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Objective: To evaluate the anti-HIV-1 activity of the cyclotriazadisulfonamide CADA
against primary isolates in vitro and the combination of CADAwith approved anti-HIV
drugs for potential synergy.

Methods: Peripheral blood mononuclear cells (PBMC) were treated with CADA and
infected with 16 different clinical isolates. After 8 days of infection, the median
inhibitory concentration (IC50) was calculated from the p24 viral antigen content in
the supernatant. MT-4 cells were infected with HIV-1NL4:3 and then cultured with
CADA or other antiretroviral drugs (i.e., several reverse transcriptase, protease and
entry inhibitors), alone and in combination. After 4 days, IC50 was determined for the
various drugs in replicate assays. Analysis of combined effects was performed using
the median effect principle (CalcuSyn; Biosoft).

Results: The entry inhibitor CADA exerted a potent and consistent anti-HIV-1 activity
against a wide range of R5, R5/X4 and X4 primary isolates in PBMC. From the two-
drug studies, combination indices showed synergy between CADA and reverse
transcriptase inhibitors (zidovudine, stavudine, lamivudine, zalcitabine, didanosine,
abacavir, tenofovir, nevirapine, delavirdine and efavirenz), and protease inhibitors
(lopinavir, saquinavir, indinavir, nelfinavir, amprenavir and ritonavir). In addition, the
combination of CADA with the gp41 fusion inhibitor T-20 (enfuvirtide), the CXCR4
antagonist AMD3100 and the gp120-specific interacting plant lectins from Galanthus
nivalis (GNA) and Hippeastrum hybrid (HHA) also resulted in a synergistic inhibition.

Conclusions: Compounds that can specifically downmodulate the CD4 receptor in
PBMC have broad-spectrum anti-HIV activity against primary isolates and act synergis-
tically when used in conjunction with currently available antiretroviral drugs. They
deserve further study as potential candidate anti-HIV drugs.
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Introduction

The use of highly active antiretroviral therapy
(HAART) with double or triple drug combinations
chosen from the reverse transcriptase (RT) and protease
inhibitors has significantly improved the survival of
patients with AIDS. However, the emergence of drug
resistance in the virus and both short- and long-term
drug-related side effects are among the main reasons for

continuing the development of new classes of effective
anti-HIV drug that target the replicative cycle at differ-
ent sites. One of the most promising targets is the viral
entry–fusion process, in which the attachment of viral
gp120 to the cellular CD4 receptor is the initial step of
this complex multistep process [1,2]. Binding of HIV
to the CD4 receptor induces a conformational change
that brings gp120 into proximity with a cellular
coreceptor. The chemokine receptors CCR5 and
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CXCR4 were identified as the principal coreceptors
for viral entry into T lymphocytes and macrophages
[3,4]. Following the interaction of the viral gp120 with
the chemokine receptor, a more dramatic conforma-
tional change in the gp120–gp41 complex leads to the
formation of the trimer-of-hairpins structure in gp41,
enabling the viral envelope to fuse with the cell
membrane and, subsequently, releasing the viral capsid
into the cytoplasm of the target cell [5].

The synthetic macrocycle cyclotriazadisulfonamide
(CADA) has consistent CD4-downmodulating activity
in T cell lines (i.e., MT-4, SupT1, MOLT-4 and
Jurkat), CD4-transfected U87 cells and in peripheral
blood mononuclear cells (PBMC) [6,7]. Interestingly,
CADA does not alter the expression of any other
cellular receptor (or HIV coreceptor) examined [6]. It
was shown earlier that CADA has potent activity
against a broad range of HIV strains (i.e., laboratory-
adapted HIV-1 and HIV-2 strains) [6]. Pretreatment of
the cells with the drug for 24 h further enhanced the
anti-HIV activity of CADA. As reported previously,
the antiviral activity of CADA has been tentatively
attributed to the specific CD4-downregulating potency
of this compound and, importantly, correlated with its
ability to downmodulate the CD4 receptor [6]. In fact,
a close correlation was observed between the
CD4-downmodulating and anti-HIV potencies of 17
different CADA derivatives, further pointing to CD4
receptor downregulation as the primary and unique
mode of antiviral action of this novel group of HIV
inhibitors [8].

A prerequisite in the development of new anti-HIV
agents is that they possess potent antiviral activity
against clinical isolates. Also, they should retain their
activity in the presence of other antiretroviral drugs
without exerting antagonistic interactions. In this re-
port, we demonstrate the consistent anti-HIV activity
of CADA against a set of R5, R5/X4, and X4 clinical
isolates in PBMC. The combination of CADA with a
variety of approved anti-HIV drugs acting at different
steps in the HIV replicative cycle was evaluated. Two-
drug combination assays were performed with multiple
RT, protease, as well as entry–fusion inhibitors to
examine in vitro synergistic anti-HIV activity between
CADA and all other antiretroviral agents.

