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Abstract
Using machine learning techniques for planning is getting in-
creasingly more important in recent years. Various aspects of
action models can be induced from data and then exploited
for planning. For probabilistic planning, natural candidates
are learning of action effects and their probabilities. For ex-
pressive formalisms such as PPDDL, this is a difficult prob-
lem since they can introduce easily a hidden data problem;
the fact that multiple action outcomes may have generated
the same experienced state transitions in the data. Further-
more the action effects might be factored such that this prob-
lem requires solving a constraint satisfaction problem within
an expectation maximization scheme. In this paper we out-
line how to utilize recent techniques from the field of statis-
tical relational learning for this problem. More specifically,
we show how techniques developed for the CPT-L model of
relational probabilistic sequences can be applied to the prob-
lem of learning probabilities in a PPDDL model. A CPT-L
model concisely specify a Markov chain over arbitrary num-
bers of objects in the domain and simultaneous applications
of multiple actions. The use of efficient BDD-style represen-
tations allows for fast and efficient learning in such domains.
Even efficient online learning is possible as we will show in
this paper. We relate to other learning approaches for similar
domains and highlight the opportunities for incorporating our
approach into architectures that can plan, execute the plan,
and learn from the outcomes, in an online and incremental
fashion.

Introduction
Planning is one of the oldest problems in artificial intelli-
gence, and yet it is still a very active field of research. In
part, this is due to efficient and effective algorithms becom-
ing available such that the range of problems tackled can be
widened significantly over time. A very basic definition of
planning is: given a set of action definitions (or, operators),
an initial state of the world, and a set of desired goal states,
find a sequence of instantiated actions such that applying
this sequence starting in the initial state will reach the goal
state. In this basic setting, many algorithms have been de-
veloped that can find satisfying or even optimal plans. Also
the theoretical aspects of planning are well-studied.

Going beyond the basic definition of planning can be
done in numerous ways. Two important directions are using
more complex problem models, and using machine learn-
ing to learn aspects of the modeled domain. For the first,

among others, this includes the use of sensing, conditional
plans, non-deterministic or probabilistic outcomes, simul-
taneous actions, time and numerical quantities, and much
more. In this paper we focus on probabilistic settings, in
which there is significant uncertainty about the effects of
actions. Problems similar to the probabilistic setting occur
in nondeterministic planning, yet in the former the uncer-
tainty can be numerically quantified using probability dis-
tributions over action outcomes. Concerning the second
direction, various aspects of the domain could be learned,
such as necessary preconditions for actions, action effects,
probabilities for these effects, domain-specific heuristics and
control knowledge (Zimmerman and Kambhampati 2003;
Fernández, Jiménez, and de la Rosa 2009). A special case
of the learning problem has been recently proposed as the
model-lite planning paradigm(Kambhampati 2007). Even
though defining a complete description of the domain is
often hard, sketching the most important aspects might be
easy in most cases. The idea of model-light planning is to
plan with the current-best model. While acting and gain-
ing experience it is possible to update the model and there-
fore better plans can be derived. But relational machine
learning techniques for probabilistic and dynamic settings,
where the world changes over time as typical in planning do-
mains, are scarce. In fact, the CPT-L (Causal Probabilistic
Time Logic) models (Thon, Landwehr, and Raedt 2008) are
among the first to approach the dynamic setting in statistical
relational learning (SRL). CPT-L makes use of highly effi-
cient binary decision diagrams (BDDS) to assign probabil-
ities to logical structures. The intention of the present paper
is to bridge between the planning and the SRL communi-
ties, by adapting our algorithms to the standardized language
PPDDL for probabilistic planning (Younes et al. 2005), and
by showing that SRL and planning have much to offer to
each other. In this work we focus on the parameter estima-
tion and not on the structure learning part, i.e. we assume
that a non-deterministic PPDDL action model is given, and
we want to learn the probabilities for the action effects. This
is on the one hand because it seems to be especially hard for
humans to quantify probabilities, extending the algorithm on
the other hand such that also the structure is learned, can be
achieved by using wrapper approach as standard in Induc-
tive Logic Programming or by generating action definitions
with the help of rule learner.
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Contributions and Outline The main contribution is an ef-
ficient, principled way to learn the probabilities for PPDDL
action models. We show how SRL techniques can be ex-
ploited for planning domains, and how online learning can
be done. Furthermore we show how the use of so-called
Shared BDDs allows efficient Online Learning. We first dis-
cuss related work, after which we describe our formalisms
and algorithms, based on efficient BDD representations, in
detail. We show how typical tasks such as sampling, infer-
ence, parameter estimation and prediction can be handled
in terms of the BDDs and we conclude with directions for
further research.

