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Abstract. In this paper we introduce graph-evolution rules, a novel type
of frequency-based pattern that describe the evolution of large networks
over time, at a local level. Given a sequence of snapshots of an evolving
graph, we aim at discovering rules describing the local changes occur-
ring in it. Adopting a definition of support based on minimum image we
study the problem of extracting patterns whose frequency is larger than
a minimum support threshold. Then, similar to the classical association
rules framework, we derive graph-evolution rules from frequent patterns
that satisfy a given minimum confidence constraint. We discuss merits
and limits of alternative definitions of support and confidence, justify-
ing the chosen framework. To evaluate our approach we devise GERM

(Graph Evolution Rule Miner), an algorithm to mine all graph-evolution
rules whose support and confidence are greater than given thresholds.
The algorithm is applied to analyze four large real-world networks (i.e.,
two social networks, and two co-authorship networks from bibliographic
data), using different time granularities. Our extensive experimentation
confirms the feasibility and utility of the presented approach. It further
shows that different kinds of networks exhibit different evolution rules,
suggesting the usage of these local patterns to globally discriminate dif-
ferent kind of networks.

1 Introduction

With the increasing availability of large social-network data, the study of the
temporal evolution of graphs is receiving a growing attention. While most re-
search so far has been devoted to analyze the change of global properties of
evolving networks, such as the diameter or the clustering coefficient, not much
work has been done to study graph evolution at a microscopic level. In this paper,
we consider the problem of searching for patterns that indicate local, structural
changes in dynamic graphs. Mining for such local patterns is a computationally
challenging task that can provide further insight into the increasing amount of
evolving-network data.

Following a frequent pattern-mining approach, we introduce the problem of
extracting Graph Evolution Rules (GER), which are rules that satisfy given
constraints of minimum support and confidence in evolving graphs. An example
of a real GER extracted form the DBLP co-authorship network is given in Fig. 1:
nodes are authors, with an edge between two nodes if they co-authored a paper.
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Fig. 1. A Graph Evolution Rule extracted from the DBLP co-authorship network.

In this specific example, the node labels represent a class of degree of the
node: the higher the label the higher the degree of the node. It is important
to note that the label refers to the degree of the node in the input graph, not
in the rule. In particular the label 3 indicates a node with degree > 50. In
general, node labels may represent any property of a node. The labels on the
edges instead are more important as they represent the (relative) year in which
the first collaboration between two authors was established. Intuitively (later
we will provide all the needed definitions) the rule might be read as a sort of
local evidence of preferential attachment, as it shows a researcher with a large
degree (label 3) that at time t is connected to four medium degree researchers
(labels 2), and that at time t + 1 will be connected to another medium degree
researcher. The definition, extraction and subsequent empirical analysis of such
Graph Evolution Rules (GER) constitute the main body of our work.

The remainder of the paper is organized as follows: Section 2 describes the
problem under investigation and defines the novel kind of pattern we are inter-
ested in. In Section 3 we describe the details of our algorithm. We report on our
experimental results in Section 4 and present related work in Section 5. Finally,
in Section 6 we discuss possible future research directions and in Section 7 we
provide our conclusions.

2 Patterns of graph evolution

2.1 Time-evolving graphs

We start by describing how we conceptually represent an evolving graph, and
subsequently discuss how to actually represent the graph in a more compact
format. As usual the terminology G = (V,E, λ) is used to denote a graph G

over a set of nodes V and edges E ⊆ V × V , with a labeling function λ :
V ∪E → Σ, assigning to nodes and edges labels from an alphabet Σ. These labels
represent properties, and for simplicity we assume that they do not change with
time. As an example, in a social network where nodes model its members, node
properties may be gender , country , college, etc., while an edge property can be
the kind of connection between two users. The evolution of the graph over time
is conceptually represented by a series of undirected graphs G1, . . . , GT , so that
Gt = (Vt, Et) represents the graph at time t. Since G1, . . . , GT represent different
snapshots of the same graph, we have Vt ⊆ V and Et ⊆ E. For simplicity of
presentation, we assume that as the graph evolves, nodes and edges are only
added and never deleted: i.e., V1 ⊆ V2 ⊆ . . . VT and E1 ⊆ E2 ⊆ . . . ET .
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Fig. 2. Relative time patterns extracted from two different samples of the DBLP co-
authorship network: respectively 1992-2002 for (P1), and 2005-2007 (P2). Dataset de-
tails are given in Sec. 4.1.

