
Neurocomputing 48 (2002) 85–105
www.elsevier.com/locate/neucom

Weighted least squares support vector machines: robustness
and sparse approximation�

J.A.K. Suykens∗, J. De Brabanter, L. Lukas, J. Vandewalle
Department of Electrical Engineering, Katholieke Universiteit Leuven, ESAT-SISTA Kasteelpark

Arenberg 10, B-3001 Leuven (Heverlee), Belgium

Received 3 November 2000; accepted 6 June 2001

Abstract

Least squares support vector machines (LS-SVM) is an SVM version which involves
equality instead of inequality constraints and works with a least squares cost function.
In this way, the solution follows from a linear Karush–Kuhn–Tucker system instead of
a quadratic programming problem. However, sparseness is lost in the LS-SVM case and
the estimation of the support values is only optimal in the case of a Gaussian distribution
of the error variables. In this paper, we discuss a method which can overcome these two
drawbacks. We show how to obtain robust estimates for regression by applying a weighted
version of LS-SVM. We also discuss a sparse approximation procedure for weighted and
unweighted LS-SVM. It is basically a pruning method which is able to do pruning based
upon the physical meaning of the sorted support values, while pruning procedures for
classical multilayer perceptrons require the computation of a Hessian matrix or its inverse.
The methods of this paper are illustrated for RBF kernels and demonstrate how to obtain
robust estimates with selection of an appropriate number of hidden units, in the case of
outliers or non-Gaussian error distributions with heavy tails. c© 2002 Elsevier Science B.V.
All rights reserved.

Keywords: Support vector machines; (Weighted) least squares; Ridge regression; Sparse
approximation; Robust estimation

� This research work was carried out at the ESAT laboratory and the Interdisciplinary Center of
Neural Networks ICNN of the Katholieke Universiteit Leuven, in the framework of the FWO project
Learning and Optimization: an Interdisciplinary Approach, the Belgian Program on Interuniversity
Poles of Attraction, initiated by the Belgian State, Prime Minister’s OCce for Science, Technology
and Culture (IUAP P4-02 & IUAP P4-24) and the Concerted Action Project MEFISTO of the Flemish
Community. Johan Suykens is a postdoctoral researcher with the National Fund for ScientiEc Research
FWO - Flanders.

∗ Corresponding author. Tel.:+32-16-32-18-02; fax:+32-16-32-19-70.
E-mail address: johan.suykens@esat.kuleuven.ac.be (J.A.K. Suykens).

0925-2312/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(01)00644-0

86 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

1. Introduction

Support vector machines (SVM) for classiEcation and nonlinear function esti-
mation, as introduced by Vapnik [35,36] and further investigated by many others
[4,21–25], is an important new methodology in the area of neural networks and
nonlinear modelling [27]. While classical neural networks approaches, such as mul-
tilayer perceptrons (MLP) and radial basis function (RBF) networks [2,17], suMer
from problems like the existence of many local minima and the choice of the num-
ber of hidden units [2,13], SVM solutions are characterized by convex optimization
problems, up to the determination of a few additional tuning parameters. Moreover,
model complexity follows from this convex optimization problem. Typically, one
solves a convex quadratic programming (QP) problem in dual space in order to
determine the SVM model. The formulation of the optimization problem in the
primal space associated with this QP problem involves inequality constraints. In
the case of function estimation it is related to Vapnik’s epsilon-insensitive loss
function. An interesting property of the SVM solution is that one obtains a sparse
approximation, in the sense that many elements in the QP solution vector are equal
to zero. The additional hyperparameters of the SVM model are often determined
by model selection based upon generalization bounds, which have been derived
within the area of statistical learning theory. SVM is a kernel based approach,
which allows the use of linear, polynomial and RBF kernels and others that satisfy
Mercer’s condition.
Recently, least squares (LS) versions of SVM’s have been investigated for clas-

siEcation [28] and function estimation [20]. In these LS-SVM formulations one
works with equality instead of inequality constraints and a sum squared error (SSE)
cost function as it is frequently used in training of classical neural networks. This
reformulation greatly simpliEes the problem in such a way that the solution is
characterized by a linear system, more precisely a KKT (Karush–Kuhn–Tucker)
system [8], which takes a similar form as the linear system that one solves in
every iteration step by interior point methods for standard SVM’s [26]. This linear
system can be eCciently solved by iterative methods such as conjugate gradient
[29]. However, despite these computationally attractive features, LS-SVM solutions
also have some potential drawbacks. The Erst drawback is that sparseness is lost
in the LS-SVM solution. In this case every data point is contributing to the model
and the relative importance of a data point is given by its support value. The sec-
ond drawback is that it is well known that the use of a SSE cost function without
regularization might lead to estimates which are less robust, e.g. with respect to
outliers on the data or when the underlying assumption of a Gaussian distribution
for the error variables is not realistic.
The aim of this paper is to show that one can overcome these drawbacks con-

cerning sparseness and robustness within the present LS-SVM framework. First
of all one should note that only the output weights of the SVM model follow
as solution to the linear system. Only these parameters are related to the SSE