Related Work
Learning planning operators has been studied intensively.
Specifically the problem of learning (the probabilities of)
the effects of actions, in both deterministic and probabilis-
tic settings, and furthermore some in the context of inte-
grated architectures for planning and learning and relational
reinforcement learning (van Otterlo 2009). Reinforcement
learning (model-free) can be seen as the simplest and clas-
sic approach to model-lite planning. The model-lite plan-
ning paradigm itself has been proposed recently so there is
only little specific research. One exception is planning with
the help of probabilistic logics namely Markov Logic(Yoon
and Kambhampati 2007). Problog has been proposed in this
work as well but has not been further investigated. The Mod-
els learned with help of the techniques proposed in this pa-
pers can be used for planning with the help of Problog1. The
use of Problog/CPT-L/PPDDL compared to Markov Logic
seems to be more appealing as it is closer to the traditional
planing languages.

World models – or models of the effects of actions –
are useful things an agent can learn, because these embody
knowledge about the environment that can be exploited in
various ways, for example in a probabilistic planner, or even
in first-order planning, e.g. (Kersting, van Otterlo, and De
Raedt 2004). Learning them has been studied for several
decades, with the THOTH system (Vere 1977) as one of the
first. The more recent OBSERVER system (Wang 1995) can
learn STRIPS operators in an incremental way.

For the probabilistic case, fewer approaches exist. The
best known example is the approach by Pasula, Zettlemoyer,
and Kaelbling (2007) which learns both the structure and
the probabilities of actions in a STRIPS-like form. Learn-
ing consists of a three-step greedy search approach that
finds rule sets, consisting of action outcomes and proba-
bility distributions over these outcomes. Two interesting
features of the approach are the noise outcomes that cor-
respond to situations for which the exact, structural out-
come is hard to model (e.g. the exact effects of knock-
ing over a tower of blocks on each block individually), and
the invention of new features in the learning process. Ear-
lier work by (Gardiol 2003) who used standard ILP learn-

1The traditional learning setting for Problog is to learn from
success probabilities of queries, not required in the fully observable
setting.

ing on state transitions, exemplified some of these difficul-
ties of probabilistic domains. Where Pasula, Zettlemoyer,
and Kaelbling’s approach is a batch technique, the algo-
rithm developed by Safaei and Ghassem-Sani (2007) can
learn probabilistic actions in an incremental way, similar to
what Wang’s (1995) OBSERVER system can do in deter-
ministic domains. Whereas for these approaches calculating
the maximum likelihood estimates (MLE) for the probabil-
ities is simple due to the underlying assumptions, Jiménez
and Cussens (2006) are first in using a more principled tech-
nique for a similar problem, by exploiting PRISM (Sato and
Kameya 1997) for the MLEs. In addition, it approaches the
structure learning problem too. The approach in this paper
differs from the previous approaches in that it is based on a
more general dynamic SRL setting, it uses efficient BDD
algorithms and we employ it directly in the PPDDL formal-
ism.