It is worth noting that the number of edge deletions in social networks is
so small to be negligible when analyzing the temporal evolution of networks.
However, in our framework we can handle also deletions by slightly changing the
matching operator as described in Section 6.

Our mining algorithm represents the dataset by simply collapsing all the
snapshots G1, . . . , GT in one undirected graph G, in which edges are time-
stamped with their first appearance. Thus, we have G = (V,E) with V =
⋃T

t=1 Vt = VT and E =
⋃T

t=1 Et = ET . To each edge e = (u, v) a time-stamp
t(e) = arg minj{Ej | e ∈ Ej} is assigned. Note that time-stamps on the nodes
may be ignored as a node always comes with its first edge and hence this infor-
mation is implicitly kept in edge time-stamps. Overall, a time-evolving graph is
described as G = (V,E, t, λ), with t assigning time-stamps to the set of edges E.

2.2 Patterns

Consider a time-evolving graph G, as defined above. Intuitively a pattern P of
G is a subgraph of G that in addition to matching edges of G also matches their
time-stamps, and if present, the properties on the nodes and edges of G.

Definition 1 (Absolute-time pattern).
Let G = (V,E, t, λ) and P = (VP , EP , tP , λP ) be graphs, where G is the time-
evolving dataset and P a pattern. We assume that P is connected. An occurrence
of P in G is a function ϕ : VP → V mapping the nodes of P to the nodes of G

such that for all u, v ∈ VP :
(i) (u, v) ∈ EP it is (ϕ(u), ϕ(v)) ∈ E,
(ii) (u, v) ∈ EP it is t(ϕ(u), ϕ(v)) = t(u, v), and
(iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

In case no labels are present for edges or nodes, the last condition (iii) is
ignored. Two examples of patterns from the DBLP co-authorship network are
shown in Fig. 2. Those examples motivate us to make two important decisions.
First, since our goal in this paper is to study patterns of evolution we naturally
focus on patterns that refer to more than one snapshots such as the examples
in Fig. 2. In other terms we are not interested in patterns where all edges have
the same time-stamp. The second decision is based on the following observation.
Consider pattern P1: arguably, the essence of the pattern is the fact that two
distinct pairs of connected authors, one collaboration created at time 0, and one
at time 1, are later (at time 2) connected by a collaboration involving one author
from each pair, plus a third author. We would like to account for an occurrence



of that event even if it was taking place at times, say, 16, 17 and 18. To capture
this intuition we define relative-time patterns.

Definition 2 (Relative-time Pattern). Let G and P be a graph and pattern
as in Definition 1. We say that P occurs in G at relative time if there exists a
∆ ∈ R and a function ϕ : VP → V mapping the nodes of P to the nodes in G

such that ∀u, v ∈ VP

(i) (u, v) ∈ EP it is (ϕ(u), ϕ(v)) ∈ E,
(ii) (u, v) ∈ EP it is t(ϕ(u), ϕ(v)) = t(u, v) + ∆, and
(iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

The difference between Definitions 1 and 2 is only in the second condition.
As a result of Definition 2, we obtain naturally forming equivalence classes of
structurally isomorphic relative time patterns that differ only by a constant on
their edge time-stamps. To avoid the resulting redundancies in the search space
of all relative time patterns we only pick one representative pattern for each
equivalence class, namely the one where the lowest time-stamp is zero.

In the remainder of this paper we focus on relative time patterns, as they
subsume the absolute time case: they are both more interesting and more chal-
lenging to mine.

2.3 Support

Next we discuss the support measure we use. Let GΣ be the set of all graphs
over an alphabet Σ. We define support as a function σ : GΣ ×GΣ → N. Given a
host-graph G and a pattern P , the value of σ(P,G) reflects the support of the
pattern in the host-graph.

Defining a concept of support for the single graph setting is a non-trivial task,
which has received attention recently [14, 8, 4, 5]. The most important property
that a definition of support must satisfy is anti-monotonicity, that is, for all
graphs G, P and P ′, where P is a subgraph of P ′, it must hold that σ(P,G) ≥
σ(P ′, G). This property is exploited by pattern miners to prune the search space.
Anti-monotonicity holds trivially in the transactional setting, but is more tricky
for the single-graph setting. For instance, while the total number of occurrences
of a pattern is intuitively a meaningful measure, it is not anti-monotonic. As
an example consider Fig. 4(b): the number of occurrences in the host graph Y

of the pattern indicated as “body” is 1, while the number of occurrences of its
supergraph indicated as “head” is 2, thus violating anti-monotonicity.