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 87

cost function which means that (up to a certain extent) one can still correct for
wrong assumptions by an appropriate choice of the hyperparameters. These can
be determined in several possible ways such as crossvalidation, bootstrapping, VC
bounds, Bayesian inference etc. [4,34]. We show in this paper how one can apply
weighted least squares in order to produce a more robust estimate. This is done
by Erst applying an (unweighted) LS-SVM and, in the second stage, associate
weighting values to the error variables based upon the resulting error variables
from the Erst stage. Techniques of weighted least squares are well known e.g. in
statistics, identiEcation and control theory and signal processing. For LS-SVM’s it
can be employed as a cheap and eCcient way to make the solution robust. In this
way it can be used as an alternative to other methods in robust estimation [14] as
L1 estimators and M -estimators with Huber loss function. Robust estimation is also
possible within the standard SVM context [36]. In standard SVM methodology, one
chooses a given cost function (any convex cost function can be taken in principle as
shown in [26]). Instead of this top–down approach the weighted LS-SVM approach
aims at working bottom–up by solving a sequence of weighted LS-SVM’s starting
from the unweighted version. In this way one implicitly tries to End an optimal
underlying cost function, instead of imposing the cost function beforehand. In this
sense there is also a close link between solving the SVM problem for a given
convex cost function by interior point methods and iterative weighting of LS-SVM
solutions.
Furthermore, in this paper we illustrate how sparseness can be imposed to the

weighted LS-SVM solution by gradually pruning the sorted support value spec-
trum. While in pruning methods for MLP’s [2] (like optimal brain damage [16]
and optimal brain surgeon [12]) the procedure involves a Hessian matrix or its
inverse, the pruning in LS-SVM’s can be done based upon the solution vector
itself (note that this implicitly requires inverting the system). Less meaningful
data points as indicated by their support values, are removed and the LS-SVM is
re-computed on the basis of the remaining points while validating on the com-
plete training data set. In this paper we focus on a cheap and simple pruning
method. Other methods for obtaining a sparse approximation with LS-SVM’s are
possible [6]. The advantage of the method shown in this paper is that the de-
termination of the hyperparameters can be kept localized, while in the other ap-
proaches one needs to solve the convex optimization problem (which implicitly
corresponds to solving a sequence of linear systems) for a given set of hyper-
parameters.
In general, parametric models like MLP’s or RBF networks are applicable within

a broad range of applications of either static problems (classiEcation, regression,
density estimation) or dynamic problems (recurrent networks, optimal control).
Standard SVM’s on the other hand have only been applied to static problems. How-
ever, the use of equality constrained and SSE based formulations within LS-SVM
greatly simpliEes the formulations and allows us to extend the method to recurrent
networks [31] and control applications [32]. In the latter case convexity is lost,

88 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

but some of the other interesting SVM properties remain applicable. The results of
this paper on weighted LS-SVM’s for robust estimation and sparse approximation
further motivates the LS-SVM approach towards its use as a new and general
neural network methodology.
This paper is organized as follows. In Section 2 we review some basic notions of

LS-SVM’s for function estimation. In Section 3 we discuss the weighted LS-SVM
formulation. The sparse approximation procedure is discussed in Section 4. Finally,
illustrative examples are given in Section 5.

2. LS-SVM for nonlinear function estimation

Given a training data set of N points {xk ; yk}Nk=1 with input data xk ∈Rn and
output data yk ∈R; one considers the following optimization problem in primal
weight space:

min
w;b;e
J (w; e)=

1
2
wTw +

1
2

N∑
k=1

e2k (1)

such that

yk =wT’(xk) + b+ ek ; k=1; : : : ; N

with ’(·) :Rn → Rnh a function which maps the input space into a so-called higher
dimensional (possibly inEnite dimensional) feature space, weight vector w∈Rnh in
primal weight space, error variables ek ∈R and bias term b. Note that the cost
function J consists of a SSE Etting error and a regularization term, which is also a
standard procedure for the training of MLP’s and is related to ridge regression [10].
The relative importance of these terms is determined by the positive real constant

