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Abstract

De Raedt, L. and M. Bruynooghe, Belief updating from integrity constraints and queries
(Research Note), Artificial Intelligence 53 (1992) 291-307.

It is argued that the problems of intensional knowledge base updating and incremental
concept-learning—when formulated in a logical framework—can be understood as instances
of the more general problem of belief updating. This insight allows interesting cross-
fertilization between both areas. To support this claim, we sketch a simple extension of
Shapiro’s Model Inference System that solves the belief updating problem within a restricted
subset of first order logic. This extension uses integrity constraints and allows for the
assertion of non-unit clauses. The former generalizes the use of examples in concept-
learning whereas the latter generalizes the set of revisions considered in knowledge base
updating.

Keywords. Concept-learning, knowledge base updating, integrity constraints, oracle, ma-
chine learning, inductive inference, data bases, knowledge bases, belief revision, belief
updating.

1. Introduction

Recently, the logic programming community has shown much interest in the
field of knowledge base updating [5, 7, 11, 12, 14, 23, 30]. Also, in machine
learning there is a trend towards using logic or logic programming as a
knowledge representation formalism (e.g. [4, 8, 21, 22, 29]). The fields of
intensional knowledge base updating and incremental concept-learning have
been developed independently from each other and from a different perspec-
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tive. Reformulating them in a logical framework reveals that they are closely
related. Because of this intimate relationship, we argue that they can benefit
from applying each other’s techniques. To support these claims, we first
introduce a general notion of belief updating in a logical framework, and then
argue that intensional knowledge base updating and incremental concept-
learning can be viewed as special cases of the belief updating problem. This
allows us to point out the similarities and differences between both areas.
Finally, we show how the belief update problem can be solved—for a restricted
subset of Prolog [16]—using a simple adaptation of Shapiro’s Model Inference
System [29]. The soundness and other properties of the algorithm are proven.
It remains an open question whether the belief update problem can be solved
for full pure Prolog. Although we arc well aware that there are more advanced
methods than Shapiro’s one, we choose to adapt his method because it is well
known, theoretically appealing and sufficient for supporting our claims.

This paper is organized as follows: in Section 2, a simple logical framework
for knowledge bases is defined; in Section 3, the relation between incremental
concept-learning and intensional knowledge base updating and the more
general problem of belief updating is explored; in Section 4, the belief update
problem is solved by adapting Shapiro’s Model Inference System [29]; in
Section 5, we study some theoretical properties of the proposed algorithm and
finally, in Sections 6, 7 and 8, we conclude and discuss related work.

2. A logical framework for knowledge bases

We recall the most important notions used throughout this paper. More
details can be found in [16].

A clause is a formula of the form A,,..., A, < B, ..., B, where the A,
and B, are positive literals (atomic formulas). The above clause can be read as
Ayor...or A, if B and ... and B,. Extending the usual convention for
definite clauses (where m=1), we call A,..., A the head and 7 R
the body of the clause. A fact is a definite clause with empty body (m =1,
n=0). A goal is a clause with empty head (m = 0). A general goal is a formula
of the form « C,, ..., C, where all C, are either positive or negative literals.

Definition 2.1. A clause is range-restricted iff all variables occurring in the head
also occur in the body.

Range-restriction is often imposed in the data-base literature (e.g. [10]); it
allows us to avoid the derivation of non-ground true facts.

Definition 2.2. A variable is linked in a clause if it occurs in the head or if it
occurs in a literal L of the body and L contains a linked variable.
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Definition 2.3. A clause is linked iff all of its variables are linked.

Requiring clauses to be linked allows to avoid considering usually uninterest-
ing clauses such as p(X) < g(X,Y), r(Z) when learning concepts. This
restriction is often imposed in learning systems, see e.g. [13].

We follow the database literature [6, 10, 31] in distinguishing between inten-
sional and extensional predicates and disallowing functors.

Definition 2.4. An extensional predicate is a predicate defined by a set of
functor-free ground facts.

Predicates that are not extensional are intensional. However, for the purpose
of this paper, we impose some restrictions on their syntax.

