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Abstract

Three different formalizations of concept-learning in logic (as well as some vari-
ants) are analyzed and related. It is shown that learning from interpretations reduces
to learning from entailment, which in turn reduces to learning from satisfiability. The
implications of this result for inductive logic programming and computational learning
theory are then discussed, and guidelines for choosing a problem-setting are formulated.

Keywords: inductive logic programming, computational learning theory, concept-learning,
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1 Introduction

Various formalisations of concept-learning in logic have been proposed, e.g. learning from
interpretations [Valiant, 1984; De Raedt and Dzeroski, 1994; Angluin et al., 1992], learn-
ing from entailment [Frazier and Pitt, 1993], and several inductive logic programming set-
tings [Muggleton and De Raedt, 1994; De Raedt, 1996; Flach, 1992; Flach, 1995; Wrobel
and Dzeroski, 1995]. These formalizations differ in their representation of examples and
the corresponding membership function or coverage notion, which determines whether an
example is covered by a concept. At present, it is an open question as to what the re-
lation among these different formalizations is. This question has been raised in different
forms and in different contexts. Firstly, in computational learning theory, [Angluin, 1987;
Frazier and Pitt, 1993; Angluin et al, 1992] have wondered what the general relation
is between learning from interpretations and learning from entailment, and which setting
should be used for which type of learning problem. Secondly, in inductive logic program-
ming it is unclear how systems such as FOIL [Quinlan, 1990] and Golem [Muggleton and
Feng, 1990], which learn from entailment, relate to systems such as ICL [De Raedt and
Van Laer, 1995] and Claudien [De Raedt and Dehaspe, 1997], which learn from interpreta-
tions. Furthermore, several variants have been proposed of these settings [Fensel et al., 1995;



Wrobel and Dzeroski, 1995]. Thirdly, though computational learning theory and attribute-
value learning techniques typically learn from interpretations, inductive logic programming
has mainly addressed learning from entailment, which indicates that answers to the open
question may also increase our understanding of the relation between inductive logic pro-
gramming and attribute value learning. Fourthly, PAC-learning studies of inductive logic
programming such as [Cohen and Page, 1995; De Raedt and Dzeroski, 1994] have also left
open the question as to whether learning from interpretations allows to PAC-learn classes of
concepts that are not learnable from entailment.

This paper contributes answers to the open questions raised above. More specifically, it
will be shown that learning from interpretations reduces to learning from entailment, which
in turn reduces to learning from satisfiability. Learning from satisfiability is a more recent
setting that generalizes the other settings. In this setting, examples and hypotheses are both
full clausal theories.

It will also be shown that there exist propositional classes such as k-CNF that are PAC-
learnable from interpretations, but that are not efficiently learnable from entailment or from
satisfiability. The implications of this result for inductive logic programming, computational
learning theory and attribute value learning are then analyzed. Furthermore, practical sug-
gestions for choosing the right problem-setting are formulated.

The paper is organised as follows : section 2 briefly reviews some basic notions in logic;
section 3 introduces the different formalisations of concept-learning in clausal logic and in-
vestigates the relation among them; section 4 discusses the implications of this relation
for computational learning theory (this section may be skipped by the casual reader less
interested in theory); section 5 touches upon related work, and finally, section 6 concludes.

2 Logic

We first review some standard concepts from the predicate calculus (see e.g. [Genesereth
and Nilsson, 1987] for more details).

In this paper, an alphabet consists of a set of constant, functor and predicate symbols.

A termt is either a constant, a variable or a compound term f(¢y,...,1,) composed of an
n-ary function symbol f, and n terms t;. An atom is a logical formula of the form p(t1, ..,1,),
where p is an n-ary predicate symbol and ¢; are terms. A literal is an atom or the negation
—A of an atom A. Atoms are positive literals, and negated atoms are negative literals.