. In the case of noisy data one avoids overEtting by taking a smaller
 value.
SVM problem formulations of this form have been investigated independently in
[20] (without bias term) and [28].
In primal weight space one has the model

y(x)=wT’(x) + b: (2)

The weight vector w can be inEnite dimensional, which makes a calculation of
w from (1) impossible in general. Therefore, one computes the model in the dual
space instead of the primal space. One deEnes the Lagrangian

L(w; b; e; �)= J (w; e)−
N∑
k=1

�k{wT’(xk) + b+ ek − yk} (3)

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 89

with Lagrange multipliers �k ∈R (called support values). The conditions for opti-
mality are given by




@L
@w

=0 → w=
N∑
k=1

�k’(xk);

@L
@b

=0 →
N∑
k=1

�k =0;

@L
@ek

=0 → �k =
ek ; k=1; : : : ; N;

@L
@�k

=0 → wT’(xk) + b+ ek − yk =0; k=1; : : : ; N:

(4)

These conditions are similar to standard SVM optimality conditions, except for
the condition �k =
ek . At this point one loses the sparseness property in
LS-SVM’s [9].
After elimination of w; e one obtains the solution


 0 1Tv

1v �+ 1

 I



[
b
�

]
=

[
0
y

]
(5)

with y=[y1; : : : ;yN]; 1v=[1; : : : ; 1]; �=[�1; : : : ; �N] and �kl=’(xk)T’(x1) for
k; l=1; : : : ; N . According to Mercer’s condition, there exists a mapping ’ and an
expansion

K(x; y)=
∑
i

’i(x)’i(y); x; y∈Rn; (6)

if and only if, for any g(x) such that
∫
g(x)2dx is Enite, one has

∫
K(x; y)g(x)g(y) dx dy¿ 0: (7)

As a result, one can choose a kernel K(·; ·) such that

K(xk ; xl)=’(xk)T’(xl); k; l=1; : : : ; N: (8)

The resulting LS-SVM model for function estimation becomes

y(x)=
N∑
k=1

�kK(x; xk) + b (9)

where �; b are the solution to (5). We focus on the choice of an RBF kernel
K(xk ; xl)= exp{−‖xk − xl‖22=�2} for the sequel.

90 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

When solving large linear systems, it is necessary to apply iterative methods
[10] to (5). However, the matrix in (5) is not positive deEnite. According to [29]
one can transform the system into a positive deEnite system such that iterative
methods (conjugate gradient, successive overrelaxation or others) can be applied
to it. Note that the computational complexity of the conjugate gradient method for
solving a linear system Ax=B is O(Nr2) where rank(C)= r with A= I +C and
A∈RN×N . It converges in at most r+1 steps. The speed of convergence depends
on the condition number of the matrix. In the case of LS-SVM this is inPuenced
by the choice of (
; �) when using an RBF kernel.

3. Robust estimation by weighted LS-SVM

In order to obtain a robust estimate based upon the previous LS-SVM solution,
in a subsequent step, one can weight the error variables ek = �k=
 by weighting
factors vk . This leads to the optimization problem:

min
w?;b?;e?

J (w?; e?)=
1
2
w?Tw? +

1
2

N∑
k=1

vke?2k (10)

such that

yk =w?T’(xk) + b? + e?k ; k=1; : : : ; N:

The Lagrangian becomes

L(w?; b?; e?; �?)= J (w?; e?)−
N∑
k=1

�?k {w?T’(xk) + b? + e?k − yk}: (11)

The unknown variables for this weighted LS-SVM problem are denoted by the ?
symbol. From the conditions for optimality and elimination of w?; e? one obtains
the KKT system


 0 1Tv

1v �+ V



[
b?

�?

]
=

[
0
y

]
; (12)

where the diagonal matrix V
 is given by

V
=diag
{

1

v1
; : : : ;

1

vN

}
: (13)

The choice of the weights vk is determined based upon the error variables ek = �k=

from the (unweighted) LS-SVM case (5). Robust estimates are obtained then (see

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 91

[5,18]) e.g. by taking

vk =




1 if |ek=ŝ|6 c1;
c2 − |ek=ŝ|
c2 − c1 if c16 |ek=ŝ|6 c2;

10−4 otherwise;

(14)

where ŝ is a robust estimate of the standard deviation of the LS-SVM error
variables ek :

ŝ=
IQR

2× 0:6745
: (15)