Materials and methods

Viruses
The T-tropic (X4) HIV-1 molecular clone NL4.3 was
obtained from the NIAID AIDS Reagent Program
(National Institutes of Health Bethesda, Maryland,
USA). Virus stocks of the clinical isolates (6–72) were
generated by coculture of PBMC from healthy donors

with lymphocytes from an HIV-1-infected person.
Coreceptor usage of the viruses was determined by
viral replication in CXCR4- and CCR5-transfected
U87.CD4 cells.

Cells
The CD4 cell line MT-4 was obtained from the
American Type Culture Collection (Rockville, Mary-
land, USA) and cultured in RPMI 1640 medium
(Gibco BRL, Gaithersburg, Maryland, USA) with 10%
heat-inactivated fetal calf serum (Biowhittaker Europe,
Verviers, Belgium) and 2 mmol/l L-glutamine (Gibco
BRL). Buffy coat preparations from healthy donors
were obtained from the Blood Bank in Leuven. PBMC
were first isolated by density gradient centrifugation
over Lymphoprep (d ¼ 1.077 g/ml) (Nycomed, Oslo,
Norway) and then stimulated with 2 �g/ml phytohe-
magglutinin (Sigma Chemical, Bornem, Belgium) for 3
days at 378C.

Flow cytometric analysis
To study the effect of CADA on surface CD4 receptor
expression, uninfected PBMC were incubated with a
serial fivefold dilution of the compound at 378C. After
3 days, cells were washed with phosphate-buffered
saline (PBS) containing 2% fetal calf serum and incu-
bated with fluoroscein isothiocyanate- or phycoery-
thrin-labeled monoclonal antibody (BD, San Jose,
California, USA) for 30 min at 48C. As a negative
control for unspecific background staining, cells were
stained in parallel with Simultest Control ª1/ª2a (BD).
Then the cells were washed, fixed with 1% formalde-
hyde, and analyzed by flow cytometry with a FACS-
calibur (BD). Data were acquired and analyzed with
CellQuest software (BD) to obtain the percentage of
CD4 fluorescent cells and the mean fluorescence
intensity of each sample.

Compounds and drugs
CADA was synthesized as described elsewhere [8,9]
and dissolved at 16 mmol/l in dimethylsulfoxide
(DMSO). For the RT and protease inhibitors, all drugs
were provided in their prescription form. Zidovudine
(Retrovir; GlaxoSmithKline, Research Triangle Park,
North Carolina, USA) was dissolved at 10 mmol/l in
PBS, stavudine (Zerit; Bristol-Myers Squibb, Prince-
ton, New Jersey, USA) at 50 mmol/l in DMSO,
lamivudine (Epivir-HBV; GlaxoSmithKline/Shire
Pharmaceuticals, Basingstoke, UK) at 87.22 mmol/l in
DMSO, zalcitabine (Hivid; Roche Laboratories, Nut-
ley, New Jersey, USA) at 50 mmol/l in PBS, didano-
sine (Videx EC; Bristol-Myers Squibb) at 10 mmol/l in
PBS, abacavir sulfate (Ziagen; GlaxoSmithKline) at
50 mmol/l in DMSO, tenofovir disoproxil fumarate
(Viread; Gilead Sciences, Foster City, California, USA)
at 10 mmol/l in PBS, nevirapine (Viramune; Boehrin-
ger Ingelheim Pharmaceuticals, Ridgefield, Connecti-
cut, USA) at 67.56 mmol/l in DMSO, delavirdine
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mesylate (Rescriptor; Pfizer, New York, New Jersey
and Agouron Pharmaceuticals, San Diego, California,
USA) at 36.26 mmol/l in DMSO, and efavirenz
(Sustiva; Bristol-Myers Squibb) at 52.66 mmol/l in
DMSO. The following protease inhibitors were used:
indinavir sulfate (Crixivan; Merck, Whitehouse Station,
New Jersey, USA) dissolved at 15.87 mmol/l in
DMSO, ritonavir (Norvir; Abbott Laboratories, North
Chicago, Illinois, USA) at 12.33 mmol/l in DMSO,
lopinavir (ABT-378; Abbott Laboratories) at 15.42
mmol/l in DMSO, saquinavir (Fortovase; Roche La-
boratories) at 14.52 mmol/l in DMSO, nelfinavir me-
sylate (Viracept; Pfizer/Agouron Pharmaceuticals) at
17.02 mmol/l in DMSO, and amprenavir (Agenerase;
GlaxoSmithKline/Vertex Pharmaceuticals, Cambridge,
Massachusetts, USA) at 19.36 mmol/l in DMSO. The
fusion inhibitor T-20 (Trimeris, Durham, North Car-
olina, USA) was dissolved at 2 mg/ml in PBS. The
specific CXCR4 antagonist AMD3100 was synthesized
as described previously [10] and was dissolved at 5 mg/
ml in DMSO. The mannose-specific plant lectins
Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA)
were derived and purified from the bulbs of these
plants, as described elsewhere [11,12], and were dis-
solved at 1 mg/ml in distilled water.

