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Abstract

The Kalman Filter is a well-known recursive state estimator for linear systems. In

practise, the algorithm is often used for nonlinear systems by linearising the system’s

process and measurement models. Different ways of linearising the models lead to different

filters. In some applications, these ‘Kalman Filter variants’ seem to perform well, while

for other applications they are useless. When choosing a filter for a new application,

the literature gives us little to rely on. This paper tries to bridge the gap between the

theoretical derivation of a Kalman Filter variant and its performance in practise when

applied to a nonlinear system, by providing an application-independent analysis of the

performances of the common Kalman Filter variants.

This paper separates performance evaluation of Kalman Filters into (i) consistency, and

(ii) information content of the estimates; and it separates the filter structure into (i) the

process update step, and (ii) the measurement update step. This decomposition provides

the insights supporting an objective and systematic evaluation of the appropriateness of a

particular Kalman Filter variant in a particular application.

1 Introduction

During the last decades, many research areas looked into the matter of on-line state estimation.

The uncertainty on the state value varies over time due to the changes in the system state (the

process updates) and due to the information in the measurements (the measurement updates).

The uncertainty can be represented in different ways, e.g. by intervals or fuzzy sets.

In Bayesian estimation (Bayes 1763, Laplace 1812), a state estimate is represented by a

probability density function (pdf). Fast analytical update algorithms require the pdf to be an

analytical function of a limited number of time-varying parameters, which is only true for some

systems. A well-known example are systems with linear process and measurement models and

with additive Gaussian uncertainties. The pdf is then a Gaussian distribution, which is fully

determined by its mean vector and covariance matrix. This mean and covariance are updated

analytically with the Kalman Filter algorithm (KF, Kalman 1960, Sorenson 1985).

For most nonlinear systems, the pdf cannot be written as an analytical function with

time-varying parameters. In order to have a computationally interesting update algorithm,

the KF is used as an approximation. This is achieved by linearisation of the process and

measurement models of the system. It also means that the true pdf is approximated by a
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Gaussian distribution. Different ways of linearisation (different KF variants) lead to different

results.

This paper describes (i) how the common KF variants differ in their linearisation of the

process and measurement models; (ii) how they take the linearisation errors into account; and

(iii) how the quality of their state estimates depends on the previous two choices. The studied

algorithms are:

1. The Extended Kalman Filter (EKF, Gelb, Kasper, Nash, Price and Sutherland 1974,

Maybeck 1982, Bar-Shalom and Li 1993, Tanizaki 1996);

2. The Iterated Extended Kalman Filter (IEKF, Gelb, Kasper, Nash, Price and Sutherland

1974, Maybeck 1982, Bar-Shalom and Li 1993, Tanizaki 1996);

3. The Linear Regression Kalman Filter (LRKF, Lefebvre, Bruyninckx and Schutter 2002).

This filter comprises the Central Difference Filter (CDF, Schei 1997), the first-order Di-

vided Difference Filter (DD1, Nørgaard, Poulsen and Ravn 2000a, b) and the Unscented

Kalman Filter (UKF, Uhlmann 1995, Julier and Uhlmann 1996, 2001, Julier, Uhlman

and Durrant-Whyte 2000).

The paper gives the following new insights:

1. The quality of the estimates of the KF variants can be expressed by two criteria, i.e.

the consistency and the information content of the estimates (defined in section 3). This

paper relates the consistency and information content of the estimates to (i) how the

linearisation is performed and (ii) how the linearisation errors are taken into account.

2. Although the filters use similar linearisation techniques for the linearisation of the process

and measurement models, there can be a substantial difference in their performance for

both updates:

(a) for the linearisation of the process update (section 4), which describes the evo-

lution of the state, the state estimate and its uncertainty are the only available

information;

(b) the measurement update (section 5), on the other hand, describes the fusion of the

information in the state estimate with the information in the new measurement.
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Hence, in this update also the new measurement is available and can be used to

linearise the measurement model.

Therefore, it can be interesting to use different filters for both updates.

3. Two new insights on the performance of specific KF variants are: (i) the IEKF measure-

ment update outperforms the EKF and LRKF updates if the state —or at least the part

of it that causes the non-linearity in the measurement model— is instantaneously fully

observable (section 5.2); and (ii) for large uncertainties on the state estimate, the LRKF

measurement update yields consistent but non-informative state estimates (section 5.3).

These insights are obtained because:

1. This paper describes all filter algorithms as the application of the basic KF algorithm to

linearised process and measurement models. The difference between the KF variants is

situated in the choice of linearisation and the compensation of the linearisation errors.

In previous work this linearisation was not always recognised, e.g. the UKF is originally

derived as a filter which does not linearise the models.

2. The analysis clarifies how some filters automatically adapt their compensation for lin-

earisation errors, while other filters have constant (developer-determined) error compen-

sation.

3. Additionally, the paper compares the filter performances separately for process updates

and measurement updates instead of their overall performance when they are both com-

bined. In the existing literature, the performances of the KF variants are often compared

by interpreting the estimation results for a specific application after executing a large

number of process and measurement update steps.

The analysis starts from a general formulation of nonlinear process and measurement mod-

els, making the results application independent. The obtained insights are important for all

researchers and developers who want to apply a KF variant to a specific application. They

lead to a systematic choice of a filter, where previously the choice was mainly made based on

success in similar applications or based on trial and error.
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Examples of 2D systems are provided. The models are chosen such that they provide

a clear graphical demonstration of the discussed effects. For the measurement update, the

filters’ performances are system dependent, hence, in that case several models are used for

illustration.