The interquartile range IQR is the diMerence between the 75th percentile and 25th
percentile. In the estimate ŝ one takes into account how much the estimated er-
ror distribution deviates from a Gaussian distribution. Another robust estimate of
the standard deviation is ŝ=1:483 MAD(xi) where MAD stands for the median
absolute deviation [11]. The SSE cost function in the unweighted LS-SVM for-
mulation is optimal under the assumption of a normal Gaussian distribution for
ek . The procedure (14) corrects for this assumption in order to obtain a robust
estimate when this distribution is not normal. Eventually, the procedure (10) (14)
can be repeated iteratively, but in practice one single additional weighted LS-SVM
step will often be suCcient. One assumes that ek has a symmetric distribution
which is usually the case when (
; �) are well-determined by an appropriate model
selection method. The constants c1; c2 are typically chosen as c1 = 2:5 and c2 = 3
[18]. This is a reasonable choice taking into account the fact that for a Gaussian
distribution, there will be very few residuals larger than 2:5ŝ. Another possibility
is to determine c1; c2 from a density estimation of the ek distribution. Using these
weightings one can correct for y-outliers or for a non-Gaussian instead of Gaussian
error distributions.
This leads us to the following algorithm:

Algorithm 1---weighted LS-SVM

1. Given training data {xk ; yk}Nk=1; End an optimal (
; �) combination (e.g. by
10-fold cross-validation or generalization bounds) by solving linear systems (5).
For the optimal (
; �) combination one computes ek = �k=
 from (5).

2. Compute ŝ from the ek distribution.
3. Determine the weights vk based upon ek ; ŝ.
4. Solve the Weighted LS-SVM (12), giving the model y(x)=

∑N
k=1 �

?
k K(x; xk)+

b?.

An important notion in robust estimation is the breakdown point of an estima-
tor [1,6,19]. Loosely speaking, it is the smallest fraction of contamination of a
given data set that can result in an estimate which is arbitrarily far away from the

92 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 1. Estimation of a sinc function by LS-SVM with RBF kernel, given 300 training data point,
corrupted by zero mean Gaussian noise and three outliers (denoted by ‘+’). (Top-Left) Training
data set; (Top-Right) resulting LS-SVM model evaluated on an independent test set: (solid line) true
function, (dashed line) LS-SVM estimate; (Bottom-Left) ek = �k =
 values; (Bottom-Right) histogram
for distribution of ek values, which is non-Gaussian due to the three outliers.

estimated parameter vector obtained from the uncontaminated data set. It is well
known that the least squares estimate in linear regression (parametric) without
regularization has a low breakdown point. At this point the unweighted LS-SVM
has already better properties due to the fact that least squares is only applied for
Ending � (which corresponds to estimating the output layer and not (
; �)). It
is still possible then to correct with (
; �) when using an RBF kernel. Although
unweighted LS-SVM already has rather desirable properties, the breakdown point
is further improved by applying the weighted LS-SVM afterwards.
In standard SVM approaches one usually chooses a certain cost function (any

convex cost function can be taken according to [26]). However, in such a top–
down approach one assumes in fact that the noise distribution is known because one
knows which cost function is optimal for a given noise distribution. The weighted

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 93

Fig. 2. (Continued) Weighted LS-SVM applied to the results of Fig. 1. The ek distribution becomes
Gaussian and the generalization performance on the test data improves.

LS-SVM procedure tries to work bottom–up and aims at Ending the optimal un-
derlying cost function for the given noisy data. The methods can be conceptually
linked by the fact that when one applies an interior point method for solving a
standard SVM problem, at every iteration step a KKT system is solved which is
similar to solving one single LS-SVM. Hence, solving a standard SVM with arbi-
trary convex cost function implicitly corresponds, in fact, to solving a sequence of
LS-SVMs.

4. Imposing sparseness

While standard SVM’s possess a sparseness property in the sense that many �k
values are equal to zero, this is not the case for LS-SVM’s due to the fact that
�k =
ek from the conditions for optimality. An equivalence has also been proven
between sparse approximation and SVM’s [3,9]. Here we discuss a simple proce-
dure that shows how a sparse approximation for LS-SVM’s can be obtained. This

94 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 3. (Continued) Comparison between standard SVM, unweighted LS-SVM and weighted LS-SVM.
Weighted LS-SVM gives the best estimate for this example.

is done by exploiting the fact that the support values have a physical meaning in
the sense that they reveal the relative importance of the data points for contributing
to the model.
Here, we propose a pruning procedure for LS-SVM’s which is based upon the

sorted support value spectrum. By omitting a relative and small amount of the
least meaningful data points (this corresponds to setting these �k values to zero)
and re-estimating the LS-SVM, one obtains a sparse approximation. In order to
guarantee a good generalization performance, in each of these pruning steps one can
optimize (
; �) (by deEning an independent validation set, 10-fold cross-validation,
generalization bounds or others). An important diMerence with pruning methods
for MLP’s [2,12,16], e.g. optimal brain damage and optimal brain surgeon, is
that pruning can be done based upon solution vector itself and does not require
the knowledge of a Hessian matrix or its inverse. This pruning method has been
successfully applied to unweighted LS-SVM’s [30]. Here, we outline the algorithm
for the weighted LS-SVM case.