Antiviral assays
For the anti-HIV activity of CADA against primary
isolates, fivefold dilutions of the compound (in 250 �l
medium) were added to each well of 48-well flat
bottom plates (Iwaki Glass, Iwaki, Japan). Then PBMC
were seeded in the tissue culture plates (5 3 105 cells
in 200 �l medium) together with interleukin-2 (1 ng/
ml) (R&D Systems Europe, Abingdon, UK) and 50 �l
diluted virus stocks of the primary isolates at a final
concentration of 1000 pg/ml. After 3 days, 100 �l fresh
medium with interleukin-2 was added. The supernatant
of each sample was collected after 8 days of incubation,
stored at �208C and analyzed for HIV-1 core antigen
by p24 antigen enzyme-linked immunoassay (ELISA;
Perkin Elmer, Boston, Massachusetts, USA). Cell viabi-
lity of the PBMC was measured after 8 days of
incubation by trypan blue exclusion. No cytotoxicity
was observed in uninfected PBMC at the highest
concentration of CADA (16 �mol/l).

The anti-HIV-1 activity of each drug in MT-4 cells
was determined using a tetrazolium-based colorimetric
assay [13]. Threefold dilutions of the drugs in 100 �l
medium were added to duplicate wells of 96-well flat
bottom plates (Iwaki Glass). Then MT-4 cells were
seeded in the tissue culture plates (7.5 3 104 cells in
50 �l medium), and finally 50 �l diluted HIV-1NL4:3

stock (203 the median tissue culture infective dose)
was added to each well, resulting in a final volume of
200 �l. Cytopathic effect induced by the virus was
checked regularly microscopically. After 4 days of
infection, when a strong cytopathic effect was observed

in the positive control (i.e., untreated) HIV-1-infected
cells, the cell viability was assessed spectrophotometri-
cally via the in situ reduction of the tetrazolium
compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-
methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium in-
ner salt, using the CellTiter 96 AQueous One Solution
Cell Proliferation Assay (Promega, Madison, Wiscon-
sin, USA). The absorbance was then recorded at
490 nm with a 96-well plate reader and compared with
four cell control replicates (cells without virus and
drugs) and four virus control wells (cells with virus but
without drugs). Each assay was performed at least three
times. The median inhibitory concentration (IC50), or
the concentration that inhibited HIV-induced cell
death by 50%, was calculated from each dose–response
curve.

Combination experiments and evaluation of
synergy
After an IC50 was obtained for each drug, the anti-
HIV-1 activity of each compound alone or in combi-
nation with CADA was tested. Assays were designed so
that the IC50 value of the drug would occur in the
middle of the dilution range (threefold dilutions).
Therefore, dose–response curves from an ineffective
concentration to a maximally effective concentration
could be determined for each compound. The antiviral
activity was assayed in a single 96-well plate with cell
control, virus control, dilutions of CADA in duplicate,
dilutions of the drug to be tested in duplicate, and
three different fixed ratios of CADA and the drug. The
ratios were based on the IC50 values for each antiviral
drug alone. The assay was designed so that the first
ratio of CADA to each drug approached the IC50:IC50

ratio for the two drugs. For the second ratio, CADA
(at the same concentration as in the first ratio) was
mixed in combination with the appropriate drug at
one-third the concentration as in the first ratio. For the
third ratio, one-third the concentration of CADA was
mixed with the other compound at the same concen-
tration as in the first ratio. The result was that CADA
was compared with each antiviral drug at three differ-
ent ratios. Each experiment with drug combinations
was performed three to five times.

After incubation with HIV-1, the cell viability was
assessed as described in the antiviral assay above. The
percentage of viable cells was calculated as a mean of
duplicate infections (duplicate wells). The fraction
affected, which equals the percentage of viable cells, at
each dilution was calculated for CADA, for the drug to
be tested, and for each ratio of CADA and drug. The
combination index (CI) was calculated according to the
method of Chou and Talalay [14], using the CalcuSyn
for Windows software package (Biosoft, Cambridge,
UK). A mutually exclusive model of analysis was used.
The CI values are estimated from the data and reflect
the nature of the interaction between drugs: , 1,
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synergistic activity; 1, additive; . 1, antagonism. Thus,
the value of CI is inversely proportional to the degree
of synergy in the combination regimen. For ease of
interpretation, the CI values for the calculated IC50,
concentration giving 75% inhibition (IC75), and 95%
inhibition (IC95) values of only the first ratio (equipo-
tent ratio) are reported here.

Results

Figure 1 shows the structure of the synthetic macro-
cycle cyclotriazadisulfonamide CADA.

Antiviral activity of CADA against primary
isolates
In previous reports, the antiviral activity of CADA
against different laboratory strains of HIV-1 and HIV-2
were demonstrated [6]. To evaluate the anti-HIV
activity of CADA further against clinical isolates, multi-
ple experiments were performed in PBMC in which
CADA was tested against a set of R5-, R5/X4- and
X4-using primary isolates. Viral replication of all
isolates was found to be inhibited by the drug at a dose
of 3.2 �mol/l, as evident from the low p24 antigen
production in the supernatant (Fig. 2, left panel). In

fact, complete protection could be observed for most
isolates at this dose of CADA. Treatment with
0.64 �mol/l CADA resulted, on average, in 32%
inhibition of viral replication, whereas a dose of
0.13 �mol/l had little or no protective effect (viral
replication was, on average, 103% of control) (Fig. 2).
Generally, the IC50 value of CADA was almost
constant for the different clinical isolates (mean IC50

values were 1.04, 0.97 and 1.27 �mol/l for R5, R5/
X4 and X4 isolates, respectively) and so did not depend
on the coreceptor usage of the virus. Analysis of surface
CD4 expression in uninfected control cells showed a
significant downregulation at a dose of 3.2 �mol/l
CADA (mean fluorescence intensity 12 versus 78 for
untreated cells) (Fig. 2, right panel). The CD4 receptor
expression gradually increased at lower concentrations
of the compound (mean fluorescence intensity: 30 and
60 at 0.64 and 0.13 �mol/l, respectively).

