constraint). Which of these is to be preferred will de-
pend on the data sets, thresholds and algorithms available.
The problem of deciding among these is similar to that in
traditional query optimization. It seems therefore likely that
similar solutions could work as well. One might e.g. want to
use a cost estimates for comparing different execution plans
for a given query. It remains - so far - an open question
as to what cost estimates would be useful and appropriate
for inductive queries. At the same time, it should be clear
that reasoning about inductive queries (cf. Section 5) and
efficient data structures and memory organization (cf. Sec-
tion 6) will be of key importance to develop efficient query
solvers.

4. OPERATIONS
So far, we have mainly addressed architectural and querying
aspects of inductive databases. We have not yet addressed
how to create and modify an inductive database. Again, it is
useful to exploit the analogy with existing databases to the
maximal possible extent. As in SQL, we therefore use cre-
ation, deletion and update operations as well as regular sets
and view sets. This results in the operations sketched below,
which are also inspired by ongoing work on the MineRULE
system by Rosa Meo (personal communication). Again, we
assume a perfect symmetry among the data and the pattern
components. So even though we only list the operations on
the data component, every operation on the data has an
equivalent one on patterns.

create data set D as qD: inserts the new data set D ob-
tained by evaluating qD into the data component D of
the inductive database I(D,P).

create view data set D as qD: inserts the new virtual data
set D defined by the inductive query qD into the data
component D of the inductive database I(D,P).

delete data set D: deletes the (view or regular) data set
D from the data componentD of the inductive database
I(D,P).

update data set D (add | delete) qD: either adds or deletes
the examples in qD to/from the set D.

The provided operations are similar to those supported in
a relational database. First, the result of an inductive data
query can be stored into a new data set. Second, one can also
define virtual or view data sets. View data sets behave as
views in a relational database. Basically, the defining query
is stored (and possibly materialized as well), and the data
set can be queried just as if it were a normal set. Changes or
updates to the data and pattern sets after the introduction

of the view are dynamically reflected in the view data set.
Updates on views can be complex. Thirdly, it is possible
to delete and modify a data set. Of course, in any possible
realistic inductive database more complex update operations
will be available.

Whereas the sketched operations are unsurprising for the
data component, they are less straightforward when applied
to the pattern component. Let us illustrate and motivate
the key concepts on our inductive toy-database. Assume
the following statements are given:

create data set D4 as (τ ∈ D3) ∧ (a 4 τ);
create pattern view P2 as (b 4 τ) ∧ freq(τ,D4) ≥ 2;
update data set D4 delete {abbc};

This sequence of commands has the following effects on our
database:

• Immediately after executing the first command and be-
fore the update command, D4 becomes {e1, e2, e4} =
{aabbcc, abbc, abc}.

• The value of the pattern view P2 before the update
command is {b, ab, bb, bc, abb, bbc, abbc}.

• After the update command, the value of D4 is {aabbcc, abc}
and the value of the pattern view P2 becomes {b, ab, bc}.

This example illustrates a form of incremental data mining
where changes to the underlying data sets have an imme-
diate effect on the defined pattern sets. This is realized
through the use of pattern views. The use of pattern views
is interesting from a practical perspective. Indeed, it is easy
to imagine a basket analysis scenario where one always wants
to query the patterns that hold in the transaction data of
the last week. Dealing efficiently with such incremental data
mining and pattern views seems an important challenge for
data mining. An example of that illustrates some of the
issues in pattern view maintenance, is presented in Section
6.2.

5. REASONING
A theory of inductive databases can only be useful if it offers
the possibility to reason about data mining and its processes.
This section explores the possibilities of our logical view for
reasoning about query evaluation and optimization. Such
reasoning processes must start from logical axioms.

The reason why a logical axiomatization of constructs in the
language are useful is given by the following two properties:

P1 For all queries q1 and q2 we have (q1 =⇒ q2) if and only
if for all inductive databases I we have: sol(q1, I) ⊆
sol(q2, I), where sol(qi, I) denotes the set of solutions
to query qi in the inductive database.

P2 For all queries q1 and q2 we have (q1 ⇐⇒ q2) if and only
if for all inductive databases I we have sol(q1, I) =
sol(q2, I). (This is, of course, a corollary of P1.)

These properties state that logical implication or entailment
among queries directly corresponds to the subset relation
among its answer sets.

For the sketched inductive query language, the axioms listed
below should be useful. The list is only meant to illustrate
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the kind of axioms that query optimizers could use. Study-
ing alternative axiomatizations and their properties remains
an important topic for further research. In this context,
Calders and Paredaens have recently contributed an inter-
esting axiomatization of frequent sets, cf. [9].