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 95

Fig. 4. Estimation of a sinc function by LS-SVM with RBF kernel, given 300 training data point,
corrupted by a central t-distribution with heavy tails. (Top-Left) Training data set; (Top-Right) re-
sulting LS-SVM model evaluated on an independent test set: (solid line) true function, (dashed line)
LS-SVM estimate; (Bottom-Left) ek = �k =
 values; (Bottom-Right) histogram for distribution of ek
values, which is non-Gaussian.

Algorithm 2---weighted LS-SVM pruning

1. Set N =Ntot equal to the number of training data.
2. Given N training data, apply Algorithm 1 where (
; �) is determined on the

total amount of Ntot training data. The solution to the linear system for optimal
(
; �) yields �?k .

3. Sort the values |�?k |.
4. Remove a small amount of M points (typically 5% of the N points) that have

the smallest values in the sorted |�?k | spectrum.
5. Retain N −M points and set N :=N −M .
6. Go to 2 and retrain on the reduced training set, unless the user-deEned perfor-

mance index degrades.

Typically, doing a number of pruning steps without modiEcation of (
; �) will
be possible. When the generalization performance starts degrading (checked e.g. on

96 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 5. (Continued) Weighted LS-SVM applied to the results from Fig. 4. The ek distribution becomes
Gaussian and the generalization performance on the test data improves.

a validation set or by means of cross-validation as illustrated in [33]) an update of
(
; �) will be needed. The fact that this (
; �) determination can be kept ‘localized’
is a possible advantage of this method in comparison with other approaches which
need to solve a QP problem for the several possible choices of the hyperparameters.
Also note that the pruning method is in fact an iterative scheme where in each step
one has to solve a KKT system. For interior point methods in solving standard
quadratic programming type SVM’s [26], at each iteration step one solves a KKT
system which has a similar form as in the LS-SVM case. However, in Algorithm 2
the size of the linear system that one solves decreases from step to step because N
decreases. The convergence of Algorithm 2 for obtaining sparseness is guaranteed
by construction.

5. Examples

In this example, we illustrate the method of weighted LS-SVM and sparse ap-
proximation. First, we show two examples of estimating a sinc function from noisy

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 97

Fig. 6. (Continued) Comparison between standard SVM, unweighted LS-SVM and weighted LS-SVM.
Weighted LS-SVM gives the best estimate for this example.

data: (a) strong outliers are superimposed on zero mean Gaussian noise distribution
(Figs. 1 and 2); (b) non-Gaussian noise distribution (central t-distribution with 4
degrees of freedom, i.e. heavy tails [15]) (Figs. 4 and 5). Given is a training set
of N =300 data points.
From the simulation results it is clear that in both cases the unweighted LS-SVM

is quite robust and does not break down (Figs. 1 and 4). The generalization
performance is further improved by applying weighted LS-SVM (Algorithm 1),
shown in Figs. 2 and 5, respectively. The (
; �) hyperparameters are determined
here by means of 10-fold cross-validation on the training data. The good gen-
eralization performance on fresh test data is shown for all cases. Figs. 2 and 5
show that the use of weighted LS-SVM leads to a ek distribution which is closer
to a Gaussian distribution, which leads to better estimates within the LS-SVM
context.
An additional comparison with a standard SVM with Vapnik &-insensitive loss

function is made. The Matlab SVM Toolbox by Steve Gunn was used to generate
the SVM results. Here &=0 was taken and as upper bound on support values

98 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 7. Motorcycle dataset: comparison between standard SVM, unweighted LS-SVM and weighted
LS-SVM.

C= Inf. An optimal � value was selected. Other &; C combinations resulted in
worse results. These comparative results are shown in Figs. 3 and 6. In these
examples the weighted LS-SVM results show the best results. The unweighted
LS-SVM is also quite robust. Due to the choice of a 2-norm this may sound
surprising. However, one should be aware that only the output weights (support
values �) follow from the solution to the linear system while (
; �) are to be
determined at another level.
Figs. 7 and 8 show comparative results on the motorcycle data, a well-known

benchmark data set in statistics [7]. The x values are time measurements in mil-
liseconds after simulated impact and the y values are measurements of head accel-
eration. The x values are not equidistant and in some cases multiple y observations
are present for certain x values. The data are heteroscedastic. In this sense it forms a
challenging test case. Figs. 7 and 8 show the results from unweighted and weighted
LS-SVM in comparison with standard SVM. In this example standard SVM suMers
more from boundary eMects. The tuning parameters are:
=2; �=6:6 (LS-SVM)
and �=11; &=0; C= Inf (Vapnik SVM).