Definition 2.5. An intensional predicate is a predicate defined by a set of
linked, range-restricted, functor-free and constant-free definite clauses.

Notice that the definition of an intensional predicate may not contain facts.

Disallowing constants is not an additional restriction as, by introducing extra
extensional predicates, one can easily rewrite clauses. E.g. p(a, X) < r(Y, ¢)
can be rewritten as p(A, X) < r(Y, C), a(A), c(c) and the ground facts a(a) <
and ¢(C) < [25]. Also, the range-restriction does not limit expressiveness in
the absence of functors. For example, p(X, Y) « g(Y) can be rewritten as
p(X,Y) < q(Y), d(X) with d(X) an extensional predicate enumerating all
constants.

Definition 2.6. A knowledge base contains definitions of a set of extensional
and a set of intensional predicates.

In intensional knowledge base updating and incremental concept-learning,
the aim is to derive a target-knowledge base fulfilling certain conditions (see
Section 3). We postulate the existence of an intended interpretation (see also
Section 6), which assigns truth and falsity to atoms in the Herbrand-base of the
target knowledge base. We will assume that there is an oracle that is willing to
answer certain questions about the intended interpretation (cf. Definitions 3.1
and 3.2).

In the literature, e.g. [10], it is usual to impose restrictions on the informa-
tion contained in the knowledge base in the form of integrity constraints.

Definition 2.7. An integrity constraint is a range-restricted functor-free clause.

Integrity constraints need not be linked, definite or constant-free as they are
considered to be correct in the intended mterpietatlon they are not eligible for
revision during the learning phase.
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Definition 2.8. An infegrity constraint theory is a set of integrity constraints.

As a notational convention to distinguish clauses in the knowledge base from
constraints in the constraint theory, we will write the former with an implica-
tion sign to the left («) and the latter with an implication sign to the right
).

Because the knowledge base KB contains only definite clauses, it has a single
minimal Herbrand model: the least fixpoint of the well-known T, operator (see
[16] for more details). In the sequel of this paper, we consider an integrity
constraint to be satisfied if it is true in this least Herbrand model, and to be
violated otherwise. This is because we feel that the more classical views, which
state that an integrity constraint should either be a theorem of Comp(KB) (cf.
[17]) or consistent with Comp(KB) (cf. [27]) are not entirely satisfactory for
our purposes. Consider the following knowledge base KB and the integrity
constraints /C1 and IC2:

KB: p(a) < p(a) IC1: — p(a) IC2: p(a)—

We have the Comp(KB) ¥ p(a) and Comp(KB) F —p(a) and IC1 and IC2 are
both consistent with Comp(KB), but neither is a theorem of Comp(KB).
According to us, IC1 should be considered violated and IC2 satisfied. So, we
take truth in the least Herbrand model (here: the empty set) as the criterion.
Several evaluation strategies to compute this least Herbrand model have been
proposed (see e.g. [2]). Under the given restrictions (definite clauses without
functors), certain strategies mentioned by [2] assure termination. So, in order
to verify whether a knowledge base KB satisfies an integrity constraint /C =
B,..., B,—A,,..., A we execute the query Q=<B,,...,B,,
—1A,,...,A,,. Because KB is range-restricted, the subquery «<B,,..., B,
returns a finite number of ground substitutions 6. Since IC itself is range-
restricted @ grounds all literal A,. Therefore = A.0 is true in the minimal
Herbrand model iff A,6 is false in it. The latter can be checked with the
above-mentioned terminating evaluation strategies. So, there are procedures
such that the evaluation of Q always terminates. We assume the use of such a
procedure.

An answer 0 to Q indicates that (B,,...,B,, "A,,...,1A, )0 holds in
the minimal Herbrand model, in other words that the 1ntegrity constraint /C is
violated under the substitution 6. Failure of O occurs when IC is satisfied.

m?*

Definition 2.9. KB satisfies an integrity constraint IC=B,,...,B,— A, ...,
A, iff the query Q= «B,,...,B,, 1A4,,..., 1A, fails. IC violates KB

m

with substitution 0 iff Q succeeds with answer-substitution 6.