A1 an axiomatization of finite sets;

A2 an axiomatization of the partial order 4, i.e. reflexivity,
transitivity, and possibly anti-symmetry;

A3 an axiomatization of the total order ≤ for numbers;

A4 For all data sets D1, D2 and patterns p: D1 ⊆ D2 =⇒
freq(p,D1) ≤ freq(p,D2); and

A5 For all patterns p1, p2 and data sets D: p1 4 p2 =⇒
freq(p1, D) ≥ freq(p2, D).

The axioms A1 could be used for reasoning about the rela-
tionships among the various sets in the inductive database
and queries. The axioms A3 are intended to support rea-
soning about the numerical thresholds in the frequency con-
straints. The axioms A4 and A5 specify the monotonicity
properties of freq for both of its arguments. The above
axioms can be used in a variety of different ways. Let us
illustrate these on some representative examples.

Consider queries q3 and q4 such that A1-5|= q3 =⇒ q4. E.g.,
q3 and q4 could be freq(τ,D) ≥ 3 and freq(τ,D) ≥ 2, or
alternatively freq(τ,D) ≥ m and freq(τ,D ∪E) ≥ m. The
following situations can be imagined, cf. [2].

• Query q3 needs to be answered and assume that the
solution set q4 has already been stored as pattern set
P4 of the inductive database. Then q3 can be solved
by evaluating q3 on all elements of P4. If the results of
q3 must be stored as a pattern set P3 in the database,
the inductive database management system may store
P4 as the union of the two sets P3 and P4 − P3 for
compactness reasons.

• Query q4 needs to be answered and assume that the
solution set q3 has already been stored as pattern set
P3 of the inductive database. The inductive database
management system can immediately retrieve the an-
swers P3 and present them to the user while comput-
ing the missing answers in P4 − P3. This may reduce
the computational resources needed for answering the
queries under certain conditions. Furthermore, the set
P4 may again be stored as the union of the two subsets
P3 and P4 − P3 for compactness reasons.

Notice that the very same observations and situations apply
to queries that return data sets. Furthermore, this type of
reasoning is also required to effectively handle the pattern
views introduced earlier. Logical reasoning could be used to
decide when and how to update materialized views. In this
context, one might − by analogy to the traditional view
update problem in databases − also consider the pattern
view update problem. The pattern view update problem
consists of deciding how the underlying data and pattern
sets need to be updated to insert or delete a pattern to/from
the pattern view. This corresponds to a kind of what if
questions.

6. INTERNAL REPRESENTATIONS
Efficient data structures and memory management are cru-
cial for database theory. Therefore, we also discuss some of
the memory management issues and challenges for inductive
databases.

6.1 Representing Pattern Sets
First, at the level of the data and pattern component, it
will be useful to keep track of the subset relation. Indeed,
when sets D1 and D2 are present in the data base and D1 ⊆
D2, this fact should be represented explicitly. Storing these
properties in a systematic way amounts to representing the
whole structure of the data and pattern component. This
will be useful in the context of query optimization. Also,
other facts about the relationship among different pattern
sets may be useful (e.g., when one pattern set is a condensed
representation of another one, cf. below).

Secondly, it will be useful to explicitly represent the 4 re-
lation among the patterns in the pattern set, especially for
pattern sets that are irregular w.r.t. the 4 relation (e.g.,
when they are not convex or representable by border sets,
cf. below). Explicitly representing the 4 relation will al-
low the inductive database management system to optimize
queries of the type (τ ∈ P ) ∧ q(τ) where P is a pattern set
and q a query in the language IL introduced above. Using
the internal representation of 4, the constraint τ ∈ P can
be pushed into the solver. E.g., if q(τ) = (freq(τ,D) ≥ m),
a variant of the level wise algorithm could efficiently gen-
erate as candidates only those elements that belong to P .
The alternative would be to search the space of all patterns,
and then filter out those that do not belong to P . For ill-
structured or small pattern sets this form of post-processing
is likely to be less efficient, cf. also [24].