A first feasible support measure was proposed in [14] followed by a refine-
ment published in [8]. Both measures rely on solving a maximum independent
set problem MIS which is NP-complete. We employ the minimum image based
support measure recently introduced in [4] which does not require solving a MIS.
This measure is based on the number of unique nodes in the graph G = (VG, EG)
that a node of the pattern P = (VP , EP ) is mapped to, and defined as follows:

Definition 3 (Support).

σ(P,G) = min
v∈VP

|{ϕi(v) : ϕi is an occurrence of P in G}|
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Fig. 3. (a): a graph with three different occurrences of a pattern evaluates to
σ = 2. (b): a graph H with relative edge labels and all possible relative subgraphs
A, B, C, D, E, F, G.

By taking the node in P as reference which is mapped to the least number of
unique nodes in G, the anti-monotonicity of the measure is ensured. An example
of minimum image based support is given in Fig. 3(a). Even if the pattern has
3 occurrences in the host graph, it has support σ = 2. In fact the lower white
node of the pattern can only be mapped to nodes 1 and 8 in the host graph.

The advantage of this definition over other definitions introduced [14, 8] is
twofold. From a practical point of view it is computationally easier to calcu-
late since it does not require the computation of all possible occurrences of
a pattern-graph in the host-graph. Additionally it does not require to solve a
maximal independent set problem for each candidate pattern. From a theoreti-
cal perspective we know that this definition is an upper bound for the according
overlap based definitions [4, 8]. Hence the support according to this definition is
closer to the real number of occurrences in the graph.

2.4 Rules and Confidence Measure

The support of a pattern can provide insight into how often such an event may
happen compared to other specific changes, but not how likely is a certain se-
quence of steps. To acquire this information we need to decompose a pattern into
the particular steps and subsequently determine the confidence for each transi-
tion. Each step can be considered as a rule body→head with both body and head
being patterns as defined in the previous section. Unfortunately, this does not
yet solve our problem, but rather introduces two important questions:

1. How to decompose a pattern into head and body?
2. What are reasonable definitions of confidence?

Regarding the decomposition consider pattern H in Fig. 3(b). An occurrence
of H implies an occurrence of all its sub-patterns A−G. Similarly to the definition
of association rules all A−G can be considered candidate-body in order to form
a graph evolution rule with pattern H as head. Fortunately, most of those pos-
sibilities can be discarded immediately. First, we are interested in evolution and
hence only care about rules describing edges emerging in the future. This allows
us to discard bodies A,C,D,E, and F thus only leaving B and G. Furthermore,
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Fig. 4. Two example host-graphs X and Y illustrating different problems with support
and confidence notions.

the step should be as small as possible to allow for a high granularity wherefore
we would drop candidate-body G in the example, leaving B as body for the
head H. Following the same reasoning, G would be the only choice as body for
B as head. Similar the other rules in the example are E → A,D → C,G → E.
The natural body thus would be the head discarding all the edges from the last
time-step of the target-pattern. More formally:

Definition 4 (Graph Evolution Rule). Given a pattern head PH the body PB

is defined as: EB = {e ∈ EH | t(e) < maxe∗∈EH
(t(e∗))} and VB = {v ∈ VH |

deg(v,EB) > 0}, where deg(v,EB) denotes the degree of v with respect to the
edges in EB. Moreover we constrain PB to be connected. Finally, the support of
a graph evolution rule is the support of its head.

This definition yields a unique body for each head and therefore a unique
confidence value for each head. This allows us to represent the rules by the head
only. Note that the definition disallows disconnected graphs as body due to the
lack of a support-definition for disconnected graphs. As a consequence not all
frequent patterns can be decomposed into graph evolution rules.

Consider for instance pattern P1 in Fig. 2: after removing all edges with the
highest time-stamp, and discarding disconnected nodes, the graph that remains
still contains two disconnected components (the one-edge component with label
1, and the one with label 0). Since the support is not defined for such discon-
nected pattern, P1 can not be decomposed to be a GER. On the other hand, P2

can be decomposed: in fact after removing all edges with the maximum time-
stamp, and subsequently the disconnected node, we obtain a connected graph
that will become the body of the rule for which P2 is the head. Note that a
GER can be represented in two different ways: either explicitly as two patterns
(body→head), or implicitly by representing only the head as P2 in Fig. 2. This
is possible since there is a unique body for each head.

