Numerical simulation of three-dimensional grain growth in materials containing finely dispersed second-phase particles with the phase field method

Liesbeth Vanherpe¹ Nele Moelans² Bart Blanpain² Stefan Vandewalle¹

¹Department of Computer Science, K.U.Leuven

²Department of Metallurgy and Materials Engineering, K.U.Leuven

ICIAM 07, Zurich

July 16 - 20, 2007

Outline

Grain growth

Polycrystalline materials Grain growth in presence of second-phase particles

Phase field model and simulation

Phase field model Simulation Bounding box algorithm

Application

Conclusion

(E) < E)</p>

Polycrystalline materials Grain growth in presence of second-phase particles

Polycrystalline materials

[M. Guo]

- microstructure of grains with different crystallographic orientations
- material properties depend on microstructure
- study of grain growth: increase of mean grain size

Polycrystalline materials Grain growth in presence of second-phase particles

Grain growth in presence of second-phase particles

[M. Guo]

- control grain size by addition of impurities
- applications
 - design of high-strength steels for construction applications
 - design of thin metallic films in microelectronic devices
- importance of computational research

Phase field model Simulation Bounding box algorithm

Phase field model

- set of phase field variables
 - $\eta_i(\mathbf{r}, t), \quad i = 1, \dots, p$

inside grain i

 $(\eta_1,\ldots,\eta_i,\ldots,\eta_p)=(0,\ldots,\pm 1,\ldots,0)$

イロン 不良 とくほう 不良 とうほ

 parameter \u03c6 for the second-phase particles

• $\phi = 1$ inside particles

Phase field model Simulation Bounding box algorithm

Phase field model

kinetic equations

$$\frac{\partial \eta_i}{\partial t} = -L \frac{\partial F}{\partial \eta_i}, \qquad i = 1, \dots, p$$

► free energy

$$F = \int_{V} \Big(\sum_{i=1}^{p} (\frac{\eta_{i}^{4}}{4} - \frac{\eta_{i}^{2}}{2}) + \sum_{i=1}^{p} \sum_{j \neq i}^{p} \eta_{i}^{2} \eta_{j}^{2} + \phi^{2} \sum_{i=1}^{p} \eta_{i}^{2} + \sum_{i=1}^{p} \frac{\kappa}{2} (\nabla \eta_{i})^{2} \Big) dV$$

set reaction-diffusion partial differential equations

$$\frac{\partial \eta_i}{\partial t} = L\kappa \nabla^2 \eta_i - L(\eta_i^3 - \eta_i + 2\eta_i \sum_{j \neq i}^p \eta_j^2 + 2\eta_i \phi^2), \qquad i = 1, \dots, p$$

< 🗇 >

A E > A E >

Phase field model Simulation Bounding box algorithm

Points of attention

prevent grain coalescence:

solution large amount of phase field variables

- grains, boundaries and particles solution fine resolution of grid
- statistically relevant results
 solution large amount of grains

Phase field model Simulation Bounding box algorithm

Parallel computing

$$\frac{\eta_i^{n+1}-\eta_i^n}{\partial t}=L\kappa\nabla^2\eta_i^{n+1}-L\Big(\eta_i^3-\eta_i+2\eta_i(\sum_{j\neq i}^p\eta_j^2+\phi^2)\Big)^n,\ i=1,\ldots,p$$

- semi-implicit discretisation
 - + p smaller systems to solve
 - + allows for large time step
- parallel computing
 - + assign equations to different processors
 - + compute solutions in parallel
 - communication step: large message

→ 프 → - 프

Phase field model Simulation Bounding box algorithm

Characteristics of the solutions

Definition

A phase field variable η_i is active at a grid point **r** when $|\eta_i(\mathbf{r})| > \epsilon$, with ϵ a small positive threshold value.