2 The Kalman Filter algorithm

The (linear) Kalman Filter

The Kalman Filter (KF, Kalman 1960, Sorenson 1985) is a special case of Bayesian filtering

theory. It applies to the estimation of a state x̃ if the state space description of the esti-

mation problem has linear process and measurement equations subject to additive Gaussian

uncertainty:

x̃ k = F̃k−1x̃ k−1 + b̃k−1 + C̃k−1ρ̃p,k−1; (1)

z̃ k = H̃kx̃ k + d̃k + Ẽkρ̃m,k. (2)

z̃ is the measurement vector. The subscripts k and k − 1 indicate the time step. F̃, b̃, C̃,

H̃, d̃ and Ẽ are (possibly nonlinear) functions of the system input. ρ̃p denotes the process

uncertainty, being a random vector sequence with zero mean and known covariance matrix Q̃.

ρ̃m is the measurement uncertainty and is a random vector sequence with zero mean and known

covariance matrix R̃; ρ̃p and ρ̃m are mutually uncorrelated and uncorrelated between sampling

times1. Furthermore, assume a Gaussian prior pdf p(x̃ 0) with mean ˜̂x 0|0 and covariance matrix

P̃0|0.

For this system, the pdfs2 p(x̃ k|
˜̂
Zk−1) and p(x̃ k|

˜̂
Zk) are also Gaussian distributions. The

filtering formulas can be expressed as analytical functions calculating the mean vector ˜̂x and

1Correlated uncertainties can be dealt with by augmenting the state vector, this is the original formulation
of the KF (Kalman 1960). Expressed in this new state vector, the process and measurement models are of the
form (1) and (2) with uncorrelated uncertainties.

2p(x̃k|
˜̂
Zj) denotes the pdf of the state x̃ at time k, given the measurements

˜̂
Zj = {˜̂z 1, . . . , ˜̂z j} up to time j.
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covariance matrix P̃ of these pdfs:

˜̂x k|k−1 = E
p(x̃k|

˜̂
Zk−1)

[x̃ k] ;

= F̃k−1
˜̂x k−1|k−1 + b̃k−1; (3)

P̃k|k−1 = E
p(x̃k|

˜̂
Zk−1)

[(
x̃ k − ˜̂x k|k−1

) (
x̃ k − ˜̂x k|k−1

)T
]

;

= F̃k−1P̃k−1|k−1F̃
T

k−1 + C̃k−1Q̃k−1C̃
T

k−1; (4)

˜̂x k|k = E
p(x̃k|

˜̂
Zk)

[x̃ k] ;

= ˜̂x k|k−1 + K̃kη̃k; (5)

P̃k|k = E
p(x̃k|

˜̂
Zk)

[(
x̃ k − ˜̂x k|k

) (
x̃ k − ˜̂x k|k

)T
]

;

=
(
Ĩn×n − K̃kH̃k

)
P̃k|k−1; (6)

where

η̃k = ˜̂z k − H̃k
˜̂x k|k−1 − d̃k; (7)

S̃k = ẼkR̃kẼ
T

k + H̃kP̃k|k−1H̃
T

k ; (8)

K̃k = P̃k|k−1H̃
T

k S̃
−1

k . (9)

η̃ is called the innovation, its covariance is S̃. K̃ is the Kalman gain. Equations (3)–(4) are

referred to as the process update, equations (5)–(9) as the measurement update. ˜̂x k|k−1 is

called the predicted state estimate and ˜̂x k|k the updated state estimate. If no measurement

˜̂z k is available at a certain time step k, then equations (5)–(9) reduce to ˜̂x k|k = ˜̂x k|k−1 and

P̃k|k = P̃k|k−1.

Kalman Filters for nonlinear systems

The KF algorithm is often applied to systems with nonlinear process and measurement mod-
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els3,

x̃ k = f̃ k−1(x̃ k−1) + C̃k−1ρ̃p,k−1; (10)

z̃ k = h̃k(x̃ k) + Ẽkρ̃m,k; (11)

by linearisation:

x̃ k = F̃k−1x̃ k−1 + b̃k−1 + ρ̃
∗
p,k−1 + C̃k−1ρ̃p,k−1; (12)

z̃ k = H̃kx̃ k + d̃k + ρ̃
∗
m,k + Ẽkρ̃m,k. (13)

The difference between these models and models (1)–(2) is the presence of the terms ρ̃
∗
p and ρ̃

∗
m

representing the linearisation errors. The additional uncertainty on the linearised models due

to these linearisation errors is modelled by the covariance matrices Q̃
∗

and R̃
∗
. Unfortunately,

applying the KF4 (3)–(9) to systems with nonlinear process and/or measurement models leads

to non-optimal estimates and covariance matrices. Different ways of linearising the process

and measurement models, i.e. different choices for F̃, b̃, Q̃
∗
, H̃, d̃ and R̃

∗
, yield other results.

This paper aims at making an objective comparison of the performances of the commonly

used linearisations (KF variants).

3 Consistency and information content of the estimates

The KF variants for nonlinear systems calculate an estimate ˜̂x k|i and covariance matrix P̃k|i for

a pdf which is non-Gaussian. The performance of these KFs depends on how representative

the Gaussian pdf with mean ˜̂x k|i and covariance P̃k|i is for the (unknown) pdf p(x̃ k|
˜̂
Zi).

