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Abstract

An incremental depth-first algorithm for computing the S- and G-set of Mitchell’s
Candidate Elimination and Mellish’s Description Identification algorithm is presented.
As in Mellish’s approach, lowerbounds (examples) as well as upperbounds can be
handled. Instead of storing the complete S- and G-sets, only one element 5§ € S and
g € G is stored, together with backtrack information. The worst-case space complexity
of our algorithm is /inear in the number of lower- and upperbounds. For the Candidate
Elimination algorithm this can be exponential. We introduce a test for membership of §
and ¢ with a number of coverage tests /inear in the number of examples. Consequently
the worst-case time complexity to compute S and ¢ for cach example is only a linear
factor worse than the Candidate Elimination algorithm’s.

Keywords: Concept learning; Versionspaces; Example generation

1. Introduction

Most concept learning methods use either a specific to general or general to
specific strategy. If one of these approaches is taken, either a maximally general
or a maximally specific hypothesis is learned. For some applications it is more
interesting to use a bi-directional strategy, and to learn maximally general and
maximally specific hypotheses. On the one hand this allows to use the current
hypothesis from a maximally specific viewpoint (allowing only to make errors
of omission) as well as from a maximally general viewpoint (allowing only to
make errors of commission) [1]. On the other hand, this approach allows to
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generate relevant examples automatically. Relevant examples are covered by a
maximally general but not by all maximally specific hypotheses.

In the Description Identification algorithm of [9] (which is an extension
of the Candidate Elimination algorithm of [10]) the set S of a// maximally
specific concept descriptions and the set G of a// maximally general concept
descriptions are computed using bi-directional breadth-first search, and afl
members of § and G are stored. This is often very expensive, because the
size of these sets can grow exponential in the number of examples (sec also
[5]). Korf [7] argues that exponential breadth-first search often exhausts the
available memory long before an appreciable amount of time is used. In recent
concept learning approaches, such as Inductive Logic Programming (/LP)
[8,11,12], memory becomes increasingly important because of the use of very
expressive description languages.

This paper presents an incremental algorithm to compute S and G using
bi-directional depth-first search. It takes a different position in the trade-off
between space complexity and time complexity while producing the same
results. Our algorithm stores only one maximally general and one maximally
specific consistent concept description, together with backtrack information.
The underlying idea is similar to that of (iterative deepening) depth-first
search versus breadth-first search in general: depth-first secarch avoids the
memory problems of breadth-first search at the expense of recomputing certain
elements [7].

The main contribution of the Iterative Versionspace algorithm is that its
worst-case space complexity is /inear in the number of information elements,
which is an exponential gain with respect to the Candidate Elimination al-
gorithm. We introduce a test for maximality (i.c., maximal specificness or
maximal generality) and consistency with worst-case time complexity /inear
in the number of information elements. This test is based on the use of an
optimal generalization operator and an optimal refinement operator [4]. Op-
timal operators avoid searching parts of the search space more than once.
They are not only useful in our algorithm, but also in concept learning
algorithms, and search algorithms in AI in general (see also [19]). Incre-
mental computation of § and G from the backtrack information remains
possible. The time penalty is linear with respect to the Candidate Elimina-
tion algorithm. Many properties of bi-directional search with the Candidate
Elimination algorithm are retained. Because we gain an exponential factor in
space and lose only a linear factor in time, we believe our approach con-
tributes to making the use of versionspaces (and concept learning) more
practical.

The paper is organized as follows. Terminology and notation are intro-
duced in Section 2. Section 3 discusses related work and further motivates
the presented approach. The Iterative Versionspace algorithm is presented in
Section 4, followed by an example in Section 5, and the complexity analysis
in Section 6. Finally, Section 7 discusses the generation of examples.
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2. Terminology

We denote the language of concept descriptions by £. ¢; < ¢, denotes that
¢, is more specific than ¢;; ¢; < ¢, denotes that ¢; is equal to or more specific
than ¢,. We assume the existence of a bottom element L (minimal with respect
to <) and a top element T (maximal with respect to <) in L.

