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Abstract. An efficient Newton-type scheme for the approximate on-line solution of optimization
problems as they occur in optimal feedback control is presented. The scheme allows a fast reaction
to disturbances by delivering approximations of the exact optimal feedback control which are it-
eratively refined during the runtime of the controlled process. The contractivity of this real-time
iteration scheme is proven, and a bound on the loss of optimality—compared with the theoretical
optimal solution—is given. The robustness and excellent real-time performance of the method is
demonstrated in a numerical experiment, the control of an unstable system, namely, an airborne kite
that shall fly loops.
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1. Introduction. Feedback control based on the real-time optimization of non-
linear dynamic process models, also referred to as nonlinear model predictive con-
trol (NMPC), has attracted increasing attention over the past decade, particularly in
chemical engineering [4, 27, 1, 28]. Based on the current system state, feedback is
provided by an online optimization of the predicted system behavior, using the math-
ematical model. The first part of the optimized control trajectory is implemented at
the real system, and a sampling time later the optimization procedure is repeated.
Among the advantages of this approach are the flexibility provided in formulating
the objective and in modeling the process using ordinary or partial differential equa-
tions (ODEs or PDEs), the capability of directly handling equality and inequality
constraints, and the possibility of treating large disturbances quickly.

One important precondition, however, is the availability of reliable and efficient
numerical optimal control algorithms. One particularly successful algorithm that is
designed to achieve this aim, the recently developed real-time iteration scheme, will
be the focus of this paper. In the literature, several suggestions have been made
on how to adapt off-line optimal control algorithms for use in on-line optimization.
For an overview and comparison of important approaches, see, e.g., Binder et al. [6].
We particularly mention here the “Newton-type control algorithm” proposed by Li
and Biegler [32] and de Oliveira and Biegler [15] and the “feasibility-perturbed SQP”
approach to NMPC by Tenny, Wright, and Rawlings [38]. Both approaches keep even
intermediate optimization iterates feasible. This is in contrast to the simultaneous
dynamic optimization methods, as the collocation method proposed in Biegler [5] or
the direct multiple shooting method in Bock et al. [7] and in Santos [37], which allow
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infeasible state trajectories and are more suitable for trajectory following problems
and problems with final state constraints. The real-time iteration scheme belongs to
this latter class.

Most approaches in the literature try to solve quickly but exactly an optimal
control problem. However, if the time scale for feedback is too short for exact compu-
tation, some approximations must be made: for this aim an “instantaneous control”
technique has been proposed in the context of PDE models that approximates the
optimal feedback control problem by regarding one future time step only (Choi et
al. [14, 13]). By construction, this “greedy” approach to optimal control is based on
immediate gains only and neglects future costs; thus it may result in poor perfor-
mance when future costs matter. A somewhat opposed approach to derive a feedback
approximation (formulated for ODE models) is based on a system linearization along
a fixed optimal trajectory over the whole time horizon and can, e.g., be found in
Krämer-Eis and Bock [29] or Kugelmann and Pesch [30]. The approach works well
when the nonlinear system is not too largely disturbed and stays close to the nominal
trajectory.

The real-time iteration scheme presented in this paper is a different approximation
technique for optimal feedback control. It regards the complete time horizon and per-
forms successive linearizations along (approximately) optimal trajectories to provide
feedback approximations. Using these linearizations, it iterates toward the rigorous
optimal solutions during the runtime of the process. In this way a truly nonlinear
optimal feedback control is provided whose accuracy is limited, however, by the time
needed to converge to the current optimal solutions. In contrast to a somewhat similar
idea mentioned in [32], the real-time iteration scheme is based on the direct multiple
shooting method [12], a simultaneous optimization technique, which offers excellent
convergence properties, particularly for tracking problems and problems with state
constraints.

The scheme was introduced in its present form in Diehl et al. [19] going back to
ideas presented in Bock et al. [10]. In its actual implementation it is able to treat
differential algebraic equation (DAE) models (Leineweber [31]), as they often arise
in practical applications. It has already been successfully tested for the feedback
control of large-scale DAE models with inequality constraints, particularly a binary
distillation column [11, 33, 19]. Moreover, it has been applied for the NMPC of a
real pilot plant distillation column situated at the Institut für Systemdynamik und
Regelungstechnik (ISR) of the University of Stuttgart [25, 16, 21].

However, to concentrate on the essential features of the method and on a new
proof of contractivity of the scheme, we will restrict the presentation in this paper to
ODE models and optimization problems of a simplified type. Moreover, we will start
the paper by regarding (nonlinear) discrete-time systems first; the multiple shooting
technique, which allows us to formulate a discrete-time system from an ODE system,
is only introduced later, and very briefly, when the numerical example is presented.
Part of the material is also covered in [18]; for technical details about the real-time
iteration scheme we refer to [16, 20].

1.1. Real-time optimal feedback control. Throughout this paper, let us
consider the simplified nonlinear controlled discrete-time system

xk+1 = fk(xk, uk), k = 0, . . . , N − 1,(1.1)

with system states xk ∈ R
nx and controls uk ∈ R

nu . The aim of optimal feedback
control is to find controls uk that depend on the current system state xk and that are



1716 M. DIEHL, H. G. BOCK, AND J. P. SCHLÖDER
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Fig. 1.1. Problem Pk(xk): Initial value xk and problem variables sk, . . . , sN and qk, . . . , qN−1.

optimal with respect to a specified objective. As time advances, we proceed by solving
a sequence of nonlinear programming problems Pk(xk) on shrinking horizons, each
with the current system state xk as initial value (for a visualization, see Figure 1.1).
Let us define Pk(xk) to be the problem

min
sk, . . . , sN ,

qk, . . . , qN−1

N−1∑
i=k

Li(si, qi) + E(sN )(1.2a)

subject to

xk − sk = 0,(1.2b)

fi(si, qi) − si+1 = 0, i = k, . . . , N − 1.(1.2c)

The control part (q∗k, . . . , q
∗
N−1) of the solution of problem Pk(xk) allows us to define

the optimal feedback control

uk := q∗k.

Note that, due to the dynamic programming property, the optimal control trajectory
(q∗0 , . . . , q

∗
N−1) of the first problem P0(x0) would already give all later closed-loop

controls u0, u1, . . . uN−1, if the system behaves as predicted by the model. The prac-
tical reason to introduce the closed-loop optimal feedback control is, of course, that
it allows us to optimally respond to disturbances.

We will now assume that we know each initial value xk only at the time when the
corresponding control uk is already needed for application to the real process, and
that the solution time for each problem Pk(xk) is not negligible compared with the
runtime of the process. This is a typical situation in realistic applications: ideally,
we would like to have the solution of each problem Pk(xk) instantaneously, but due
to finite computing power this usually cannot be accomplished in practice. In this
paper we propose and investigate an efficient Newton-type scheme that allows us to
approximately solve the optimization problems Pk(xk) during the runtime of the real
process.

