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Abstract. The significant growth of consumer credit has resulted in
a wide range of statistical and non-statistical methods for classifying
applicants in ‘good’ and ‘bad’ risk categories. Traditionally, (logistic)
regression used to be one of the most popular methods for this task,
but recently some newer techniques like neural networks and support
vector machines have shown excellent classification performance. Self-
organizing maps (SOMs) have existed for decades and although they
have been used in various application areas, only little research has been
done to investigate their appropriateness for credit scoring. In this paper,
it is shown how a trained SOM can be used for classification and how
the basic SOM-algorithm can be integrated with supervised techniques
like the multi-layered perceptron. Classification accuracy of the models
is benchmarked with results reported previously.

1 Introduction

One of the key decisions financial institutions have to make is to decide whether
or not to grant a loan to a customer. This decision basically boils down to a
binary classification problem which aims at distinguishing good payers from bad
payers. Until recently, this distinction was made using a judgmental approach by
merely inspecting the application form details of the applicant. The credit expert
then decided upon the creditworthiness of the applicant, using all possible rele-
vant information concerning his sociodemographic status, economic conditions,
and intentions. The advent of data storage technology has facilitated financial
institutions ability to store all information regarding the characteristics and re-
payment behavior of credit applicants electronically. This has motivated the need
to automate the credit granting decision by using statistical or machine learning
algorithms. Numerous methods have been proposed in the literature to develop
credit-risk evaluation models. These models include traditional statistical meth-
ods (e.g. logistic regression [13]), classification trees [5], neural network models
[1, 4, 18] and support vector machines [2, 15]. While newer approaches, like neu-
ral networks and support vector machines, offer high predictive accuracy, it is
often difficult to understand the motivation behind their classification decisions.
In this paper, the appropriateness of SOMs for credit scoring is investigated.
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The powerful visualization possibilities of this neural network model offer a sig-
nificant advantage for understanding its decision process. However, the training
process of the SOM is unsupervised and initially the predictive power lies there-
fore slightly below classification accuracy of several supervised classifiers. In the
rest of the paper, we investigate how the SOM can be integrated with super-
vised classifiers. Two distinct approaches are adopted. In the first approach, the
classification accuracy of individual neurons is improved through the training of
a separate supervised classifier for each of these neurons. The second approach
is similar to a stacking model. The output of a supervised classifier is used as
input to the SOM. Both models are tested on two data sets obtained from a
major Benelux financial institution and benchmarked with the results of other
classifiers reported in [2].

2 Self Organizing Maps

SOMs were introduced in 1982 by Teuvo Kohonen [10] and have been used in
a wide array of applications like the visualization of high-dimensional data [16],
clustering of text documents [8], identification of fraudulent insurance claims [3]
and many others. An extensive overview of successful applications can be found
in [11] and [6]. A SOM is a feedforward neural network consisting of two layers.
The neurons from the output layer are usually ordered in a low-dimensional
grid. Each unit in the input layer is connected to all neurons in the output layer.
Weights are attached to each of these connections. This is similar to a weight
vector, with the dimensionality of the input space, being associated with each
output neuron. When a training vector x is presented, the weight vector of each
neuron c is compared with x. One commonly opts for the euclidian distance
between both vectors as the distance measure. The neuron that lies closest to x
is called the ‘winner’ or the Best Matching Unit (BMU). The weight vector of the
BMU and its neighbors in the grid are adapted with the following learning rule:

wc = wc + η(t)Λwinner,c(t)(x − wc) (1)

In this expression η(t) represents the learning rate that decreases during train-
ing. Λwinner,c(t) is the so-called neighborhood function that decreases when the
distance in the grid between neuron c and the winner unit becomes larger. Often
a gaussian function centered around the winner unit is used as the neighborhood
function with a decreasing radius during training. The decreasing learning rate
and radius of the neighborhood function result in a stable map that does not
change substantially after a certain amount of training.

From the learning rule, it can be seen that the neurons will move towards
the input vector and that the magnitude of the update is determined by the
neighborhood function. Because units that are close to each other in the grid,
will receive similar updates, the weights of these neurons will resemble each other
and the neurons will be activated by similar input patterns. The winner units
for similar input vectors are mostly close to each other and self-organizing maps
are therefore often called topology-preserving maps.
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3 Related Research

In [12], a model based on self-organizing maps is used to predict corporate
bankruptcy. A data set containing 129 observations and 4 variables was divided
into a training and a test data set with the proportion between bankrupt and
solvent companies being almost equal. A 12 by 12 map was trained and divided
into a zone of bankruptcy and a zone of solvency. This division of the map was
obtained by labelling each neuron with the label of the most similar training
example. Unseen test observations were classified by calculating the distance be-
tween the neurons of the map and the observations. If the most-active neurons
were in the solvent zone, the observation was classified as good. It is concluded
that the percentage correctly classified observations is comparable with the accu-
racy of a linear discriminant analysis and several multi-layered perceptrons. The
author’s conclusion is promising for the SOM: the flexibility of this neural model
to combine with and to adapt to other structures, wether neural or otherwise,
augurs a bright future for this type of model.