The Iterative Versionspace algorithm is provided with four types of infor-
mation with respect to an unknown target concept 7: positive and negative
lowerbounds, and positive and negative upperbounds (as in [9]). We employ
the single-representation trick [2], i.e., we assume lower- and upperbounds
belong to L.

Definition 1. For i € £ and a target concept 7 € L:
(1) if i < 7, then / is a positive lowerbound (generalization) (i.c., i is a
positive example);
(2) if =(i < T), then i is a negative lowerbound (discrimination) (i.e., i
is a negative example);
(3) if T < i, then / is a positive upperbound (specialization);
(4) if =(7 < 1), then / is a negative upperbound (differentiation).

We will also refer to positive lowerbounds and negative upperbounds as s-
bounds, because they are used to generalize S (see further). Similarly, negative
lowerbounds and positive upperbounds will be referred to as g-bounds.

The goal of the concept learning algorithm is then, given a set I C £ of
positive and negative lower- and upperbounds, to find the target concept 7.

Searching the target concept amounts to searching for a consistent element ¢
of L. Consistency is defined by:

Definition 2. ¢ € L is consistent with
(1) a positive lowerbound i € £, if i <X ¢;
(2) a negative lowerbound i € £, if = (i <X ¢);
(3) a positive upperbound i € L, if ¢ X i;
(4) a negative upperbound i € £, if - (¢ < 1).
¢ € L is consistent with I C £ if ¢ is consistent with all elements of 7.

We define the notions of subsets of minimal and maximal elements of a set
of concept descriptions with respect to the relation <:

Definition 3. Min(Set) = {c € Set| -~ (3¢’ € Set: ¢’ < c)}.
Definition 4. Max(Set) = {c € Set | = (3¢’ € Set: ¢ < ¢')}.
Using these notions we define S and G of [10]:

Definition 5. For a given set [ of lower- and upperbounds,
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e 5 = Min({s € L s is consistent with I}), and
e Gy = Max({g € L| g is consistent with I}).

Sy determines a “lowerbound” on the set of all concept descriptions consistent
with /. Analogously G; is an “upperbound”. Together, S; and G; determine a
versionspace VS, which is exactly the set of all concept descriptions consistent
with 7 (see [10]):

Definition 6. VS; = {c€ L |3g€ G, Fs€Sr:s K< g}

The idea is that if ¢ is more general than s € S, it will be consistent with
all s-bounds; and if it is more specific than g € G;, it will be consistent with
all g-bounds.

When no confusion is possible, the index I will be omitted from VS;, S;
and g;.

If T € VS, S and G can also be used to classify some unclassified elements
of L:

Definition 7. c€ L is a
(1) positive lowerbound if ¥s € S: ¢ < 5;
(2) negative lowerbound if Vg € G: - (c <X g);
(3) positive upperbound if Vg € G: g < ¢;
(4) negative upperbound if ¥s € S: = (s < ¢).

The four basic operations needed in our algorithms are:

Definition 8. For ¢;,c; € £, the set of least upperbounds of ¢; and ¢, is
lub(cy,00) = Min({ce L|c; < cand c; X ¢}).

Definition 9. For ¢|,c; € L, the set of greatest lowerbounds of ¢; and ¢, is
glb(cy, ) = Max({ce L] c < ¢, and ¢ X ¢3}).

Definition 10. For ¢;,c; € L, the set of most specific generalizations of ¢; not
covered by ¢; is msg(cy,¢2) = Min({c€ £ |¢; < ¢ and = (¢ < 3)}).

Definition 11. For ¢;,c; € L, the set of most general specializations of ¢; not
covering ¢; 18 mgs(c;,¢;) = Max({ce L]c < ¢ and —~(c; X ¢)}).