Figure 1 shows a non-Gaussian pdf p(xk|
˜̂
Zi) and three possible Gaussian approximations

p1(xk|
˜̂
Zi), p2(xk|

˜̂
Zi) and p3(xk|

˜̂
Zi). Intuitively we feel that p1(xk|

˜̂
Zi) is a good approximation

because ‘the same’ values of x are probable. Similarly p3(xk|
˜̂
Zi) is not a good approximation

because a lot of probable values for x of the original distribution have a probability density

3Models which are nonlinear functions of the uncertainties ρ̃p and ρ̃m, can be dealt with by augmenting the
state vector with the uncertainties. Expressed in this new state vector, the process and measurement models
are of the form (10) and (11).

4
C̃k−1ρ̃p,k−1

of equation (1) corresponds to ρ̃
∗
p,k−1

+ C̃k−1ρ̃p,k−1
of equation (12); hence instead of

C̃k−1Q̃k−1C̃
T

k−1 in equation (4), Q̃
∗

k−1 + C̃k−1Q̃k−1C̃
T

k−1 is used.

Ẽkρ̃m,k of equation (2) corresponds to ρ̃
∗
m,k +Ẽkρ̃m,k of equation (13); hence instead of ẼkR̃kẼ

T

k in equation (9),

R̃
∗

k + ẼkR̃kẼ
T

k is used.
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of approximately zero in p3(xk|
˜̂
Zi). Finally pdf p2(xk|

˜̂
Zi) is ‘more uncertain’ than p(xk|

˜̂
Zi)

because a larger domain of x values is uncertain.

[Figure 1 about here.]

These intuitive reflexions are formulated in two criteria: the consistency and the information

content of the state estimate. The consistency of the state estimate is a necessary condition

for a filter to be acceptable. The information content of the state estimates defines an ordering

between all consistent filters.

1. the consistency of the state estimate.

A state estimate ˜̂x k|i with covariance matrix P̃k|i is called consistent if

E
p(x̃k|

˜̂
Zi)

[(
x̃ k − ˜̂x k|i

) (
x̃ k − ˜̂x k|i

)T
]
≤ P̃k|i. (14)

For consistent results, the matrix P̃k|i is equal to or larger than the expected squared

deviation with respect to the estimate ˜̂x k|i under the (unknown) distribution p(x̃ k|
˜̂
Zi).

The mean and covariance of pdfs p1(xk|
˜̂
Zi) and p2(xk|

˜̂
Zi) in figure 1 obey equation (14).

Pdf p3(xk|
˜̂
Zi), on the other hand, is inconsistent.

Inconsistency of the calculated state estimate ˜̂x k|i and covariance matrix P̃k|i (‘diver-

gence’ of the filter) is the most encountered problem with the KF variants. In this case,

P̃k|i is too small and does no longer represent a reliable measure for the uncertainty

on ˜̂x k|i. Even more, once an inconsistent state estimate is met, the subsequent state

estimates are also inconsistent. This is because the filter believes the inconsistent state

estimate to be more accurate than it is in reality and hence, it attaches too much weight

to this state estimate when processing new measurements.

Testing for inconsistency is done by consistency tests such as tests on the sum of a

number of Normalised Innovation Squared values (SNIS; Willsky 1976, Bar-Shalom and

Li 1993).

2. the information content of the state estimate.

The calculated covariance matrix P̃k|i indicates how uncertain the state estimate ˜̂x k|i is:

a large covariance matrix indicates an inaccurate (and little useful) state estimate; the

smaller the covariance matrix, the larger the information content of the state estimate.
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E.g. both pdfs p1(xk|
˜̂
Zi) and p2(xk|

˜̂
Zi) of figure 1 are consistent with p(xk|

˜̂
Zi), however,

p1(xk|
˜̂
Zi) has a smaller variance, hence it is more informative than p2(xk|

˜̂
Zi) (a smaller

domain of x values is probable). The most informative, consistent approximation is the

Gaussian with the same mean and covariance as the original distribution, i.e. p1(xk|
˜̂
Zi)

for the example.

There is a trade-off between consistent and informative state estimates: inconsistency can

be avoided by making P̃k|i artificially larger, see equation (14). However, making P̃k|i too

large, i.e. larger than necessary for consistency, corresponds to loosing information about the

actual accuracy of the state estimate.

The different KF variants linearise the process and the measurement models in the uncer-

tainty region around the state estimate. Consistent estimates are obtained by adding process

and measurement uncertainty on the linearised models to compensate for the linearisation er-

rors. In order for the estimates to be informative (i) the linearisation errors need to be as small

as possible; and (ii) the extra uncertainty on the linearised models should not be larger than

necessary to compensate for these errors. The following sections describe how the Extended

Kalman Filter, the Iterated Extended Kalman Filter and the Linear Regression Kalman Filter

differ in their linearisation of the process and measurement models; how they take the lineari-

sation errors into account; and how the quality5 of the state estimates, expressed in terms of

consistency and information content, depends on these two choices.

4 Nonlinear process models

This section contains a comparison between the process updates of the different KF variants

when dealing with a nonlinear process model (10) with linearisation (12). The KF variants

differ by their choice of F̃k−1, b̃k−1 and Q̃
∗

k−1. After linearisation, they all use process update

equations4,p. 7 (3)–(4) to update the state estimate and its uncertainty.

Section 4.1 describes the linearisation of the process model by the EKF and IEKF, sec-

tion 4.2 by the LRKF. The formulas are summarised in table 1. Section 4.4 presents some

examples.

5The more nonlinear the behaviour of the process or measurement model in the uncertainty region around
the state estimate, the more pronounced the difference in quality performance (consistency and information
content of the state estimates) between the KF variants.
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[Table 1 about here.]