Remark. In practical applications, inequality path constraints of the form
h(si, qi) ≥ 0, like bounds on controls or states, are of major interest and are usu-
ally present in the formulation of the optimization problems Pk(xk). For the purpose
of this paper we leave such constraints unconsidered, since general convergence results
for Newton-type methods with changing active sets are difficult to establish. However,
we note that in the practical implementation of the real-time iteration scheme they
are included and pose no difficulty for the performance of the algorithm.
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1.2. Overview. The paper is organized as follows:
• In section 2 we give a review of Newton-type optimization methods for the

solution of optimal control problems of type (1.2) and discuss the problem
structure.

• The real-time iteration scheme is presented in section 3 building on the pre-
viously introduced Newton-type methods. It performs only one Newton-type
iteration per optimization problem Pk(xk), applies the obtained feedback con-
trol to the real system, and then proceeds already to the following problem,
Pk+1(xk+1), until the end of the horizon is reached. This allows a particularly
fast reaction to disturbances.

• A new contractivity result for the scheme is presented and proven in section 4.
The theorem guarantees that the real-time iteration scheme is contracting
under mild conditions and delivers approximations to the optimal feedback
control with diminishing error.

• Based on the contractivity result, a bound on the loss of optimality of the
scheme compared to exact optimal feedback control is established in section 5.

• In section 6 we finally present a numerical example, the real-time control of
a kite that shall start to fly loops. A new kite model is developed and a
periodic reference orbit is defined. The optimal control problem is to steer
the kite into the periodic orbit, starting at an a priori unknown initial value.
This example, though of small state dimension, is particularly challenging,
because the system is highly nonlinear and unstable.

2. Newton-type optimization methods. In order to solve an optimization
problem Pk(xk), let us first introduce the Lagrange multipliers λk, . . . , λN and define
the Lagrangian function Lk(λk, sk, qk, . . . ) of problem Pk(xk) to be

Lk(·) =
∑N−1

i=k Li(si, qi) + E(sN ) + λk
T (xk − sk) +

∑N−1
i=k λi+1

T (fi(si, qi) − si+1).

Summarizing all variables in a vector y := (λk, sk, qk, λk+1, sk+1, qk+1, . . . , λN , sN ) ∈
R

nk ,1 we can formulate necessary optimality conditions of first order (also called
Karush–Kuhn–Tucker conditions):

∇yLk(y) = 0.(2.1)

To solve this system, the exact full-step Newton–Raphson method would start at an
initial guess y0 and compute a sequence of iterates y1, y2, . . . according to

yi+1 = yi + ∆yi,(2.2)

where each ∆yi is the solution of the linearized system

∇yLk(yi) + ∇2
yLk(yi)∆yi = 0.(2.3)

The Newton-type methods considered in this paper differ from the exact Newton–
Raphson method in the way that a part of the exact second derivative ∇2

yLk, namely,

the Hessian ∇2
(q,s)Lk, is replaced by a (symmetric) approximation. We denote the

resulting approximation of ∇2
yLk(y) by Jk(y). For our Newton-type method, (2.3) is

replaced by the approximation

∇yLk(yi) + Jk(yi)∆yi = 0.(2.4)

1For simplicity, we omit the index k for the variable y and implicitly assume that y ∈ R
nk when

not specified otherwise. Note that nk = (2nx + nu)(N − k) + 2nx.
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The matrix ∇2
yLk, respectively, its approximation Jk, is often referred to as the

Karush–Kuhn–Tucker (KKT) matrix.

2.1. Structure of the Karush–Kuhn–Tucker matrix. The Lagrangian func-
tion Lk of the optimal control problem is partially separable [12], and its second
derivative has a block diagonal structure:

∇2
yLk(y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I

−I Qk Mk AT
k

MT
k Rk BT

k

Ak Bk −I

−I Qk+1 Mk+1 AT
k+1

MT
k+1 Rk+1 BT

k+1

Ak+1 Bk+1

. . .

. . . QN−1 MN−1 AT
N−1

MT
N−1 RN−1 BT

N−1

AN−1 BN−1 −I

−I QN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have set

Ai :=
∂fi
∂si

, Bi :=
∂fi
∂qi

,

(
Qi Mi

MT
i Ri

)
:= ∇2

(si,qi)
Lk, and QN := ∇2

sNLk.

In the approximation Jk(y) of this second derivative, we replace Qi,Mi, and Ri by
approximations QH

i (si, qi, λk+1),M
H
i (si, qi, λk+1), and RH

i (si, qi, λk+1).
Remark 1. Note that the KKT matrix of each problem Pk(xk) is completely

independent of the value of xk.
Remark 2. If we split the variables y = (λk, sk, qk, . . . ) = (λk, sk, qk, ỹ) into a

first and a second part, the second part ỹ ∈ R
nk+1 corresponds directly to the variable

space of the next, shrunken problem Pk+1(xk+1), and we can see that the KKT matrix
contains the KKT matrix of the next problem as a submatrix, as

∇2
yLk(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−I

−I Qk Mk AT
k

MT
k Rk BT

k

Ak Bk

∇2
ỹLk+1(ỹ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Remark 3. The favorable structure of the matrix ∇2
yLk(y), respectively, its ap-

proximation Jk(y), allows an efficient solution of the linear system Jk(y)x = b by
a Riccati recursion proposed independently by Pantoja [34] and Dunn and Bert-
sekas [26]; cf. also [36, 16].

2.2. The constrained Gauss–Newton method. An important special case of
the Newton-type methods considered in this paper is the constrained Gauss–Newton
method, which is applicable for problems with a least squares form of the objective
function

N−1∑
i=k

1

2
‖li(si, qi)‖2

2 +
1

2
‖e(sN )‖2

2.(2.5)
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For this case, the Hessian block approximations QH
i ,MH

i , and RH
i are defined to be

(
QH

i MH
i

(MH
i )T RH

i

)
:=

(
∂li(si, qi)

∂(si, qi)

)T
∂li(si, qi)

∂(si, qi)
, QH

N :=

(
∂e(sN )

∂sN

)T
∂e(sN )

∂sN
.(2.6)

Note that these Hessian block approximations do not depend on the values of the
Lagrange multipliers.

2.3. Local convergence. It is well known that the Newton-type scheme (2.4)
for the solution of (2.1) converges in a neighborhood Dk ⊂ R

nk of a solution yk∗
that satisfies the second order sufficient conditions for optimality of problem Pk(xk)
if Jk(y) approximates ∇2

yLk(y) sufficiently well on Dk.