In propositional logic, no terms are considered. Thus in propositional logic, all predicates
have 0 arity. In computational learning, one often employs CNF formulae, which are of the
following form:

(haV VI ) A o A(lea VooV i)

where all [; ; are propositional literals. CNF expressions have also a natural upgrade in first
order logic, namely clausal theories (or CT, for short):

(v%,l, ceey ‘/1,,”1 . 11,1 V..V ll,nl) N A (V‘/k,l, ceey ‘/1,,”& . lk,l V..V lk,nk)

where all [; ; are literals and V;1,..., Vi, are all variables occurring in [;; V ...V [;,,. The
symbol V reads for all and stands for universal quantification. Each disjunction is called a



clause. A clause (VVi,...,V, : hiV ...V hy V =by V ...V 2byy,) s often written as an implication
hiV .oV hy «— by Ao A by,

Interesting subsets of clausal logic, are Horn (resp. definite) clause logic. They consist
of CT expressions that have at most one (resp. exactly one) positive literal in each clause.

Interpretations are used to formalize truth and falsity of specific formulae and entailment.
As we use only clausal logic, we will focuss on so-called Herbrand interpretations, which
can — for our purposes — be defined as sets of variable-free (i.e. ground) atoms over a given
alphabet. According to a Herbrand interpretation all atoms in the interpretation are true,
and all other atoms (over the alphabet) are false. In the propositional or boolean case, a
Herbrand interpretation corresponds to a variable assignment, i.e. a truth assignment to the
propositional atoms which are the ‘variables’ of the formula.

A substitution 6 = {V] « t1,...,V,, « t,} is an assignment of terms ¢y, ..., ¢, to variables
Vi, .oy Voo The formula F'0 where F is a term, atom, literal or expression, and 6 = {V; «
t1,..., Vo « t,} is a substitution, is the formula obtained by simultaneously replacing all

variables Vi, ...,V in F' by the terms ¢y, ..., 1,.

A clausal theory T' is true in a Herbrand interpretation [ if T'6 is true in I for each
substitution @ for which 70 is ground. A ground clausal theory 7'¢ is true in [ if and only
if each clause of 70 is true in I. A ground clause is true in [ if one of the atoms that
appears positively in the clause is true according to I or one of the atoms that appears neg-
atively is false according to I. E.g. flies V —=bird V —abnormal is true in the interpretations
{flies}, {abnormal} but false in {bird, abnormal}. If a theory is true in an interpretation
we also say that the interpretation is a model for the theory.

Logical entailment and satisfiability are typically defined using interpretations. We will
write F' = G (read F logically entails G) when all models of F' are also a model for G, and
F |= 0O (read F is not satisfiable) if there exists no interpretation that is a model of F.

3 Concept-learning

In concept-learning [Mitchell, 1982], one is given a language of concepts L¢, a language of
examples L., the covers or membership-relation €¢ that specifies how L¢ relates to Le, and
a set of examples £ of an unknown target concept ¢ € Lg. Each example is of the form
(e,Class) where e € L. and Class is true or false. Examples (e, true) are positive examples,
whereas examples (e, false) are negative. The aim in concept-learning is then to find a
hypothesis H € L¢ that covers all positive examples (i.e. H is complete) and none of the
negative examples (i.e. H is consistent).

3.1 Concept-learning in logic

Logical approaches to concept-learning instantiate this definition by defining the representa-
tion languages for concepts Lg and examples L., as well as the coverage €¢ relation among
them. We will now investigate several possibilities for formalizing concept-learning in clausal
logic.

Roughly speaking, in inductive logic programming, hypotheses are clausal theories, ex-
amples are clauses, and a hypothesis covers an example if the hypothesis logically entails the



example (cf. also section 3.2.):

Definition 1 (learning from entailment) If H is a clausal theory and ¢ a clause, then H
covers ¢ under entailment, notation ¢ €, H, if and only if H = e.

We will call this setting learning from entailment following [Frazier and Pitt, 1993].

Example 1 Let the ezamples be (flies « normal A bird; true), (flies «— bird; false) and
(« flies A normal A bird; false). Then flies < bird A normal is a solution.

Another logical setting originates from the work on PAC-learning [Valiant, 1984; De Raedt
and Dzeroski, 1994]. In learning from interpretations, hypotheses are clausal theories, ex-
amples are Herbrand interpretations and an example is covered when it is a model for the
hypothesis.