6.2 Operations on Pattern Sets
It is not only important to develop efficient data structures
for representing pattern sets, but also to devise operations
on these data structures. Such operations would directly im-
plement the primitive constraints and the logical operations
in the inductive database language. Thus they could serve
as the elementary operations (a kind of algebra) for query
evaluation as well as query optimization. Furthermore, the
intermediate pattern sets could be cached for further use in
interactive querying sessions. To illustrate this point, let us
assume that pattern sets are represented using a directed
acyclic graph; Figure 2 shows a graph corresponding to the
materialized pattern set P2 = {b, ab, bb, bc, abb, bbc, abbc} for
the pattern view (b ¹ τ) ∧ freq(τ,D4) ≥ 2, where D4 is
initially {aabbcc, abbc, abc}5. In a pattern graph, nodes cor-
respond to patterns and edges to the generalization relation.
The labels of the nodes denote properties of the patterns.
The most important property is the membership flag with
values ”+” and ”-”. The label ”+” (resp. ”-”) denotes that
the corresponding pattern belongs (resp. does not belong)
to the pattern set represented by the graph. So, a pattern
graph may also contain information about patterns outside
the pattern set it represents, e.g. a ∈ P2 because of the la-

5Usually, one would not employ graph structures for these
purposes, but some special purpose tree structure such as
FP-trees [24] for item sets or version space trees for string
patterns [16]. However, in order to simplify the exposition
and to focuss on the key ideas, we choose graphs rather than
these more complex data structures.
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bel ”-”. Furthermore, from Figure 2, one can directly read
that b belongs to P2 and also that (within P2) it has three
minimal specializations, i.e. ab, bb and bc. This kind of in-
formation should be useful when searching for patterns in P2
that satisfy certain constraints (cf. Section 6.1). The other
labels on the nodes representing a pattern denote coverage
information. Indeed, the second label in a node encodes the
indexes of the examples (here in D4 = {e1, e2, e4}) that are
covered by the pattern, the third one, those (in D4) that
are not covered, where ”*” denotes the empty set. E.g., bb
covers e1 and e2 but not e4. Given data structures such as
pattern graphs, an inductive database language can be im-
plemented using operations on these data structures. As an
example consider the pattern graph operations ”∪”, ”∩” and
”− ” corresponding to the logical operations ”∧ ”, ”∨ ” and
”¬”6. These operations would compute the union, intersec-
tion or difference of two pattern graphs. They are useful to
decompose queries of the form q1 ∧ q2; q1 ∨ q2 and q1 ∧¬q2.
Indeed, these queries can be answered by first computing
the pattern graphs w.r.t. q1 and q2 and then performing
the appropriate operation on the resulting pattern graphs.
Other operations that are likely to be useful could manipu-
late the labels of the nodes in a pattern graph. The labels
w.r.t. coverage could be modified in order to reflect an up-
date in the pattern view (e.g., as the result of deleting or
adding an element of the set D4 used in the definition of
the pattern view). In addition, updates to the underlying
data set would also trigger changes in the membership la-
bel. Interesting and challenging situations occur when new
nodes need to be inserted in the pattern graph as the result
of an update. (At this point, the reader may want to inves-
tigate the effect of deleting the element abbc from D4 on the
pattern graph.)

Pattern graphs and their operations are not only useful in
the context of query evaluation and optimization, they can
also be employed for optimizing interactive querying ses-
sions. Indeed, the intermediate results of one inductive
query can often serve to optimize the computation of the
answer to the next query.

As far as the author is aware, pattern graphs - in the form
presented above - have not yet been used within the field
of data mining. Nevertheless, there exist some interesting
data structures, such as FP-trees [24; 40] and version space
trees [16] that are typically constructed while evaluating the
query and that contain several of the components sketched
above. One of the remaining challenges - that we are cur-
rently studying for version space trees - is to develop efficient
implementations of the pattern set operations.

6.3 Condensed Representations
It is sometimes possible to represent pattern sets using con-
densed representations. A condensed representation R(P ) of
a pattern set P is a subset R(P ) ⊆ P such that the original
pattern set P can be reconstructed from R(P )7. So, R(P )

6Ideally, an operation implementing the complement of a
pattern graph would also be provided to compute the an-
swers to a query ¬q on the basis of the pattern graph. How-
ever, the resulting pattern graphs would be extremely large
(in the case of strings even infinitely large) and therefore
impractical. Furthermore, in many cases, as in traditional
databases, queries of the form ¬q will not be safe.
7Some condensed representations require that additional in-
formation (such as exact frequencies) can be reconstructed

a,124,*,− b,124,*,+ c,124,*,−

ab,124,*,+ bb,12,4,+ bc,124,*,+

bbc,12,4,+abb,12,4,+

abbc,12,4,+

Figure 2: Pattern graph corresponding to P2.

encodes all relevant information about P in a more compact,
i.e. condensed, manner. In the literature one can distinguish
two types of condensed representations. On the one hand,
there are local condensed representations, based on proper-
ties of the individual patterns; on the other hand, there are
global condensed representations based on the properties of
the complete pattern set.