3. Real-time iterations. Let us now go back to the real-time scenario described
in section 1.1, where we want to solve the sequence of optimization problems Pk(xk),
but where we do not have the time to iterate each problem to convergence. Let
us more specifically assume that each Newton-type iteration needs exactly as much
computation time as corresponds to the time that the real process needs for the
transition from one system state to the next. Thus, we can only perform one single
Newton-type iteration for each problem Pk(xk), and then we have to proceed already to
the next problem Pk+1(xk+1). The real-time iteration scheme that we will investigate
here is based on a carefully designed transition between subsequent problems. After
an initial disturbance, it subsequently delivers approximations uk for the optimal
feedback control that become better and better if no further disturbance occurs, as
will be shown in section 4.

It turns out that the computations of the real-time iteration belonging to problem
Pk(xk) can largely be prepared without knowledge of the value of xk so that we can
assume that the approximation uk of the optimal feedback control is instantly available
at the time that xk is known. However, after this feedback has been delivered, we
need to prepare the next real-time iteration (belonging to problem Pk+1(xk+1)) which
needs the full computing time.

In the framework for optimal feedback control on shrinking horizons (1.2), we
reduce the number of remaining intervals from one problem Pk(xk) to the next
Pk+1(xk+1), in order to keep pace with the process development. Therefore, we
have to perform real-time iterates in primal-dual variable spaces R

n0 ⊃ · · · ⊃ R
nk ⊃

R
nk+1 ⊃ · · · ⊃ R

nN−1 of different sizes. Let us denote by Πk+1 the projection from
R

nk onto R
nk+1 ; i.e., if y = (λk, sk, qk, ỹ) ∈ R

nk , then Πk+1y = ỹ ∈ R
nk+1 .

3.1. The real-time iteration algorithm. Let us assume that we have an ini-
tial guess y0 ∈ R

n0 for the primal-dual variables of problem P0(·). We set the iteration
index k to zero and perform the following steps:

1. Preparation. Based on the initial guess yk ∈ R
nk , compute the vector

∇yLk(yk) and the matrix Jk(yk): Note that Jk(yk) is completely independent
of the value of xk, and that of the vector ∇yLk(yk) only the first component
(∇λk

Lk = xk − sk) depends on xk. This component will only be needed
in the second step. Therefore, prepare the linear algebra computation of
Jk(yk)−1∇yLk(yk) as much as possible without knowledge of the value of xk

(a detailed description how this can be achieved is given in [19] or [16]).
2. Feedback response. At the time when xk is exactly known, finish the com-

putation of the step vector ∆yk = −Jk(y)−1∇yLk(yk) and give the control
uk := qk + ∆qk immediately to the real system.
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3. Transition. If k = N − 1, stop. Otherwise, compute the next initial guess
yk+1 by adding the step vector to yk and “shrinking” the resulting variable
vector onto R

nk+1 ; i.e., yk+1 := Πk+1(yk + ∆yk). Set k = k + 1 and go to 1.
Note that after one iteration belonging to system state xk we expect the next system
state to be xk+1 = fk(xk, uk), but this may not be true due to disturbances. The
scheme allows an immediate feedback to such disturbances, due to the separation of
steps 1 and 2. This separation is only possible because we do not require the guess
of initial value, sk, to be equal to the real initial value, xk. This formulation may be
regarded as an initial value embedding of each problem into the manifold of perturbed
problems. Though this formulation comes quite naturally in the framework of an
infeasible path (also simultaneous) solution strategy, as presented, where optimality
and constraints are treated simultaneously, it deserves strong emphasis as it is a
feature that is crucial for the success of the method in practice.

We will in the following investigate the contraction properties of the real-time
iteration scheme. Though a principal advantage of the scheme lies in this immediate
response to disturbances, we will investigate contractivity only under the assumption
that after an initial disturbance the system behaves according to the model. This
is analogous to the notion of “nominal stability” for an infinite horizon steady state
tracking problem.

4. Contractivity of the real-time iterations. In this subsection we investi-
gate the contraction properties of the real-time iteration scheme. The system starts
at an initial state x0, and the real-time algorithm is initialized with an initial guess
y0 ∈ D0 ⊂ R

n0 . Let us define the projections Dk of the neighborhood D0 onto the
primal-dual subspaces R

nk ; i.e., Dk+1 := Πk+1Dk.
We will in the following make use of vector and corresponding matrix norms ‖ ·‖k

defined on the subspaces R
nk . These norms are assumed to be compatible in the sense

that ‖Πk+1y‖k+1 ≤ ‖y‖k and that ‖Πk+1T ỹ‖k = ‖ỹ‖k+1.
Theorem 4.1 (local contractivity of the real-time iterations). Let us assume that

the Lagrangian functions Lk : Dk → R for all k = 0, . . . , N are twice continuously
differentiable and that their second derivative approximations Jk : Dk → R

nk×nk are
continuous and have a bounded inverse (Jk)−1 : Dk → R

nk×nk .
Furthermore, let us assume that there exist a κ < 1 and an ω < ∞ such that for

each k = 0, . . . , N and all y′, y ∈ Dk, ∆y = y′ − y, and all t ∈ [0, 1] it holds that∥∥∥(Jk(y′)
)−1 (

Jk(y + t∆y) −∇2
yLk(y + t∆y)

)
∆y

∥∥∥
k
≤ κ‖∆y‖k(4.1a)

and that ∥∥∥(Jk(y′)
)−1 (

Jk(y + t∆y) − Jk(y)
)
∆y

∥∥∥
k
≤ ωt‖∆y‖2

k,(4.1b)

and such that for each k = 0, . . . , N − 1 it additionally holds that∥∥∥(Jk+1(Πk+1y′)
)−1

Πk+1
(
Jk(y + t∆y) − Jk(y)

)
∆y

∥∥∥
k+1

≤ ωt‖∆y‖2
k.(4.1c)

We suppose that the first step ∆y0 := J0(y0)−1∇yL0(y0) starting at the initial
guess y0 is sufficiently small so that

δ0 := κ +
ω

2
‖∆y0‖0 < 1(4.1d)
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and that the ball

B0 :=

{
y ∈ R

n0 | ‖y − y0‖0 ≤ ‖∆y0‖0

1 − δ0

}
(4.1e)

is completely contained in D0. Under these conditions the real-time iterates y0, . . . , yN

defined by

∆yk := −Jk(yk)−1∇yLk(yk), yk+1 := Πk+1(yk + ∆yk)

(where Lk is the Lagrangian function corresponding to problem Pk(xk) with the system
state obtained according to the closed-loop dynamics xk+1 = fk(xk, uk), uk := qkk +
∆qkk) are well defined and stay in the projections of the ball B0, i.e.,

yk ∈ Πk · · ·Π1B0 ⊂ Dk,(4.2)

and satisfy the contraction condition

‖∆yk+1‖k+1 ≤
(
κ +

ω

2
‖∆yk‖k

)
‖∆yk‖k =: δk‖∆yk‖k ≤ δ0‖∆yk‖k.(4.3)

Furthermore, the iterates yk approach the exact stationary points yk∗ of the correspond-
ing problems Pk(xk):

‖yk − yk∗‖k ≤ ‖∆yk‖k
1 − δk

≤ (δ0)
k‖∆y0‖0

1 − δ0
.(4.4)

Proof. We divide the proof into three parts, corresponding to the properties
(4.3), (4.2), and (4.4).