Definition 2 (learning from interpretations) If H is a clausal theory and e¢ a Herbrand
interpretation, then H covers e under interpretations, notation ¢ €; H, if and only if ¢ is a

model for H.

Example 2 Let ezamples be ({bird,normal, flies};true) and ({normal, bird}; false). Then
flies « berd A normal is a solution.

When learning from interpretations, it is implicitly assumed that each example is com-
pletely specified. Indeed, in propositional logic, all propositions should be either true or false.
As a consequence, missing values cannot be represented in this framework. It has therefore
been suggested by [Fensel et al., 1995] to represent examples by partial interpretations. In a
partial interpretation, certain ground atoms have an unknown truth-value (see below for a
formal definition). Alternatively, [Flach, 1992] employs a second-order logic for dealing with
this situation.

A generalization of learning from partial interpretations, called learning from satisfiabil-
ity, is defined below.

Definition 3 (learning from satisfiability) If H and e are both clausal theories, then H covers
e under satisfiability, notation ¢ €, H, if and only if H N e [£ O.

Example 3 Let the ezamples be ({bird «;normal «; flies «}; true), ({bird V flies «
:normal «}; true) and ({bird «;normal <;« flies}; false). Then flies « bird Anormal
s a solution.

This notion of coverage (using the membership function €,) was proposed by [Wrobel
and Dzeroski, 1995]. However, [Wrobel and Dzeroski, 1995] did not choose full clausal logic
to represent examples and hypotheses. Yet, this choice is essential for our purposes.

Whereas learning from entailment and learning from interpretations are well-known and
well-motivated in the literature, we still need to answer the question as to Why learning from
satisfiability is useful 2 A first and tentative answer is that learning from satisfiability seems
the most general setting possible within clausal logic as both examples and hypotheses are
clausal theories. We will soon show that the other settings defined above indeed reduce to
learning from satisfiability.



3.2 Relation among the different settings

We will now investigate the relation between the different formalizations of concept-learning
in logic using the concept of a solution-set:

Definition 4 sol,(F) = {H | H is a clausal theory over a given alphabet such that for all
(p,true) € E :p €, H and for all (n, false) € £ :n ¢, H}

To investigate how one type of coverage notion relates to another type of coverage, we
use reductions’:
Definition 5 A reduction from learning under €, to learning under €, is a function p that
maps any example set £ (under €,) onto an example set £, = {p(e) | ¢ € E} (under €,)
such that sol,(E) = sol,(F,).

If there exists a reduction p from learning under €, to learning under €,, we can solve
learning problems under €, using the algorithms for €,. One merely has to map the example
set £/ to F, and run the algorithm under €,. The solutions generated under €, will also be
solutions under €,. We can then consider learning under €, a harder or more general task
than learning under €,. Obviously:

Property 1 If there exist reductions from learning under €, to learning under €, and from
learning under €, to learning under €,, then there ezists a reduction learning under €, to
learning under €,.

Some of the reductions will represent Herbrand interpretations by clausal theories as
follows?:

Definition 6 Let ¢ be a Herbrand interpretation in which t,,...,t, are the true facts, and
f1, .-, fm are the false facts. Then i denotes the clausal theory {t; «;...;tn < fi;...;

fm}-

One property of this transformation that follows directly from Proposition 3.2. in [Lloyd,
1987] and that will be used in some of the proofs, goes as follows:

Property 2 Let H be a clausal theory and ¢ be a Herbrand interpretation. Then i is a model
for H iff i A H [~ 0.

Let us now investigate the relation among learning from entailment and learning from
satisfiability.

When talking about reductions, it will always be assumed that the language of concepts (including the
alphabet) is fixed. This assumption is needed because some of the reductions studied below change the
alphabet of the examples (using skolems).

2From a practical perspective, the definition can only be applied to finite Herbrand interpretations. With
finite interpretations, we mean interpretations whose sets of true and false facts are both finite. However,
Property 2 also holds for infinite Herbrand intepretations, which merely result in a theory consisting of an
infinite number of clauses. Clausal theories may - in general - contain an infinite number of clauses; clauses
must contain a finite number of literals.