Finally, we have to choose a reasonable definition of confidence of a rule.
Following the classic association rules framework, a first choice is to adopt the
ratio of head and body supports as confidence. With the support being anti-
monotonic this yields a confidence value which is guaranteed to be between zero
and one. However, Fig. 4(a) shows that this definition may in some cases lack a
reasonable semantic interpretation. In the upper host-graph X we find three pos-
sible ways to close a triangle given the edges from time-stamp 7. The confidence
of 1 suggests that all of these will close to form triangles, while the graph shows



that only one actually does. To overcome this counterintuitive result, we inves-
tigated if the ratio of number of occurrences of head and body can be employed
to solve this issue. While this definition of confidence allows for more reasonable
semantics for the case in Fig. 4(a), it has the clear disadvantage that, due to
the lack of anti-monotonicity, it may yield confidence values larger than 1, as in
Fig. 4(b). In our experiments we compare the two alternative definitions showing
that the minimum-image-based support is an effective and useful concept, while
the occurrence-based definition has unpredictable behavior. Moreover, while the
support is already available as it is computed for extracting the frequent pat-
terns, the occurrence based confidence needs a separate and costly computation.

3 Mining graph evolution rules

GERM is an adaptation of the algorithm in [4], which was devised to prove the
feasibility of the minimum image based support measure, and which in turn,
was an adaptation of gSpan [22]. Thus, GERM inherits the main characteristics
from those algorithms. In particular, GERM is based on a DFS traversal of the
search space, which leads to very low memory requirements. Indeed, in all the
experiments that we performed the memory consumption was negligible.

Algorithm 1 SubgraphMining(GS, S, s)

1: if s 6= min(s) then return // using our canonical form
2: S ← S ∪ s

3: generate all s′ potential children with one edge growth
4: Enumerate(s)
5: for all c, c is s′ child do

6: // using definition 3 based on definition 1 or definition 2
7: if support(c)≥ minSupp then

8: s ← c

9: SubgraphMining(GS, S, s)

We next describe in detail how to adapt gSpan to GERM whereas the main
changes are in the SubgraphMining method shown as Algorithm 1. The first
key point is that we mine patterns in large single graphs, while gSpan was
developed to extract patterns from sets of graphs. The part that is most involved
in adapting gSpan is the support computation in line 7. Thus we start from
the implementation of [4], where gSpan support calculation is replaced by the
minimum image based support computation, without the need for changing the
core of the algorithm.

One of the key elements in gSpan is the use of the minimum DFS code, which
is a canonical form introduced to avoid multiple generations of the same pattern.

We need to change this canonical form in order to enable GERM to mine
patterns with relative time-stamps (cf. line 1). As explained after Definition 2, we
only want one representative pattern per equivalence class; namely the one with
the lowest time-stamp being zero. This is achieved by modifying the canonical



Table 1. Dataset statistics: Number of nodes and edges and resulting average degree
for the total graph as well as for the largest connected component (LCC) out of all
connected components (CC). Further the growth rate in terms of edges: total growth
as ratio between the graph size at the final and the initial time-stamps, and average
growth rate per time-stamp.

LCC Growth Rates

Dataset Date |V| |E| avg deg T #CC |V| |E| avg deg total avg

flickr-month 03-05 147463 241391 1.64 24 16357 74792 182417 2.43 60347.8 2.83296
flickr-week 02-05 149863 246331 1.64 76 16661 76058 186504 2.45 246331 0.241055
y!360-month 04-05 177278 205412 1.16 10 17926 110627 155089 1.40 68470.7 5.15042
y!360-week 04-05 177278 205412 1.16 41 17926 110627 155089 1.40 68470.7 0.83434
arxiv92-01 92-01 70951 289226 4.08 10 6563 49008 260938 5.32 803.41 1.69114
dblp92-02 92-02 129073 277081 2.15 11 13444 83606 220098 2.63 25.52 0.408188
dblp03-05 03-05 109044 233961 2.15 3 14500 53370 153797 2.88 3.47 0.871401
dblp05-07 05-07 135116 290363 2.15 3 16333 72882 201468 2.76 3 0.749355

form such that the first edge in the canonical form is always the one with the
lowest time-stamp, as compared to gSpan where the highest label is used as a
starting node for the canonical form. Any pattern grown from such a pattern by
extending the canonical form will have the same lowest time-stamp, which we set
to zero by a simple constraint on the first edge. Hence we guarantee to extract
only one pattern per equivalence class which dramatically increases performance
and eliminates redundancy in the output.