4.1 The (Iterated) Extended Kalman Filter

The EKF and the IEKF linearise6 the process model by a first-order Taylor series around the

updated state estimate ˜̂x k−1|k−1:

F̃k−1 =
∂f̃ k−1

∂x̃

∣∣∣∣∣˜̂xk−1|k−1

; (15)

b̃k−1 = f̃ k−1(
˜̂x k−1|k−1) − F̃k−1

˜̂x k−1|k−1. (16)

The basic (I)EKF algorithms do not take the linearisation errors into account (n is the di-

mension of the state vector x̃ ):

Q̃
∗

k−1 ≡ 0̃n×n. (17)

This leads to inconsistent state estimates when these errors can not be neglected.

4.2 The Linear Regression Kalman Filter

The Linear Regression Kalman Filter (LRKF) uses the function values of r regression points

X̃
j

k−1|k−1 in state space to model the behaviour of the process function in the uncertainty

region around the updated state estimate ˜̂x k−1|k−1. The regression points are chosen such

that their mean and covariance matrix equal the state estimate ˜̂x k−1|k−1 and its covariance

matrix P̃k−1|k−1. The CDF, DD1 and UKF filters correspond to specific choices. The function

values of the regression points are

X̃
j

k|k−1 = f̃ k−1(X̃
j

k−1|k−1). (18)

The LRKF algorithm uses a linearised process function (12) where F̃k−1, b̃k−1 and Q̃
∗

k−1 are

obtained by statistical linear regression through the
(
X̃

j

k−1|k−1, X̃
j

k|k−1

)
points, j = 1, . . . , r;

i.e. the deviations ẽj between the function values in X̃
j

k−1|k−1 for the nonlinear and the

6The EKF and IEKF only differ in their measurement update (sections 5.1–5.2).
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linearised function are minimised in least-squares sense:

ẽj = X̃
j

k|k−1 −
(
F̃X̃

j

k−1|k−1 + b̃
)

; (19)

(F̃k−1, b̃k−1) = arg min
(F̃,b̃)

r∑

j=1

ẽT
j ẽj . (20)

The sample covariance of the deviations ẽj

Q̃
∗

k−1 =
1

r

r∑

j=1

ẽj ẽ
T
j (21)

gives an idea of the magnitude of the linearisation errors in the uncertainty region around

˜̂x k−1|k−1.

Intuitively we feel that when enough7 regression points are taken, the state estimates of the

LRKF process update are consistent and informative. They are consistent because Q̃
∗

k−1 gives

a well founded approximation of the linearisation errors (equation (21)). They are informative

because the linearised model is a good approximation of the process model in the uncertainty

region around ˜̂x k−1|k−1 (equations (19)–(20)).

4.3 Extra process uncertainty

In all of the presented filters, the user can decide to add extra process uncertainty Q̃
∗

k−1 (or to

multiply the calculated covariance matrix P̃k|k−1 by a fading factor larger than 1, Bar-Shalom

and Li 1993). This is useful if the basic filter algorithm is not consistent. E.g. this is the case

for the (I)EKF or for an LRKF with a number of regression points too limited to capture the

nonlinear behaviour of the process model in the uncertainty region around ˜̂x k−1|k−1.

For a particular problem, values for Q̃
∗

k−1 that result in consistent and informative state es-

timates are obtained by off-line tuning or on-line parameter learning (adaptive filtering, Mehra

1972). In many practical cases consistency is assured by taking the added uncertainty too

large, e.g. by taking a constant Q̃
∗

over time which compensates for decreasing linearisation

errors. This, however, results in less informative estimates.

7This depends on the nonlinearity of the model in the uncertainty region around the state estimate. A
possible approach is to increase the number of regression points until the resulting linearisation (with error
covariance) does not change any more. Of course, because the true pdf is unknown, it is not possible to
guarantee that the iteration has converged to a set of regression points representative for the model behaviour
in the uncertainty region.
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4.4 Examples

The different process updates are illustrated by a simple 2D nonlinear process model (x̃ (i)

denotes the ith element of x̃ ):





x̃ k(1) = (x̃ k−1(1))
2 ;

x̃ k(2) = x̃ k−1(1) + 3 x̃ k−1(2);
(22)

with no process uncertainty: ρ̃p,k−1 ≡ 0̃ 2×1. x̃ k(1) depends nonlinearly on x̃ k−1. The process

update of x̃ k(2) is linear. The updated state estimate and its uncertainty at time step k − 1

are:

˜̂x k−1|k−1 =




10

15


 ; P̃k−1|k−1 =




36 0

0 3600


 . (23)

Monte Carlo simulation The mean value and the covariance of the true pdf p(xk|
˜̂
Zk−1) are

calculated with a (computationally expensive) Monte Carlo simulation based on a Gaussian

pdf p(xk−1|
˜̂
Zk−1) with mean ˜̂x k−1|k−1 and covariance matrix P̃k−1|k−1. The results of this

computation are used to illustrate the (in)consistency and information content of the state

estimates of the different KF variants. The mean and covariance matrix of the p(xk|
˜̂
Zk−1)

calculated by the Monte Carlo algorithm are:

˜̂x k|k−1 =




136

55


 ; P̃k|k−1 =




16994 721

721 32436


 . (24)

(I)EKF

[Figure 2 about here.]