Theorem 1 Learning from entailment reduces to learning from satisfiability.

Proof: Define p((e,Class)) = (—e,~Class), where e is a clause. The result then follows
from the observation that e €, H iff —e ¢, H. Notice that if Ay V ...V by, < by A ... A by, is
a clause, its negation is the clausal theory « hyo;...;« hpo;b10 «—;...; b0 «—, where o is a
skolem substitution®. a

This theorem shows that learning from entailment is to be considered a special case of
learning from satisfiability. The converse does not seem to hold, as clausal theories cannot
in general be transformed into single clauses.

Consider now the relation among learning from interpretations and learning from entail-
ment:

Theorem 2 Learning from finite interpretations reduces to learning from entailment.

Proof: Define p((e,Class)) = (—€,~Class), where e is a finite Herbrand interpretation.
The result then follows from the observation that ¢ €, H iff =7 ¢, H*, which in turn follows
from Property 2. Notice that if 7 is an interpretation with as true facts 4, ..., t,, and as false
facts f1,..., fa, then =7 is the clause fi V...V fp < t1 A ... A . d.

Corollary 1 Learning from finite interpretations reduces to learning from satisfiability.

Notice that the converse of theorem 2 does not hold, as the negation of a clause is not
necessarily a (complete) interpretation. It can however be considered a partial interpretation,
as some facts will be true, others will be false, and still others will have an unknown truth-
value. More formally: a partial interpretation (over an alphabet) consists of a set of true
ground facts T and a set of false ground facts F'. A Herbrand interpretation I (over the
same alphabet) eztends a partial interpretation (7', F') if and only it T C I and FFN T = 0.

Definition 7 (learning from partial interpretations) If H is a clausal theory and e is a
partial interpretation then H covers e under partial interpretations, notation e €,; H, if and
only if ¢ has an extension I that is a model of H®.

As for Herbrand interpretations, € denotes the clausal theory corresponding to the partial
interpretation e. Furthermore, there is a one-to-one correspondence between finite partial
interpretations e and clauses —€. Using this mapping it is easy to prove that :

Theorem 3 Learning from finite partial interpretations reduces to learning from entailment,
and vice versa, learning from entailment reduces to learning from finite partial interpreta-
tions.

3 A skolem substitution substitutes all variables by different constants that are not in the current alphabet.

4This restriction to finite interpretations is needed to guarantee that the resulting expressions -7 are finite
clauses. This is not really a strong restriction, as infinite interpretations cannot be represented explicitly,
but see [De Raedt and Dzeroski, 1994].

5A related learning setting is considered by [Greiner et al., 1996], who require that all extensions are a
model of the hypothesis.



This theorem demonstrates that learning from entailment and learning from partial in-
terpretations are essentially equivalent. Hence, we will not further distinguish among them.
Finally, within inductive logic programming one typically employs also a background
theory B in the form of a clausal theory, and regards an example e covered by a hypothesis

Honlyif BAH =e.

Definition 8 (intensional inductive logic programming) If H and B are clausal theories
and e is a clause, then H covers ¢ under intensional inductive logic programming, notation

€ €, H, if and only if BA H |=e.
Theorem 4 Intensional inductive logic programming reduces to learning from satisfiability.

Proof: Define p((e,Class)) = (BA—e,~Class) and consider that e €;,: 5 H iff BA—e &, H.
O

The reduction of intensional inductive logic programming to learning from satisfiability
forms another motivation for studying the latter setting.

A special case, frequently applied in inductive logic programming (e.g. the well-known
systems Golem [Muggleton and Feng, 1990] and Foil [Quinlan, 1990]) and its computational
learning theory formalisation, assumes that the background theory B consists of a set of
ground atoms and that the positive examples are true ground atoms and the negative ones
false ground atoms. This setting is known in the literature as the eztensional inductive logic
programming setting.

Definition 9 (extensional inductive logic programming) If H is a clausal theory, B a set of
true ground atoms, and ¢ a ground atom, then H covers ¢ under extensional inductive logic
programming, notation € €z g H, if and only if BA H = e.