3. Motivation and related work

The Candidate Elimination algorithm (CE) [10] was the first algorithm to
formalize the concept learning problem as a search problem. It computes S
and G breadth-first from lowerbounds only. At the same time S and G are used
to check maximal specificness, maximal generality and consistency. Therefore
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CE does not need to store the lowerbounds. CE has been criticized however for
its possible exponential behavior in storing and computing S and G [5]. The
Description Identification algorithm (DI) of [9] extends CE, in that it cannot
only handle lowerbounds, but also upperbounds. However, it has basically the
same worst-case time and space complexity as CE.

Mitchell [10] also discusses basic depth-first specific to general and general
to specific algorithms for concept learning, and their relation to CE. The
main advantage of depth-first algorithms is their linear space complexity.
However, without searching the complete search space they are unable to
check maximal specificness or maximal generality, to detect convergence, and
to classify unclassified bounds.

Depth-first search versus breadth-first search in general is discussed in [7].
Korf also presents depth-first iterative deepening as a search strategy with
linear space complexity, and, in an exponential search space, the same time
complexity as breadth-first search.

Motivated by this general result, we propose the Iterative Versionspace
algorithm (ITVS). As Mellish’s algorithm, ITVS can handle upperbounds as
well as lowerbounds. ITVS performs bi-directional (i.e., on S and G) depth-first
search, and guarantees maximal specificness and maximal generality in linear
time. Still, convergence cannot be detected and unclassified bounds cannot be
classified without searching the complete search space.

Under strong restrictions (in particular, in conjunctive languages over tree-
structured attribute hierarchies) earlier incremental approaches already pre-
sented better complexity results than CE. Incremental Non-Backtracking Fo-
cusing (INBF) of [17] achieves this by avoiding backtracking (as [1] did
non-incrementally). INBF employs only one maximally general concept de-
scription (upper). It specializes upper only when there exists a single consistent
specialization, i.e., in case of specialization with respect to a near-miss. INBF
relies on having a sufficient number of positive examples to identify near-
misses. As long as a negative example is not identified as a near-miss, it could
be covered by upper, which therefore is not necessarily consistent. INBF can be
extended to be consistent at any point by processing the remaining far-misses
in the way CE does. This could also lead to a G-set exponential in size. The
advantage over CE is, however, that the positive examples and the near-misses
were processed first; in this way G is kept as small as possible.

Hirsh [6] only represents S and the set of all negative examples, thus
avoiding exponential explosion for computation or storage of G in case of a
tree-structured conjunctive language. Hirsh notes that the explosion is very
much language-dependent. For disjunctive languages for instance, S could
be exponential as well. Hirsh also notes that in certain applications general
descriptions are preferred over specific ones. Indeed, we could think of an
agent learning preconditions of actions (see [15]): taking an element of S as
precondition could restrict the application of the action so much, that the agent
would almost never apply it. Hence, a general approach should be symmetric
in S and G.
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In ITVS bi-directionality will also provide the ability to generate relevant
examples. Generating relevant examples from an overly general and an overly
specific description was also employed in DISCIPLE [20] and APT [13].
Nedellec [13] formalizes some of the ideas of DISCIPLE by introducing
the Smallest Generalization Steps Strategy, which is user-guided to accelerate
convergence with respect to blind depth-first search, and which implements 1ub
and mgs in a subset of first-order logic to avoid overgeneralization. One way
to accelerate convergence with respect to CE is the use of focus sets and seed
sets [14], which in fact contain approximations of lower- and upperbounds.
However, in both cases the worst-case time and space complexities remain the
same.

We believe our algorithm is similar in spirit as the approaches of [6,17,
20], by avoiding to store S and G. However, it is more general than those
approaches, because it has the same power and generality as DI

4. Iterative versionspaces

The Iterative Versionspace algorithm combines general to specific and spe-
cific to general depth-first search. The search is pruned with the pruning
principles of [10] (without storing S or G explicitly), and the implicit use of
an optimal refinement operator [4] and an optimal generalization operator.

