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Polycrystalline materials

[M. Guo]

I microstructure of grains with different crystallographic
orientations

I material properties depend on microstructure
I study of grain growth: increase of mean grain size
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Grain growth in presence of second-phase particles

[M. Guo]

I control grain size by addition of impurities
I applications

I design of high-strength steels for construction applications
I design of thin metallic films in microelectronic devices

I importance of computational research
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Phase field model

I set of phase field variables

ηi(r, t), i = 1, . . . , p

I inside grain i

(η1, . . . , ηi , . . . , ηp) = (0, . . . ,±1, . . . , 0)

I parameter φ for the second-phase
particles

I φ = 1 inside particles
I φ = 0 else
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Phase field model

I kinetic equations
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I set reaction-diffusion partial differential equations
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Points of attention

I prevent grain coalescence:

⇒

solution large amount of phase field variables

I grains, boundaries and particles
solution fine resolution of grid

I statistically relevant results
solution large amount of grains
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Parallel computing
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I semi-implicit discretisation
+ p smaller systems to solve
+ allows for large time step

I parallel computing
+ assign equations to different processors
+ compute solutions in parallel
– communication step: large message
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Characteristics of the solutions

Definition
A phase field variable ηi is active at a grid point r when
|ηi(r)| > ε, with ε a small positive threshold value.

Observations:

1. at each grid point, only a few ηi

active

2. values of ηi only evolve at the
grain boundaries

⇒ solve only locally
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Bounding box algorithm

Preprocessing step

1. apply threshold ε

2. locate grains: connected grid points
r where |ηi(r)| > ε

3. determine bounding boxes
I bounding box: smallest cuboid

containing grain
I grain numbering procedure to

prevent coalescence

Computation step
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Bounding box algorithm

Preprocessing step

Computation step
I solve the equations only locally:
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for time steps t = 1, . . . , n
1. for all grid points: compute

∑
η2

j + φ2

2. for all bounding boxes: solve equations

I only values inside boxes are kept in memory
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Bounding box algorithm
Data structure

I object-oriented data structure
I advantages in post-processing

I location of grains known
I extensible to more complex models

I anisotropy
I evolving second-phase particles
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Computational requirements

Table 1: Number of phase field values per grid point on a
256× 256× 256 grid with p = 100.

threshold value ε
simulation time t 10−3 10−4 10−5 10−6 conventional

ts 5.75 6.48 7.26 8.10 100
ts + 200 6.71 6.74 6.90 6.90 100
ts + 400 6.72 6.73 6.81 6.81 100
ts + 600 6.68 6.69 6.73 6.73 100
ts + 800 6.64 6.65 6.68 6.68 100

I approx. 7 instead of p phase field values per grid point

I scales with system size, not with p
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Computational requirements

Table 2: Requirements of 5000 time steps with ε = 10−5 on a
256× 256× 256 grid with p = 100.

b. box (on 1 proc) conv. (on 20 procs)
simulation time time (h) mem (GB) time (h) mem (GB)

200 → 400 6.3 2.8 6.8 30.3
400 → 600 4.7 2.2 6.8 30.3
600 → 800 3.8 1.9 6.8 30.3

800 → 1200 3.5 1.7 6.8 30.3
1200 → 1400 3.1 1.6 6.8 30.3

I 1 instead of 20 processors and faster

I efficiency increases for coarser topology
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Initial microstructure

I start from initial polycrystalline microstructure

microscopic images Voronoi calculation phase field simulation

I generate nuclei according to some distribution

⇒
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Application
Grain growth in presence of second-phase particles

I initial polycrystalline microstructure obtained by
‘conventional’ phase field simulation

I 256× 256× 256 grid
I 100 phase field variables
I fv = 5%, 8% and 12% of particles, radius r = 3
I performed on 20 processors

I bounding box algorithm
I threshold ε = 10−5

I only 1 processor
I approx. three times faster
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Application
Microstructural evolution
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Application
Results

Fig 1: Evolution of mean grain size
for different fV .

Fig 2: Comparison with other re-
sults.
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I phase field model for grain growth in presence of
second-phase particles

I computationally intensive
I three-dimensional simulation

I parallel computing
I semi-implicit discretisation
I larger systems, but large communication message

I bounding box algorithm
I less computing time, less memory
I no grain coalescence

I application
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Thank you

Thank you! Questions?
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