Figure 2 shows the updated and (I)EKF predicted state estimates and their uncertainty

ellipses8. The dotted line is the uncertainty ellipse of the distribution obtained by Monte

8The uncertainty ellipsoid

(x̃k − ˜̂xk|i)
T
P̃

−1

k|i(x̃k − ˜̂xk|i) = 1 (25)

is a graphical representation of the uncertainty on the state estimate ˜̂xk|i. Starting from the point ˜̂xk|i, the

distance to the ellipse in a direction is a measure for the uncertainty on ˜̂xk|i in that direction.
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Carlo simulation. The IEKF state prediction and its covariance matrix are:

˜̂x k|k−1 =




100

55


 ; P̃k|k−1 =




14400 720

720 32436


 . (26)

Due to the neglected linearisation errors, the state estimate is inconsistent: the covariance

P̃k|k−1 is smaller than the covariance calculated by the Monte Carlo simulation for the first

state component x̃ (1) which had a nonlinear process update. For consistent results this

covariance should even be larger because the IEKF estimate ˜̂x k|k−1 differs from the mean of

the pdf p(xk|
˜̂
Zk−1), calculated by the Monte Carlo simulation.

LRKF

[Figure 3 about here.]

Figure 3 shows the X̃
j

k−1|k−1 points (top figure) and the X̃
j

k|k−1 points (bottom figure),

the updated state estimate (top) and the predicted state estimate (bottom) and their un-

certainty ellipses for the LRKF. The X̃
j

k−1|k−1 points are chosen with the UKF algorithm

of Julier and Uhlmann (1996) where κ = 3−n = 1. This corresponds to choosing 6 regression

points, including 2 times the point ˜̂x k−1|k−1. The uncertainty ellipse obtained by Monte Carlo

simulation coincides with the final uncertainty ellipse of the LRKF predicted state estimate

(bottom figure). This indicates consistent and informative results. The LRKF predicted state

estimate and its covariance matrix are

˜̂x k|k−1 =




136

55


 ; P̃k|k−1 =




16992 720

720 32436


 . (27)

4.5 Conclusion: the process update

The LRKF performs better than the (I)EKF when dealing with nonlinear process functions:

1. the LRKF linearises the function based on its behaviour in the uncertainty region around

the updated state estimate. The (I)EKF on the other hand only uses the function

evaluation and its Jacobian in this state estimate.

2. the LRKF deals with linearisation errors in a theoretically founded way (provided that

enough regression points are chosen). The (I)EKF on the other hand needs trial and error

13



for each particular example to obtain good values for the covariance matrix representing

the linearisation errors.

3. unlike the (I)EKF, the LRKF does not need the function Jacobian. This is an advantage

where this Jacobian is difficult to obtain or non-existing (e.g. for discontinuous process

functions).

5 Nonlinear measurement models

The previous section contains a comparison between the (I)EKF and LRKF process updates;

this section focuses on their measurement updates for a nonlinear measurement model (11)

with linearisation (13). The EKF, IEKF and LRKF choose H̃k, d̃k and R̃
∗

k in a different way.

After linearisation they use the KF update equations4,p. 7 (5)–(9).

The linearisation of the measurement model by the IEKF (section 5.2) takes the measure-

ment into account; the EKF (section 5.1) and LRKF (section 5.3) linearise the measurement

model based only on the predicted state estimate and its uncertainty. For the latter filters, the

linearisation errors (R̃
∗

k) are larger, especially when the measurement function is quite nonlin-

ear in the uncertainty region around the predicted state estimate. A large uncertainty on the

linearised measurement model R̃
∗

k + ẼkR̃kẼ
T

k (due to a large uncertainty on the state estimate)

results in throwing away the greater part of the information of the possibly very accurate

measurement. The different linearisation formulas are summarised in table 2. Section 5.5

presents some examples.

[Table 2 about here.]

5.1 The Extended Kalman Filter

The EKF linearises the measurement model around the predicted state estimate ˜̂x k|k−1:

H̃k =
∂h̃k

∂x̃

∣∣∣∣∣˜̂xk|k−1

; (28)

d̃k = h̃k(˜̂x k|k−1) − H̃k
˜̂x k|k−1. (29)
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The basic EKF algorithm does not take the linearisation errors into account:

R̃
∗

k ≡ 0̃m×m; (30)

where m is the dimension of the measurement vector z̃ k. If the measurement model is nonlinear

in the uncertainty region around the predicted state estimate, the linearisation errors are not

negligible. This means that the linearised measurement model does not reflect the relation

between the true state value and the measurement. I.e. the true state value is ‘far from’9

the linearised measurement model. After processing the measured value, given the linear

measurement model and the measurement uncertainty, the state is believed to be in a region

which does not include the true state estimate, i.e. the updated state estimate is inconsistent.

5.2 The Iterated Extended Kalman Filter

The EKF of the previous section, linearises the measurement model around the predicted

state estimate. The IEKF tries to do better by linearising the measurement model around the

updated state estimate:

H̃k =
∂h̃k

∂x̃

∣∣∣∣∣˜̂xk|k

; (31)

d̃k = h̃k(˜̂x k|k) − H̃k
˜̂x k|k. (32)

This is achieved by iteration: the filter first linearises the model around a value ˜̂x 0

k|k (often

taken equal to the predicted state estimate ˜̂x k|k−1) and calculates the updated state estimate.

Then, the filter linearises the model around the newly obtained estimate ˜̂x 1

k|k and calculates

a new updated state estimate (based on ˜̂x k|k−1, P̃k|k−1 and the new linearised model). This

process is iterated until a state estimate ˜̂x i

k|k is found for which ˜̂x i

k|k is close to ˜̂x i−1

k|k . The

state estimate ˜̂x k|k and uncertainty P̃k|k are calculated starting from the state estimate ˜̂x k|k−1

with its uncertainty P̃k|k−1 and the measurement model linearised around ˜̂x i

k|k.