We use the following data structures:

e s is the current most specific concept description, g is the current most
general concept description.

e The array I, contains all s-bounds (i.e., positive lowerbounds and negative
upperbounds), and I, contains all g-bounds (i.e., negative lowerbounds
and positive upperbounds). Lower- and upperbounds are needed for check-
ing consistency while backtracking. 7 is the total number of elements in
I5, ng is the total number of elements in /.

o The stack! B, contains pairs (ind , alternatives), called choicepoints,
where ind is an index in I;, and alternatives is a non-empty list of concept
descriptions used to backtrack on s and to test maximal specificness of
s. Similarly, the stack B, contains choicepoints (ind, alternatives), where
ind is an index in I,, and alternatives is a non-empty list of concept
descriptions used to backtrack on g and to test maximal generality of g.

We have the following invariants on our data structures:

(1) (a) se Sy, and (b) g€ Gy, with I = I, [1.nglUI[1..ns].

(2) For all choicepoints (ind, alternatives) on B: all elements of alternatives

are consistent with (a) Ig[1..ng], and (b) I[1..ind], Le., with all g-
bounds and the first ind s-bounds.

I We use the operation push(ind, alternatives, B:) to put the choicepoint (ind, alternatives) on
top of stack B, pop(B.) to remove the top choicepoint from B, and is_empty(B.) to test whether
B is empty.
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Algorithm 1: Iterative Versionspaces (ITVS)

procedure ITVS()
returns concept, stack, array, index, concept, stack, array, index
g Lygus= TeB, v=b Byvs By ve Oum v 0
while there are still bounds to be processed do
read(7) with / an unprocessed bound
if 7 is an S-bound then

g = ng + 1; Ig[ng] := i

B¢ := prune_stack(B,,i)
@ if —consistent(g,/) then

&, By, ind := select_alternative(@,Bg,ng)
® g,B; := specialize(g,Bg,ind)
© s, By := generalize(s,Bs,n; — 1)
else
g i= ng + 1; Ig[ng] := i

B; := prune_stack(By,i)
if - consistent (s,7) then
s, By, ind := select_alternative (®,B;,n;)
$,B; := generalize(s,B;.,ind)
g, By := specialize(g,Bg,ng — 1)
return s, B, Is, ns, g, By, Ig, hy
endproc

(3) For all choicepoints (ind, alternatives) on By: all elements of alternatives
are consistent with (a) I[l..ng], and (b) I [l..ind], i.e., with all s-
bounds and the first ind g-bounds.

Note that backtracking on s and g is completely independent, in the sense
that returning to the last choicepoint for s undoes all consequences for s, but
not those for g: e.g., when returning to a choicepoint for s, values for g that
were rejected after the choicepoint for s was created, are still rejected when
other choices for s are made.

In the following algorithms, the procedure consistent is straightforward, and
not described in detail: consistent (¢,/) returns true when concept description
¢ is consistent with-bound 7, and false otherwise.

Consider Algorithm 1. s is initialized to L, g to T, By and By to the empty
stack, and n; and n, to 0. The main loop of the algorithm processes the bounds
one by one in the given order. Below, we only explain the actions to be taken
for a positive lowerbound i; the cases of negative lowerbounds, and negative
and positive upperbounds are analogous.

First / 1s stored in /;. Then all alternatives for g on B, not consistent with
i are pruned with the procedure prune_stack (see Algorithm 4). Indeed, if
an alternative ¢ on B, does not cover i, then certainly none of its special-
izations will cover Z, so ¢ can be deleted from B,. This pruning step ensures
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Algorithm 2: Generalization in ITVS

procedure generalize(s: concept; Bs: stack; n.: index)
returns concept, stack
while n, # n; do
Ne i= ne + 1
if — consistent(s, I;[n.]) then
if I;[n.] 1s positive lowerbound then

@ generalizations := lub(s,[;[n.])
else
© generalizations 1= nsg(s,[;[n.])
O generalizations := select all ¢ from generalizations
with all_consistent(c,/,n,) A max_specific(c,By)
§,Bs,n, := select_alternative(generalizations,Bs,n,)
return 5, B;
endproc

procedure max_specific(s: concept; B,: stack)
returns boolean
B: 1= copy(By)
max_specific : = true
while - is_empty(B.) A max_specific do
ind, alternatives, B, := pop(B.)
max_specific := (~3c € alternatives: ¢ < s)
return max_specific
endproc

procedure all_consistent(c: concept; /.. array; n.: index)
returns boolean
return (V ind, 1 < ind < n,: consistent(c,/.[ind]))
endproc

invariant 3(a).