In addition, when CADA was administered to MT-4
cells infected with the laboratory-adapted X4 strain
HIV-1NL4:3, a comparable IC50 value was obtained
(mean IC50 1.09 �mol/l), indicating that CADA has
the same anti-HIV activity for the laboratory strain as
for the primary isolates. The use of a tetrazolium-based
colorimetric assay [13] for the determination of the
antiviral activity of CADA in MT-4 cells resulted in
similar IC50 values as found using the p24 antigen
ELISA data [8]. Therefore, the more convenient
colorimetric assay was used in the MT-4/HIV-1NL4:3

combination studies of CADA with other antiretroviral
drugs.

Combination of CADA with reverse transcriptase
inhibitors
The antiviral activity of CADA was evaluated in
combination with drugs currently approved by the US
Food and Drug Administration (FDA) within the
classes nucleoside reverse transcriptase inhibitors
(NRTI) and nucleotide reverse transcriptase inhibitors
(NtRTI). MT-4 cells, infected with HIV-1NL4:3, were
incubated with increasing concentrations of CADA
alone, RT inhibitor alone, or the 1:1 equipotent fixed
ratio combination as described above. No cytotoxicity
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Fig. 1. Chemical structure of CADA (9-benzyl-3-methylene-
1,5-di-p-toluenesulfonyl-1,5,9-triazacyclododecane).

Fig. 2. Antiviral and CD4-downregulating activity of CADA in peripheral blood mononuclear cells (PBMC). (Left panels) PBMC
were treated with increasing concentrations of CADA and infected with six R5, seven R5/X4 or three X4 primary isolates. After 8
days of infection, supernatant was collected; p24 antigen content in the supernatant was measured and compared with that of
untreated infected cells in order to determine the percentage viral replication. Bars represent mean �SEM of at least three
different experiments. (Right panels) In parallel, CD4 expression in uninfected PBMC was determined to show the CD4-
downmodulating activity of CADA after 3 days of treatment. Dot plots represent the flow cytometric analysis of CD4 and CD3
receptor expression on the cell surface of lymphocytes by staining with the fluoroscein isothiocyanate-labeled CD4-specific
monoclonal antibody (clone SK3) and the phycoerythrin-labeled CD3-specific monoclonal antibody (clone Leu-4). The percent-
age of CD4 T cells and the mean fluorescence intensity (MFI) of CD4 fluorescence is indicated in each dot plot. The data shown
are from one representative experiment, which was repeated four times with comparable results by using PBMC from four
different donors.
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was observed in uninfected MT-4 cells at the highest
concentration of drug used (data not shown). The IC50

values (mean �SD of three to four independent
experiments) for CADA, the NRTI/NtRTI and their
combinations were determined (Table 1). The IC50 for
CADA as single treatment ranged from 0.9 to
1.3 �mol/l and significantly fell to 0.3 �mol/l (on
average) when used in combination with each NRTI/
NtRTI (P, 0.05 according to Student’s t-test). For
the NRTI/NtRTI, there was a 1.8- to 2.9-fold
reduction of the IC50 values when used in combination
with CADA, which was significant for zidovudine,
stavudine, lamivudine and abacavir (P , 0.05).

CADA was then tested in combination with non-
nucleoside reverse transcriptase inhibitors (NNRTI). In
the combination experiments with nevirapine, delavir-
dine and efavirenz (Table 1), IC50 values (mean of
three to four independent experiments) for single
CADA treatment were 1.3, 1.1 and 1.1 �mol/l, respec-
tively, and significantly decreased to 0.3, 0.2 and
0.5 �mol/l when tested in a two-drug combination
(P, 0.05). For the NNRTI, combination with CADA
resulted in a 2.3-fold reduction of the IC50 for
nevirapine (P , 0.001), a 3.1-fold reduction for dela-

virdine (P , 0.05) and a 1.8-fold reduction of the IC50

for efavirenz (Table 1).