A more general related setting is that of integrated ar-
chitectures that combine learning, planning, and action ex-
ecution, of which PELA (Jiménez, Fernández, and Borrajo
2008) is a prominent example. PELA uses off-the-shelf
techniques for each of these aspects. But whereas PELA is
based on classification learning with the relational decision
tree learner TILDE, we employ a general sequence learn-
ing approach. A related approach based on kernel percep-
trons was developed in a broader context of robotics and vi-
sion, where high-level planners have to be combined with
low-level (robotic) vision systems (Petrick et al. 2008).
The approach by Safaei and Ghassem-Sani (2007) imple-
ments the planning step through real-time dynamic program-
ming, making the connection with model-based reinforce-
ment learning (MBRL) in a relational setting. MBRL ap-
proaches such as DYNA (Sutton 1991) learn an action model
while acting in an environment, and use that model to im-
prove action execution and planning. For the relational case
only few examples exist.However, trading off acting and ex-
ploration can provide good opportunities for generating use-
ful learning examples for the induction of operator descrip-
tions. Many algorithms exists for acting and learning to
act in relational worlds (see (van Otterlo 2009) for a thor-
ough description), yet the exploitation of learned probabilis-
tic models is not well developed yet. One positive exception
by Lang and Toussaint (2009) uses learned rules from Pa-
sula, Zettlemoyer, and Kaelbling’s approach in an approxi-
mate planning algorithm which show good results for a re-
alistic Blocks world. In the current paper we focus on one
aspect of an integrated architecture, namely the learning of a
probabilistic transition model. However, we also show that
all related aspects such as efficient planning, inference and
structural learning are within reach.

Preliminaries
Let us first introduce some terminology. A logical atom is
an expression of the form p(t1, ..., tn) where p/n is a pred-
icate symbol and the ti are terms. Terms are built up from
constants, variables, and functor symbols. Constants are de-
noted in lower case (such as a), variables in upper case (such
as X), and functors by f/k where k is the arity of functor f .
The set of all atoms is called a language L. Ground expres-
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PPDDL description of the “bomb and the toilet” example
(define (domain bomb-and-toilet)

(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package :parameters (?pkg)

:effect (and (when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

CPT-L description of the action

rule1(Pkg) : bomb-defused :: 1.0←− action(dunk-package(Pkg)), bomb-in-package(Pkg).
rule2(Pkg) : toilet-clogged :: 0.05 ∨ true :: 0.95←− action(dunk-package(Pkg)).

Figure 1: The “Bomb and Toilet” example in PPDDL and the corresponding CPT-L description.

sions do not contain variables. Ground atoms will be called
facts. A substitution θ is a mapping from variables to terms,
and bθ is the atom obtained from b by replacing variables
with terms according to θ. As an example, consider the sub-
stitution θ = {X/a} that replaces variable X with a, as in
bθ = p(a) for b = p(X). Complex world states can now be
described in terms of interpretations. An interpretation I is
a set of ground facts {a1, ..., aN}. These ground facts can
represent objects in the current world state, their properties,
and any relationship between objects as seen in Figure 2.

Figure 2: Blocks-world example as logical representation.

PPDDL
The Planning Domain Definition Language (PDDL) is
widely-used language to specify planning problems in a for-
mal way. It was developed for the International Planning
Competition, and is based on the functional programming
language LISP. It offers a well-standardized notation which
allows an objective comparison of planning systems and
reusing rules for different domains.

Probabilistic PDDL (PPDDL) is an extension which
allows actions having probabilistic effects of the form
(probabilistic p1 e1 . . . pn en). As we want to learn the
dynamics underlying the environment in which the agent op-
erates, additional rewards do not get a special treatment. The
action schema we use, subsumes PPDDL and additionally
allows the parallel application of multiple actions. However,
for this paper we restrict ourself to plans with non-parallel
execution of actions. Following (Rintanen 2003) we define
actions as follows.

Definition 1 (PPDDL action). An action a = 〈φa, e〉 con-
sists of a precondition φa, and an effect e. The action a is
applicable in state s iff s |= φa. The effect e can be:

• > is the empty effect
• p and ¬p are effects if p is a state variable
• x← f is an effect if x is a real valued state variable and

f is a real valued function.
• e1 ∧ . . . ∧ en are effects if the ei’s are effects.
• c B e is an effect if e is an effect and c is a formula
• p1 e1| . . . |pn en is an effect if ei are effects and pi > 0

and
∑

i pi = 1
Like in PPDDL we require that the action model is consis-

tent. A domain is consistent if there are no two effects which
can be applied the same time and make a state variable true
and false respectively. For example b ∧ ¬b is inconsistent
whereas c B b ∧ ¬c B ¬b is consistent.