Definition 2.10. A knowledge base KB satisfies an mregnry constraint theory IT
iff KB satisfies all constraints IC € IT. '
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3. Problem-specification

In the sequel, we will present a method to automatically modify a knowledge
base when violating a newly supplied integrity constraint. The method uses
inductive learning techniques and relies on an oracle. The oracle must be able
to answer existential and membership questions (see also [1, 29]).

Definition 3.1. A membership question asks for the truth-value of a ground
fact. If the fact is true in the intended interpretation the oracle answers yes.
Otherwise, it answers no.

Definition 3.2. An existential question asks for the truth-value of a non-ground
fact p. The oracle must answer the question with no if there is no substitution 6
for which p# is true in the intended interpretation. Otherwise, it must return all
ground substitutions 6 for which p#é is true in the intended interpretation.

Answering membership and existential questions corresponds to supplying
examples in inductive learning. These answers can be reformulated as integrity
constraints. Indeed, an atom ¢, that is false in the intended interpretation,
corresponds to a constraint of the form (g—); while an atom g, true in the
intended interpretation corresponds to the constraint (—g). During the pre-
sentation of the algorithms, it will be assumed that all answers to queries are
added to the integrity constraint theory.

We also define the notions of coverage and incorrectness [29], which will be
used in our presentation of the algorithms.

Definition 3.3. A fact p(f,,...,1t,) is covered by the predicate p w.r.t. the
intended interpretation if there is a clause ¢ for p in the knowledge base and a
substitution @ such that head(c)0 = p(t,,....t,) and body(c)# is true in the
intended interpretation.

Definition 3.4. A clause ¢ is incorrect if there is a substitution 6 for which
body(c)0 = true and head(c)8 = false in the intended interpretation.

The belief update problem can now be formalized as follows:

e Given:
—a knowledge base KB,
— an integrity constraint theory /7, satisfied by KB,
—a new integrity constraint /C,
— an oracle, willing to answer existential and membership questions;

® Find: a knowledge base KB', such that KB’ satisfies {IC} U IT and KB’ is
obtained by asserting/retracting any clause/fact from/to KB; KB' forms a
solution to the belief update problem. :
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The belief update problem

We will now discuss the relation between incremental concept-learning and
intensional knowledge base updating and argue that—from a certain perspec-
tive—the belief update problem generalizes both of these areas.

Firstly, let us note that incremental concept-learning (e.g. [22,29]) and
intensional knowledge base updating (e.g. [5, 11, 23]) have been studied in a
much more expressive representation formalism which includes negation and
functors. Certainly in knowledge base updating, as studied in the logic pro-
gramming community, the expressiveness of the formalism has been a major
focus of research. We are well aware that in this respect our definition of and
our approach to the belief update problem is quite restricted. Nevertheless, it
is easy to extend the definition of the belief update problem towards these
more expressive formalisms. At the moment, it is—however—an open ques-
tion whether there is an elegant solution to this extended belief update
problem (see also Section 6).

Secondly, in concept-learning, one updates the knowledge base from exam-
ples. Examples in concept-learning are a very restricted form of integrity
constraints: either they are true or false ground facts as in [8,29] or they
correspond to true or false ground definite clauses as in [22, 28]. In both cases,
cxamples can be represented as constraints. A true (resp. false) definite clause
P<Q, ...,Q, corresponds to a constraint Qs ..., 0, P (resp. a denial
Q... 0,, P)!

Thirdly, some concept-learning techniques may also generate other types of
oracle-questions [1], use only membership-questions [8, 28] or use no questions
at all [24]. Because concept-learning has been studied under these different
assumptions, the used oracle-type seems not intrinsic to the nature of the
concept-learning problem.