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 99

Fig. 8. (Continued) enlarged parts of the previous Egure. From (Top-Left) it is visible that standard
SVM suMers more from boundary eMects with oscillatory behaviour. From (Bottom-Left) one observes
that weighted LS-SVM improves in this region because of the correction for outliers.

Fig. 9 shows the improvements of weighted LS-SVM on the Boston housing
data in comparison with unweighted LS-SVM. The weighted LS-SVM achieves an
improved test set performance after determination of (
; �) by 10-fold CV on a
randomly selected training set of 406 points. The remaining test set consisted of
100 points. The data were normalized except the binary variables. Optimal val-
ues of (
; �) were determined by 10-fold CV on the training set. The weighted
LS-SVM resulted in a test set MSE error of 0.1638, which was an improve-
ment over the unweighted LS-SVM test set MSE error of 0.1880. The improved
performance is achieved by suppressing the outliers in the histogram shown in
Fig. 9.
The sparse approximation procedure (Algorithm 2) is illustrated in Figs. 10 and

11. These results are obtained by starting from the training data of Figs. 1 and 2.
The Figures show that robust estimates are obtained by a combination of weighted
LS-SVM and sparse approximation by applying Algorithm 2. Some shiftings in
the sorted support value spectrum are shown in Fig. 11. In this example about

100 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 9. Boston housing data set: (Top) histogram of ek for unweighted LS-SVM with RBF kernel.
The outliers are clearly visible; (Bottom) histogram resulting from weighted LS-SVM with improved
test set performance.

20 support vectors are needed to guarantee a good generalization performance. As
shown in [33] on many UCI data sets, optimizing the hyperparameters during the
pruning process will improve the generalization performance. We want to stress
here that pruning of the LS-SVM is in fact not needed, unless one wants to obtain
a sparse representation of the original model.

6. Conclusions

We have shown how to obtain robust estimates within the LS-SVM frame-
work in the case of outliers and heavy tailed non-Gaussian error distributions.
This is done here by applying a weighted LS-SVM version. While least squares
in standard parametric linear regression has a low breakdown point, LS-SVM’s
with RBF kernel have much better properties. Nevertheless, the robustness can be

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 101

Fig. 10. Sparse approximation procedure of Algorithm 2, applied to the data of Figs. 1–2. Shown are
some intermediate pruning results starting from 300 data points: 300 support vectors (SV) (Top-Left);
100 SV (Top-Right); 50 SV (Bottom-Left); 20 SV (Bottom-Right).

further enhanced by applying an additional weighted LS-SVM step. While stan-
dard SVM’s possess a sparseness property for the solution vector, this feature is
lost when considering LS-SVM’s. However, we have shown how sparseness can
be obtained by pruning the sorted support value spectrum if needed. The prun-
ing procedure is based upon the solution vector itself which is an advantage in
comparison with classical multilayer perceptron pruning. This procedure has the
potential advantage of keeping the hyperparameter selection more localized. While
standard SVM approaches start from choosing a given convex cost function and
obtain a robust and sparse estimate in a top–down fashion, this procedure has the
disadvantage that one should know in fact beforehand which cost function is sta-
tistically optimal. In this paper we have successfully demonstrated an alternative
bottom–up procedure which starts from an un-weighted LS-SVM and then makes
the solution robust by deEning weightings based upon the error distribution. This
provides motivation for further fundamental research in this direction for future
work.

102 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Fig. 11. Sorted support value spectrum related to the 4 steps shown in the previous Figure.

References

[1] D.F. Andrews, P.J. Bichel, F.R. Hampel, P.J. Huber, W.H. Rogers, J.W. Tukey, Robust Estimates
of Location: Survey and Advances, Princeton University Press, Princeton, NJ, 1972.

[2] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
[3] S.C. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci.