Theorem 5 FEzxtensional inductive logic programming reduces to learning from entailment.

Proof: Define p((e,Class)) = (e « B,Class). The result then follows from the fact that
€ Eexeg Hiff H = (e — B). O

Unfortunately, learning from entailment seems not reducible in this manner to extensional
inductive logic programming. This is because the above transformation assumes that when
learning from entailment all examples have the same condition part. This assumption does
not hold in general. Consider e.g. learning p < g Ar from the positive example p « gAr At
and the negatives p < ¢, and p « r®.

So far we ignored the fact that many approaches (especially in the domain of inductive
logic programming) assume that the examples when learning from entailment are Horn
clauses. Let us name this setting Horn-learning from entailment. Trivially, this setting can
be reduced to learning from entailment. However, it seems impossible to reduce learning
from interpretations to Horn-learning from entailment. The reason is that the clauses —e
obtained from Herbrand interpretations e, are typically not Horn.

80ne might want to consider taking as the extensional background theory the union of the antecedents
of the examples, and as examples the consequence of the examples. Unfortunately, this does not work (cf.
the illustration). To make this approach work, one should also change the representation by adding an extra
argument to all of the predicates. This argument would then contain a unique identifier for the example.
However, such changes of representation are not permitted within our (strict) notion of reduction.



3.3 Knowledge representation

The three main settings, i.e. learning from interpretations, from partial interpretations’, and
from satisfiability, can also be interpreted from a knowledge representation perspective.

Central to this issue is the question as to what an ezample represents ? The question
can best be answered in terms of model theory. In terms of model theory, each example ¢
corresponds to a set of models M (e), and an example e is covered by a hypothesis H if and
only if there is a model m € M(e) that is a model of H. Formally:

Definition 10 If e is a Herbrand interpretation I then M(e) = {[}; if e is a partial inter-
pretation then M(e) = {I | I is a Herbrand extension of ¢ }; if e is a clausal theory then
M(e) = {I | I is a Herbrand model for ¢}

Property 3 e €, H iff 3m € M(e) : m is a model for H where €,=€; or €, or E,.

This property suggests that the main difference among the three formalizations of concept-
learning is due to the models M(e) that an example represents. When learning from inter-
pretations, M(e) contains a single interpretation. By definition, an interpretation assumes
complete knowledge. Hence, when learning from interpretations, complete knowledge about
each of the examples is assumed. When learning from partial interpretations, M(e) contains
all extensions of the partial interpretations. The difference between the extensions and the
partial model is that the extensions assign the value true or false to the facts that have
an unknown truth-value in the partial interpretations. Hence, partial interpretations can
represent examples with missing values. When learning from clausal theories, M(e) can
(depending on the example) contain any set of Herbrand interpretations. E.g. assume that
the truth-value of two propositional facts p and ¢ is not known, but it is known that they
have identical truth-values. One cannot represent this knowledge using a partial interpre-
tation. However, using the clausal theory p < ¢ and ¢ < p will realize the desired effect.
This example illustrates that learning from satisfiability allows us to express other types of
incomplete knowledge.

This knowledge representation view provides guidance for choosing the right setting when
modelling an induction task. If complete knowledge about each of the examples is available,
use learning from interpretations; if some examples have missing values, use learning from
partial interpretations or learning from entailment; if other forms of incomplete examples
need to be represented, use learning from satisfiability.

4 Computational learning theory

The PAC-learnability of several subclasses of clausal logic has been investigated under various
membership relations. We first formalize the PAC-learning paradigm introduced by [Valiant,
1984], and then investigate the role of the membership relation for PAC-learning.

"Which is considered here to be equivalent to learning from entailment, cf. above.



4.1 PAC-learning: definition

Let L¢ be a class of concepts. The target concept ¢ may be any concept in Lg. A learning
algorithm for L¢ is an algorithm that attempts to construct an approximation to the target
concept from examples for it. The learning algorithm takes as input two parameters: the
error parameter € € (0,1] and the confidence parameter 6 € (0,1]. The error parameter
specifies the error allowed in a good approximation and the confidence parameter controls
the likelihood of constructing a good approximation.