Synergistic action of CADA and reverse
transcriptase inhibitors
CI values were determined to investigate possible
synergistic interactions between CADA and RT inhibi-
tors. The combination of CADA with the NRTI/
NtRTI and the NNRTI are illustrated in Table 2. CI
values at the 1:1 fixed drug ratio [i.e., the equipotent
ratio (IC50/IC50) CADA/RT inhibitor] at the calcu-
lated IC50, IC75 and IC95 concentrations, were all , 1,
indicating, according to the method of Chou and
Talalay [14], a synergistic interaction between CADA
and the RT inhibitors (Table 2). Synergism was seen
(CI, 0.3–0.7) when CADA was combined at the
calculated IC95 concentration with zidovudine, lamivu-
dine, zalcitabine, didanosine, abacavir, tenofovir or
delavirdine; moderate synergism (CI, 0.7–0.85) was
observed for stavudine, nevirapine and efavirenz. Com-
parable CI values were also obtained at the 3:1 and 1:3
fixed drug ratio, which confirmed the synergistic inter-
action between CADA and the RT inhibitors (data not
shown).
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Table 1. Median inhibitory concentrations (IC50)
a of CADA and clinically available anti-HIV drugs as single drug treatment

and in combination at equipotent ratio.

IC50 drug alone
b IC50 combinationc

Inhibitor CADA (�mol/l) Inhibitor CADA (�mol/l) Inhibitor

NRTI/NtRTI
Zidovudine (nmol/l) 1.26 � 0.14d 11.34 � 0.60 0.34 � 0.10* 5.50 � 0.86*
Stavudine (�mol/l) 0.98 � 0.21 0.32 � 0.08 0.36 � 0.12* 0.15 � 0.04*
Lamivudine (�mol/l) 0.88 � 0.03 1.29 � 0.43 0.29 � 0.10** 0.64 � 0.19*
Zalcitabine (�mol/l) 1.01 � 0.13 0.95 � 0.45 0.26 � 0.16** 0.33 � 0.16
Didanosine (�mol/l) 1.08 � 0.16 5.20 � 1.08 0.29 � 0.03* 2.91 � 0.30
Abacavir (�mol/l) 1.19 � 0.03 1.41 � 0.05 0.31 � 0.11* 0.72 � 0.17*
Tenofovir (�mol/l) 1.11 � 0.28 1.70 � 0.79 0.27 � 0.06* 0.68 � 0.18

NNRTI
Nevirapine (nmol/l) 1.27 � 0.30 28.24 � 3.32 0.34 � 0.17* 12.14 � 2.47**
Delavirdine (nmol/l) 1.06 � 0.26 13.62 � 1.32 0.24 � 0.02* 4.40 � 0.41*
Efavirenz (nmol/l) 1.07 � 0.22 1.30 � 0.50 0.46 � 0.11* 0.73 � 0.30

Protease inhibitors
Lopinavir (nmol/l) 0.97 � 0.24 9.31 � 2.79 0.28 � 0.06* 4.33 � 0.99*
Saquinavir (nmol/l) 1.24 � 0.11 12.27 � 2.70 0.29 � 0.05* 6.32 � 1.05*
Amprenavir (nmol/l) 1.26 � 0.10 28.63 � 7.13 0.55 � 0.12* 16.00 � 3.39
Indinavir (nmol/l) 0.94 � 0.24 24.30 � 5.42 0.45 � 0.12* 10.66 � 2.95*
Nelfinavir (nmol/l) 1.01 � 0.22 18.35 � 6.94 0.28 � 0.07* 9.49 � 2.39
Ritonavir (nmol/l) 1.32 � 0.03 64.13 � 16.56 0.38 � 0.11* 13.93 � 4.06*

Entry inhibitors
AMD3100 (nmol/l) 1.02 � 0.17 20.97 � 4.41 0.41 � 0.13* 8.18 � 2.52*
Enfuvirtide (ng/ml) 0.95 � 0.28 41.86 � 19.74 0.46 � 0.13 11.59 � 3.15
Lectin GNA (ng/ml) 1.11 � 0.41 135.63 � 48.32 0.48 � 0.14 47.84 � 14.14
Lectin HHA (ng/ml) 0.96 � 0.31 106.60 � 37.39 0.38 � 0.15 37.91 � 14.89

NRTI, nucleoside reverse transcriptase inhibitor; NtRTI, nucleotide reverse transcriptase inhibitor; NNRTI, non-nucleoside
reverse transcriptase inhibitor.
aThe median inhibitory concentration for NL4.3 infection in MT-4 cells.
bSingle drug treatment (CADA alone or the inhibitor alone); mean �SD from at least three independent experiments.
cTwo-drug combinations at the equipotent ratio (1:1 or IC50 CADA/IC50 inhibitor); mean �SD from at least three independent
experiments.
*P , 0.05; ** P , 0.001 (Student’s t-test for unequal variances) compared with single drug treatment.
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Synergistic action of CADA and protease
inhibitors
A second important class of currently FDA-approved
antiretroviral drugs are the protease inhibitors. In our
anti-HIV-1 single drug test system, all protease inhibi-
tors had antiviral activity in the lower nanomolar range,
whereas the IC50 values for CADA were 1.0–
1.3 �mol/l (Table 1). Combining CADA with the
protease inhibitors resulted in a significant reduction of
the IC50 for CADA, lopinavir, saquinavir, indinavir
and ritonavir (P , 0.05); for amprenavir and nelfinavir,
respectively, a 1.8- and 1.9-fold reduction of the IC50

was noted (Table 1). The two-drug treatment CADA/
ritonavir proved to be the most effective combination,

as a 3.5- and 4.6-fold decrease of the IC50 for CADA
and ritonavir, respectively, was observed.