In contrast to our definition of belief updating, the above mentioned
approaches to knowledge base updating do not rely on an oracle. Furthermore,
in knowledge base updating one is usually interested in all possible updates,
while in belief updating only one possible solution is wanted. To explain these
differences between belief updating and intensional knowledge base updating,
observe that in practice people are only interested in one (correct) update of
their knowledge base. The mentioned approaches to knowledge base updating
have divided this practical problem into two subproblems: (1) determining all
correct modifications of the knowledge base and (2) choosing the desired
modification among the solutions to problem (1). The first subproblem has
received much attention in the literature, whereas the second has not. In
general, there are a very large number of possible solutions to the first
subproblem (Tomasic [30] proves that the number of solutions can be exponen-

" This is the interpretation that is intended by the mentioned work.
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tial in the size of the knowledge base). Apparently, the second problem is the
most difficult one. Furthermore, it is generally agreed that approaches to the
second subproblem may have to consult the user. This consulting implicitly
assumes an oracle, although it may be an oracle of a different kind. In our
definition of belief updating, the original practical problem is addressed
globally, rather than dividing it into subproblems. Also, by relying on an
oracle, it is possible to filter out many uninteresting solutions: the use of an
oracle increases the probability that the found solution is a good one. It also
simplifies the search problem and reduces the number of possibilities. Without
an oracle one has to explore two different paths: one corresponding to a
positive answer on a question and the other to the negative answer. Upon
reflection, it seems feasible to adapt the approaches to knowledge base
updating towards the use of an oracle in our sense and to extend our technique
with a backtracking mechanism to generate alternative solutions. As a con-
sequence, we believe that the differences between belief updating and inten-
sional knowledge base updating with regard to the use of an oracle are rather
superficial.

Fourthly, none of the known approaches to the knowledge base update
problem allows to assert non-unit clauses for intensional predicates in the
knowledge base.” Nevertheless, this is often needed in practice [5]. The reason
for the restriction seems to be that the proposed methods did not lead to any
obvious way to know which clause(s) to add. In machine learning, however,
several methods have been studied to induce new clauses (see e.g. [8,22,29]).
In the sequel, we will show that these machine learning techniques can also be
successfully employed in the context of knowledge base updating by also
allowing for assertions of non-unit clauses.

One very important issue in our presentation is the import of a logical
framework for concept-learning. It has to be noted that most classical ap-
proaches to concept-learning (see e.g. [15,18,19]) employ a much simpler
formalism such as attribute-value pairs. It is only in the past few years that
researchers have tried to extend the classical approaches to a first order logic
framework (see e.g. [8, 21,22, 28]).

To summarize this section: within a logical framework, we have that

(1) the intensional knowledge base update problem can be seen as a special
case of (a possibly extended) belief updating problem because in belief
updating it is also allowed to assert non-unit clauses in the knowledge
base and

(2) the problem of incremental concept-learning is a special case of the
problem of belief updating because of the generalization of examples
into constraints.

*This is slightly exaggerated: Guessoum and Lloyd [11] consider modifying clauses by adding
exceptions to it. However, this is a very special case of deriving new clauses.
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These claims are to be understood at the level of the problem-specifications
and not at the level of solutions to these problems! The reason is that it is not
(yet) clear whether there exists an elegant solution to the generalized problem
of belief updating, which also addresses the use of functors and negation.
Nevertheless, in the next section, we will present a solution to the belief
updating for the subset of first order logic presented in the previous section.

4. The method

Our method is based on the following two observations:

First, if a constraint P,,...,P,— Q,,..., O, is violated for a substitution
0, then we have that 36:P.6,...,P,0, Q,6,..., °1Q,0 is true in the
minimal Herbrand model of the knowledge base. Since the constraint is true in
the intended interpretation, we must have that at least one of the P,8 is false or
at least one of the Q 6 is true in the intended interpretation. This implies that
there must be an error in the knowledge base KB. There are two possibilities
for such errors. In one of the P,0 is false in the intended interpretation, then
our definition of the corresponding predicate P, is too general, i.e. KB implies
P.6, but should not. If on the other hand, one of the @, is true in the intended
interpretation, our definition of the corresponding predicate Q ; 18 too specific,
i.e. KB does not imply Q ;6 but should.

Secondly, Shapiro [29] describes the Model Inference System, which is able
to recover from three kinds of errors in logic programs: a true fact which is not
implied by the knowledge base; a false fact, which is implied by the knowledge
base, and a query which does not terminate. The first two types of error are
precisely the same kind of error we can derive from a violated integrity
constraint. The third type of error, non-termination, cannot arise in our
framework (cf. the above).