Contraction property. We will first show that the contraction property (4.3) holds.
By adding zero to the defining equation of ∆yk+1 we get

−∆yk+1 = Jk+1(yk+1)−1∇yLk+1(yk+1)
= Jk+1(yk+1)−1

(
∇yLk+1(yk+1) − Πk+1

(
∇yLk(yk) + Jk(yk)∆yk

))
.

(4.5)

Using the notation yk = (λk
k, s

k
k, q

k
k , λ

k
k+1, s

k
k+1, q

k
k+1, . . . ) we observe that

∇yLk+1(yk+1) = ∇yLk+1(Πk+1(yk + ∆yk)) =

(
xk+1 − (skk+1 + ∆skk+1)

...

)

=

(
fk(s

k
k+∆skk, q

k
k+∆qkk) − (skk+1 + ∆skk+1)

...

)

= Πk+1∇yLk(yk + ∆yk),

because xk+1 = fk(xk, uk) = fk(s
k
k+∆skk, q

k
k +∆qkk) if the system was undisturbed.2

Therefore, we can continue to transform ∆yk+1 and write

−∆yk+1 = Jk+1(yk+1)−1Πk+1
(
∇yLk(yk + ∆yk) −∇yLk(yk) − Jk(yk)∆yk

)
= Jk+1(yk+1)−1Πk+1

∫ 1

0
(∇2

yLk(yk + t∆yk) − Jk(yk))∆yk dt

= Jk+1(yk+1)−1Πk+1
∫ 1

0
(∇2

yLk(yk + t∆yk) − Jk(yk + t∆yk))∆yk dt

+Jk+1(yk+1)−1Πk+1
∫ 1

0
(Jk(yk + t∆yk) − Jk(yk))∆yk dt.

(4.6)

2Note that skk+∆skk = xk due to the linearity of the constraint xk−sk = 0 and that uk = qkk+∆qkk
by definition.
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Noting that, with ỹ := Πk+1y,

Πk+1
(
∇2

yLk(y) − Jk(y)
)

= Πk+1

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0 ∆Qk ∆Mk 0

∆MT
k ∆Rk 0

0 0

∇2
ỹLk+1(ỹ) − Jk+1(ỹ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

0 0 0
...

...
... ∇2

ỹLk+1(ỹ) − Jk+1(ỹ)
0 0 0

⎞
⎟⎠

and abbreviating ỹk := Πk+1yk, ∆ỹk := Πk+1∆yk, we can exploit assumption (4.1a)
to obtain

‖Jk+1(yk+1)−1 Πk+1(∇2
yLk(yk + t∆yk) − Jk(yk + t∆yk))∆yk‖k+1

= ‖Jk+1(yk+1)−1(∇2
yLk+1(ỹk + t∆ỹk) − Jk+1(ỹk + t∆ỹk))∆ỹk‖k+1

≤ κ‖∆ỹk‖k+1 = κ‖Πk+1∆yk‖k+1 ≤ κ‖∆yk‖k.

Making also use of assumption (4.1c), we can, building on (4.6), prove the left in-
equality of the contraction property (4.3):

‖∆yk+1‖k+1 ≤ κ‖∆yk‖k +

∫ 1

0

ωt‖∆yk‖2
k dt. = κ‖∆yk‖k +

1

2
ω‖∆yk‖2

k =: δk‖∆yk‖k.

With the help of condition (4.1d) (δ0 < 1) it is straightforward to deduce inductively
that

δk+1 = κ +
ω

2
‖∆yk+1‖k+1 ≤ κ +

ω

2
δk‖∆yk‖k ≤ δk ≤ δ0,

which proves the remaining part of (4.3).

Well definedness. To show that the iterates remain inside the domains of defini-
tion as stated in (4.2) we first observe that

‖∆yk‖k ≤ δk−1δk−2 . . . δ0‖∆y0‖0 ≤ (δ0)
k‖∆y0‖0.

Using the representation

yk = Πk(yk−1 + ∆yk−1) = Πk(Πk−1(yk−2 + ∆yk−2) + ∆yk−1)
= Πk(Πk−1(. . .Π1(y0 + ∆y0) . . . ) + ∆yk−1)
= Πk · · ·Π1y0 + Πk · · ·Π1∆y0 + · · · + Πk∆yk−1,

we can find y′ := y0 + (Πk · · ·Π1)T (yk − Πk · · ·Π1y0) such that

‖y′ − y0‖0 = ‖(Πk · · ·Π1)T (yk − Πk · · ·Π1y0)‖0 = ‖yk − Πk · · ·Π1y0‖k
≤

∑k−1
i=0 ‖∆yi‖i ≤ ‖∆y0‖0

∑k−1
i=0 (δ0)

i ≤ ‖∆y0‖0

1−δ0
,

i.e., y′ ∈ B0 and yk = Πk . . .Π1y′, i.e., yk ∈ Πk . . .Π1B0, as desired.
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Distance to optimal solutions. It remains to be shown that the iterates yk ap-
proach the exact solutions of the corresponding problems Pk(xk) as stated in (4.4).
For this aim we devise a hypothetical standard Newton-type algorithm as introduced
in (2.4) that allows us to compute the exact solution yk∗ of Pk(xk). As a by-product,
we obtain a bound on the distance of yk∗ from yk.

The hypothetical algorithm would proceed by starting at yk0 := yk and iterating
with iterates yk1 , y

k
2 , . . . according to

yki+1 := yki + ∆yki , ∆yki := −Jk(yki )−1∇yLk(yki ).

Note that the first step ∆yk0 is identical to ∆yk. It is for this hypothetical algorithm
only that we need assumption (4.1b). Due to this condition and (4.1a), we have the
contraction property

‖∆yki+1‖k ≤
(
κ +

ω

2
‖∆yki ‖k

)
‖∆yki ‖k

as can be shown by a well-known technique for Newton-type methods (see, e.g., [9]):

‖∆yki+1‖k = ‖Jk(yki+1)
−1 · ∇yLk(yki+1)‖k

= ‖Jk(yki+1)
−1 · (∇yLk(yki+1) −∇yLk(yki ) − Jk(yki ) · ∆yki )‖k

= ‖Jk(yki+1)
−1 ·

∫ 1

0
(∇2

yLk(yki + t∆yki ) − Jk(yki )) · ∆yki dt‖k
= ‖Jk(yki+1)

−1 ·
∫ 1

0
(∇2

yLk(yki + t∆yki ) − Jk(yki + t∆yki ))∆yki dt

+Jk(yki+1)
−1 ·

∫ 1

0
(Jk(yki + t∆yki ) − Jk(yki ))∆yki dt‖k

≤
∫ 1

0
‖Jk(yki+1)

−1 (∇2
yLk(yki + t∆yki ) − Jk(yki + t∆yki ))∆yki ‖k dt

+
∫ 1

0
‖Jk(yki+1)

−1 (Jk(yki + t∆yki ) − Jk(yki ))∆yki ‖k dt

≤ κ‖∆yki ‖k +
∫ 1

0
ωt‖∆yki ‖2

k dt
=

(
κ + ω

2 ‖∆yki ‖k
)
‖∆yki ‖k.