The CI value for CADA in combination with protease
inhibitors are given in Table 3. A marked synergistic
interaction (CI, , 0.6) could be observed when
CADA was combined with ritonavir at all inhibitory
concentration levels. At the calculated IC95, CADA
appeared to be potently synergistic (CI, , 0.65) with
all protease inhibitors tested with the exception of
amprenavir, for which a moderate synergistic inter-
action was noted. In general, the 1:1 combination of
CADA with each protease inhibitor resulted in syner-
gism (CI, , 1) at all calculated inhibitory concentra-
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Table 2. Combination indices for two-drug combinations of CADA with reverse transcriptase
inhibitors.

CI at varying HIV-1 inhibitionb

Druga 50% 75% 95% Synergyc

NRTI/NtRTI
Zidovudine 0.88 � 0.20 0.67 � 0.18 0.49 � 0.19 +++
Stavudine 0.83 � 0.15 0.77 � 0.20 0.72 � 0.24 ++
Lamivudine 0.83 � 0.10 0.64 � 0.13 0.51 � 0.13 +++
Zalcitabine 0.69 � 0.12 0.49 � 0.17 0.34 � 0.20 +++
Didanosine 0.84 � 0.07 0.69 � 0.16 0.58 � 0.20 +++
Abacavir 0.75 � 0.04 0.66 � 0.05 0.58 � 0.06 +++
Tenofovir 0.68 � 0.20 0.56 � 0.24 0.49 � 0.28 +++

NNRTI
Nevirapine 0.83 � 0.15 0.78 � 0.13 0.72 � 0.12 ++
Delavirdine 0.57 � 0.15 0.45 � 0.22 0.37 � 0.25 +++
Efavirenz 0.96 � 0.03 0.87 � 0.08 0.82 � 0.17 ++

NRTI, nucleoside reverse transcriptase inhibitor; NtRTI, nucleotide reverse transcriptase inhibitor;
NNRTI, non-nucleoside reverse transcriptase inhibitor; CI, combination index.
aTwo-drug combinations of CADAwith the indicated inhibitor. For each CADA–inhibitor combina-
tion, a 1:1 fixed drug ratio was used based on the median inhibitory concentrations (IC50) of each
drug alone and represents the equipotent ratio (IC50 CADA/IC50 drug).
bCI (mean �SD from at least three independent experiments): , 1, synergism; 1, additive effect;
. 1, antagonism.
cSynergy at the calculated concentration giving 95% inhibition (IC95): +, slight synergism (CI,
0.85–0.90); ++, moderate synergism (CI, 0.7–0.85); +++, synergism (CI,: 0.3–0.7); ++++, strong
synergism (CI , 0.1–0.3).

Table 3. Combination indices for two-drug combinations of CADAwith protease inhibitors.

CI at varying HIV-1 inhibitionb

Protease inhibitora 50% 75% 95% Synergyc

Lopinavir 0.77 � 0.05d 0.59 � 0.04 0.46 � 0.03 +++
Saquinavir 0.79 � 0.10 0.62 � 0.10 0.49 � 0.12 +++
Amprenavir 0.99 � 0.05 0.88 � 0.02 0.80 � 0.04 ++
Indinavir 0.88 � 0.07 0.75 � 0.10 0.64 � 0.13 +++
Nelfinavir 0.84 � 0.24 0.69 � 0.30 0.59 � 0.35 +++
Ritonavir 0.59 � 0.20 0.46 � 0.17 0.37 � 0.14 +++

CI, combination index.
aTwo-drug combinations of CADA with the indicated protease inhibitor. For each drug combination, a
1:1 fixed drug ratio is used based on median inhibitory concentrations (IC50) of each drug alone and
represents the equipotent ratio (IC50 CADA/IC50 drug).
bCI (mean �SD from at least three independent experiments): , 1, synergism; 1, additive effect; . 1,
antagonism.
cSynergy at the calculated concentration giving 95% inhibition (IC95): +, slight synergism (CI, 0.85–
0.90); ++, moderate synergism (CI, 0.7–0.85); +++, synergism (CI,: 0.3–0.7); ++++, strong synergism
(CI , 0.1–0.3).
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tions (Table 3), which was also the case at the 3:1 and
1:3 fixed drug ratio (data not shown).

Synergistic action of CADA and entry inhibitors
Finally, combinations of CADA with other inhibitors
of HIV-1 entry–fusion were evaluated. As the fusion
inhibitor T-20 (enfuvirtide) is the only FDA-approved
entry inhibitor to date, other agents that target viral
entry were also included. The bicyclam AMD3100 is a
specific antagonist for the HIV coreceptor CXCR4
[15,16]. The two mannose-specific plant lectins GNA
and HHA have been reported to suppress HIV infec-
tion and HIV transmission by preventing entry of HIV
into its target cells via targeting the heavily glycosylated
gp120 envelope glycoprotein [17,18]. The combination
of CADA with AMD3100 resulted in a 2.5-fold
reduction of the IC50 value for both drugs (P , 0.05)
(Table 1). When CADA was administered together
with enfuvirtide, there was a 2- and 3.6-fold decrease
of the IC50 value for CADA and enfuvirtide, respec-
tively. For both gp120-interacting lectins, the combi-
nation with CADA induced a 2.8-fold fall in their IC50

values.