Like the EKF algorithm, the basic IEKF algorithm does not take the linearisation errors

into account:

R̃
∗

k ≡ 0̃m×m. (33)

9‘Far from’ (and ‘close to’) must be understood as: the deviation of the true state with respect to the

linearised measurement model is not justified (is justified) by the measurement uncertainty R̃
∗

k + ẼkR̃kẼ
T

k .
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If the measurement model is nonlinear in the uncertainty region around the updated state

estimate ˜̂x k|k, state estimates will be inconsistent. In case of a measurement model that

instantaneously fully observes the state (or at least the part of the state that causes the

nonlinearities in the measurement model), the linearisation errors will be small10 in the uncer-

tainty region around ˜̂x k|k. The true state estimate is then ‘close to’ the linearised measurement

function and the updated state estimate is consistent. The result is also informative because

no uncertainty due to linearisation errors needs to be added.

5.3 The Linear Regression Kalman Filter

The LRKF evaluates the measurement function in r regression points X̃
j

k|k−1 in the uncertainty

region around the predicted state estimate ˜̂x k|k−1. The X̃
j

k|k−1 are chosen such that their mean

and covariance matrix are equal to the predicted state estimate ˜̂x k|k−1 and its covariance

P̃k|k−1. The CDF, DD1 and UKF filters correspond to specific choices. The function values

of the regression points through the nonlinear function are

Z̃
j

k = h̃k(X̃
j

k|k−1). (34)

The LRKF algorithm uses a linearised measurement function (13) where H̃k, d̃k and R̃
∗

k

are obtained by statistical linear regression through the points
(
X̃

j

k|k−1, Z̃
j

k

)
, j = 1, . . . , r.

The statistical linear regression is such that the deviations ẽj between the nonlinear and the

linearised function in the regression points are minimised in least-squares sense:

ẽj = Z̃
j

k −
(
H̃X̃

j

k|k−1 + d̃
)

; (35)

(H̃k, d̃k) = arg min
(H̃,d̃)

r∑

j=1

ẽT
j ẽj . (36)

The sample covariance matrix of the deviations ẽj gives an idea of the magnitude of the

linearisation errors:

R̃
∗

k =
1

r

r∑

j=1

ẽj ẽ
T
j . (37)

10This assumes that the iterations lead to an accurate ˜̂x i

k|k. The linearisations are started around a freely

chosen ˜̂x 0

k|k. In order to assure quick and correct iteration, (part of) this value can be chosen based on the
measurement information if this information is more accurate than the predicted state estimate.
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Intuitively we feel that when enough7, p. 11 regression points (X̃
j

k|k−1, Z̃
j

k) are taken the

state estimates of the LRKF measurement update are consistent because R̃
∗

k gives a well

founded approximation of the linearisation errors (equation (37)). However, if the measure-

ment model is highly nonlinear in the uncertainty region around ˜̂x k|k−1, the (X̃
j

k|k−1, Z̃
j

k)

points deviate substantially from a hyperplane. This results in a large R̃
∗

k and non-informative

updated state estimates (see the example in section 5.5).

5.4 Extra measurement uncertainty

In order to make the state estimates consistent, the user can tune an inconsistent filter by

adding extra measurement uncertainty R̃
∗

k.

Only off-line tuning or on-line parameter learning can lead to a good value for R̃
∗

k for

a particular problem. In many practical cases consistency is assured by choosing the added

uncertainty too large, e.g. by taking a constant R̃
∗

over time which compensates for decreasing

linearisation errors. This reduces the information content of the results.

5.5 Examples

First example

The comparison between the different measurement updates is illustrated with the measure-

ment function zk = h1(x̃ k) + ρm,k;

h1(x̃ k) = (x̃ k(1))
2 + (x̃ k(2))

2 . (38)

x̃ k =




15

20


 is the true value and ˜̂x k|k−1 =




10

15


 is the predicted state estimate with covariance

matrix P̃k|k−1 =




36 0

0 3600


. The processed measurement is ẑk = 630 and the measurement

covariance is Rk = 400.

Second example

To illustrate the consistency of the state estimate of an IEKF when the measurement observes
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the state completely, a second example is used. The measurement function is

z̃ k = h̃(x̃ k) + ρ̃m,k =




h1(x̃ k) + ρ̃m,k(1)

h2(x̃ k) + ρ̃m,k(2)


 ; (39)

with 



h1(x̃ k) = (x̃ k(1))
2 + (x̃ k(2))

2 ;

h2(x̃ k) = 3 (x̃ k(2))
2 /x̃ k(1);

(40)

x̃ k =




15

20


 is the true value and ˜̂x k|k−1 =




10

15


 is the predicted state estimate with covariance

matrix P̃k|k−1 =




36 0

0 3600


. The processed measurement and the measurement covariance

matrix are:

˜̂z k =




630

85


 ; R̃k =




400 0

0 400


 . (41)

In all figures, the true state value x̃ k is plotted; if this value is ‘far’ outside the uncertainty

ellipse of a state estimate, the corresponding estimate is inconsistent. Because the measure-

ment is accurate and the initial estimate is not, the uncertainty on the state estimate should

drop considerably when the measurement is processed. The updated state estimate is not

informative if this is not the case.

EKF

[Figure 4 about here.]

Figure 4 shows the state estimates, uncertainty ellipses and measurement functions for the

EKF applied to the first example (equation (38)). The true measurement function is nonlinear.

x̃ k is the true value of the state, and is ‘close to’ this function. The linearisation around the

uncertain predicted state estimate is not a good approximation of the function around the

true state value: the true state value is ‘far from’ the linearised measurement function. The
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resulting updated state estimate

˜̂x k|k =




10

25


 ; P̃k|k =




36 −24

−24 16


 ; (42)

is inconsistent.