The learning algorithm has at its disposal a subroutine EXAMPLE, which at each call
produces a single example for the target concept t. The probability that a particular example
e € L (positive or negative for ¢) will be produced at a call of EXAMPLE is D(e), where
D is an arbitrary unknown but fixed distribution on L.. The choice of the distribution D is
independent of the target concept ¢.

Concept ¢ is a good approximation of concept ¢ if the probability that f and ¢ differ on
a randomly chosen example from L. is at most ¢, i.e. D(tAg) < €, where tAg=1t—gUg—1.
Putting all of the above together, we obtain the following definition.

Definition 11 An algorithm A is a probably approximately correct (PAC) learning algo-
rithm for a class of learning tasks (Lc, Le, €c) if

1. A takes as input € € (0,1] and 6 € (0,1].

2. A calls EXAMPLE, which returns ezamples for some unknown but ficed t € Lc. The
examples are chosen randomly according to an unknown but fized probability distribu-
tion D on L..

3. For all concepts t € Lo and all probability distributions D on L., A outpuls a concept
g € L¢, such that with probability at least (1 — ¢), D(tAg) < e.

4. The time complezity of A is bounded by a polynomial p(1/¢,1/6,m, size(t)) where m
is the size of the largest example, and size(t) the size of the target concept.

A class L¢ is PAC-learnable under €¢ if there exists an algorithm A which is a PAC-learning
algorithm for (L¢, L., €c).

Notice that the membership functions €, considered in this paper completely determine the
language of examples L. used. Hence, we say L¢ is PAC-learnable under €¢ instead of L¢
is PAC-learnable under €¢ for the language of examples L. corresponding to €¢.

To prove PAC-learning results, one frequently relies on so-called PAC-reductions intro-
duced by [Pitt and Warmuth, 1990] (cf. Chapter 7 by [Kearns and Vazzirani, 1994]). We
will only consider a special type of PAC-reduction, which can be derived from the above
introduced notion of a reduction:

Definition 12 A reduction p is efficient if and only if size(p(e)) is bounded by p(size(e))
where p is a polynomial and p can be computed in polynomial time.



When learning under €, efficiently reduces to learning under €,, we will write that €, < €,.
It is clear that < is also transitive.

It is straightforward to prove that all reductions used in the proofs of theorems in Section
3, are efficient when natural and comparable size measures are used®.

Thus the main result of this paper is

Theorem 6 Efficient reductions

1. Learning from finite interpretations and extensional inductive logic programming effi-
ctently reduce to learning from entailment;

2. Learning from entailment efficiently reduces to learning from finite partial interpreta-
tions, and vice versa,

3. Learning from entailment and from finite partial interpretations efficiently reduce to
intensional inductive logic programming,

4. Intensional inductive logic programming efficiently reduces to learning from satisfiabil-
ity.

In graphical form Theorem 6 yields :

S

ﬂ Eezepi S] Eint,B ﬂ SP
Eezt,B

This result is important in the light of PAC-learning because :

Theorem 7 If there is an efficient reduction from learning under €, to learning under €,
and L¢ is PAC-learnable under €., then L¢ is also PAC-learnable under €.

Proof: This follows from the observations that 1) if there is an efficient reduction
from learning under €, to learning under €, then (L¢, Ly, €;) PAC-reduces to (Lc, Ly, €,);
and 2) if (L¢, Ly, €z) PAC-reduces to (L¢, Ly, €,), and (L¢, Ly, €y) is PAC-learnable then
(Lc, Ly, €;) is PAC-learnable.

1) follows directly from the definition of a PAC-reduction (see e.g. [Kearns and Vazzirani,

1994], p. 147), because

e an efficient reduction p can serve as an efficient instance transformation that maps
examples in L, on examples in L,, and

o the existence of an image concept is trivial as the concept classes considered are iden-
tical,

8This implies that when learning from interpretations, the size of an interpretation takes into account
(i.e. sums) the sizes of the set of true and the set of false facts, which contrasts with [De Raedt and Dzeroski,
1994], who take into account only the size of the true facts. Using the sum is necessary because the reduction
from €; to e.g. €, results in clauses that contain both true as well as false facts.