Given the above observations, it is easy to design Algorithm 1 to solve the
belief update problem. It starts from a given knowledge base KB and an
integrity constraint theory IT. The while loop of the procedure learn is intended
to handle multiple knowledge base updates. In order to find a violated integrity
constraint and the associated substitution, we use a query evaluation strategy
as referred to in Section 2. Given the violated constraint /C and the substitu-
tion 6, the error can be located by asking the oracle to classify the literals in
ICO until an error is found. Note that these questions are membership
questions (this follows by induction from the range-restrictedness condition
and the form of the clauses in the knowledge base). Also, the answers are
added to the integrity constraint theory as they are true in the intended
interpretation. Recovering from the error is then possible by invoking the
generalization or specialization procedures of Shapiro [29]. The procedure
specialize will make an implied false fact unimplied and the procedure general-
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procedure learn
initialize the set of marked clauses with {T}
while not all integrity constraints have been input by the user do
read the next integrity constraint IC
add IC to the integrity constraint theory IT
call kbu(KB,IT)
endwhile
endproc

procedure kbu(KB : knowledge base, IT : constraint theory)
while KB does not satisfies IT do
select a violated integrity constraint IC
find a substitution 8 for which IC is violated
repeat
select a literal L of I1C#
ask the membership question L to the oracle
add L as a constraint to IT
until intended interpretation(L) # truth-value of L according to KB
if L occurs as a positive literal in IC#
then call specialize(L)
else call generalize(L)
endif
endwhile
endproc

Algorithm 1. The belief updating algorithm.

ize will make an unimplied true fact implied by the updated knowledge base.
Below, we will describe these procedures in more detail. After each modifica-
tion of the knowledge base, the integrity constraint theory is verified; if an
integrity constraint becomes violated, it is handled as before. A good heuristic
to reduce the involvement of the oracle is to first process the integrity
constraints that correspond to answers of questions. To find the cause for a
possible violation of such constraints, one does not have to rely on the oracle,
as there is only one literal in such integrity constraints. Clearly, if such a
constraint is violated, its single literal is responsible.

4.1. Adapting Shapiro’s algorithms

Let us now briefly outline how Shapiro’s generalization and specialization
algorithms [29] can be applied for our purposes. We will only sketch the
necessary modifications to his procedures because they are well known and
well described in the literature. For a detailed description of his procedures, we
refer to [29]. In the remainder of this paper, we assume that Shapiro’s eager
method is used. This method was selected because it has the nicest theoretical
properties. '
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The specialization procedure locates an incorrect clause by analyzing a proof
tree for an implied false fact. The incorrect clause is then retracted from the
knowledge base. Any of Shapiro’s specialization procedures (false_solution, see
[29]) can be used here.

Shapiro’s generalization procedure infers missing clauses and/or facts when
an unimplied true fact is handled by the system. These clauses are then
asserted in the knowledge base. First, the system computes in an abductive
manner (the procedure missing_solution, see [29]) the predicate(s) that is
responsible for the true fact being unimplied. Secondly, it searches the
refinement graph (the procedure search_for_cover, see [29]) of the correspond-
ing predicate(s) to find clauses/facts that allow to recover from the error and
that are not known to be incorrect. To apply Shapiro’s generalization proce-
dure in our context, we only need to redefine the refinement operator. The
refinement operator determines the refinement graph and hence the search-
space. Since we only use the subset of Prolog defined in Section 2, the
following refinement operator p is sufficient for our purposes.

Definition 4.1 (The refinement graph p*). For an uncovered positive example
pla,,...,a,), theset of sons of c, p(p(a,,...,a,),c), in the refinement graph
is defined as:

® If p is known intensional predicate then

-p(play,...,a,), T)={p(X,,...,X,)<} where the X, are n different
variables; T denotes the most general clause for p.

-p(play,...,a,),c)={c"[c" is obtained by unifying two different vari-
ables in ¢; or ¢’ is a clause obtained from ¢ by adding a literal
q(Y,,...,Y,) to the body of the clause ¢, such that ¢ is a predicate of

arity k, the Y, are k different variables and exactly one of these variables
occurs in c}.
elf p is a known extensional predicate then p(p(a,,...,a,),T)=
(pa,...,a,)<).