If i is not consistent with g (see @), an alternative for g is popped from
B, using the procedure select.alternative? (see Algorithm 4). In general
select_alternative(alternatives, B., n. ) (with alternatives a list of elements
in L, B. a stack of more alternatives, and 7. an index in /) works as follows:
it selects an element ¢ of alternatives (see ©); if alternatives is initially empty,
it first pops a choicepoint from B, (see ©). If alternatives and B, are empty,
no ¢ consistent with I can be found, so select_alternative announces failure
and halts ITVS (see ). Otherwise, it returns ¢, B, (containing the rest of the
list alternatives and the rest of B.; see (®)) and n., such that ¢ is consistent with

2 The assignment g, Bg, ind := select_alternative((},Bg,ng) assigns the first returned value of
select_alternative(l),Bg.ng) to g, the second one to By, and the third one to ind.



G. Sablon et al. / Artificial Intelligence 69 (1994) 393-409 401

Algorithm 3: Specialization in ITVS

procedure specialize(g: concept; B,: stack, n.: integer)
returns concept, stack
while n. # n, do
He = He + 1
if — consistent(g, I,[n.]) then
if I [n.] is negative lowerbound then
specializations 1= mgs(g,l¢[n.])

else
specializations := glb(g,l,[n.])
specializations = select all ¢ from specializations

with all_consistent (c,/s,n;) A max_general(c,By)
&,Bg,n. := select_alternative(specializations,Bg,n, )
return g, B,
endproc

procedure max_general(g: concept; B,: stack)
returns boolean
B, := copy(By)
max_general := true
while — is_empty(B.) A max_general do
ind, alternatives, B, := pop(B.)
max_general := (-3¢ € alternatives: g < ¢)
return max.general
endproc

the elements of I.[1..n.]. Therefore, initially n, must be such that all elements
of alternatives are consistent with the elements of I.[1..x.].

After the call to select_alternative all bounds on I, from ind up to n,
are reprocessed (see (). Given that g is already consistent with the first ind
bounds in I, specialize(g,Bg,ind) returns a maximally general g consistent
with 7, and a stack B, fulfilling conditions 3(a) and 3(b). Then, given that s is
consistent with the first n; — 1 bounds of I, generalize(s,Bs,ns — 1) returns a
maximally specific s consistent with /, and a stack By fulfilling conditions 2 (a)
and 2(b). Therefore all invariants will hold at ©), and hence at the end of the
while loop.

We will now explain how generalize works (see Algorithm 2); specialize
(see Algorithm 3) is again dual.

When n. = ny, s is consistent with all elements of I, so the procedure ends.
Otherwise, after having incremented n. with 1, s is generalized such that it is
consistent with Is[n.] (if it wasn’t consistent already). If I;[n.] is a positive
lowerbound, consistent generalizations are the least upperbounds of s and
Is[n:] (see (@). Otherwise I5[n.] is a negative upperbound, and the consistent
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Algorithm 4: Stack operations in ITVS

procedure prune_stack(B,: stack; i: bound)
returns stack
if is_empty(B,) then
return ( 0 )
else
ind, alternatives, B, := pop(B.)
B := prune_stack(B,,i)
alternatives := select all ¢ from alternatives
with consistent(¢,i)
if alternatives # @ then
B. := push(ind, alternatives, B,)
return B,
endproc