10



e the instance mapping preserves concept membership °

2) is a direct application of theorem 7.2. in [Kearns and Vazzirani, 1994], or the results

by [Pitt and Warmuth, 1990]. O

4.2 PAC-learning and logic

Computational learning theory has investigated the learnability of several classes of logical
hypotheses, under various coverage notions.

First, k-CNF, the class of all CNF formulae that contain at most & literals per clause
[Valiant, 1984], and jk-CT, the class of all CT formulae that contain at most k literals of
size at most j per clause [De Raedt and Dzeroski, 1994] are efficiently PAC-learnable from
interpretations (both from positive and from positive and negative examples). We will now
show that k-CNF is not efficiently PAC-learnable under entailment. Though one might
consider learning k-CNF under entailment inappropriate from a PAC-learning point of view
as membership testing under entailment is NP-hard, this theorem does show that learning
k-CNF under entailment is not PAC-reducible to learning k-CNF under interpretations.
This in turn suggests that learning under entailment is not only more general but also
computationally harder than learning from interpretations.

Theorem 8 k-CNF is not efficiently PAC-learnable under entailment for k > 3.

Proof: Due to the results of [Pitt and Valiant, 1988] it suffices to show that finding a
solution to the learning problem (the so-called consistency problem) is NP-hard.

The consistency problem can be used to solve the well-known NP-hard 3-SAT problem.
3-SAT is the problem of determining whether a 3-CNF formula is satisfiable or not.

Consider a 3-CNF formula T' = A, (l;1 V li2 V l;3) over n propositional predicates.
Consider the equivalent learning problem, where P = {[;; V52V ;3| 1 < ¢ < m} and
N = {0} (where the only negative example is the unsatisfiable clause).

We still have to prove that the 3-CNF formula is satisfiable if and only if the learning
problem has a solution: if the learning problem has a solution H, then H =T and H [£ O,
therefore T' £ O; if T' is satisfiable, then the learning problem has a solution, i.e. H =T. O

Similarly, one can prove

Theorem 9 jk-CT for 3 < k is not PAC-learnable under entailment
Corollary 2 k-CNF and jk-CT are not PAC-learnable under €;n;,p and €,.

Secondly, various classes of concepts have been investigated within the inductive logic
programming paradigm, see [Cohen and Page, 1995; Kietz and Dzeroski, 1994; Cohen, 1995]
for overviews. Most of these results concern definite clauses under €., g. All of the negative
results for this settings carry over to learning under €., €, €int, B and €, because of theorems
6 and 7. On the other hand, positive results for €, or €, carry over to €;.

®Though the usual definition of PAC-reduction requires that the instance mapping maps positives onto
positives and negatives onto negatives (and hence that concept-membership is preserved, it is easily proven
that result 2) also holds when positives are mapped onto negatives and vice versa (and hence that negated
membership is preserved), cf. the proof of Theorem 7.2 by [Kearns and Vazzirani, 1994].

11



Finally, Horn-CNF, the class of CNF formulae that are Horn, are learnable using member-
ship and equivalence queries from interpretations [Angluin et al., 1992] and from entailment
[Frazier and Pitt, 1993]. This also means that they are PAC-learnable if membership ques-
tions are available!®. At present, it remains an open question as to whether these results can
be upgraded towards restricted sets of first order logic and whether they would carry over
to learning under €;, B or €,. On the other hand, due to the equivalence of €. and &,
Horn-CNF should be learnable in the same manner from partial interpretations.

5 Related work

The presented work is related to and motivated by some of the results by [Angluin, 1987] and
[Frazier and Pitt, 1993] who study the relation between learning from entailment and learning
from interpretations when membership and equivalence queries are available. However, our
results do not assume that queries are available.