Notice that the second part of this definition implies that the system will
assert an implied true fact that corresponds to an extensional predicate. Notice
also that all clauses in the refinement graph are linked. However, they are not
all range-restricted. As it is not allowed to assert clauses, that are not
range-restricted in the knowledge base, all non range-restricted clauses are to
be considered as incorrect (in Shapiro’s terminology: marked).

It is easily verified that the following property holds:

Lemma 4.2. The set of clauses that are range-restricted and that are a refinement

* Observe that our refinement graph takes also the positive example as an argument; this is
useful in the extensional case. ) 2
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of T w.r.t. p(pla,,...,a,), T) for an intensional predicate p, is precisely the
set of clauses allowed in the definition of the predicate p.

As the graph determines the search space, it also determines the efficiency of
effecting modifications to the knowledge base. Several knowledge sources may
be used to decrease the size of the graph as much as possible:

e knowledge about the types of the involved predicates (see e.g. [16]);

e knowledge about the predicates that may be used in the definition of a
predicate to be learned;

e knowledge about the structure of clauses that may be used in the definition
of a predicate to be learned, e.g. about the number of existential quan-
tifiers that are allowed in the body of a clause, see e.g. [9], or whether
recursion is allowed or not.

In the literature on learning, these knowledge sources are known as bias, see
e.g. [9,20,26,32]. To cope with such biases, one only needs to consider
clauses violating the bias as incorrect (marked).

4.2. An example session

As an illustration of this algorithm, we present a session with our prototype
implementation. The initial knowledge base is shown below:

female(alice) « male(luc) «

female(rose) « male(etienne) «
female(ann) « male(gerard) <
female(laura) « male(leon) «
parent(leon,rose) « parent(etienne,ann) «
parent(alice,rose) « parent(etienne,luc) «
parent(rose,luc) « parent(laura,etienne) «
parent(rose,ann) « parent(gerard,etienne) <

Mother(X,Y) « female(X), parent(X,Y)

Initially the constraint theory was empty and the bias for the predicate
father was declared as follows: only the predicates male and parent may
be used in clauses for father and no existentially quantified variables may
occur in clauses for father.

(1) parent(X,Y)— father(X,Y), mother(X,Y)
(2) father(X,Y) «

(3) father(X,X) «

(4) father(X,Y) < male(X)

(5) father(X,Y) < male(Y)

(6) father(X,Y) « parent(X,Y)

(7) father(X,Y) « parent(Y,X)

(8) father(X,Y) < male(X), parent(X,Y)
(9) mother(X,Y), father(X,Y)—

(10) — father(etienne,ann)

(11) —parent(gunther,leon)
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The user started by supplying the constraint (1) to the system. This
constraint is violated for 6 = {X=etienne, Y=ann}; therefore the system
asks the user for the intended interpretation of parent(etienne,ann)
(true) and father(etienne,ann) (true). The answers imply that there is
a missing solution for father(etienne,ann) as this example is true
but not implied. Therefore the system has to compute a clause covering
father(etienne,ann). To this purpose, it considers the clauses (2-8) in the
refinement graph: clause (2) covers the example parent(etienne,ann) but
is not range-restricted, and therefore rejected. Clause (3) does not cover the
example. Therefore the system verifies whether (4) and (5) cover the example.
This is realized by asking the questions male(etienne) (true) for clause (4)
and male(ann) (false) for clause (5) to the user. This allows to conclude that
(4) covers the example and (5) does not. Because of this and the fact that (4) is
not range-restricted, the system proceeds with (6). (6) is known to cover the
example because parent(etienne,ann) is already known to be true. It is
also range-restricted, and therefore clause (6) is asserted in the knowledge
base. This results in a consistent knowledge base. At that point the user is
queried for the next constraint. Suppose he then supplies (9) to the system.
This constraint is violated for # = {X=rose, Y=1uc}. The reason for the
violation is examined by asking mother(rose,luc) (true) and father-
(rose,luc) (false). The answer to the last question means that there is an
incorrect clause used to prove father(rose,luc). The clause (6) is iden-
tified as the guilty one and retracted from the knowledge base after asking
parent(rose,luc) (true). As the clause is retracted, some constraints such
as (10) become violated. The system discovers that a new clause covering
father(etienne,ann) should be asserted. At that point it considers the
next clause in the refinement graph (7) and discovers that this clause does not
cover the example father(etienne,ann) by asking for the truth-value of
parent(ann,etienne) (false). Therefore it goes to the next clause (8). This
clause is known to cover the example and is therefore asserted in the knowl-
edge base. This clause yields a consistent knowledge base, so no furhter
questions are generated.

