
Update: We have released an open-source version of the algorithm at

https://github.com/JeroenGar/gdrr-2bp

A Goal-Driven Ruin and Recreate Heuristic for the 2D
Variable-Sized Bin Packing Problem with Guillotine Constraints

Jeroen Gardeyna,∗, Tony Wautersa

aKU Leuven, Department of Computer Science, NUMA, Belgium

Abstract

This paper addresses the two-dimensional bin packing problem with guillotine constraints.
The problem requires a set of rectangular items to be cut from larger rectangles, known as
bins, while only making use of edge-to-edge (guillotine) cuts. The goal is to minimize the
total bin area needed to cut all required items. This paper also addresses variants of the
problem which permit 90◦ rotation of items and/or a heterogeneous set of bins. A novel
heuristic is introduced which is based on the ruin and recreate paradigm combined with a
goal-driven approach. When applying the proposed heuristic to benchmark instances from
the literature, it outperforms the current state-of-the-art algorithms in terms of solution
quality for all variants of the problem considered.
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1. Introduction

The Two-Dimensional Bin Packing Problem (2BP) consists of packing a heterogeneous
set of small rectangular items into larger rectangular bins. In general, a 2BP solution is
considered feasible if (1) the items are fully inside the bin, (2) items are not overlapping
and (3) the edges of the items are parallel to the edges of the bin. The goal is to minimize
the amount of unused bin area incurred by packing all the items.

Lodi et al. [21] defined four variants of the 2BP problem using a three-field notation.
This notation defines whether the items are allowed to rotate 90 degrees and/or whether
guillotine cuts are required. This paper focuses on variants of the 2BP which require
guillotine cuts (2BP|*|G). Both fixed orientation (2BP|O|G) and the variant that allows
90◦ rotation of items (2BP|R|G) are addressed.

The guillotine constraint defines that all cuts must be edge-to-edge cuts. Figure 1(a)
shows a simple visual example of a pattern which does not comply with the guillotine
constraint. It is not possible to cut this pattern by exclusively using edge-to-edge cuts.
The pattern in Figure 1(b), on the other hand, satisfies the guillotine constraint by first
making a horizontal cut followed by several vertical cuts. Guillotine cuts have many
real-world applications as they are often required in glass- and wood-cutting industries.
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(a) Non-guillotine pattern (b) Guillotine pattern

Figure 1: Visual representation of non-guillotine and guillotine patterns

This work introduces a novel heuristic based on the ruin and recreate paradigm com-
bined with a goal-driven approach (GDRR). The heuristic attempts to improve the solu-
tion at each iteration by removing and reinserting items into the bins in a greedy fashion.
GDRR is goal-driven in the sense that it iteratively lowers the available bin area. Each
time the algorithm finds a feasible solution with a certain total bin area, it is henceforth
forced to find new solutions which use less bin area. As a result, most of the time, the
heuristic will be unable to fit all items into the available bins and will therefore be working
with infeasible solutions. After each run, items which could not be placed are automati-
cally reconsidered for reinsertion during the next run. In order to reach complete solutions,
the objective function penalizes unassigned items in order to steer the heuristic towards
feasibility.

GDRR is also capable of addressing the variant with a heterogeneous set of bins. This
generalization is commonly referred to as the 2BP with variable-sized bins. Since the
classification made by Lodi et al. [21] does not cover this variant, it will henceforth be
referred to as the 2VSBP.

In summary, the proposed heuristic addresses four variants of the 2BP:

• 2BP|O|G: identical bins, no rotation

• 2BP|R|G: identical bins, 90◦ rotation

• 2VSBP|O|G: heterogeneous set of bins (variable-sized), no rotation

• 2VSBP|R|G: heterogeneous set of bins (variable-sized), 90◦ rotation

The remainder of the paper is organized as follows. In Section 2 a compact literature
review is provided which includes papers covering both the traditional 2BP and the variant
with a heterogeneous set of bins. Section 3 introduces the data structure for solution
representation. Next, a detailed explanation of the complete ruin and recreate heuristic
is given in Section 4. A comparison of the heuristic against the current state of the art
is conducted in Section 5. Finally, Section 6 summarizes the paper and highlights some
future research directions.

2. Literature review

General typologies for cutting and packing problems are published in Dyckhoff [12]
and Wäscher et al. [30]. Surveys for the 2BP have been provided by Lodi et al. [22] and
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Lodi et al. [20]. These surveys cover heuristics, exact methods and bounds for the 2BP.
A more recent survey focusing on exact methods was conducted by Iori et al. [18].