Note that when matching a pattern to the host-graph we implicitly fix a
value of ∆, representing the time gap between the pattern and the host graph.
In order to complete the match all remaining edges must adhere to this value
of ∆. If all the edges match with the ∆ set when matching the first edge, the
pattern is discovered to match the host-graph with that value of ∆.

Another important issue is to be able to deal with large real-world graphs,
in which several nodes have high degree (the degree distribution in our datasets
follows a power law). In typical applications of frequent-subgraph mining in the
transactional setting, such as biology and chemistry, the graphs are typically of
small size and they are not high-degree nodes. Dealing with large graphs and
high degrees give rise to increased computational complexity of the search. In
particular, having nodes with large degree increases the possible combinations
that have to be evaluated for each subgraph-isomorphism test. We thus equip
GERM with a user-defined constraint specifying the maximum number of edges
in a pattern. This constraint allows to deal more efficiently with the DFS strategy
by reducing the search space. Our experiments confirm that the total running
time is much more influenced by the maximum-edge constraint than by the
minimum support threshold.

4 Experimental Results

In this section, we report our experimental analysis. The GERM algorithm is
implemented in C++. All the experiments are conducted on a Linux cluster
equipped with 8 Intel Xeon processors at 1.8Ghz, 16Gb of RAM.
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Fig. 5. (a)–(h): comparison of confidence of graph evolution rules in different networks.
(i),(j): comparison of support of patterns in different networks.

4.1 Datasets

We conduct experiments on four real-world datasets: two social networks (Flickr
and Y!360) and two bibliographic networks (DBLP and arXiv). Table 1 reports
statistics of the resulting graphs.

Flickr (http://www.flickr.com/): Flickr is a popular photo-sharing portal.
We sample a set of Flickr users with edges representing mutual friendship and
edge time-stamp the moment when the bidirectional contact is established. We
generate one graph with monthly and one with weekly granularity.

Y!360 (http://360.yahoo.com/): Yahoo! 360◦ is an online service for blogging.
Again we sample a set of users and proceed as in the Fickr dataset. In this case
the monthly and weekly datasets contain exactly the same time period.

DBLP (http://www.informatik.uni-trier.de/~ley/db/): This dataset is
based on a recent snapshot of the DBLP which has a yearly time-granularity.
Authors are represented by vertices with a connecting edge if they are co-
authors. The assigned time-stamp on an edge represents the year of the first
co-authorship. Three different samples are extracted each containing the edges
created in the corresponding years. These three samples allow us to analyze and
compare long and short term trends.

arXiv(http://arxiv.org/): Similar to the DBLP dataset a co-authorship graph
from a sample of the arXiv repository considering only physics publications is
extracted. The obtained graph arxiv92-01 contains the co-authorships which
emerged in the years 1992 to 2001 with a time granularity of years.

As discussed in Section 2, beside the time-stamp associated to each edge,
our framework allows to have labels on both nodes and edges representing ad-
ditional information. We experiment with node labels that are based on two
graph-theoretic measures: the degree and the closeness centrality. These mea-
sures change as the graph evolves. To obtain static labels the measures are
computed once on the whole graph, corresponding to the last time-stamp and
then they are discretized in 5 bins.



4.2 Results

We analyze the experimental results with regard to the following questions:

Q1 Do the extracted patterns and rules characterize the studied network?
Q2 Do different time granularities influence the confidence of the rules?
Q3 How do the different confidence definitions compare?
Q4 How do the parameters and the type of dataset influence the number of

derivable rules, the number of patterns obtained, and the run time?

Q1: Discriminative analysis. The first question is if the extracted patterns
carry information that characterizes the analyzed network. In order to address
this question graph evolution rules from the first six datasets in Table 1 were
extracted with a minimum support threshold of 5000 for all but the “weeks”
datasets where a minimum threshold of 3000 was used. Then we compared all
pairs of datasets with respect to the rules confidences found in both datasets. We
show the pair-wise comparison results in Fig. 5. The plots allow for several inter-
esting observations. First, we see that the comparison between a co-authorship
network (arXiv or DBLP) and a social network (Y!360) as in Fig. 5(a),(b) and
(c) show different confidence values of the rules for each dataset (using Flickr
instead of Y!360 gives the same results).