Suppose the user then wants to insert the fact parent(gunther,leon) by
supplying the constraint (11). The constraint is violated: there is a missing
solution for parent(gunther,leon). This is solved by asserting the fact
parent(gunther,leon) < in the knowledge base (parent is an extension-
al predicate). However, this gives rise to a violation of constraint (1) for
7= {X=gunther, Y=1eon}. Diagnosing the violation by asking father-
(gunther,leon) (true) results in the search for a missing solution for
father(gunther,leon). At this point the system’s abductive procedure is
invoked, and the question male(gunther) (true) is formulated. The answer
means that a clause covering male(gunther) has to be asserted in the
knowledge base. The found clause is male(gunther) <« as male is an
extensional predicate. Hereafter there are no more violations, so the system
asks for the next constraint. In a similar way the system can then learn
definitions of related predicates such as ancestor, grandparent, aunt,
niece,....
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5. Theoretical properties of the algorithm

In this section, we prove some properties of the proposed algorithms. More
specifically, we show that (1) the procedure learn identifies knowledge bases in
the limit and (2) that the procedure kbu is sound and complete. Before proving
these properties, we define the involved notions in more detail.

Defintion 5.1. A procedure for belief updating is sound if all solutions gener-
ated by the procedure are correct.

Definition 5.2. A procedure for knowledge base updating is complete if it finds
a solution to the belief updating problem in finite time whenever there is one.

Definition 5.3. A presentation w.r.t. a knowledge base is a possibly infinite
sequence of integrity constraints satisfied by the knowledge base. A presenta-
tion is complete w.r.t. a knowledge base if all non-redundant constraints
satisfied by the knowledge base occur in the sequence. A constraint IC is
redundant iff one of the literals / in IC can be deleted, i.e. iff IC = (IC — {I}).
Otherwise it is non-redundant.

The requirement that all non-redundant constraints have to occur in the
sequence is sufficient for our purposes. Indeed, if a non-redundant constraint
P— Q occurs in the sequence it is not necessary that constraints like P, P,
P— Q, Q occur.

Definition 5.4. An algorithm identifies knowledge bases in the limit if for each
knowledge base KB and all complete presentations w.r.t. KB, there is a time
after which the learned knowledge base KB’ is logically equivalent to KB and
will not be modified afterwards.

Theorem 5.5. Algorithm 1 identifies knowledge bases in the limit.

Proof. (1) If the user would only supply examples as constraints, the system
identifies concepts in the limit. This follows directly from Shapiro’s theorem
4.11 [29, p. 108].

(2) Observe that the integrity constraints are only used for verifying the
results of the learning. This also means that only the examples are actively used
by the generalization and specialization of Shapiro in our algorithm. Therefore,
when a normal consistent integrity constraint theory is supplied to the system,
we have that only a finite number of violations can arise in the while-loop. The
reason for this is that each violation corresponds to an incorrectly handled
example and that Shapiro’s procedures identifies concepts in the limit after
processing a finite number of examples (cf. (1)). Therefore the alogithm always
terminates and generates a solution to the update problem. [
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Theorem 5.6 (Soundness and Completeness). Procedure kbu is sound and
complete.