IEKF

[Figure 5 about here.]

Figure 5 shows the measurement function, the linearised measurement function around

the point ˜̂x i

k|k, the true state value x̃ k and the state estimates for the IEKF applied to the

first example (equation (38)). The measurement model does not fully observe the state.

This results in an uncertain updated state estimate ˜̂x i

k|k around which the filter linearises

the measurement function. As was the case for the EKF, the linearisation errors are not

negligible and the true value is ‘far from’ the linearised measurement function. The updated

state estimate

˜̂x k|k =




10

23


 ; P̃k|k =




36 −16

−16 7.0


 ; (43)

is inconsistent.

[Figure 6 about here.]

If however the measurement model fully observes the state, the IEKF updated state esti-

mate is accurately known; hence, the linearisation errors are small and the true state value is

‘close to’ the linearised measurement function. In this case, the updated state estimate is con-

sistent. Figure 6 shows the measurement function, the linearised measurement function, the

true state value x̃ k, the state estimates and the uncertainty ellipses for the IEKF applied to

the second example (equations (39)–(40)). The updated state estimate and covariance matrix

˜̂x k|k =




14

21


 ; P̃k|k =




2.6 −1.7

−1.7 1.3


 ; (44)

are consistent and informative due to the small, ignored, linearisation errors.
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LRKF

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

A LRKF is run on the first example (equation (38)). The X̃
j

k|k−1 points are chosen with

the UKF algorithm with κ = 3 − n = 1 (Julier and Uhlmann 1996). This corresponds to

choosing 6 regression points, including 2 times the point ˜̂x k|k−1. Figures 7 and 8 show the

nonlinear measurement function, the X̃
j

k|k−1-points and the linearisation. The predicted state

estimate is uncertain, hence the X̃
j

k|k−1-points are widespread. R∗
k is large (R∗

k = 2.6 × 107)

due to the large deviations between the (X̃
j

k|k−1, Z̃
j

k) points and the linearised measurement

function (see figure 8). The updated state estimate and its covariance matrix are

˜̂x k|k =




10

2.6


 ; P̃k|k =




36 0

0 3600


 . (45)

Figure 9 shows the X̃
j

k|k−1 points, the measurement function, the LRKF linearised measure-

ment function, the true state value x̃ k, the state estimates and the uncertainty ellipses. The

updated state estimate is consistent, however, it can hardly be called an improvement over

the previous state estimate (P̃k|k ≈ P̃k|k−1). The information in the measurement is neglected

due to the high ‘measurement uncertainty’ R̃
∗

k + ẼkR̃kẼ
T

k on the linearised function.

Note that some kind of Iterated LRKF (similar to the Iterated EKF) would not solve this

problem: the updated state estimate ˜̂x k|k and its covariance matrix P̃k|k are more or less the

same as the predicted state estimate ˜̂x k|k−1 and its covariance matrix P̃k|k−1. Hence, the

regression points and the linearisation would approximately be the same after iteration.

5.6 Conclusion: the measurement update

Measurements which fully observe the part of the state that makes the model nonlinear, are

best processed by the IEKF. In this case (and assuming that the algorithm iterates to a good

linearisation point10, p. 16), the IEKF linearisation errors are negligible.
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In the other cases, none of the presented filters outperforms the others. A filter should be

chosen for each specific application: the LRKF makes an estimate of its linearisation errors

(R̃
∗

k), the EKF and IEKF on the other hand require off-line tuning or on-line parameter

learning of R̃
∗

k to yield consistent state estimates. Because the IEKF additionally takes the

measurement into account when linearising the measurement model, its linearisation errors

are smaller than those of the EKF and LRKF. This means that once a well-tuned IEKF is

available, the state estimates it returns can be far more informative than those of the LRKF

or a well-tuned EKF.

Finally, note that the LRKF does not use the Jacobian of the measurement function, which

makes it possible to process discontinuous measurement functions.

6 Conclusions

This paper gives insight in the advantages and drawbacks of the Extended Kalman Filter

(EKF), the Iterated Extended Kalman Filter (IEKF) and the Linear Regression Kalman Filter

(LRKF). These insights are a result of the distinct analysis approach taken in this paper:

1. The paper describes all filter algorithms as the application of the basic KF algorithm to

linearised process and measurement models. The difference between the KF variants is

situated in the choice of linearisation and the compensation of the linearisation errors.

In previous work this linearisation was not always recognised, e.g. the UKF is originally

derived as a filter which does not linearise the models.

2. The analysis clarifies how some filters automatically adapt their compensation for lin-

earisation errors, while other filters have constant (developer-determined) error compen-

sation.

3. The quality of the state estimates is expressed by two criteria: the consistency and the

information content of the estimates. This paper relates the consistency and information

content of the estimates to (i) how the linearisation is performed and (ii) how the lineari-

sation errors are taken into account. The understanding of the linearisation processes

allows us to make a well-founded choice of filter for a specific application.

4. The performance of the different filters is compared for the process and measurement
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updates separately, because a good performance for one of these updates does not neces-

sarily mean a good performance for the other update. This makes it interesting in some

cases to use different filters for both updates.

For process updates the LRKF performs better than the other mentioned KF variants

because (i) the LRKF linearises the process model based on its behaviour in the uncer-

tainty region around the updated state estimate. The (I)EKF on the other hand only

uses the function evaluation and its Jacobian in this state estimate; and (ii) the LRKF

deals with linearisation errors in a theoretically founded way, provided that enough re-

gression points are chosen. The (I)EKF on the other hand needs trial and error for each

particular application to obtain a good covariance matrix representing the linearisation

errors.