In [9], several SOM-based models for predicting bankruptcies are evaluated.
The first of the models, SOM-1, is very similar to the model described above,
but instead of assigning each neuron the label of the most similar observation, a
voting scheme is used. For each neuron of the map, the probability of bankruptcy
is estimated as the number of bankrupt companies projected onto that node
divided by the total number of companies projected on that neuron. A second,
more complex model was also proposed (SOM-2). It consists of a small variation
to the Basic SOM-algorithm as explained above. Each input vector consists of
two types of variables: the financial indicators and the bankruptcy indicators.
Only the financial indicators are used when searching which unit is the BMU.
Afterwards, the weights are updated with the traditional learning rule from
equation 1. These weight updates are not only made for the financial indicators
but also for the bankruptcy indicators. The weight of the bankruptcy indicator
after training is used as an estimate for the conditional probability of bankruptcy
given the neuron. Compared to other classifiers, like LDA and LVQ, SOM-1 was
clearly outperformed. SOM-2 performed much better and more importantly: its
classification accuracy was quite insensitive to the map grid size.

4 Description and Preprocessing of the Data

For this application, two different data sets were at our disposal. The charac-
teristics of these data sets are summarized in Table 1. The same data sets are
described in detail in a benchmarking study of different classification algorithms
[2]. In this benchmarking study, two thirds of the data were used for training
and one third as test set. The same training and test sets will be used in this
paper. Additional measures like sensitivity and specificity for these classifiers are
also given in Table 1. Sensitivity measures the number of good risks that are
correctly identified while specificity measures the number of bad risks that are
correctly classified.
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Table 1. Description of the Datasets

name Bene1 Bene2

number of obs. 3123 7190

number of variables 27 27

good/bad 67:33 70:30

best classifier RBF LS-SVM(73.1%) MLP(75.1%)

sens/spec 83.9%/52.6% 86.7%/48.1%

Both data sets contain several categorical variables, like goal of the loan and
residential status. A weights of evidence encoding [14] was performed to trans-
form them into numerical variables. After performing the weights of evidence
encoding for the categorical variables, an additional normalization was done for
all variables.

5 Exploratory Data Analysis

5.1 Visualization of the SOM

SOMs have mainly been used for exploratory data analysis and clustering. In
this section, the basic SOM-algorithm will be applied to the Bene1 data set. A
map of 6 by 4 neurons is used because it is small enough to be conveniently
visualized. All analyzes are performed with the SOM-toolbox for Matlab [7].

To examine if ‘good’ and ‘bad’ risk observations are projected onto different
units, we can calculate for each observation the winner neuron. For the Bene1
data set, this results in Figure 1(a). In each neuron, the number of good and bad
risk observations that were projected onto that neuron, are given. For example,
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Fig. 1. Number of hits per neuron
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the upper-left neuron was the BMU for 219 training observations, from which
122 were good and 97 were bad. The same information is also given in the left
part of Figure 1(b). In this figure, the size of the bar indicates the number of
good and bad observations projected onto each neuron. Notice that the scale
of the bars is different for ‘good’ and ‘bad’ risk categories. The right part of
Figure 1(b) contains the same information, but this time for the unseen test
data. From the graphs, it can be noticed that bad risks tend to be projected
onto the neurons in the upper half of the grid, but that the SOM is not able
to achieve a clear separation. This corresponds with the results from [2], even
powerful techniques like Support Vector Machines are not able to obtain a very
high degree of accuracy on the Bene1 data set.