procedure select_alternative (alternatives: list; B.: stack; n.: index )
returns concept, stack, index
if alternatives = () then
if is_empty(B,) then
® failure
else
) e, alternatives, B, := pop(B.)
@ ¢ := head(alternatives)
if tail(alternatives) # @ then
® B. := push(n,, tail(alternatives), B,)
return ¢, B., n,
endproc

generalizations are the most specific generalizations of s not covered by I; [, ]
(see (©). Note that all consistent generalizations of s are also consistent with
Is[1..n.—1]. In @ only those generalizations also consistent with all g-bounds
and maximally specific are selected. Then select_alternative (see ®) finds
a next candidate s, the corresponding By, and the index up to where s is
consistent with /;.

max_specific(s,Bs) checks whether s is maximally specific, and guarantees
that each ¢ € £ will not be generalized more than once. This restriction in fact
implements an optimal, but still complete, generalization operator. By defini-
tion, a generalization operator is optimal if each ¢ € £ will not be generalized
more than once. This is dual to an optimal refinement operator, introduced
in CLAUDIEN [4]. The procedure max_general, dual to max_specific, imple-
ments an optimal refinement operator.

First max_specific (see Algorithm 2) copies the parameter B; to B. in order
not to change B;. max_specific compares s to the alternatives ¢ on B;:

e If there exists a ¢ on B, such that ¢ =< s, then there exists a consistent
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Fig. 1. Taxonomy of L.

most specific generalization ¢’ of ¢ such that ¢’ < s (possibly s itself).
Completeness of msg and lub guarantees that on backtracking ¢’ will be
generated. Thus, if there exists a consistent most specific generalization ¢’
of ¢ such that ¢’ < s, then s does not belong to S, and can be skipped.
Else, ¢’ must be 5. So s will be considered when generalizing ¢, and can
therefore also be skipped at this point, without losing completeness of the
generalization operator.

e If no c¢ exists on B such that ¢ < s, then, because of transitivity of <,
consistent generalizations of any of the alternatives on B can neither be
more specific than s (and thus s belongs to S) nor be equal to s (and
thus is the generalization operator optimal for s).

all_consistent(c,/g,n,) checks whether ¢ is consistent with I,[1..n,] and

is straightforward. If B, is empty, this test can be replaced by ¢ < g. This is
more efficient for languages in which | G | is always equal to 1.

5. Example

We will use an example and taxonomy (see Fig. 1) of [9].
Fig. 2 shows the consecutive stages of an example session with ITVS. g is
initialized to T, and s is initialized to L. The first bound is a negative
upperbound and is stored in /s[1]. s 1s generalized to inanimate, and the
alternatives female and male are put on By. The second bound is not consistent
with inanimate, so inanimate should be generalized. inanimate can only be
generalized to top. top is more general than female, so it can be skipped at
this point. The most recent alternative on B (i.e., female) is assigned to s.
female is consistent with I;[2]. The third bound forces g to be specialized
to animate, which is maximally general since there are no alternatives on Bg.
According to the fourth bound, male should be pruned from B, and g should
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IANew Information | Stored in | g 15 |_._s__ | B, - ‘_]
T 0 J1 0
~(7 < human) I,[1 T @ | inanimate (1'. female, male])]
woman < T 1,[2 T 0] female (1, [male])
~(inanimate < T) | I,[1] animate | § | female (1, [male])
T < female I,[2] female |0 | female 0

Fig. 2. ITVS on the example.

be specialized. The only consistent most general specialization is female, which
is also consistent with the other bounds. The result is female. Convergence
could be detected by exhaustive backtracking on By and By, i.e., by checking
that g = s and that therc are no consistent alternatives on By or B.

6. Complexity analysis

We analyze the worst-case time and space complexity as in [10]. For the
time complexity analysis we count the number of coverage tests, whereas for
the space complexity we count the number of elements of £ stored.