The IEKF is the best way to handle nonlinear measurement models that fully observe

the part of the state that makes the measurement model nonlinear. In the other cases,

none of the presented filters outperforms the others: the LRKF makes an estimation of

the linearisation errors, the EKF and IEKF on the other hand require extensive off-line

tuning or on-line parameter learning in order to yield consistent state estimates. How-

ever, unlike the EKF and LRKF, the IEKF additionally uses the measurement value

in order to linearise the measurement model. Hence, its linearisation errors are smaller

and once a well-tuned IEKF is available, the state estimates it returns can be far more

informative than those of the LRKF or a well-tuned EKF.

The insights described in this paper are important for all researchers and developers who

want to apply a KF variant to a specific application. They lead to a systematic choice of a

filter, where previously the choice was mainly made based on success in similar applications

or based on trial and error. Further work should report on practical applications using these

insights and an effort should be made to analyse and include future KF algorithms in this

framework.
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Figure 1: Non-Gaussian pdf p(xk|
˜̂
Zi) with three Gaussian approximations p1(xk|

˜̂
Zi), p2(xk|

˜̂
Zi)

and p3(xk|
˜̂
Zi). p1(xk|

˜̂
Zi) and p2(xk|

˜̂
Zi) are consistent, p3(xk|

˜̂
Zi) is inconsistent. p1(xk|

˜̂
Zi) is

more informative than p2(xk|
˜̂
Zi).
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Figure 2: Nonlinear process model. Uncertainty ellipses for the updated state estimate at
k − 1 (dashed line), for the (I)EKF predicted state estimate (full line) and the Monte Carlo
uncertainty ellipse (dotted line). The predicted state estimate is inconsistent due to the
neglected linearisation errors: the uncertainty ellipse of the IEKF predicted estimate is shifted
with respect to the Monte Carlo uncertainty ellipse and is somewhat smaller.
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Figure 3: Nonlinear process model. Uncertainty ellipses for the updated state estimate at k−1
(dashed line, top figure), for the LRKF predicted state estimate (full line, bottom figure), and
Monte Carlo uncertainty ellipse (dotted line which coincides with the full line, bottom figure).
The LRKF predicted state estimate is consistent and informative: its uncertainty ellipse
coincides with the Monte Carlo uncertainty ellipse.
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Figure 4: Nonlinear measurement model z = h1(x̃ k) and EKF linearisation around ˜̂x k|k−1

(dotted lines). The true state x̃ k is ‘far from’ this linearisation and the obtained state estimate
˜̂x k|k (uncertainty ellipse in full line) is inconsistent.
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Figure 5: Nonlinear measurement model z = h1(x̃ k) that does not observe the full state,
and its IEKF linearisation around ˜̂x k|k (dotted lines). The true state x̃ k is ‘far from’ this

linearisation, leading to an inconsistent state estimate ˜̂x k|k (uncertainty ellipse in full line).
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Figure 6: Nonlinear measurement model z̃ = h̃(x̃ k) that fully observes the state, and its
IEKF linearisation around ˜̂x k|k (dotted lines). The true state x̃ k is ‘close to’ this linearisation,
leading to a consistent state estimate (uncertainty ellipse in full line).
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Figure 7: Nonlinear measurement model z = h1(x̃ ) and LRKF linearisation. The linearisation
errors are large.
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Figure 8: Figure 7 seen from another angle.
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Figure 9: Nonlinear measurement model z = h1(x̃ ) and LRKF linearisation (dotted lines).

The large linearisation errors result in a large measurement uncertainty R̃
∗

k + ẼkR̃kẼ
T

k . The
updated state estimate (uncertainty ellipse in full line) is consistent but non-informative.
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F̃k−1 b̃k−1 Q̃
∗

k−1

EKF
∂f̃ k−1

∂x̃

∣∣∣∣˜̂xk−1|k−1

f̃ k−1(
˜̂x k−1|k−1) − F̃k−1

˜̂x k−1|k−1 0̃n×n

IEKF
∂f̃ k−1

∂x̃

∣∣∣∣˜̂xk−1|k−1

f̃ k−1(
˜̂x k−1|k−1) − F̃k−1

˜̂x k−1|k−1 0̃n×n

LRKF arg min
(F̃,b̃)

∑r
j=1 ẽT

j ẽj arg min
(F̃,b̃)

∑r
j=1 ẽT

j ẽj
1
r

∑r
j=1 ẽj ẽ

T
j

Table 1: Summary of the linearisation of the process model by the Extended Kalman Filter
(EKF), the Iterated Extended Kalman Filter (IEKF) and the Linear Regression Kalman Filter
(LRKF).
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H̃k d̃k R̃
∗

k

EKF ∂h̃k

∂x̃

∣∣∣˜̂xk|k−1

h̃k(˜̂x k|k−1) − H̃k
˜̂x k|k−1 0̃m×m

IEKF ∂h̃k

∂x̃

∣∣∣˜̂xk|k

h̃k(˜̂x k|k) − H̃k
˜̂x k|k 0̃m×m

LRKF min
(H̃,d̃)

∑r
j=1 ẽT

j ẽj min
(H̃,d̃)

∑r
j=1 ẽT

j ẽj
1
r

∑r
j=1 ẽj ẽ

T
j

Table 2: Summary of the linearisation of the measurement model by the Extended Kalman
Filter (EKF), the Iterated Extended Kalman Filter (IEKF) and the Linear Regression Kalman
Filter (LRKF).
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