In contrast, the comparison of two co-authorship networks (arXiv and DBLP,
in Fig. (d)) or two social networks (Flickr and Y!360, in figures (e) to (h)) reveals
that all rules are in the proximity of the bisector, meaning that each rule has
very similar confidence values in the both datasets. This observation confirms our
claim: graph evolution rules indeed characterize the different types of networks.

Fig. 5 (i) and (j) compare the same two datasets as in (c) and (h) respectively.
However, in (i) and (j) we plot the rules according to their support instead of
their confidence. Contrary to (c) and (h), both plots (i) and (j) show similar
results, indicating that the support of a rule can not be used to characterize
different types of networks.

Q2: Different granularity analysis. Fig. 6(a) similarly to Fig. 5(h), focuses on
the difference of confidence from rules originating in the same network but with
different time granularity. We observe that confidences for the weekly granularity
are larger than the corresponding monthly confidences. The colors/shapes in the
plot correspond to the difference between maximum time-stamp on an edge in
the head (MTH) and maximum time-stamp on an edge in the body (MTB) of
the rule. This figure very clearly reveals the cause for the specific structure of
the plot. First, the difference between the maximum time-stamp in head and
body indicated by the shape perfectly models the confidence differences between
monthly and weekly granularity: the rules form three clear clusters (with the
corresponding regression lines reported in the plot).

The second observation is that a larger difference between the time-stamps
corresponds to a higher difference in confidence towards weekly granularity. This
is quite natural if we think about confidence trough the lenses of prediction: the
difference between the time-stamps in head and body can be thought as the
temporal gap that must be bridged by a prediction task, and clearly predicting



further in the future is more difficult (i.e., lower confidence). Hence clusters
with higher time-difference have higher confidences in the weekly setting simply
because three weeks are shorter than three months.

Finally, it is worth noting that only one rule in this plot has a difference of
4 between the maximum time-stamp in head and body: as expected it is in the
left bottom corner, and is closer to the weekly axis than to the monthly axis.

Q3: Confidence and rules. Fig. 6(b) shows that the two confidence mea-
sures disagree. A more thorough investigation shows that all the rules with an
occurrence-based confidence exceeding 200 have the most simple body: one sin-
gle edge. Furthermore, all those rules span 3 or 4 time-steps from body to head.
Given that they all share the same simplistic body, which can be matched any-
where, a correct prediction, especially 3 or 4 time-steps into the future is doomed
to fail. The support-based confidence however, nicely assigns a confidence below
0.2 to all rules with the simplistic body, equivalent to declaring them almost
meaningless, thus proving itself one more time fruitful being investigated and
worthy being used.

Q4: Influence of parameters and dataset. Further important insights can be
gained from an analysis of the number of rules and patterns extracted as well as
the run-times. To understand how many of the extracted relative time patterns
are decomposable and thus can be interpreted as rules we calculated the ratio
of valid rules over all extracted patterns. Fig. 6(c) reports the number of valid
graph evolution rules as percentage of the number of frequent patterns found, for
various minimum confidence thresholds. This is done on one bibliographic and
one social network; each with and without node labels. In all cases, the number
of rules is close to 80% of the number of frequent patterns. Besides the fact
that a lower minimum confidence thresholds yields more rules, the results nicely
reaffirm the observation from Fig. 6(a). Indeed, rules extracted from a dataset
with weekly granularity enjoy a much higher confidence than rules extracted
from a dataset with yearly granularity.

As intended, the size of the result of the mining task depends on the maxi-
mum edge and the minimum support constraint. With a higher number of edges
exponentially more graphs are possible, thus the exponentially increased num-
ber of extracted patterns for larger number of edges in Fig. 7(e) comes at no

(a) (b) (c)

Fig. 6. (a): confidence comparison between monthly and weekly granularity. (b): scatter
plot comparing the two different definitions of confidence discussed in Section 2.4. (c)
number of valid rules as percentage of the number of frequent patterns, for varying
confidence.
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y!360 weeks
min supp e2 e3 e4 e5 e6