Secondly, our results are also related to those by [Wrobel and Dzeroski, 1995] who study
the relation among several inductive logic programming settings. In particular, they studied
the influence of testing coverage at the local level (i.e. representing each example by a
seperate logical theory) or at the global level (i.e. representing the example set as a whole
by a single logical theory), and the differences between predictive and descriptive inductive
logic programming. Wrobel and Dzeroski also propose to use €, to test for coverage (in one
of their settings). However, they did not specify the language of examples and hypotheses,
which is crucial for obtaining our results. From this point of view, the main novelty in
learning from satisfiability is the use of full clausal theories to represent hypotheses and
examples.

Finally, several of our results relate to Peter Flach’s inquiry into the logic of induction
[Flach, 1995; Flach, 1992; Flach, 1994]. Flach’s work provides a normative semantic account
of inductive reasoning in which meta-rules are used to describe various properties of inductive
reasoning. Flach distinguishes explanatory from confirmatory induction using these meta-
rules. Explanatory induction is related to learning from entailment, whereas confirmatory
induction is closer to learning from interpretations or learning from satisfiability. The main
difference between Flach’s work and ours, is that Flach assumes that the example set is
represented by a single logical theory, whereas in our framework each example corresponds
to a logical formula. This is important as in Flach’s work positive as well as negative
examples are handled identically (though a positive example would be a true clause, and a
negative one the negation of a clause). This not only complicates the logic'* but also makes
it hard to view Flach’s setting as concept-learning, because the latter is typically concerned
with positive and negative examples as well as with classification. This is further illustrated
by Flach’s notion of learning from satisfiability, which requires that H A E £ O where E is
the complete example set. Flach views this as confirmatory induction, of which the prime
characteristic is that it is not classification oriented. Our framework shows that it is feasible
and interesting to adapt this notion for classification-oriented concept-learning.

10A membership question asks an oracle whether or not an example belongs to the target concept.
11To require that negative statements are entailed, Flach needs to rely on non-monotonic logic. Further-
more, negative examples are sometimes added to the background theory, which seems counter-intuitive.
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6 Conclusions

Our results allow us to formulate answers to the open questions in the introduction. First,
the relation among learning from interpretations and learning from entailment, raised in
various forms within computational learning theory and inductive logic programming [Fra-
zier and Pitt, 1993; De Raedt and Dzeroski, 1994; Muggleton and De Raedt, 1994; Wrobel
and Dzeroski, 1995; De Raedt and Lavra¢, 1996] is now clarified. Secondly, whereas at-
tribute value learning techniques have mostly learned from interpretations and inductive
logic programming from entailment, our results indicate that even in the propositional case
inductive logic programming is more general and harder (as illustrated by k-CNF). Thirdly,
the result on k-CNF indicates that the normal inductive logic programming setting (as for-
malized in learning from entailment) is computationally harder than the non-monotonic
setting (as formalized by [De Raedt and Dzeroski, 1994]). This last contribution confirms
some of the earlier intuitions about the differences between the non-monotonic setting and
normal inductive logic programming as formulated by e.g. [Muggleton and De Raedt, 1994;
De Raedt and Lavra¢, 1996] and between weak and strong induction [Flach, 1992].

Finally, we also leave open a number of questions. First, about learning under satisfiabil-
ity, one may wonder whether there exist still reasonable classes that are learnable and also,
what algorithms can be used to do so. Some of the latter issues are addressed by [De Raedt
and Dehaspe, 1996]. Second, our main results concern full clausal logic, whereas in practice
one mostly considers Horn logic only. As a consequence, if one requires that examples are
Horn-clauses when learning from entailment, then the relation to learning from interpre-
tations is less clear. Third, within inductive logic programming, most of the learnability
results (see [Cohen and Page, 1995]) are very specific within our framework as they concern
€ext,B. Furthermore, though they typically assume a bound j on the arity of predicates in the
background theory, they do not impose a bound on the arity of the predicates to be learned
(because otherwise the learning task is considered trivial). An alternative would be to simply
employ learning from entailment with one size measure on the length of clauses (and the pos-
sibility of also using bounds on the arity of predicates to be learned). This type of learning
has been addressed by the algorithmic learning theory community (cf. [Ishizaka et al., 1994;
Miyano et al., 1991; Mukouchi and Arikawa, 1993]).
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