Examples of local condensed representations include free
item sets, closed item sets, δ-free item sets, etc. See e.g.
[8; 39; 41] for more details. An item set I is e.g. free w.r.t.
to a data set if and only if there is no rule of the form
i1 ⇒ i2 that is valid on the data set where i1, i2 are two
disjoint subsets of I. Local condensed representations allow
one to eliminate redundant patterns from the search space
as well as from the solutions. Various algorithms working
with local condensed representations have been published in
the literature, e.g. [7; 39; 41; 8].

Global representations are often oriented towards represent-
ing the border sets, that is the minimal and maximal ele-
ments in the set w.r.t. the partial order 4. More formally,
let max(P ) = {p ∈ P | ¬∃q ∈ P : p 4 q}, i.e. max(P )
contains the maximally specific elements in P , and define
min(P ) dually, i.e. min(P ) = {p ∈ P | ¬∃q ∈ P : q 4 p},
i.e. min(P ) contains the maximally general or minimally
specific elements in P . We can then also define the borders
of a pattern set P : S(P ) = max(P ) and G(P ) = min(P )8.
The interesting point about borders is that they can be
used as condensed representations. It has been shown [13]
that queries q that are a conjunction of anti-monotonic and
monotonic constraints are version spaces. This means that
they are completely characterized by their sets S(q) and
G(q), i.e. q = {p | ∃s ∈ S(q), g ∈ G(q) : g 4 p 4 s}. On
our earlier example, the reader may want to verify that the
pattern set P2 = {b, ab, bb, bc, abb, bbc, abbc} represented in

as well. Other condensed representations require only that
the original set (with or without additional information) can
be approximated [30].
8Sometimes one also uses negative borders [34], they contain
patterns not belonging to the pattern set P but are in a sense
closest (w.r.t. the generality relation). E.g. the S−(P )
border w.r.t. a minimum frequency threshold contains the
maximally general elements that are strictly more specific
than an element in S(P ).
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the pattern graph is completely characterized by G(P2) =
min(P2) = {b} and S(P2) = max(P2) = {abbc}.

Within the field of data mining the use of border sets has
been introduced in [34], who propose to keep track of the
set S(P ) for anti-monotonic constraints, and within machine
learning there is the well-known work of [37; 36] on version
spaces. In the past few years, a number of algorithms have
been published that focuss on the efficient computation of
these border sets in the context of data mining, see e.g. [4;
26; 31; 21; 17; 11]. One of the most recent and exciting
results is that by [17], who basically show how some local
and global condensed representations can be integrated us-
ing version spaces.

Whereas our earlier results stated that the solution set of a
conjunctive query involving anti-monotonic and monotonic
constraints can be represented using a single version space,
our more recent results [14; 16] state that the answer set of
any boolean query over anti-monotonic and monotonic con-
straints can be represented as the union of different version
spaces. To see why this is the case, rewrite the query in
a disjunctive normal form. Each conjunction with the dis-
junctive normal form will then involve monotonic and anti-
monotonic constraints. Hence, the earlier result applies and
the conjunction can be represented as a version space, and
the original set as the union of such version spaces. This
result in turn leads to some interesting questions such as
”What is the minimal number of version spaces needed to
represent the answers to an inductive query?”. This last
question is answered in [16]. In the same paper, version
space trees are introduced. These combine ideas from pat-
tern graphs and version spaces for the pattern domain of
strings. It seems possible to adapt these ideas to FP-trees
[24].

Finally, we mention also that operations such as union and
intersection on condensed representations have been inves-
tigated, cf. [26; 32; 14].

7. CONCLUSIONS
Despite the fact that the presentation of our inductive database
framework has been quite informal and presented in the con-
text of string data, there is significant evidence that the line
of research sketched in this paper is fruitful from the the-
oretical as well as from the practical point of view. Much
of the present evidence comes from the MolFea system for
molecular feature mining, which has effectively been used in
a number of real-life applications involving large and com-
plex data sets such as the HIV-data set which contains over
40 000 compounds [31]. Furthermore systems based on the
same principles as MolFea have been developed. These in-
clude DualMiner by [11] for item sets, ProFea [15] for ana-
lyzing the secondary structure of proteins, MineSeqLog [33]
for mining logical (i.e. structured) sequences and Version
Space Trees [16].

Nevertheless, there are several important limitations of the
proposed design. It only addresses local pattern mining
tasks9, does not account for primitives that are neither anti-
monotonic nor monotonic (such as e.g. accuracy), ignores
probabilistic issues, etc. Despite these limitations the au-
thor hopes that the framework inspires some further devel-

9[25] distinguish local patterns from global models. Global
models are models about a data set as a whole, whereas local
patterns are statements about a (local) subset of the data.

opments in inductive databases.
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