(4.7)

Together with the property

κ +
ω

2
‖∆yk0‖k = κ +

ω

2
‖∆yk‖k = δk < 1,

this leads again to the conclusion that ‖∆yki ‖k ≤ (δk)
i‖∆yk‖k, so that yk0 , y

k
1 , y

k
2 , . . .

is a Cauchy sequence and remains in the ball

Bk :=

{
y ∈ R

nk | ‖y − yk‖k ≤ ‖∆yk‖k
1 − δk

}

and thus converges toward a point yk∗ ∈ Bk, which satisfies ∇yLk(yk∗ ) = 0 due to the
boundedness of Jk on the (compact) ball Bk, as ∇yLk(yki ) = −Jk(yki )∆yki → 0 for
i → ∞.

5. Comparison with optimal feedback control. To assess the performance
of the proposed real-time iteration scheme, we will compare the resulting system
trajectory with the one which would have been obtained by exact optimal feedback
control. For this aim, we denote by u0, . . . , uN−1 and x1, . . . , xN the control and
system state trajectories obtained by an application of the real-time iteration scheme
to the system starting at the state x0, when the iteration scheme was initialized with
an initial guess y0 = (λ0

0, s
0
0, q

0
0 , . . . , λ

0
N , s0

N ), as in Theorem 4.1. On the other hand,
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we denote by q∗0 , . . . , q
∗
N−1 and s∗1, . . . , s

∗
N the corresponding trajectories which would

have been obtained by an application of exact optimal feedback control, starting at the
same initial state x0. Note that this trajectory is contained in the exact primal-dual
solution vector y0

∗ = (λ∗
0, s

∗
0, q

∗
0 , λ

∗
1, s

∗
1, q

∗
1 , . . . , λ

∗
N , s∗N ) of problem P0(x0), as already

pointed out in section 1.1.
Theorem 5.1 (loss of optimality). Let us in addition to the assumptions of

Theorem 4.1 suppose that the Hessian of the Lagrangian L0(·) of problem P0(·) is
bounded on B0, i.e.,

‖∇2
yL0(y)‖0 ≤ C ∀y ∈ B0.(5.1)

Then the objective values, on the one hand evaluated at the closed-loop trajectory
resulting from the real-time iteration scheme and on the other hand at the trajectory
resulting from optimal feedback control

Freal :=

N−1∑
i=k

Li(xi, ui) + E(xN ) and Fopt :=

N−1∑
i=k

Li(s
∗
i , q

∗
i ) + E(s∗N ),

can be compared by

Freal ≤ Fopt + 2C

(
δ0

1 − δ0

)2

‖∆y0‖2
0.(5.2)

In particular, if κ = 0 (as for the exact Newton method), the loss of optimality is of
fourth order in the size of the first step ∆y0:

Freal ≤ Fopt +
C

2

(
ω

1 − ω
2 ‖∆y0‖0

)2

‖∆y0‖4
0.(5.3)

Proof. First note that both the real-time iteration trajectory (x0, u0, x1, . . . , xN )
and the optimal feedback control trajectory (s∗0, q

∗
0 , s

∗
1, . . . ) = (x0, q

∗
0 , s

∗
1, . . . ) are fea-

sible “points” for the optimization problem P0(x0). Let us augment the real-time
iteration trajectory to a primal-dual point yreal := (λ0, x0, u0, . . . , λN , xN ), which is
obtained by

yreal := y0 + ∆y0 + Π1T∆y1 + (Π2Π1)T∆y2 + · · · + (ΠN · · ·Π1)T∆yN .

From the contractivity condition (4.3), it can easily be verified that ‖yreal − y0‖0 ≤
‖∆y0‖0

1−δ0
, i.e., that yreal ∈ B0. We similarly see that

‖yreal − (y0 + ∆y0)‖0 ≤ δ0‖∆y0‖0

1 − δ0
and that ‖y0

∗ − (y0 + ∆y0)‖0 ≤ δ0‖∆y0‖0

1 − δ0
,

where the latter bound is due to contraction property (4.7) for the hypothetical
Newton-type iterations toward the solution of P0(x0), and the fact that the first step
∆y0

0 of these iterations coincides with the step vector ∆y0 of the real-time iterations.
We can conclude that

‖yreal − y0
∗‖0 ≤ ‖yreal − (y0 + ∆y0)‖0 + ‖y0

∗ − (y0 + ∆y0)‖0 ≤ 2
δ0‖∆y0‖0

1 − δ0
.(5.4)
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Fig. 6.1. A picture of the kite from the
pilot’s point of view.
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Fig. 6.2. The kite seen from the top and
visualization of the roll angle ψ.

Because of feasibility of the primal-dual points yreal and y0
∗ the values of the La-

grangian function coincide with those of the objective, so that we can deduce

Freal − Fopt = L0(yreal)−L0(y0
∗) =

∫ 1

0
∇yL0(y0

∗ + t1(yreal − y0
∗))

T (yreal − y0
∗) dt1

=
∫ 1

0

(∫ t1
0

∇2
yL0(y0

∗ + t2(yreal−y0
∗))(yreal−y0

∗) dt2

)T
(yreal−y0

∗) dt1

= (yreal−y0
∗)

T
(∫ 1

0

∫ t1
0

∇2
yL0(y0

∗ + t2(yreal−y0
∗)) dt2 dt1

)T
(yreal−y0

∗),

where we have used the fact that ∇yL0(y0
∗) = 0. We conclude with (5.1) and (5.4)

that

Freal − Fopt ≤
1

2
C‖yreal−y0

∗‖2
0 ≤ 1

2
C

(
2
δ0‖∆y0‖0

1 − δ0

)2

.

6. Numerical example: Control of a looping kite. In order to demonstrate
the versatility of the proposed real-time iteration scheme we present here the control
of an airborne kite as a periodic control example. The kite is held by two lines which
allow control of the roll angle of the kite; see Figures 6.1 and 6.2. By pulling one line
the kite will turn in the direction of the line being pulled. This allows an experienced
kite pilot to fly loops or similar figures. The aim of our automatic control is to make
the kite fly a figure that may be called a “lying eight,” with a cycle time of 8 seconds
(see Figure 6.3). The corresponding orbit is not open-loop stable, so that feedback has
to be applied during the flight; we will show simulation results where our proposed
real-time iteration scheme is used to control the kite, starting at a largely disturbed
initial state x0, over three periods, with a sampling time of one second.