6 Classification

The SOM we created can also be used for classification. In [12], a SOM is created
and each neuron is assigned the label of the closest training observation. Pre-
dictions for the test data are based on the label of their BMU. Using the same
labelling on our map of the Bene1 data, results in 4 nodes that are assigned the
bad status and 20 nodes a good status. The labelling is shown in Figure 2(a). It
can be seen that most of the nodes labelled ‘bad’ are situated in the lower part
of the map. From Figure 1(b) however, we know that most bad risk observations
are projected on the upper half of the map. The accuracy, specificity and sen-
sitivity of this classification method are therefore rather low (respectively 58%,
22% and 76%). Changes in grid size do not considerably alter these results. For
the Bene2 data set, with a grid of 6 by 4, accuracy, specificity and sensitivity are
respectively 66%, 14% and 88%. These numbers are considerably below the per-
formance of several supervised classifiers reported in [2]. Instead of using only
the closest training observation for labelling each neuron, more sophisticated
techniques, like k-nearest neighbor, might prove useful.

(a) nearest-
observation
method

(b)
Majority-
vote method

Fig. 2. Classification of neurons (White: nodes assigned Bad status, Black: nodes as-
signed Good Status
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Fig. 3. Accuracy in each node for Majority-vote method (Bene1 Test Data)

A second way of labelling the neurons was proposed in [9]: each node receives
the label of the class from which most training observations are projected on the
node. This method will always result in a greater classification accuracy on the
training data. Figure 2(b) shows this labelling for the Bene1 data with a 6 by 4
grid. The accuracy, specificity and sensitivity of this map are respectively 71.0%,
44.57% and 84.9%. For the Bene2 data, with the same map size, classification
performance was 69.7% because the model assigns the ‘good’ label to all-but-one
neuron and will therefore mainly just predict the majority class.

However, it is more interesting to identify the neurons of the map that are
responsible for most misclassifications. Figure 3 gives an overview of the clas-
sification accuracy in each node for the Bene1 data. Dark nodes are neurons
with low classification accuracy. The size of the neurons is an indicator of the
number of observations for which that neuron is the BMU. We can see that
some neurons are the BMU for lots of observations, while others are the BMU
for only a few examples. The presence of large and dark neurons in Figure
3 will indicate a bad classification accuracy of the map. For the Bene1 data
set, it can be seen that the lower part of the map has a good classification
accuracy. The upper half of the grid shows worse accuracy. For some nodes,
the accuracy is below 50%. Fortunately, only few observations are projected
onto these nodes. From the figure, we conclude that many observations are pro-
jected onto the first neuron of the top row and that not all of these observa-
tions belong to the category ‘good’, because classification accuracy is low. In
the following section, a more detailed model is elaborated. Observations that
are projected onto neurons with low accuracy, will not receive the standard
labelling of these nodes, but will instead be classified by independent mod-
els. If a SOM is used as new model, a hierarchy of SOMs for prediction is
obtained.

7 Integration of SOMs with Other Classification
Techniques

In the previous sections, we have shown that SOMs offer excellent visualiza-
tion possibilities that leads to a clear understanding of the decisions made by
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these models. But due to their unsupervised nature, SOMs seem not able to
obtain the degree of accuracy achievable by several supervised techniques, like
multi-layer perceptrons or support vector machines. In this part, the classifi-
cation performance of the SOMs will be improved by integrating them with
these supervised algorithms. There are two possible approaches for obtaining
this integration. One possibility is to first train a SOM and then use the other
classification techniques to improve the decisions made by the individual neu-
rons of this SOM. A second possibility is to use the predictions of the supervised
classifiers as inputs of the SOM. These two approaches are now discussed in
more detail.

7.1 Improving the Accuracy of Neurons with Bad Predictive
Power

From Figure 3, we can observe that not all neurons achieve the same level of
accuracy when predicting the risk category of an applicant. The lack of accu-
racy of the predictions made by the neurons in the top rows is compensated
by the almost perfect predictions in the lower half of the map. A two-layered
approach is suggested in this section. For neurons that achieve almost perfect
accuracy on the training data when using one of the models from the previ-
ous section, nothing changes. All the observations projected on one of these
neurons, will therefore receive the same label. There are only changes for neu-
rons whose level of accuracy on the training data lies below a user-specified
threshold. For each of these neurons, we build a classifier based on the train-
ing examples projected on that neuron. In our experiments, we used feedfor-
ward neural networks as classifiers for each of the neurons, but there is no
necessity for the classifiers being of the same type. The user-specified accu-
racy threshold was fixed at 58% for the Bene1 data set with a 6 by 4 map.
This value has been estimated by a trial-and-error procedure. A threshold that
is set too low will give no improvement over the above mentioned classifiers
because no new models will be estimated. The opposite, a very high thresh-
old, will result in too many new classifiers to be trained. With a threshold
of 58%, three models will be trained: two for the first two neurons of the
top row and one for the third neuron of the third row. We tested with sev-
eral different values for the number of hidden neurons in the neural networks.
The simplest case, with only one hidden neuron delivered best results with
an accuracy on the test set of 71.3% averaged over 100 independent trials.
This is almost no improvement over the majority vote classifier that showed
an accuracy of 71.0%. It seems that the increase in accuracy of the 3 newly
trained classifiers is only marginal. For some neurons, a decrease in the per-
centage correctly classified can even be noted. It seems extremely difficult to
separate the applicants that are projected on these neurons. A possible im-
provement might result from requesting additional information if an applicant
is projected on one of the low-accuracy neurons and then training the feed-
forward neural networks with this additional information. For applicants that
are projected on one of the other neurons, requesting this additional informa-
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tion is not necessary. The results for Bene2 are similar. A threshold of 65%
results in 9 additional classifiers to be trained of which most are situated in
the upper half of the map. The accuracy, averaged over 100 independent trials,
improves to 71.9% compared with the original performance of the majority-
vote method of 69.7%. Specificity and sensitivity are respectively 26.8% and
91.1%.

