

Structure elucidation and occurrence of Tc(IV) pyrogallol complexes

Eric Breynaert and André Maes

Laboratory for Colloid Chemistry Department of Microbial and Molecular Systems Katholieke Universiteit Leuven (Belgium)

- Fission product of uranium-235
- β emitter
- Long half-life: 2.13 x 10⁵ y
- High yield in radio-active waste (6% of all fission products !)
- Potential migration upon storage
- Potential association with HS

Identity ?

- Colloid association Tc(IV) eigencolloids and HS
- Hydrophobic interaction

Proof ?

- XANES, EXAFS
- SEC

E

 Modelling BC batch SHUBERT approach

Tc-O			Tc-Tc		
C.N.	R	σ^2	C.N.	R	σ^2
6	2.03	0.006	1.5	2.56	0.005

Tc(IV)-HS Complexation ?

- Possible ?
- Nuclear medicine

DIOL

range of synthetic Tc(IV) complexes e.g. EDTA, cysteïne, ...

TcO4- + R
$$\rightarrow$$
 [Tc]_{red} \rightarrow TcO₂.xH₂O \rightarrow colloid
precipit.
+ xL (TcL_x)^y

 High pH (2M NAOH) Tc(IV) complex stability series (Lukens et al., 2002)

 $(OCH_2O)_4Tc_2(\mu-O)^{4-} > TcO_2.xH_2O > (H2EDTA)_2Tc_2(\mu-O)_2^2$

•

Simple HS-like ligands

Intermediates of wood degradation process

- High pH Tc(IV) species stability

diol > oxide > aminopolycarboxylic

- Choice : pyrogallol
- Phenolic, model building block of HS
- Probably highest stability versus oxide

Tc(IV)-pyrogallol solutions

-1ml pyrogallol 1.25E-2M
-1ml N₂H₆SO₄ 1.5E-3M or dithionite 6.2E-3M
- 50µl 6.2E-2M NH₄TcO₄

- sample preparation in glovebox (N2/H2 95/5) (< 1 ppm O₂)
- 2 weeks equilibrium
- 8 ml samples, titration to pH 11, 8, 5, 2
- another 2 weeks equilibrium

XAS Sample Preparation & Measurement

- 8 ml sample, concentrated to 2 ml
- vac. distillation, 25°C, liquid N₂ trap
- sample container sealed in 2 PE bags
- transport to ESRF in steel container under N₂ atmosphere
- Measurement:
 - ROBL beamline (BM20)
 - Transmission mode, 21 → 22.5 keV
 - Mo foil standard, energy recalibration

XAS data analysis

Software Test TcO₄-

Tc(IV)-pyrogallol (N₂H₄)

- amplitude difference
- pH 2 <> pH 5, 8, 11

Tc(IV)-pyrogallol (N₂H₄)

Tc(IV)-pyro $(N_2H_4) - pH 8$

pH 8 – EXAFS FIT

Tc(IV)-pyro $(N_2H_4) - pH 8$