First we introduce some notation. by is the average upward branching factor
in §;. and b, the average downward branching factor in G;.3 The average
upward branching factor is the average number of generalizations (i.e., most
specific generalizations and least upperbounds) that pass test ) in Algorithm 2.

bl 1
by — 1

is the size of the specific to general search space, and

S=1+bs+b>+- - +b =

= by

My +1
_ })gg —1 N
&= —=—-—=b,f

1s the size of the general 1o specific search space. The search spaces (and
therefore also b; and b,) arc completely determined by the clements of 7 and
their order. Because we implement an optimal generalization and refinement
operator (see Section 4), we may use the same branching factor as in CE,
in which searching parts of the scarch space more than once is avoided by
removing doubles from § and G. The resulting complexity analysis shows again
that optimal operators arc useful, and can be implemented efficiently (with
respect to time and space) in the context of versionspaces. Morecover, we
believe this result is also applicable to concept learning algorithms in general
(see also [4]).

Theorem 12. ITVS has a worst-case space complexity of O(ng x b + ng x by).

3 We assume upward and downward branching factors are bounded.
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ITVS stores all ny s-bounds in I;. Furthermore B, contains in the worst-
case a list of by — 1 alternatives per s-bound. Analogously I, contains all ng
g-bounds, and B, contains in the worst-case a list of b, — | alternatives per
g-bound. Consequently, ITVS stores (15 x bs + ny x b,) elements of £. This
worst-case space complexity is /inear in the number of bounds.

Theorem 13. For each s-bound, updating s, Bs, g and By in case no backtracking
is needed, has a worst-case time complexity of

O(ng x (bs + bg) + ny x R

For each g-bound, updating s, By, g and By in case no backtracking is needed,
has a worst-case time complexity of

O(ng x (bs + bg) + fg X b::)

We will discuss the case of an s-bound /. In the pruning step all alternatives
on B, have to be compared with i. This gives n, x (b, — 1) comparisons
in the worst case. Then, for each of the b generalizations of s we have n,
comparisons to check consistency with I,, and ns; x by comparisons to check
maximal specificness.

Theorem 14. To compute a most specific concept description s and a most
general concept description g, ITVS has a worst-case time complexity of

O((ng + ngx bs) x5+ (ns 4+ ng x bg) x g + (ng x ng x (bs + bg))).

In the worst case the specific to general and general to specific search spaces
have to be searched completely. In the specific to general case, for all 5§ elements
s of the search space, all ng g-bounds may have to be reexamined. Guaranteeing
maximal specificness of s requires s to be compared to all alternatives on B.
There are at most n; x (b; — 1) alternatives on B,. This gives a total worst-case
complexity of O((n, + ny x by) x 5). Guaranteeing consistency and maximal
generality of g gives O((n; + ng x bg) x g).

The pruning steps are done only once for each bound. For B, this results in
ng x (bg — 1) comparisons for each of the n; s-bounds. Similarly pruning of
Bs will give an extra term of O(ng x n; x b;).

Corollary 15. To compute S and G for each new bound, and to detect conver-
gence, ITVS has a worst-case time complexity of

O((ng + ng x bs) x 5% + (ns + ng x by) x g% + (ng x ng x (bs + by))).

To compute S from B and G from B, the parts of the specific to general and
general to specific search spaces that are not yet pruned, have to be recomputed
completely. Hence, in the specific to general search space and in the worst case,
for each of the § elements of the search space the complete search space has
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to be searched for consistent and maximally specific elements. After having
computed § and G, detecting convergence is just checking whether S and G
are equal and singletons. Since classifying unclassified elements also requires
recomputation of S and g, it has the same worst-case time complexity.

CE has a worst-case time complexity of (see [10])

O((& +35) x (b + bg*)),

because each element s in the specific to general search space, has to be
compared to all b;g elements in G to check consistency, and to all 5 elements
in § to check maximal specificness. Also each element g in the general to
specific search space, has to be compared to all elements in S to check
consistency, and to all elements in G to check maximal generality.

Consequently, CE has to store the sets S and G completely, and therefore
has a worst-case space complexity of

O(bl + b™).