Furthermore we assume that all actions are given in con-
ditional normal form (CNF). That is, no conditional is nested
into a probabilistic effect. For example the action

((0.8 move(a, b) ∧ on(a, c)) B (on(a, b) ∧ ¬on(a, c)) | 0.1 >
| 0.1 (move(a, b) ∧ on(a, c)) B (on(a, table) ∧ ¬on(a, c)))

is not in conditional normal form, whereas

(move(a, b)∧on(a, c)) B ( 0.8 (on(a, b) ∧ ¬on(a, c))|
0.1 > | 0.1 (on(a, table) ∧ ¬on(a, c)))

is in conditional normal form.
There are basically two ways to learn PPDDL probabil-

ities by the means of CPT-L: (1) we can adopt the algo-
rithms of CPT-L, or (2) we can map the representation onto
a slightly extended CPT-L representation while preserving
the probabilistic semantics of each parameters and apply the
algorithm there. For simplicity we decided for the second
approach.

CPT-L
CPT-L for Causal Probabilistic Time-Logic (Thon,
Landwehr, and Raedt 2008) is a language for (first-order)
Markov processes, where the possible successor states are
described in a causal and constructive manner. It assumes,
that there exists for any sequence of interpretations an
underlying generative process that constructs the next
interpretation from the current one.
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Definition 2. A CPT-theory2 is a set of rules r of the form

r = h1 : p1 ∨ . . . ∨ hn : pn︸ ︷︷ ︸
head(r)

← b1, . . . , bm︸ ︷︷ ︸
body(r)

where the hi are atoms, pi ∈ [0, 1] are probabilities s.t.∑n
i=1 pi = 1, and the bl are literals (i.e., atoms or their

negation).

The intuition behind such a rule r is as follows. Whenever
b1θ, ..., bmθ holds for a substitution θ in the current state It

it is applicable. For each applicable rule exactly one head
element hiθ is sampled from head(r) and hiθ is added to
the next state It+1. This sampling process is governed by
the probabilities pi attached to the head.

Each ground rule applicable in It will cause one of its
grounded head elements to be selected, and the resulting
atoms to become true in It+1.

A CPT-Theory consists of a set of rules describing con-
ditional, stochastic effects. Given an action for every state
the semantics of Strips or PPDDL as stochastic process and
CPT-L are closely related, but differ in two points. Firstly,
CPT-L does not assume the frame axiom but requires an ex-
plicit encoding. Secondly, CPT-L does not handle negative
effects. Consider the following CPT-theory for the blocks
world domain:

r1 = on(X, Y ) : 1.0←− on(X, Y ),¬move(X, Z)

r2 = (on(A, B) : 0.8) ∨ (on(A, C) : 0.1) ∨ (on(A, table) : 0.1)

←− move(A, B),¬on(X, A),¬on(Y, B), on(A, C).

encoding a probabilistic blocks world domain. In CPT-L
actions do not play a special role and are assumed to be
part of the background knowledge for every step e.g. a
policy encoded as logic program. The first rule encodes
the frame axiom. The last states how a block A is trans-
ferred from C to block B. Note that the lack of the im-
plicit frame axioms and negative effects requires to “block”
the explicit frame axioms r1 in case of an action exe-
cuted involving the corresponding atom (but allows sim-
pler structure learning as it removes the burden of hav-
ing to check for inconsistencies). Negation is handled as
negation as failure like in Prolog. As the current state
is completely fixed when the next state is constructed this
is trivial. To illustrate this consider how the transition
{on(a, b), on(b, table)} → {on(a, table), on(b, table)}
when executing move(a, table) from Fig. 3 can be con-
structed. The applicable rules are {r1{X 7→ b, Y 7→
table}, r2{A 7→ a,B 7→ table}}.

Inference and Parameter Estimation in CPT-L
The standard questions for probabilistic sequences models
are given a CPT-theory T
• Sampling: given initial interpretation I0, how to sample

a sequences of interpretations I1, ..., IT

• Inference: given a sequence of interpretations I0, ..., IT ,
what is P (I0, ..., IT | T )?

2The term CPT-Theory refers to a model described in CPT-L.

• Parameter Estimation: given a set of sequences of inter-
pretations, what are the maximum-likelihood parameters
of T ?
• Prediction: given I0, ..., It a sequence of interpretations,

and F a first-order formula. What is the probability that
F holds at time t + d, P (It+d |= F | T , I0, ..., It)?