6.1. The dual line kite model. The movement of the kite in the sky can be
modeled by Newton’s laws of motion and a suitable model for the aerodynamic force.
The most difficulty lies in the determination of suitable coordinate systems; we will
first describe the kite’s motion in polar coordinates, and second we will determine the
direction of the aerodynamic forces.
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6.1.1. Newton’s laws of motion in polar coordinates. The position p ∈ R
3

of the kite can be modeled in three-dimensional Euclidean space, choosing the position
of the kite pilot as the origin, and the third component p3 to be the height of the kite
above the ground. With m denoting the mass of the kite and F ∈ R

3 the total force
acting on the kite, Newton’s law of motion reads

p̈ =
d 2p

dt2
=

F

m
.

Let us introduce polar coordinates θ, φ, r:

p =

⎛
⎝ p1

p2

p3

⎞
⎠ =

⎛
⎝ r sin(θ) cos(φ)

r sin(θ) sin(φ)
r cos(θ)

⎞
⎠ .

Note that the distance r between pilot and kite is usually constant during flight, and θ
is the angle that the lines form with the vertical. Let us introduce a local right-handed
coordinate system with the three basis vectors

eθ =

⎛
⎝ cos(θ) cos(φ)

cos(θ) sin(φ)
− sin(θ)

⎞
⎠ , eφ =

⎛
⎝− sin(φ)

cos(φ)
0

⎞
⎠ , and er =

⎛
⎝ sin(θ) cos(φ)

sin(θ) sin(φ)
cos(θ)

⎞
⎠ .

Defining Fθ := F · eθ, Fφ := F · eφ, and Fr := F · er, we can write Newton’s laws of
motion in the form

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇ =
Fθ

m
,

r sin(θ)φ̈ + 2r cos(θ)φ̇θ̇ + 2 sin(θ)ṙφ̇ =
Fφ

m
,

r̈ − rθ̇2 − r sin2(θ)φ̇2 =
Fr

m
.(6.1)

If the length of the lines, denoted by r, is kept constant, all terms involving time deriva-
tives of r will drop out. Furthermore, the last equation (6.1) will become redundant,
as any acting force F ′

r in the radial direction will automatically be augmented by a
constraint force contribution Fc := Fr +mrθ̇2 +mr sin2(θ)φ̇2 so that (6.1) is satisfied
with Fr := F ′

r −Fc. In this case we can regard only the components Fθ and Fφ which
are not changed by the constraint force. The equations of motion3 simplify to

θ̈ =
Fθ

rm
+ sin(θ) cos(θ)φ̇2,(6.2)

φ̈ =
Fφ

rm sin(θ)
− 2 cot(θ)φ̇θ̇.(6.3)

In our model, the force F acting on the kite consists of three contributions, constraint
force −Fcer, gravitational force F gra, and aerodynamic force F aer. In Cartesian co-
ordinates, F gra = (0, 0,−mg)T with g = 9.81 m s−2 being the earth’s gravitational
acceleration. In local coordinates we therefore have

Fθ = F gra
θ + F aer

θ = sin(θ)mg + F aer
θ and Fφ = F aer

φ .

It remains to derive an expression for the aerodynamic force F aer.

3Note that the validity of these equations requires that Fc ≥ 0, as a line can only pull and not
push.
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6.1.2. Kite orientation and the aerodynamic force. To model the aerody-
namic force that is acting on the kite, we first assume that the kite’s trailing edge
is always pulled by the tail into the direction of the effective wind, as seen from the
kite’s body-fixed frame. This assumption can be regarded as the limiting case of very
large tail force. It crucially simplifies the model by allowing us to disregard angular
momentum and the moments acting on the kite. Under this assumption we are able
to determine the kite orientation as an explicit function of position and velocity only,
as shown in the following.

By the large tail force assumption, the kite’s longitudinal axis is always in line
with the effective wind vector we := w − ṗ, where w = (vw, 0, 0)T is the wind as
seen from the earth system, and ṗ is the kite velocity. If we introduce a unit vector
el pointing from the front toward the trailing edge of the kite (cf. Figure 6.1), we
therefore assume that

el =
we

‖we‖
.

The transversal axis of the kite can be described by a perpendicular unit vector et
that is pointing from the left to the right wing tip. Clearly, it is orthogonal to the
longitudinal axis, i.e.,

et · el =
et · we

‖we‖
= 0.(6.4)

The orientation of the transversal axis et against the lines’ axis (which is given by
the vector er) can be influenced by the length difference ∆l of the two lines. If the
distance between the two lines’ fixing points on the kite is d, then the vector from the
left to the right fixing point is det, and the projection of this vector onto the lines’
axis should equal ∆l = det ·er, being positive if the left hand’s lines wingtip is farther
away from the pilot; cf. Figure 6.2. Let us define the roll angle ψ to be

ψ = arcsin

(
∆l

d

)
.

We will assume that we control this angle ψ directly. It determines the orientation of
et which has to satisfy

et · er =
∆l

d
= sin(ψ).(6.5)

A third requirement that et should satisfy is that

(el × et) · er =
we × et
‖we‖

· er > 0,(6.6)

which takes account of the fact that the kite is always in the same orientation with
respect to the lines.

How does one find a unit vector et that satisfies these requirements (6.4)–(6.6)?
Using the projection wp

e of the effective wind vector we onto the tangent plane spanned
by eθ and eφ,

wp
e := eθ(eθ · we) + eφ(eφ · we) = we − er(er · we),

we can define the orthogonal unit vectors

ew :=
wp

e

‖wp
e‖

and eo := er × ew,
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so that (ew, eo, er) forms an orthogonal right-handed coordinate basis. Note that
in this basis the effective wind we has no component in the eo direction, as we =
‖wp

e‖ew + (we · er)er. We will show that the definition

et := ew(− cos(ψ) sin(η)) + eo(cos(ψ) cos(η)) + er sin(ψ)(6.7)

with

η := arcsin

(
we · er
‖wp

e‖
tan(ψ)

)

satisfies the requirements (6.4)–(6.6).4 Equation (6.4) can be verified by substitution
of the definition of η into

et · we = − cos(ψ) sin(η)‖wp
e‖ + sin(ψ)(we · er) = 0.