As summarized in Table 4, CADA exhibited potent
synergistic interactions with the viral entry inhibitors
AMD3100, T-20, GNA and HHA at the 1:1 equipo-
tent ratio (all CI values, , 0.8). However, when
CADA was combined with each entry inhibitor at the
3:1 or 1:3 fixed ratio, moderate synergistic (i.e., CI,
0.7–0.85) to nearly additive (i.e., CI, 0.90–1.10) inter-
actions were observed (data not shown).

Discussion

Cyclotriazadisulfonamides, of which CADA (Fig. 1)
can be considered as a lead compound, represent a
novel class of anti-HIV drugs with specific CD4

receptor downmodulating activity [6–8]. Their me-
chanism of action has not been completely elucidated;
however, it has been demonstrated that CADA specifi-
cally decreases the expression of surface CD4 without
affecting other cellular receptors. CADA does not bind
directly to the extracellular part of cell surface CD4
with subsequent receptor internalisation, nor does it act
at the transcriptional level [6]. An interesting feature of
the cyclotriazadisulfonamides is the reversible nature of
their CD4-downregulating activity: that is, CD4 ex-
pression on the cells is rapidly restored to normal levels
after removal of the drug [6]. Administration of CADA
to CD4 cells results in a quantitative decrease (almost
90%) of the CD4 receptor expression and, thus, in a
reduction of the CD4 receptor density to below the
level that is required for efficient HIV infection. What
the impact is of a diminished CD4 receptor expression
on the complex interplay between the immune cells,
and if the residual CD4 expression on the surface of
CADA-treated immunocompetent cells is still sufficient
to elicit the desired immune responses, is currently
under investigation.

We have previously shown the activity of CADA
against laboratory HIV-1 strains and HIV-1 variants
resistant to RT and entry inhibitors [6]. In the present
study, we tested CADA for its antiviral potency against
primary HIV-1 isolates, as this will be of interest if this
class of CD4-interacting HIV inhibitors is used in a
clinical setting. For the 16 different isolates examined,
we found a consistent activity against R5-, R5/X4-
and X4-using primary isolates, demonstrating a broad
anti-HIV spectrum for CADA. The antiviral activity
also correlated with the potency of CADA to decrease
the surface CD4 expression in PBMC. Several reports
have shown that the cell surface CD4 receptor density
is extremely important for the efficiency of viral
infection [19–25], especially for clinical isolates, which
have a lower affinity for the CD4 receptor than do
laboratory-adapted virus strains [21,22,24].
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Table 4. Combination indices for two-drug combinations of CADAwith entry inhibitors.

CI at varying HIV-1 inhibitionb

Druga 50% 75% 95% Synergyc

Entry inhibitors
AMD3100 0.79 � 0.10 0.69 � 0.09 0.61 � 0.10 +++
Enfuvirtide (T-20) 0.79 � 0.04 0.67 � 0.07 0.58 � 0.09 +++
Lectin GNA 0.80 � 0.08 0.71 � 0.05 0.64 � 0.10 +++
Lectin HHA 0.74 � 0.08 0.64 � 0.15 0.56 � 0.20 +++

CI, combination index.
aTwo-drug combinations of CADA with the indicated entry inhibitor. For each drug combina-
tion, a 1:1 fixed drug ratio is used based on median inhibitory concentrations (IC50) of each
drug alone and represents the equipotent ratio (IC50 CADA/IC50 drug).
bCI (mean �SD from at least three independent experiments): , 1, synergism; 1, additive
effect;. 1, antagonism.
cSynergy at the calculated concentration giving 95% inhibition (IC95): +, slight synergism (CI,
0.85–0.90); ++, moderate synergism (CI, 0.7–0.85); +++, synergism (CI,: 0.3–0.7); ++++,
strong synergism (CI , 0.1–0.3).
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Next, CADA was tested as a single agent and was also
evaluated in combination with other antiretroviral
compounds in order to determine if there were possible
adverse effects arising from their interaction. CADA
inhibited HIV-1NL4:3 infection of T cells, either as a
single drug or as part of a combination regimen. There
was a clear decrease in IC50 of CADA and the other
inhibitors when used in combination than when used
alone. These data indicate that the same anti-HIV
effect can be obtained with lower doses of the
individual drugs and, thus, with less toxic side-effects.
At the 95% inhibition level, synergism (CI, , 0.7) was
observed in dual treatments with all RT inhibitors,
except for stavudine, nevirapine and efavirenz, for
which the combination could be best characterized as
moderate synergistic (CI, 0.70–0.85). Besides the
moderate synergism between CADA and amprenavir,
the interaction of CADA with protease inhibitors
proved also to be synergistic, especially with ritonavir,
for which a significant synergism (CI, , 0.6) was
observed at all inhibitory concentration values tested.