1000 16 241 1478 7253 34904
1100 16 215 1179 5337 23828
1200 16 196 963 4075 16777
1300 16 173 791 3119 12028
1400 16 155 665 2435 8814
1500 15 141 550 1933 6584
1600 15 130 487 1581 5011
1700 15 115 413 1272 3870
1800 15 106 358 1051 3004
1900 14 95 308 884 2405
2000 14 87 269 717 1903
2500 12 59 153 337 708
3000 11 43 99 180 315
3500 9 34 64 103 149
4000 8 26 43 61 76
5000 6 18 26 29 29
6000 5 12 15 16 16
7000 5 11 12 12 12
10000 3 5 5 5 5

(g)

Fig. 7. (a)–(f): run time and number of patterns found with varying min. support and
max. edge thresholds. (g): number of patterns of different size at various minimum
support (ei denotes a pattern with ≤ i edges).

surprise. For lowering the minimal support Fig. 7(d) shows the typical result.
Lowering the support threshold allows for more complex patterns which contain
more edges and thus for the same reason as above the growth is exponential.

As Fig 7(a)-(b) show, the run time is affected much more by the maximum
edge (max-edge) than the minimum support constraint (min-sup). While the
increase is almost linear with decreasing minimum support, the run time grows
exponentially with an increasing maximum edge size. Note the increase of two
orders in magnitude in Fig. 7(b) from four to five and five to six edges.

A more interesting observation can be made from the Fig 7(c) and (f). The
underlying graph structure is the same in both datasets with the only difference
being the time-granularity of the edge time-stamps. The weekly graph with 41
edge labels is more diverse than the monthly graph with only 10. While the
runtime between both datasets varies highly with changing minimum support,
the number of patterns extracted is almost the same for each minimum support.
With regard to the number of patterns a higher label-diversity allows for more
different patterns (i.e., more possible combinations for a fixed number of edges) if
the support is low enough for these to be considered frequent. However, a lower
label-diversity means that patterns can be found more repeatedly since the host-
graph is more homogeneous, but the amount of different patterns is limited. Thus
for a fixed number of edges there are more patterns with a high support in the
more homogeneous graph and more patterns with low support in the graph with
a higher label diversity as confirmed in Fig. 7(f). Regarding the varying run times
between the datasets, in the more diversified data more patterns of smaller size
can be found. The subgraph-isomorphism for these patterns is easier to calculate
simply because they are smaller. Furthermore, it is easier to find a non-matching
edge in the more diversified graph earlier, thus being able to terminate a search-
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Fig. 8. Run time and number of patterns found on networks with labelled nodes with
varying min sup.

branch for the subgraph-isomorphism check earlier. These two reasons explain
the much lower runtime on more diverse graphs.

A similar reasoning holds for graphs with labelled nodes (Fig. 8). Also in this
case the diversity introduced by the node labels reduced the number of patterns
found and the run time.

5 Related Work

Several papers have focussed on the global evolution of networks by an ex-
ploratory point of view. Leskovec et al. [16] discovered the shrinking diameter
phenomena on time-evolving networks. Backstrom et al. [2] study the evolu-
tion of communities in social networks. Still from an exploratory perspective,
Leskovec et al. [15] study the evolution of networks but at a more local level.
Using a methodology based on the maximum-likelihood principle, they investi-
gate a wide variety of network formation strategies, and show that edge locality
plays a critical role in evolution of networks.

Other recent papers, present algorithmic tools for the analysis of evolving
networks. Tantipathananandh et al. [20] focus on assessing the community affil-
iation of users and how this changes over time. Sun et al. [18], apply the MDL
principle to the discovery of communities in dynamic networks, developing a
parameter-free framework. This is the main difference to previous work such as
[1, 19]. However, as in [20], the focus lies on identifying approximate clusters
of users and their temporal change. No exact patterns are found, nor is time
part of the results obtained with these approaches. Ferlez et al. [7] use the MDL
principle for monitoring the evolution of a network.

While the aforementioned body of work studies the evolution in networks, it
does not take a pattern mining approach as we do in this paper. Although, to
the best of our knowledge, this is the first work on mining frequent subgraphs
from evolving graphs that follows the classical graph mining paradigm in terms
of considering exact structure matching we are aware of several studies focussing
on mining evolving graphs, all using some form of approximation. Desikan and
Srivastava [6] study the problem of mining temporally evolving web graphs.
Three levels of interest are defined: single node, subgraphs and whole graph
analysis, each of them requiring different techniques. Inokuchi and Washio [11]
propose a fast method to mine frequent subsequences from graph sequence data
defining a formalism to represent changes of subgraphs over time. However the