Observations:

- 1. at each grid point, only a few η_i active
- 2. values of η_i only evolve at the grain boundaries
 - \Rightarrow solve only locally

Phase field model Simulation Bounding box algorithm

Bounding box algorithm

Preprocessing step

- 1. apply threshold ϵ
- 2. locate grains: connected grid points **r** where $|\eta_i(\mathbf{r})| > \epsilon$
- 3. determine bounding boxes
 - bounding box: smallest cuboid containing grain
 - grain numbering procedure to prevent coalescence

Computation step

Phase field model Simulation Bounding box algorithm

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Bounding box algorithm

Preprocessing step

Computation step

solve the equations only locally:

$$\frac{\eta_i^{n+1} - \eta_i^n}{\partial t} = L\kappa \nabla^2 \eta_i^{n+1} - L\left(\eta_i^3 - \eta_i + 2\eta_i (\sum_{j\neq i}^p \eta_j^2 + \phi^2)\right)^n$$

for time steps $t = 1, \ldots, n$

- 1. for all grid points: compute $\sum \eta_i^2 + \phi^2$
- 2. for all bounding boxes: solve equations
- only values inside boxes are kept in memory

Phase field model Simulation Bounding box algorithm

★ Ξ → < Ξ → </p>

< 🗇 🕨

3

Bounding box algorithm Data structure

- object-oriented data structure
- advantages in post-processing
 - location of grains known
- extensible to more complex models
 - anisotropy
 - evolving second-phase particles

Phase field model Simulation Bounding box algorithm

Computational requirements

Table 1: Number of phase field values per grid point on a $256 \times 256 \times 256$ grid with p = 100.

threshold value ϵ								
simulation time t	10 ⁻³	10^{-4}	10 ⁻⁵	10 ⁻⁶	conventional			
ts	5.75	6.48	7.26	8.10	100			
$t_{\rm s} + 200$	6.71	6.74	6.90	6.90	100			
$t_{\rm s} + 400$	6.72	6.73	6.81	6.81	100			
$t_{\rm s} + 600$	6.68	6.69	6.73	6.73	100			
$t_{s} + 800$	6.64	6.65	6.68	6.68	100			

approx. 7 instead of p phase field values per grid point

scales with system size, not with p

< 🗇 🕨

-∢ ≣ →

Phase field model Simulation Bounding box algorithm

프 > 프

Computational requirements

Table 2: Requirements of 5000 time steps with $\epsilon = 10^{-5}$ on a 256 × 256 × 256 grid with p = 100.

	b. box (on 1 proc)	conv. (on 20 procs)		
simulation time	time (h)	mem (GB)	time (h)	mem (GB)	
$200 \rightarrow 400$	6.3	2.8	6.8	30.3	
$400 \rightarrow 600$	4.7	2.2	6.8	30.3	
$600 \rightarrow 800$	3.8	1.9	6.8	30.3	
$800 \rightarrow 1200$	3.5	1.7	6.8	30.3	
$1200 \rightarrow 1400$	3.1	1.6	6.8	30.3	

- 1 instead of 20 processors and faster
- efficiency increases for coarser topology

Phase field model Simulation Bounding box algorithm

Initial microstructure

start from initial polycrystalline microstructure

microscopic images

Voronoi calculation

phase field simulation

3

generate nuclei according to some distribution

Application Grain growth in presence of second-phase particles

- initial polycrystalline microstructure obtained by 'conventional' phase field simulation
 - ▶ 256 × 256 × 256 grid
 - 100 phase field variables
 - $f_v = 5\%$, 8% and 12% of particles, radius r = 3
 - performed on 20 processors
- bounding box algorithm
 - threshold $\epsilon = 10^{-5}$
 - only 1 processor
 - approx. three times faster

伺 とくきとくきとう

Conclusion

Application Results

Fig 1: Evolution of mean grain size for different f_V .

Fig 2: Comparison with other results.

ъ

3

Conclusion

- phase field model for grain growth in presence of second-phase particles
 - computationally intensive
- three-dimensional simulation
 - parallel computing
 - semi-implicit discretisation
 - larger systems, but large communication message
 - bounding box algorithm
 - less computing time, less memory
 - no grain coalescence
- application

伺 とくき とくき とうき

Thank you! Questions?