Comput. 20 (1) (1998) 33–61.
[4] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge

University Press, Cambridge, 2000.
[5] H.A. David, Early sample measures of variability, Statist. Sci. 13 (4) (1998) 368–377.
[6] D.L. Donoho, P.J. Huber, The notion of breakdown point, in: P. Bickel, K. Doksum, J.L. Hodges

Jr. (Eds.), A Festschrift for Erich Lehmann, Wadsworth, Belmont, CA, 1983.
[7] R.L. Eubank, Nonparametric regression and spline smoothing, Statistics: textbooks and

monographs, Vol. 157, 2nd edition, Marcel Dekker, New York, 1999.
[8] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.
[9] F. Girosi, An equivalence between sparse approximation and support vector machines, Neural

Comput. 10 (6) (1998) 1455–1480.
[10] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore,

MD, 1989.
[11] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, W.A. Stahel, Robust Statistics: The Approach

Based on InPuence Functions, Wiley, New York, 1986.

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 103

[12] B. Hassibi, D.G. Stork, Second order derivatives for network pruning: optimal brain surgeon,
in: S. Hanson, J. Cowan, L. Giles (Eds.), Advances in Neural Information Processing Systems,
Vol. 5, Morgan Kaufmann, San Mateo, CA, 1993, pp. 164–171.

[13] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2 (1989) 359–366.

[14] P.J. Huber, Robust Statistics, Wiley, New York, 1981.
[15] N.L. Johnson, S. Kotz, Distributions in Statistics: Continuous Univariate Distributions, Vol. 1–2,

Wiley, New York, 1970.
[16] Y. Le Cun, J.S. Denker, S.A. Solla, Optimal brain damage, in: Touretzky (Ed.), Advances

in Neural Information Processing Systems, Vol. 2, Morgan Kaufmann, San Mateo, CA, 1990,
pp. 598–605.

[17] T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (1990)
1481–1497.

[18] P.J. Rousseeuw, A. Leroy, Robust Regression and Outlier Detection, Wiley, New York, 1987.
[19] P.J. Rousseeuw, B.C. van Zomeren, Unmasking multivariate outliers and leverage points, J. Am.

Statist. Assoc. 85 (1990) 633–639.
[20] C. Saunders, A. Gammerman. V. Vovk, Ridge regression learning algorithm in dual variables,

Proceedings of the 15th International Conference on Machine Learning (ICML’98), Morgan
Kaufmann, 1998, pp. 515–521.

[21] B. SchVolkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, V. Vapnik, Comparing
support vector machines with Gaussian kernels to radial basis function classiEers, IEEE Trans.
Signal Process. 45 (11) (1997) 2758–2765.

[22] B. SchVolkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods—Support Vector
Learning, MIT Press, Cambridge, MA, 1998.

[23] B. SchVolkopf, S. Mika, C. Burges, P. Knirsch, K.-R. MVuller, G. RVatsch, A. Smola, Input space vs.
feature space in kernel-based methods, IEEE Trans. Neural Networks 10 (5) (1999) 1000–1017.

[24] A. Smola, B. SchVolkopf, K.-R. MVuller, The connection between regularization operators and
support vector kernels, Neural Networks 11 (1998) 637–649.

[25] A. Smola, B. SchVolkopf, On a kernel-based method for pattern recognition, regression,
approximation and operator inversion, Algorithmica 22 (1998) 211–231.

[26] A. Smola, Learning with Kernels, Ph.D. Thesis, GMD, Birlinghoven, 1999.
[27] J.A.K. Suykens, J. Vandewalle (Eds.), Nonlinear Modeling: Advanced Black-box Techniques,

Kluwer Academic Publishers, Boston, 1998.
[28] J.A.K. Suykens, J. Vandewalle, Least squares support vector machine classiEers, Neural Process.

Lett. 9 (3) (1999) 293–300.
[29] J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, J. Vandewalle, Least squares support

vector machine classiEers: a large scale algorithm, European Conference on Circuit Theory and
Design, (ECCTD’99), PP. 839–842, Stresa Italy, August 1999.

[30] J.A.K. Suykens, L. Lukas, J. Vandewalle, Sparse least squares support vector machine classiEers,
European Symposium on ArtiEcial Neural Networks (ESANN 2000), Bruges Belgium, April 2000,
pp. 37–42.

[31] J.A.K. Suykens, J. Vandewalle, Recurrent least squares support vector machines, IEEE Trans.
Circuits Systems-I 47 (7) (2000) 1109–1114.

[32] J.A.K. Suykens, J. Vandewalle, B. De Moor, Optimal Control by Least Squares Support Vector
Machines, Neural Networks 14 (1) (2001) 23–35.

[33] T. Van Gestel, J.A.K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor,
J. Vandewalle, Benchmarking least squares support vector machine classiEers, Internal Report
00-37, ESAT-SISTA, K.U.Leuven.

[34] T. Van Gestel, J.A.K. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele, B. De
Moor, J. Vandewalle, Financial time series prediction using least squares support vector machines
within the evidence framework, IEEE Trans. Neural Networks (special issue on Neural Networks
in Financial Engineering) 12 (4) (2001) 809–821.