Gilmore and Gomory [15] were the first to tackle the 2BP and proposed a column
generation approach for the multidimensional bin packing problem. Many heuristics for
2BP|*|G have since been published in the literature and this review will focus on the most
competitive among these. Polyakovsky and M’Hallah [29] developed a ’guillotine bottom
left’ constructive heuristic to pack one bin at a time in combination with a pseudo-parallel
agent-based system wherein each agent has its own characteristics. Later, Charalambous
and Fleszar [5] introduced a constructive heuristic which supports item rotation. At each
iteration, their method packs one bin by creating multiple simple cutting patterns and
selects the one with the highest quality by way of a sufficiency criterion. To improve
solution quality, they proposed a post-optimization routine which prioritizes items that
most often do not fit during the constructive phase. Later, Fleszar [13] proposed three new
insertion heuristics and a justification improvement heuristic. Lodi et al. [23] introduced
a heuristic based on an enumeration tree for the 2BP|O|G. At each level of the tree, a
new bin is packed. When filling a new bin, a set of selection and guillotine split rules are
considered. These different strategies create new nodes in the tree. In an enhanced version
of the heuristic, they attempt to reduce the search space to improve performance. More
recently, Cui et al. [10] present a sequential value correction heuristic which repeatedly
creates cutting patterns while trying to maximize the total item value. The values of
the items are updated after each iteration based on information from current and past
solutions. Finally, a heuristic which uses a pattern generation procedure that creates
triple-block patterns was introduced by Cui et al. [11]. The procedure is followed by an
improvement phase which uses an Integer Linear Programming model to select the best
patterns.

The concept of heterogeneous sets of bins (variable-sized) was first introduced by
Friesen and Langston [14]. They proposed three heuristics for one-dimensional bin packing
problems. Literature on the 2VSBP|*|G is more scarce compared to the variant with
identical bins. To the best of our knowledge, only the variant without rotation of items
has been studied. Ortmann et al. [27] proposed a two-stage heuristic, which begins with
a strip packing procedure. Next, attempts are made to repack these strips into smaller
and smaller bins. Later, Hong et al. [16] designed a hybrid heuristic for the 2VSBP|O|G.
They proposed a mixed bin packing algorithm which is used in combination with iterative
simulated annealing runs and a binary search. Finally, Wei et al. [31] introduced a heuristic
with a goal-driven approach for the 2VSBP|O|F (no guillotine constraint). Their algorithm
packs bins with a sequential packing heuristic, followed by a local search to improve the
solution. It also performs a binary search on bin combinations and increases the search
effort each time.

It should be clear that many of these solution methods are either based on exact
methods or focus heavily on the constructive aspect. Exact methods, however, often lack
the flexibility required to adapt to real-world scenarios and generally do not scale well for
larger problems. On the other hand, although constructive heuristics are usually more
flexible and very fast, their solutions are often lacking in terms of quality. The approach
proposed in this paper attempts to find a balance by focusing on heuristic improvement
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strategies.

3. Solution representation
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Figure 2: Visual representation of the data structure

Each cutting pattern is represented as a rooted tree, as shown in Figure 2. The tree
consists of three different types of node. There are item (dark gray), leftover (light gray)
and structure nodes (white). Leaves are always either an item or leftover node. All non-
leaf nodes define the structure of a cutting pattern in a hierarchical way and are denoted
as either vertical (V) or horizontal (H). The orientation of the node corresponds to the
direction in which its children are cut. This orientation is identical for every node of a
level and each new level switches the orientation compared to the previous one.

A similar, but not identical, data structure was used before by Clautiaux et al. [7],
Fleszar [13] and Kröger [19]. As noted by Fleszar [13], this representation always satisfies
the guillotine constraint and never allows for overlapping items.

Note that the data structure does not define any coordinates. It only describes relative
positions of items and leftovers. This allows for simpler insertion or removal of items (or
groups of items) compared to more rigid structures where a cutting pattern is defined by
a set of items and their locations.

As was first described by Gilmore and Gomory [15], in real-world scenarios there is
often a limit on the number of possible stages. A stage includes one or more horizontal
or vertical cuts, but never a mixture of the two. Progressing from one stage to another
involves rotating the cut orientation. The number of stages therefore represents the num-
ber of blade rotations needed to cut the pattern. In this representation, since the cutting
orientations are switched at every level, each level represents a stage. While not the focus
of this paper, limiting the number of stages in this data structure involves simply defining
a tree’s maximum depth.

Due to the nature of the heuristic, there is a need to be able to represent incomplete
solutions. Therefore, a solution S = {C,E} not only contains a set of cutting patterns C,
it also consists of a set of excluded items E. A solution is deemed feasible if all items are
included (E = ∅).
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4. Ruin and recreate heuristic

Figure 3 provides a high-level overview of the heuristic. At each iteration of the local
search, the solution is partially destroyed and rebuilt in an attempt to find improvements.
Every time a new feasible solution is found, the bin area limit is reduced. The general
idea behind this is discussed in Section 4.1. Detailed explanations of the ruin and recreate
procedures are given in Sections 4.2 and 4.3. Afterwards, the modified solution is evaluated
and has the possibility of being accepted. This is covered in Section 4.4. The entire process
is repeated until a given time limit is reached.