As CADA targets viral infection at the fusion–entry
step, we wanted also to evaluate its interaction with
other entry inhibitors. The combination of CADA
with AMD3100, T-20, GNA or HHA at an optimal
1:1 equipotent fixed ratio did result in a synergistic
inhibition (CI, , 0.8). Notably, when an optimal 1:1
ratio was used for CADA and each entry inhibitor
(Table 4), a general stronger (synergistic) inhibition of
HIV-1 replication could be observed compared with
that for the 1:3 and 3:1 ratios (not shown). These data
may suggest a need to optimize each antiviral drug
‘cocktail’ as CADA seems to augment the activity of
other entry inhibitors for efficient blocking of virus
replication when both agents are provided at sufficient
amounts (i.e., at the 1:1 ratio). As the CD4 receptor is
involved in attachment of the virus to the cell [1,2], as
well as in the exposure of the coreceptor binding site
on gp120 [26,27] and in the fusogenic conformation of
gp41 [27,28], one can expect that a decrease in the
CD4 receptor density will positively influence the
activity of agents that target sequential steps in the
fusion–entry process. Accordingly, Allaway et al. [29]
reported that CD4-based molecules, which inhibit HIV
attachment, act synergistically with anti-gp120 and
anti-gp41 antibodies, which block HIV-1 fusion.

The attachment of the HIV envelope to cellular CD4
represents an important target for new antiviral thera-
pies. When used in HIV prophylaxis, drugs that
interfere with the earliest events in the replication cycle
may have an advantage over existing therapeutic ap-
proaches that target the viral enzymes RT and protease,
as they may prevent virus entry into new target cells
and subsequently reduce the number of latent reservoirs
for HIV. To date, a number of agents that interfere
with CD4 receptor attachment have been accredited

with potent in vitro anti-HIV activity [30–34].
Although soluble CD4 therapy in patients with AIDS
did not fulfill the high therapeutic expectations [35],
probably because of activation of gp120 for subsequent
interaction with the HIV coreceptor [36,37], several
more recent reports have pointed to blocking of
binding to CD4 receptor as a successful approach to
suppress AIDS virus replication in vivo [38–44].
Furthermore, as several domains of the CD4 receptor
are used by HIV to enter CD4 cells [45], a specific
downmodulator of the complete CD4 receptor, such as
CADA, may be considered as a more effective antiviral
agent with activity against a wide variety of HIV strains
and isolates.

Although CD4 is the primary receptor for HIV entry,
several CD4-independent HIV strains have been re-
ported [46–50]. These viruses appear to infect their
target cells in the absence of the CD4 receptor by using
a coreceptor, although they show higher infectivity and
replicative ability when CD4 is expressed on the cell
surface. CD4-independent HIV isolates can also be
obtained from HIV-infected persons, but these viruses
show enhanced sensitivity to antibody-mediated neu-
tralization [47,50–52]. In addition, one can expect that
treatment with CD4-downmodulating drugs will ulti-
mately result in the selection of clinical isolates with
reduced CD4 dependency; however, the ability of
viruses to infect cells with low levels of CD4 seems to
correlate with increased sensitivity to neutralization
[53–54].

Our data clearly show that entry inhibitors are likely to
act synergistically with current HIV therapies directed
against post-entry steps, an observation that is in line
with previously reported combination data. Antiviral
synergy has been observed between naphthalene sulfo-
nate polymers (PIC 024-4 and PRO 2000) – which
bind to CD4 and block binding of gp120 – and
zidovudine [32]. Also the CXCR4-binding chemokine
Met-SDF-1� showed synergy to additivity with either
zidovudine or nelfinavir [55]. The CCR5 antagonist
SCH-C has been reported to exert synergistic inter-
actions with several NRTI, NNRTI and protease
inhibitors [56].

The approval of the fusion inhibitor T-20, currently
renamed as enfuvirtide (Fuzeon), provides proof of
principle for the development of entry inhibitors as
practical and potent antiviral agents. The clinical
investigation of T-20 has followed demonstration of its
marked in vitro antiviral activity [57–59] and of syner-
gism between T-20 and other antiretroviral drugs, such
as the CD4–immunoglobulin fusion protein PRO 542
[60], the CCR5 antagonist SCH-C [56] and the
CXCR4 antagonist AMD3100 [61]. The significant
virological advantage of T-20 treatment in several
clinical trials [62–64] further encourages the potential
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use of entry inhibitors as a component of multidrug
salvage therapy in patients highly experienced in anti-
retroviral therapy.

In conclusion, the results of this study demonstrate that
the CD4-downmodulating compound CADA has a
potent anti-HIV activity against a broad spectrum of
primary isolates and a favorable interaction in vitro with
several RT, protease and entry inhibitors. However,
further studies are needed to address whether synergis-
tic interactions also exist in vivo and to examine possible
toxicity and pharmacokinetic issues. As an increasing
number of drug-resistant HIV isolates is emerging,
compounds that specifically interact with the CD4
receptor, such as the cyclotriazadisulfonamides, should
deserve further attention as a novel class of potential
antiretroviral drug.
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