[35] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[36] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

104 J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105

Johan A.K. Suykens was born in Willebroek Belgium, May 18,1966. He re-
ceived the degree in Electro-Mechanical Engineering and the Ph.D. degree in
Applied Sciences from the Katholieke Universiteit Leuven, in 1989 and 1995,
respectively. In 1996 he was a Visiting Postdoctoral Researcher at the Uni-
versity of California, Berkeley. At present, he is a Postdoctoral Researcher
with the Fund for ScientiEc Research FWO Flanders. His research interests
are mainly in the areas of the theory and application of nonlinear systems and
neural networks. He is author of the book “ArtiEcial Neural Networks for Mod-
elling and Control of Non-linear Systems” and editor of the book “Nonlinear
Modeling: Advanced Black-Box Techniques”, published by Kluwer Academic
Publishers. The latter resulted from an International Workshop on Nonlinear

Modelling with Time-series Prediction Competition that he organized in 1998. He has served as
associate editor for the IEEE Transactions on Circuits and Systems-I (1997–1999) and since 1998 he
is serving as associate editor for the IEEE Transactions on Neural Networks. He received a Best Paper
Award as Winner for Best Theoretical Developments in Computational Intelligence at ANNIE’99 and
an IEEE Signal Processing Society 1999 Best Paper Award, for his contributions on NLq Theory. He
is a recipient of the International Neural Networks Society INNS 2000 Young Investigator Award for
signiEcant contributions in the Eeld of neural networks.

Jos De Brabanter received the diploma of Ind. Ing. (Brussels, Belgium) in
1990, the Master degree in ArtiEcial Intelligence in 1996 and the Master
degree of Statistics in 1997, both from the K.U. Leuven (Belgium). He is
currently pursuing the Doctoral degree in Applied Sciences at the Department
of Electrical Engineering of the K.U. Leuven. His scientiEc research interests
are in the area of statistics and its application to neural networks and support
vector learning.

Lukas received the B.Eng. degree in Computer Engineering in 1995 from the
Institute of Technology, Bandung (ITB), Indonesia, and the Master degree in
ArtiEcial Intelligence from the K.U. Leuven, Belgium in 1998. He is currently
pursuing the Doctoral degree at the Department of Electrical Engineering at the
K.U. Leuven. His research interests are in the area of support vector machines,
biomedical engineering and artiEcial intelligence.

Joos Vandewalle was born in Kortrijk, Belgium, in August 1948. He obtained
the electrical engineering degree and doctoral degree in applied sciences, both
from the Katholieke Universiteit Leuven, Belgium in 1971 and 1976, respec-
tively. From 1976 to 1978 he was Research Associate and from July 1978
to July 1979, he was Visiting Assistant Professor both at the University of
California, Berkeley. Since July 1979 he is back at the ESAT Laboratory of
the Katholieke Universiteit Leuven, Belgium, where he is Full Professor since
1986. He is an Academic Consultant since 1984 at the VSDM group of IMEC
(Interuniversity Microelectronics Center, Leuven). From August 1996 to Au-
gust 1999 he was Chairman of the Department of Electrical Engineering at
the Katholieke Universiteit Leuven. Since August 1999 he is the vice-dean
of the Department of Engineering. He teaches courses in linear algebra, linear

J.A.K. Suykens et al. / Neurocomputing 48 (2002) 85–105 105

and nonlinear systems and circuit theory, signal processing and neural networks. His research interests
are mainly in mathematical system theory and its applications in circuit theory, control, signal pro-
cessing, cryptography and neural networks. He has authored and co-authored more than 200 papers
in these areas. He is co-author with S. Van HuMel of the book “The Total Least Squares Problem”
and co-editor with T. Roska of the book “Cellular Neural Networks”. He is a member of the editorial
board of “Journal A”, a Quarterly Journal of Automatic Control and of the International Journal of
Circuit Theory and its Applications, Neurocomputing and the Journal of Circuit Systems and Comput-
ers. From 1989 till 1991, he was associate editor at the IEEE Transactions on Circuits and Systems in
the area of nonlinear and neural networks. He was elected fellow of IEEE in 1992 for contributions
to nonlinear circuits and systems. During 1991-1992 he held the Francqui chair of ArtiEcial Neural
Networks at the University of LiZege, Belgium. He is one of the three coordinators of the Interdisci-
plinary Center for Neural Networks ICNN that was set up in 1993 in order to stimulate the interaction
and cooperation among the 50 researchers on neural networks at the Katholieke Universiteit Leuven.