Equation (6.5) is trivially satisfied, and (6.6) can be verified by calculation of

(we × et) · er = (we · ew) cos(ψ) cos(η) − (we · eo)(− cos(ψ) sin(η))
= ‖wp

e‖ cos(ψ) cos(η)

(where we used the fact that we · eo = 0). For angles ψ and η in the range from
−π/2 to π/2 this expression is always positive. The above considerations allow us
to determine the orientation of the kite depending on the control ψ and the effective
wind we only. Note that the considerations would break down if the projection of the
effective wind wp

e would be equal to zero, if |ψ| ≥ π
2 , or if∣∣∣∣we · er

‖wp
e‖

tan(ψ)

∣∣∣∣ > 1.

The two vectors en := el × et and el are the directions of aerodynamic lift and drag,
respectively. To compute the magnitudes FL and FD of lift and drag we assume that
the lift and drag coefficients CL and CD are constant, so that we have

FL =
1

2
ρ‖we‖2ACL and FD =

1

2
ρ‖we‖2ACD,

with ρ being the density of air and A being the characteristic area of the kite. Given
the directions and magnitudes of lift and drag, we can compute F aer as their sum,
yielding F aer = FLen + FDel, or, in the local coordinate system,

F aer
θ = FL(en · eθ) + FD(el · eθ) and F aer

φ = FL(en · eφ) + FD(el · eφ).

The system parameters that have been chosen for the simulation model are listed in
Table 6.1. Defining the system state ξ := (θ, φ, θ̇, φ̇)T and the control u := ψ, we
can summarize the four system equations, i.e., (6.2)–(6.3) and the trivial equations
∂θ
∂t = θ̇, ∂φ

∂t = φ̇, in the short form

ξ̇ = f̂(ξ, u).

4It is interesting to note that the assignment of et can be made more transparent by considering
a rotation from the (ew, eo, er) tangential frame to the body frame (el, et, en), with en := el × et.
Specifically, starting from (ew, eo, er), we rotate about the er-axis through the yaw angle −η and
then roll through the angle ψ about the el-axis. From this we find that et as the second basis vector
of the body frame is represented by (6.7) in the tangential frame (ew, eo, er).
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Table 6.1

The kite parameters.

Name Symbol Value
Line length r 50 m
Kite mass m 1 kg
Wind velocity vw 6 m/s
Density of air ρ 1.2 kg/m3

Characteristic area A 0.5 m2

Lift coefficient CL 1.5
Drag coefficient CD 0.29
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Fig. 6.3. Periodic orbit plotted in the (φ, θ)-plane, as seen by the kite pilot. The dots separate
intervals of one second.

6.2. A periodic orbit. Using the above system model, a periodic orbit was
determined that can be characterized as a “lying eight” and which is depicted as a
(φ, θ)-plot in Figure 6.3. The wind is assumed to blow in the direction of the p1-axis
(θ = 90o and φ = 0o). The periodic solution was computed using an off-line variant
of the direct multiple shooting method (MUSCOD-II, due to Leineweber [31, 22, 23]),
imposing periodicity conditions with period T = 8 seconds and suitable state bounds
and a suitable objective function in order to yield a solution that was considered
to be a meaningful reference orbit. We will denote the periodic reference solution
by ξr(t) and ur(t). This solution is defined for all t ∈ (−∞,∞) and satisfies the
periodicity condition ξr(t+T ) = ξr(t) and ur(t+T ) = ur(t). It is interesting to note
that small errors accumulate very quickly so that the uncontrolled system will not
stay in the periodic orbit very long during a numerical simulation; this observation
can be confirmed by investigating the asymptotic stability properties of the periodic
orbit [16], which shows that local errors are amplified by a factor of more than 5
during each period. Thus, the open-loop system is highly unstable in the periodic
orbit.

We want to mention that the kite model and the periodic orbit may serve as a
challenging benchmark problem for nonlinear periodic control and are available in
MATLAB/SIMULINK format [17].

6.3. The optimal control problem. Given an arbitrary initial state x0 (that
we do not know in advance) we want the kite to fly three times the figure of Figure 6.3,
on a time horizon of 3T = 24 seconds. By using the figure as a reference orbit, we
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formulate an optimal control problem which has the objective of bringing the system
close to the reference orbit. For this aim we define a Lagrange term of least squares
type

L(ξ, u, t) :=
1

2
(ξ − ξr(t))

TQ(ξ − ξr(t)) +
1

2
(u− ur(t))

TR(u− ur(t))

with diagonal weighting matrices

Q := diag(0.4, 1, s2, s2)
1

s
and R := 1.0 · 10−2deg−2s−1.

Using these definitions, we formulate the following optimal control problem on the
time horizon of interest [0, 3T ]:

min
u(·),ξ(·)

∫ 3T

0

L(ξ(t), u(t), t) dt(6.8)

subject to

ξ̇(t) = f̂(ξ(t), u(t)) ∀t ∈ [0, 3T ],

ξ(0) = x0.

6.4. Direct multiple shooting formulation. In order to reformulate the
above continuous optimal control problem into a discrete-time optimal control
problem, we use the direct multiple shooting technique, originally due to Plitt
and Bock [35, 12]: We divide the time horizon into N = 24 invervals [ti, ti+1],
each of one second length, and introduce a locally constant control representation
q0, q1, . . . , qN−1, as well as artificial initial values s0, . . . , sN , as depicted in Figure 1.1.
On each of these intervals we solve the following initial value problem:

ξ̇i(t; si, qi) = f̂ (ξi(t; si, qi), qi) , t ∈ [ti, ti+1],(6.9)

ξi(ti; si, qi) = si,

yielding a trajectory piece ξi(t; si, qi) for t ∈ [ti, ti+1]. This allows us to conveniently
define a discrete-time system as in (1.2c) with transition function

fi(si, qi) := ξi(ti+1; si, qi).

Analogously, we define the objective contributions in (1.2a) by

Li(si, qi) :=

∫ ti+1

ti

L(ξi(t; si, qi), qi, t)dt.

The main difficulty of the direct multiple shooting method lies in the efficient solution
of the initial value problems (6.9) and in the sensitivity computation. For this aim
we use the advanced backward differentiation formula (BDF) code DAESOL (Bauer,
Bock, and Schlöder [3], Bauer [2]), which is especially suited for stiff problems, as the
above kite model. It uses the principle of internal numerical differentiation (IND) as
introduced by Bock [8].

Using the multiple shooting formulation, we have transformed the continuous-
time optimization problem (6.8) into a nonlinear programming problem P0(x0) of
exactly the type (1.2).
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Fig. 6.4. Closed-loop trajectories resulting from the real-time iteration scheme for different
initial values x0. The kite never crashes onto the ground (θ = 90 degrees).

6.4.1. Generation of the Gauss–Newton Hessian blocks. The efficient
generation of a Gauss–Newton approximation for continuous least squares terms de-
serves some attention: the Hessian approximations (2.6) are determined according
to (

QH
i MH

i

(MH
i )T RH

i

)
:=

∫ ti+1

ti

(
∂ξi(t; si, qi)

∂(si, qi)

)T

Q
∂ξi(t; si, qi)

∂(si, qi)
+

(
0 0
0 R

)
dt.