Efficient algorithms for this problems were given in (Thon,
Landwehr, and Raedt 2008). Additionally an algorithm for
hidden state inference based on sampling has been devel-
oped (Thon 2009) which can presumably be incorporated
along the same line.

From PPDDL to CPT-L
As we want to adapt the algorithms from CPT-L for learn-
ing in PPDDL, we first translate a set of PPDDL actions
into a set of rules in an extended CPT-L syntax. If there are
no nested probabilistic effects this transformation features a
one to one mapping of the probabilistic parameters. If this
condition is violated the nested probabilistic effects have to
be expanded. The transformation back can be achieved by
solving the corresponding linear equation system. Three ex-
tension of CPT-L are required for this transformation:

1. The implicit encoding of the frame axiom,
2. negative effects,
3. conjuncts as (=sets of) effects3.
This allows us to transform all actions which have their ef-
fect in normal form a = 〈φa, (c1 B e1 ∧ . . . ∧ ci B e1)〉 into
a corresponding set of rules as follows:

(h11 ∧ . . . ∧ h1,k) : p1 | . . . | (hm,l ∧ . . . ∧ hm,l) : pm ←−
a, φa, c1

e2 ←− a, φa, c2

...
ei ←− a, φa, cn

Note: multiple rules might originate from the same action.
Example 1. The blocks world example compiles to

(on(A,B) ∧ ¬on(A,C) : 0.8) ∨ (> : 0.1)
∨ (on(A, table) ∧ ¬on(A,C) : 0.1)

←− move(A,B)︸ ︷︷ ︸
action

, free(A), free(B), on(A,C).︸ ︷︷ ︸
precondition

Handling numeric effects and axioms can easily be
achieved using logic programming. Given an action a, a
domain model defines a distribution over possible succes-
sor states, P (It+1 | It, a), in the following way. Let
Rt = {r1, ..., rk} denote the set of all ground rules ap-
plicable in the current state It. For each ground rule ap-
plicable in It one head element will affect the transforma-
tion from It into It+1. More formally, a selection σ is a

3A version of CPT-L supporting conjunction in the heads - i.e.
multiple effects caused by one rule in parallel - is currently under
review and should not be seen an original contribution. The contri-
bution is the support for negated facts and the support of the frame
axiom.
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mapping from rules ri to indexes ji denoting that head el-
ement hiji

∈ head(ri) is selected. In the stochastic pro-
cess to be defined, It+1 is a possible successor for the state
It if and only if there is a selection σ such that It+1 =
(It \ {h−1σ(1), ..., h

−
kσ(k))}) ∪ {h

+
1σ(1), ..., h

+
kσ(k))}., where

the h+
iσi corresponds to the positive and h−jσj to the negative

effects of the corresponding head elements. We say that σ

yields It+1 from It, denoted It
σ→ It+1, and define

P (It+1|It) :=
∑

σ:It
σ→It+1

P (σ) =
∑

σ:It
σ→It+1

( ∏
(ri,ji)∈σ

pji

)
(1)

where pji
is the probability associated with head element

hiji
in ri. As for other Markov processes, we can define the

probability of a sequence I1, ..., IT given an initial state I0

by

P (I1, ..., IT ) :=
T∏

t=0

P (It+1 | It). (2)

This defines a distribution over all possible sequences of in-
terpretations of length T .

Inference and Parameter Estimation
We are interested in answering the following inference ques-
tions, given modelM:

• Sampling: how to sample sequences of states I1, ..., IT ,
given a plan P , and initial state I0?

• Inference: given a trajectory that is a sequence of states
I1, ..., IT , together with the actions executed P , what is
P (I1, ..., IT | P,M)?

• Parameter Estimation: given a set of trajectories, what
are the maximum-likelihood parameters ofM?

• Prediction: given a trajectory till I0, . . . , IT T , a
plan starting at T P , and F a first-order formula
that constitutes a certain property of interest. What
is the probability that F holds at time T + d,
P (IT+d |= F | M,P, I0, ..., IT )?
Sampling from a modelM given an initial state I0 and a

plan P , is straightforward due to the causal semantics em-
ployed in CPT-L (as well as in PPDDL). For t ≥ 0, It+1

can be constructed from It by finding all groundings rθ of
rules r ∈ M, and sampling for each rθ a head element.
The successor state It+1 can then directly be constructed by
removing and adding the facts to It according to the sam-
pled heads. Algorithmic solutions for solving the inference,
parameter estimation, will be presented in the rest of this
section.