Proof. Completeness follows directly from the proof of Theorem 5.5. Sound-
ness follows from the halting condition of the while-loop in procedure kbu. [J

6. Discussion

In our problem-specification, given in Section 3, we concentrated on one
update problem, i.e. the modification of the knowledge base w.r.t. one
constraint. This situation is quite common for intensional knowledge base
updating. However, in concept-learning it is usual to also consider a sequence
of possible update problems. As a result, the constraints which are input at a
certain time, are assumed to be valid at all times afterwards. This means that
the intended interpretation is fixed and remains the same throughout the whole
learning process. For intensional knowledge base updating, this assumption
does not hold. Indeed, the reason for the update request is precisely that the
intended interpretation has changed, e.g. when a person moves from one place
to another, the address will change. In other words, a former update request
may be modified later. These considerations imply that for learning, all
answers to questions and all input constraints are assumed to be always valid
(the intended interpretation is fixed); hence, they may be added to the
integrity constraints theory. On the other hand, for intensional knowledge base
updating, a distinction should be made between constraints that arc always
valid, and those that may be overruled by newly incoming information (the
ones whose intended interpretation may change). Therefore, the temporary
constraints and answers to questions should be removed from the integrity
constraint theory after each knowledge base update; the others can remain in
the theory.

One very important property of our knowledge base update algorithm is that
it will find a solution whenever there is one (see Theorem 5.6: soundness and
completeness). Although researchers in the area of knowledge base updating
have introduced notions of completeness [9] and correctness [11, 12], there is
to the best of our knowledge only one approach that is complete in our sense:
the one of Bry [5], but he only allows for insertions and retractions of facts, not
of clauses. Completeness is a very important property of our algorithms.

It seems possible to extend our technique to cope with negation as failure and
functors. The problem with functors is that termination is no longer guaran-
teed. There are two possible approaches: (1) allow for non-termination, as is
done by e.g. Guessoum and Lloyd [11] and (2) consider some depth-bound on
the computation and define a notion of h-casiness as Shapiro does. To cope
with functors, the definition of the refinement graph must also be extended.
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Although—conceptually—it is straightforward to extend the algorithms (cf.
Shapiro [29, Section 3.6.1, pp. 74-75]) to handle negation,’ there is a problem
with deciding whether a certain fact is implied by a knowledge base or not. This
leads to a technical discussion on the semantics of knowledge bases, which we
do not wish to address here. Another implication of the use of negation would
of course be a significant increase of the search-space.

7. Related work

Our work is related to the work on knowledge base updating in the logic
programming community, a.o. [5,9, 11, 14, 23, 30]. The main novelty is that we
also add clauses to the knowledge base. Although the possibility of adding
clauses to the knowledge base is considered by Pereira et al. [23] and the
relation with debugging is shown, they do not specify or indicate any technique
to find new clauses for insertion in the knowledge base.

Regarding concept-learning, our approach is closest to [8,22,28,29]. We
have made extensive use of the algorithms of Shapiro, although we have
adapted them to cope with our representation formalism: instead of Prolog, a
query evaluation strategy that terminates for our knowledge representation has
been used and a new refinement graph was defined. Most importantly, we have
extended Shapiro’s mechanism to handle integrity constraints. This may also
have some implications for the field of debugging. We are convinced that the
use of integrity constraints is also useful in other learning approaches as e.g.
[3,8,22]. The main difference with the mentioned approaches to learning is
the use of integrity constraints rather than examples and also, that these other
approaches address different learning techniques as shifting the bias and
constructive induction.

8. Conclusion

We have shown that the domains of intensional knowledge base updating
and incremental concept-learning have much in common. It was argued that
intensional knowledge base updating and incremental concept-learning can be
regarded as instances of the more general problem of belief updating. The
belief update problem was then solved for a restricted subset of Prolog by
adapting Shapiro’s Model Inference System. The main conclusions which
follow from this work are that (1) integrity constraints form a very useful

* Problems because of special cases as ¢.g. updating p < 71 and p < g w.r.t. the constraint
p—>. can easily be solved because we rely on an oracle. The answers of the oracle allow to retract
the incorrect clause. ' 3
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generalizaton of examples in concept-learning; they provide the user with a
powerful tool to augment the induction process with background knowledge;
and (2) it is plausible to assert clauses in the knowledge base, also in the field
of intensional knowledge base updating; interesting clauses can be found using
inductive inference techniques.
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