These integrals are efficiently computed during the sensitivity computation using a
specially adapted version of the integrator DAESOL [16, 25].

6.5. A real-time scenario. In the following real-time scenario we assume that
the Newton-type optimizer is initialized with the reference trajectory itself, i.e., y0 :=
(λ0

0, s
0
0, q

0
0 , . . . , λ

0
N , s0

N ), where λ0
i := 0, and s0

i := ξr(ti) and q0
i := 1

ti+1−ti

∫ ti+1

ti
ur(t)dt

are the corresponding values of the periodic reference solution. This y0 is (nearly)
identical to the solution of the problem P0(ξr(t0)). At the time t0 = 0, when the actual
value of x0 is known, we start the iterations as described in section 3.1 by solving the
first prepared linear system ∆y0 = −J0(y0)−1∇yL0(y0) (step 2) and give the first
control u0 := q0

0 +∆q0
0 immediately to the system. Then we shrink the problem (step

3) and prepare the iteration for the following one (step 1). As we assume no further
disturbances, the new initial value is x1 = f0(x0, u0) = ξ0(t1;x0, u0) resulting from
the (continuous) system dynamics. This cycle is repeated until the N = 24 intervals
are over.

The corresponding trajectory resulting from the real-time iteration scheme for
different initial values x0 is shown in Figure 6.4 as (φ, θ)-plots. For all scenarios, the
third loop is already close to the reference trajectory.

In Figure 6.5 we compare the result of the real-time iteration scheme with the
open-loop system dynamics without feedback (dash-dotted line) and with a hypo-
thetical optimal feedback control (dashed line) for one initial value x0. The open-loop
system, where the controls are simply taken from the reference (and initialization)
trajectory (uk := q0

k), crashes after seven seconds onto the ground.
Note that the computation of the hypothetical optimal feedback control needs

about eight seconds on a Compaq Alpha XP1000 workstation. This delay means that
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Fig. 6.5. Comparison of trajectories resulting from the real-time iteration scheme (solid line),
the open-loop controls without feedback (dash-dotted line, crashing onto the ground), and a hypo-
thetical optimal feedback control (dashed line).
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Fig. 6.6. Disturbance scenario: Closed-loop response resulting from real-time iteration scheme
(solid line) and a hypothetical optimal feedback control (dashed line). After a large initial dis-
turbance, the state is additionally disturbed each 0.1 second by independent Gaussian noise. The
disturbance sequence for both trajectories is identical.

no feedback can be applied in the meantime, so the kite would have crashed onto the
ground before the first response would have been computed.

In contrast to this, the first feedback control u0 of the real-time iteration scheme
was available within only 0.05 seconds delay after time t0 (for the computations of
step 2). The sampling time of one second until the next feedback can be applied
was necessary to prepare the following real-time iteration (to be exact, step 1 always
needed under 0.8 seconds). The comparison with the hypothetical optimal feedback
control shows that the real-time iteration scheme delivers a quite good approximation
even for this challenging nonlinear and unstable test example with largely disturbed
initial values.

6.5.1. High frequency disturbances. In a third feedback simulation scenario
shown in Figure 6.6 we test the performance of the real-time iteration scheme in the
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presence of random disturbances with a frequency higher than the sampling time: each
tenth of a second the state (θ, φ, θ̇, φ̇) is randomly disturbed by independent Gaussian
noise of standard deviation 0.01 · (1, 1, s−1, s−1). Because feedback is provided only
once a second, the kite flies open-loop during one second before feedback can be pro-
vided to the accumulated result of the disturbances. The initial state was much more
strongly disturbed, in the same way as in the scenario of Figure 6.5. Despite these
combined disturbances the scheme is able to lead the kite efficiently into the reference
orbit. Again, it compares well with optimal feedback control. Note, however, that
the results of Theorems 4.1 and 5.1 are not directly applicable to this third scenario
as these theorems assume undisturbed system behavior after one initial disturbance.

For feedback control simulations of the kite using a moving horizon framework
including also state constraints, we refer to [16, 24].

7. Conclusions. We have presented a recently developed Newton-type method
for the real-time optimization of nonlinear processes and have given a new contractiv-
ity result and a bound on the loss of optimality when compared to optimal feedback
control. In a numerical case study, the real-time control of an airborne kite, we have
demonstrated the practical applicability of the method for a challenging nonlinear
control example.

The “real-time iteration” scheme is based on the direct multiple shooting method,
which offers several advantages in the context of real-time optimal control, among
them the ability to efficiently initialize subsequent optimization problems, to treat
highly nonlinear and unstable systems, and to deal efficiently with path constraints.
The most important feature of the real-time iteration scheme is a dovetailing of the
solution iterations with the process development which allows us to reduce sampling
times to a minimum but maintains all advantages of a fully nonlinear treatment of the
optimization problems. A separation of the computations in each real-time iteration
into a preparation phase and a feedback response phase can be realized. The feedback
phase is typically orders of magnitude shorter than the preparation phase and allows
us to obtain an immediate feedback that takes all linearized constraints into account.

The contractivity of the scheme is proven under mild conditions that are nearly
identical to the sufficient conditions for convergence of off-line Newton-type methods.
Iterates on different horizon lengths have to be compared. The result is that the real-
time iterates, after an initial disturbance, geometrically approach the exact optimal
solutions during the runtime of the process. When the resulting closed-loop trajectory
is compared to optimal feedback control, a bound on the loss of optimality has been
established, which is of fourth order in the initial disturbance if an exact Newton–
Raphson method is used.

A newly developed kite model is presented. The control aim is, starting from an
arbitrary initial state, to steer the kite into a periodic orbit, a “lying eight” with a
period duration of eight seconds. We consider a time horizon of 24 seconds. The initial
state is only known at the moment that the first control needs already to be applied;
the real-time iteration scheme delivers linearized feedback nearly without delay and
provides a newly linearized feedback after each sampling time of one second, leading to
a fully nonlinear optimization, and is always prepared to react to further disturbances.
The scheme shows an excellent closed-loop performance for this highly nonlinear and
unstable system and compares well to a hypothetical exact optimal feedback control.

The real-time iteration scheme has also been applied for NMPC of a real pilot
plant distillation column described by a stiff DAE model with over 200 system states,
allowing feedback sampling times of only 20 seconds [21].
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in nonlinear model predictive control, in Scientific Computing in Chemical Engineering II,
F. Keil, W. Mackens, H. Voß, and J. Werther, eds., Springer-Verlag, Berlin, 1999, pp. 218–
227.

[8] H. G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in Mod-
elling of Chemical Reaction Systems, K. H. Ebert, P. Deuflhard, and W. Jäger, eds.,
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