ITVS is a linear factor worse than CE in time to compute S and G completely,
because § =~ b* and g =~ bgg. Nevertheless, ITVS is linear in space, whereas
CE is exponential as soon as b; > 1 or b, > 1. As in [7] we argue that this is
an important improvement for concept learning, since combinatorial explosion
of space requirements is much more critical than explosion in time, and this
certainly for Inductive Logic Programming.

In the special case of conjunctive languages with k features (as discussed
in [17] and [6]), by = 1 and b, = k. In this case, ITVS is still exponential
in time when backtracking is needed to update s or g. [17] and [6] are
not, basically because they do not compute a consistent element of G. If a
maximally general consistent concept description is needed, their algorithms
will have to be extended, and will show an exponential behavior as well.

7. Example generation

In an interactive concept learning setting convergence can be accelerated by
generating new relevant examples automatically, preferably a minimal sequence
of them. Unfortunately generating a minimal sequence of examples is in general
a NP-hard problem [18]. Factorization [18] or domain-dependent heuristics
might guide this search.

Storing both maximally specific and maximally general elements is useful
in an interactive concept learning setting. Ideal would be then to have s € S
and g € G, and to find ¢;,¢5,7 € £ such that s < ¢ < ¢ < g, together with
~(i<c)AN( <) or (¢ <X i)A-(c; < i). In the former case i would be a
relevant lowerbound, in the latter a relevant upperbound. The closer ¢; and ¢,
are to a middle point between s and g, the less lower- or upperbounds would
be needed to converge. By definition ¢,, € £ is a middle point between s and
g ifs<en <X gand
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Algorithm 5: Searching an element more general than s, in case - (s < g)

procedure above (s: concept; B,: stack)
returns concept

B. 1= copy(Byg)
repeat

ne, alternatives, B, := pop(B,)
until e € alternatives s < ¢
select one ¢ from alternatives with s < ¢
while 5. # n, do

He 1= He + 1

if - consistent(/g[n.], c) then

if I, [n.] is negative lowerbound then
specializations := mgs(c,/g[n.])

else
specializations := glb(c,lg[n.])
) ¢ := select one ¢ from specializations with s < ¢
return ¢

endproc

Hels<e<emt] = {c|em <c< g}l

However, working in a depth-first way we cannot guarantee that s < g will
always hold. In case it doesn’t, we can find a consistent alternative s’ of s and
a consistent alternative g’ of g such that s < ¢’ and s’ < g. Requiring that
s € § and g’ € G would require backtracking and is therefore in the worst
case exponential in time. Without those requirements it can be done in linear
time. This is shown in Algorithm 3.

Since s is consistent with all examples, there must be at least one alternative
¢ on B, such that 5 < ¢. This means c is consistent with all s-bounds. For each
negative lowerbound I, [n.], mgs(c,/g[n.]) must contain an element ¢’ such
that s < ¢/, because s is consistent with I, [n.], and s < ¢. We could guarantee
that ¢’ is in S, by adding the test max_general(c,B,) at (O, but this would
introduce backtracking. The analogue holds for each positive upperbound.

With respect to example generation bi-directional approaches are much more
appropriate than specific to general or general to specific only (i.e., systems
such as Marvin [16] or CLINT [3]), because the latter cannot even define
a middle point. Typically, these systems take ¢, = s and ¢, a most specific
generalization of s covering at least one example not covered by s, in order not
to overgeneralize s. In the bi-directional approach, even a random choice of
¢; and ¢; between s and g could not be worse. This shows that bi-directional
approaches are better suited for generating minimal sequences of examples.
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8. Conclusion

We have shown how depth-first specific to general and general to specific
approaches can be combined to a depth-first version of the Candidate Elimi-
nation algorithm. The resulting algorithm returns a maximally general and a
maximally specific consistent concept description. Space requirements of the
algorithm are linear in the number of bounds. Testing for maximal general-
ity and maximal specificness requires a number of coverage tests linear in
the number of bounds. The approach also provides a framework for example
generation in an interactive setting.
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