time in which the changes take place is not specified in the patterns. Liu et al.
[17] identify subgraphs changing over time by means of vertex-importance scores
and vertex-closeness changes in subsequent snapshots of the graphs. The most
relevant subgraphs are hence not the most frequent, but the most significant
based on the two defined measures. The paper that is most related to our work
is [3]. Borgwardt et al. represent the history of an edge as a sequence of 0’s and
1’s representing the absence and presence of the edge respectively. Then conven-
tional graph-mining techniques are applied to mine frequent patterns. However,
there are several differences to our approach. First, the employed mining algo-
rithm GREW is not complete, but heuristic. Further, the overlap-based support
measure used requires solving an maximal independent set problem for which a
greedy algorithm is used. Another computational issue with their approach is the
extension of an edge in the so-called inter-asynchronous FDS case. Accordingly
the size of the networks analyzed in the paper is rather small.

Various proposals for mining frequent patterns in the single graph context
[14, 21, 8, 4] were discussed in Section 2. A recent paper by Calders et al. [5] intro-
duces a new measure named minimum clique partition, which analogous to the
maximal independent set is based on the notion of an overlap graph and thus
requires solving an NP-complete problem. They prove that support measures
based maximal independent set and minimum clique partition are the minimal
and the maximal possible meaningful overlap measures, and show that [12] intro-
duced a function which is sandwiched between these two measures; computable
in polynomial time. However, any of those measures requires computing an over-
lap graph for each candidate pattern, which is a costly operation in itself due to
requiring enumerating all occurrences of a pattern.

6 Extensions and future work

In this section we discuss briefly how to relax some of the assumptions of our
problem definition.

Consider first the pattern H in Fig. 3(b). Imagine that in the data it is the
case that when there is a star of size 3 an edge between two peripheral nodes
appear. Pattern H captures partly this phenomenon, but is also too “specific”
as it emphasizes that the star was formed in particular time instances before
the appearance of the last edge. A more general pattern would be to replace
the time-stamp of the last edge with T , and the time-stamp of all the edges in
the star with the constraint “< T”, which will have to be satisfied when tested
with the time-stamps of the host graph. We plan to extend our algorithm to
experiment with this idea as a continuation of our work.

For sake of presentation, in Section 2 we assumed that graphs can only grow in
time. However, our approach can be easily extended to handle edge-deletions if an
edge can appear and disappear at most once. The extension would consider two
time-stamps tI (time of insertion) and tD (time of deletion) on each edge instead
of the single time t. By modifying definitions 1 and 2 condition (ii) to ∀(u, v) ∈
EP it is tI(ϕ(u), ϕ(v)) = tI(u, v) + ∆ and tD(ϕ(u), ϕ(v)) = tD(u, v) + ∆.



We did no implement the above matching since two out of four datasets
(arXiv and DBLP) are naturally only growing (thus, no deletions) and deletions
are rare in the other two. As future work we plan to incorporate deletions and
study networks with a higher likelihood of such events.

In our approach, we have not considered node or edge relabelling so far.
Considering node and edge relabeling is very interesting, as in many graphs,
such as social networks, the properties of nodes and edges change over time. For
example, in social-network analysis it would be interesting to study the change
of leadership in communities and its effects.

Besides all the above, which are possible extensions to the kind of patterns
we are able to mine, we would like to go further by taking advantage of the just
defined rules and confidence: such a paradigm enables us to put the basis for
defining a framework that will allow us to predict graph evolution, and that,
together with GERM , will provide helpful tools for social-network analysis and
other fields of research where dynamic graphs are a good data representation.

7 Conclusions

Following a frequent pattern mining approach, we defined relative time patterns
and introduced introduced the problem of extracting Graph Evolution Rules,
satisfying given constraints of minimum support and confidence, from an evolv-
ing input graph. While providing the problem definition we discussed alternative
definitions of support and confidence, their merits and limits. We implemented
GERM an effective solution to mine Graph Evolution Rules, and we extensively
test it on four large real-world networks (i.e., two social networks, and two co-
authorship networks from bibliographic data), using different time granularities.
Our experiments confirmed the feasibility and the utility of our framework and
allowed for interesting insights. In particular we showed that Graph Evolution
Rules with their associated concept of confidence, indeed characterize the differ-
ent types of networks.

Availability. The executable code of the GERM software is freely available at:
http://www-kdd.isti.cnr.it/~berlingerio/so/gm/.
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