7.2 Stacking Model

A stacking model [17] consists of one meta-learner that combines the results of
several base learners to make its predictions. In this section, a SOM will be used
as the meta-learner . The main difference with the previous section is that the
classifiers are trained before training the SOM and not afterwards. The classifiers
also learn from all available training observations and not from a small subpart
of it.

In our experiments, we start with only one base learner, a multi-layer percep-
tron with 2 hidden neurons, which achieves an average classification accuracy of
72.5% on the Bene1 data set (75.1% on Bene2). The input of the meta-learner,
the SOM, consists of the training data augmented with the output of this MLP.
A small variation to the above described basic SOM-algorithm is used. Instead
of finding the BMU by calculating the euclidian distance between each neuron
and the sample observation, a weighting factor is introduced for each variable.
Heavily weighted variables, in our case the output from the MLP, will contribute
more during formation of the map. The distance measure, with n the number of
variables, can be written as:

‖ x − wc ‖=
n∑

i=1

weighti | xi − wc,i |2 (2)

The update rule from equation 1 does not change. So introducing the weights
only affects finding the BMU’s of the SOM [7].

Fig. 4. Stacking Model: Accuracy in function of weighting factor
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Table 2. Overview of Classification Results (accuracy, specificity and sensitivity)

Classifier Bene1 Bene2

NTO 57.5 / 22.3 / 76.1 66.1 / 14.5 / 88.3

MV 71.0 / 44.6 / 84.9 69.7 / 00.6 / 99.34

IA 71.3 / 52.6 / 81.5 71.9 / 26.8 / 91.1

SM Fig. 4 Fig. 4

C4.5 68.9 / 52.6 / 77.4 69.8 / 43.0 / 81.3

NTO=‘Nearest Training Observation’-method, MV= ‘Majority vote’-method, IA=
Improving Accuracy of Neurons with bad Predictive Power, SM= Stacking Model

For the experimental study, all the weighting factors of the original variables
were fixed at a value of one while the weighting factor of the MLP-input was
varied between 1 and 100. Classifications were made by both methods discussed
above: the majority-vote method and the nearest-distance method. Figure 4
gives an overview of the classification accuracy for each method and for both
data sets with a grid size of 6 by 4.

It can be seen that performance of the nearest-distance method is always
below the performance of the majority-vote method. Second, we conclude that
the weighting factor of the MLP plays a crucial role in the classification per-
formance of the integrated SOM. In general, the larger the weighting factor
is, the more the output of the integrated SOM resembles the output of the
MLP. There is however a large amount of variance present in the results. A
small change in weighting factor can significantly change the performance
observed.

In theory, the stacking model can be used in combination with the previous
method of integration, but the degree of complexity of the resulting model is
high and the advantage of the SOM’s explanatory power is lost. This approach
was therefore not analyzed in greater detail.

8 Conclusion

In this paper, the appropriateness of self organizing maps for credit scoring has
been investigated. It can be concluded that integration of a SOM with a super-
vised classifier is feasible and that the percentage correctly classified applicants
of these integrated networks is higher than what can be obtained by employing
solely a SOM. The first method, which trains additional classifiers for neurons
with bad predictive power withstands competition of other white-box techniques
like C4.5. Several topics are still open for future research. For instance, we did
not investigate in detail what the influence of the map size is on the results. A
combination of SOMs with several different types of supervised classifiers was
also not tested. Comparison of the component planes of these different classifiers
might visually show where the predictions of the models agree and where they
disagree.
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