Inference
Because of the Markov assumption, cf. Equation (2), the
crucial task for solving the inference problem is to compute
P (It+1 | It) for given It+1 and It. According to Equa-
tion (1), this involves summing the probabilities of all selec-
tions yielding It+1 from It. However, the number of possi-
ble selections σ is exponential in the number of ground rules
|Rt| applicable in It, so a naive generate-and-test approach
is infeasible.

Instead, we presented for CPT-L an efficient approach for
computing P (It+1 | It) without explicitly enumerating all
selections yielding It+1 (Thon, Landwehr, and Raedt 2008).
This algorithm is closely related to the inference technique
discussed in (De Raedt, Kimmig, and Toivonen 2007) and
which we will now further adapt toward PPDDL. The prob-
lem is first converted to a DNF formula over boolean vari-
ables such that, satisfying assignments correspond to selec-
tions yielding It+1. The formula is then compactly repre-
sented as a BDD, and P (It+1 | It) efficiently computed
from the BDD using dynamic programming.

Although finding satisfying assignments for DNF formu-
las is a hard problem in general, the key advantage of this
approach is that existing, highly optimized BDD software
packages can be used. The conversion of a given inference
problem to a DNF formula f is realized as follows:

1. Initialize f := true

2. Let Rt denote the set of applicable ground rules in It.
Rules r ∈ Rt are of the form r = c1 : p1 ∨ ... ∨ cn :
pn ←− b1, ..., bm, where ci are conjunctions of effects

3. For all rules r = c1 : p1 ∨ ... ∨ cn : pn ←− b1, ..., bm in
Rt do:

(a) f := f ∧ (r.c1 ∨ ... ∨ r.cn), where r.ci denotes a new
(propositional) Boolean variable whose unique name is
the concatenation of the name of the rule r with the
head element ci.

(b) f := f ∧ (¬r.ci ∨ ¬r.cj) for all i 6= j

4. For all facts l ∈ It+1 \ It

(a) Initialize g := false

(b) for all r ∈ Rt and ci : pi ∈ head(r) such that l is
one of the positive atoms in the conjunction ci do g :=
g ∨ r.ci

(c) f := f ∧ g

5. For all facts l ∈ It \ It+1

(a) Initialize g := false

(b) for all r ∈ Rt and ci : pi ∈ head(r) such that l is
one of the negative atoms in the conjunction ci do g :=
g ∨ r.ci

(c) f := f ∧ g

6. For all variables r.c appearing in f such that one of the
atomic effects contradicts a transition from It to It+1 do
f = f ∧ ¬r.c

A Boolean variable r.c in f states that the probabilistic
choice element c was selected in rule r. A selection σ thus
corresponds to an assignment of truth values to the variables
r.c, in which exactly one probabilistic choice r.c is true for
every rule r. The construction of f ensures that all satisfy-
ing assignments for the formula f correspond to selections
yielding It+1, and vice versa. Specifically, Step 3 of the al-
gorithm assures that selections are obtained (that is, exactly
one element is selected per probabilistic choice), Step 4 and
Step 5 assures that the selection generates the changes from
It to It+1. Step 6 assures that no facts get changed that do
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not change from It to It+1. Thus, we have a one-to-one cor-
respondence between satisfying assignments for the formula
f and selections yielding It+1.

Example 2. The following formula f is ob-
tained for the transition {on(a, b), on(b, table)} →
{on(b, table), on(a, table)} and the set of rules given in
Example 1 when executing move(a, table)

(r.c1 ∨ r.c2 ∨ r.c3)︸ ︷︷ ︸
Step 3.a

∧ (r.c1 ∨ r.c2)︸ ︷︷ ︸
Step 4

∧ (r.c1 ∨ r.c2)︸ ︷︷ ︸
Step 5

(¬r.c1 ∨ ¬r.c2) ∧ (¬r.c2 ∨ ¬r.c3) ∧ (¬r.c1 ∨ ¬r.c3)︸ ︷︷ ︸
Step 3.b

where c1 = on(a, table) ∧ ¬on(a, b) is the first , c2 =
on(a, table)∧¬on(a, b) is the second, c3 = > are the head
elements of rules r3. The parts of the formula are annotated
with the steps in the construction algorithm that generated
them.

Afterward a reduced ordered binary decision diagram
(BDD) (Bryant 1986) is constructed which represents the
formula f . Let x1, ..., xn denote an ordered set of boolean
variables (such as the r.h contained in f ). A BDD is a
rooted, directed acyclic graph, in which nodes are anno-
tated with variables and have out-degree 2, indicating that
the variable is either true (solid) or false (dashed edge). Fur-
thermore, there are two terminal nodes labeled with 0 and
1 respectively. The graph compactly represents a boolean
function f over variables x1, ..., xn: given an instantiation
of the xi, we follow a path from the root to either 1 or 0 (in-
dicating f is true or false). Furthermore, the graph must be
reduced, that is, it must not be possible to merge or remove
nodes without altering the represented function (cf. (Bryant
1986) for details). Figure 3, left, shows an example BDD.

From the BDD graph, P (It+1 | It) can be computed in
linear time using dynamic programming. This is realized
by a straightforward modification of the algorithm for infer-
ence in ProbLog theories (De Raedt, Kimmig, and Toivo-
nen 2007). The algorithm exploits that paths in the BDD
from the root node to the 1-terminal correspond to satis-
fying assignments for f , and thus selections yielding It+1.
By sweeping through the BDD from top to bottom contribu-
tions from all such selections are summed up (Equation (1))
without explicitly enumerating all paths. The efficiency of
this method crucially depends on the size of the BDD graph,
which in turn depends strongly on the chosen variable order-
ing x1, ..., xn. Unfortunately, computing an optimal vari-
able ordering is NP-hard. However, existing implementa-
tions of BDD packages contain sophisticated heuristics to
find a good ordering for a given function in polynomial time.

Parameter Estimation
Assume the structure of the domain is given, that is, a set
M = {r1, ..., rk} of rules of the form

r = (h11 ∧ . . . ∧ hk1 : p1) ∨ . . . ∨ (h1n ∧ . . . ∧ hk : pn)
← b1, . . . , bm,

Figure 3: If executing move(a, table) leads to the outcome
depicted the algorithm constructs the BDD representing the
formula above. Note the two paths in the BDD from root to
the 1 leaf. They result from ambiguity between dropping the
block during movement and moving the block to the table.

where π = {pj}j are the unknown parameters to
be estimated from a set of training sequences D. A
standard approach is to find max-likelihood parameters
π∗ = arg maxπ P (D | π). To estimate the probability pij ,
we essentially need to know the number of times head ele-
ment hij has been selected in an application of the rule ri

in the training data, which will be denoted by κij . How-
ever, the quantity κij is not directly observable. To see why
this is so, first consider a single transition It → It+1 in one
training sequence. We know the set of rules Rt applied in
the transition; however, there are in general many possible
selections σ of rule head elements yielding It+1. The in-
formation which selection was used, that is, which rule has
generated which fact in It+1, is hidden. The derivation of an
efficient EM algorithm to estimate the ML parameters, while
taken this hidden information into account can be found in
(Thon, Landwehr, and Raedt 2008).

Akin to the inference problem, this calculation can be car-
ried out in linear time given the BDD structure. This is re-
alized by a dynamic programming algorithm similar to the
forward-backward algorithm in hidden Markov models (Ra-
biner 1989) that sweeps through the BDD structure twice to
accumulate the sufficient statistics κij . Details of the algo-
rithm are straightforward and omitted for lack of space. Note
that the presented Expectation-Maximization algorithm, by
taking the special structure of our model into account, is
significantly more efficient than general-purpose parameter
learning techniques employed for example in CP-logic.

Prediction
Assume we are given sequence I0, ..., It of observations,

a model M, a plan P , and a property of interest F (repre-
sented as a first-order formula), and we would like to com-
pute:

P (It+d |= F | I0, ..., It,P,M)
For instance, a robot needs to know the probability that a

certain world state is reached at time t + d given its current
world model and observation history. Note, that the repre-
sentation as a first-order formula allows one to express richer
world conditions than queries on (sets of) atoms, as they are
typically supported in statistical relational learning systems.

6

28



Powerful statistical relational learning systems are in prin-
ciple able to compute this quantity exactly by “unfolding”
the world model into a large dynamic graphical model.
However, this is computationally expensive as it requires
one to marginalize out all (unobserved) intermediate world
states It+1, ..., It+d−1. In contrast, inference draws its effi-
ciency from the full observability assumption.

As an alternative approach, we propose a straightforward
sample-based approximation. Due to the Markov property
we can start at It, after eventually re-learning the probabil-
ities from the observation sequence. Given It, independent
samples can be obtained from the conditional distribution
P (It+1, ..., It+d | It,P,M) by simply sampling accord-
ing toM from the initial state It. Ignoring It+1, ..., It+d−1

and checking F in It+d yields independent samples of the
boolean event It+d |= F from the distribution P (It+d |=
F | It,P,M). The proportion of positive samples of
this variable will thus quickly approach the true probabil-
ity P (It+d |= F | It,P,M) (Thon, Landwehr, and Raedt
2008).

Online Learning with Shared BDD
As argued before, we want to estimate the probabilities in
an online setting. While acting in the world the agent con-
stantly updates its model. Using the current learning tech-
nique, that would require to either (a) store all the training
examples and rebuild the entire BDD for each learning step
or (b) store the constructed BDDs. Even though our method
is efficient the first approach will be prohibitively slow as
the runtime is exponential (O(T !)) in the sequence length T
(when updating after every/a constant number of steps). If
implemented using separate BDDs, the second approach re-
quires to store a large number of BDDs in the memory. This
can be circumvented as the following example shows.
Example 3. Consider the following trajectory:

For this sequence together with model given in the previous
example, the BDDs for the two transitions look as follows,

Even without understanding the meaning of the BDD, one
can spot that both BDDs contain the similar sub-BDD hav-
ing the two nodes r.c3, r.c1.

Exploiting this, we can save a lot of space by using
so-called shared BDDs (SBDD). They are an extension of
BDDs such that multiple functions are represented, while
isomorphic subtrees from multiple BDDs are merged. In the

previous example, this gives a graph with a total number of
seven instead of nine nodes.

But this can be improved even further: The successful appli-
cation of the actions move(a, b) and move(b, d) both lead to
structural identical BDDs except for the naming of the vari-
ables. By exploiting this and re-parameterizing the actions
we can increase the sharing in a way such that, independent
of the number of blocks in the world, runtime is linear in the
number of transitions and memory usage is constant in total.

Conclusions And Future Work

We have presented a method to learn PPDDL probabili-
ties by means of CPT-L, a recently introduced efficient SRL
framework for sequential statistical relational learning. We
believe that – in general – the combination of techniques
from both (dynamic) SRL settings and (probabilistic) plan-
ning can develop into a fruitful marriage of two fields that
have a lot in common; learning, planning and acting in dy-
namic, probabilistic, and richly structured worlds. At the
start of the paper, we have discussed several techniques that
move into that direction but it is clear that there are many
areas waiting to be explored.

CPT-L has been applied in the context of Massively
Multi-player Online Games and has been proven to be
efficient in these settings. The corresponding Dynamic
Bayesian Network would consists out of thousands of nodes
in cases where learning took seconds when learning with
CPT-L. This indicates that CPT-L it is capable of handling
reasonably large domains.

We are currently setting up experiments to test our ap-
proach in the PPDDL domain and to evaluate the various
inference and learning tasks on planning problems. Our
longer term research goes into the direction of developing
a system able to exploit the uncertainty about the learned
knowledge. The goal is to detect unexpected action out-
comes. In general, such a system should able to cope with
and recognize concept drift, i.e. when the dynamics of the
world changes over time. In this setting, it might be possible
to re-learn (parts of) the model. Other natural future direc-
tions are (approximate) planning using the learned rules, and
model-based reinforcement learning.
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[Fernández, Jiménez, and de la Rosa 2009] Fernández, S.;
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