Recreate
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Figure 3: High-level overview of GDRR

4.1. Goal-driven approach

In the 2BP, the quality of a solution is based on the sum of areas of the bins required
to pack all items. Due to the nature of the problem, all feasible solutions which result
in the same total bin area are deemed to be equal in quality. This means that, once a
complete solution is found with a certain total bin area, solutions with equal (or greater)
total bin area are no longer of interest.

Wei et al. [31] proposed a goal-driven approach (GDA) heuristic for the 2BP with
variable-sized bins. It generates all combinations of bins that have a total area between
a lower and upper bound, sorts them by area and attempts to find the best combination
that produces a feasible solution. The sorted list is traversed using a binary search. At
each iteration, the GDA heuristic must use that specific combination of bins. Although
this particular algorithm does not incorporate the guillotine constraint, the general idea
is applicable.

Similar to GDA, the proposed approach could also be viewed as being goal-driven. The
recreate phase, responsible for rebuilding the ruined solution, must adhere to a certain
bin area limit. A new bin can only be opened if the total bin area of the solution remains
below this threshold. Therefore, most of the time, the recreate phase will be unable to
fit all items into the available bins and will produce infeasible solutions. A cost function
guides the heuristic towards a solution capable of fitting all items.
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Figure 4: Progression of GDRR over time

Figure 4 represents one possible course of the heuristic over time. At all times, the
goal is to find a set of cutting patterns capable of packing all items with a total bin area
below the current limit. Whenever a new feasible solution (denoted by ‘f’) is found, the
limit is lowered to the total bin area of this new solution. A formal description of the
complete GDRR heuristic and how the bin area limit tightens is presented in Algorithm
3 at the end of Section 4.

Unlike Wei et al. [31], the search does not begin from scratch each time, but rather the
solution is destroyed until the bin area constraint is once again satisfied. Therefore, high-
quality features from a previous solution can be carried over when the limit is lowered.
This can result in a significant amount of saved computational time. However, the heuristic
may be more likely to get stuck in local optima when solutions are already tightly packed.

Another difference lies in the combination of available bins. GDA tries to make a
feasible solution with a fixed combination of bins. By contrast, GDRR is free to use
whichever combination of bins yields good results according to the cost function. GDRR
only needs to ensure that the total bin area is below the current limit. Furthermore, it
can sometimes happen that there is a feasible solution for a combination of bins A, but
not for a combination of bins B despite the total bin area of A being smaller than B.
This situation most often occurs with instances that contain small bins (few items per
bin) or items with extreme dimensions. Due to the binary search nature of GDA, these
combinations might not be reachable.

It should become clear that, by design, the heuristic will be working with infeasible
solutions most of the time. This might seem counterproductive at first, but such a strategy
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has two major advantages compared to incorporating bin area into a cost function. First
of all, items which are not included in the solution have a new chance at being inserted
every iteration. This drastically increases the likelihood of finding better solutions. If
this were not the case, reaching complete solutions with less bin area would be unlikely,
especially when the cutting patterns are complex. Second, as shown in Figure 4, the total
area of excluded items can be used as a very gradual indicator of a solution’s quality. This
is in stark contrast to the abrupt drops when using bin area as a cost factor.

In conclusion, although the proposed heuristic is also goal-driven, it significantly differs
from the approach introduced by Wei et al. [31]. They merely share the same philosophy
of constraining the use of bins in some way.

4.2. Ruin

The ruin procedure removes a number of nodes from the solution. All item and struc-
ture nodes are candidates for removal. Leftover nodes are ineligible since removing them
would not have any effect. They can only be deleted as a result of removing a parent
node.
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Figure 5: Three examples of node removal

Three cases of node removal are shown in Figure 5. These figures illustrate the situation
before (left) and after (right) the removal of a node. In each example, the node with a
bold edge is the one selected for removal. In the first example, the node containing item 3
is removed. As a result, the leftover node is expanded to account for the freed-up space.
In the second example, a first-level structure node is deleted. This results in items 2 and
3 being removed since they are children. The final example shows the root node being
selected for removal. This results in the entire cutting pattern being removed. It should
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be clear that impact of a single removal can range from individual items to entire cutting
patterns. The closer a structure node is to the root of the tree, the more significant an
impact its removal will have.

There are two main motivations for allowing structure nodes to be removed. First,
removing these nodes produces large regions of contiguous leftover space. This, in turn,
provides the recreation phase more flexibility, resulting in diverse neighboring solutions.
The second main advantage lies in the fact that it is probable that some of the removed
items will form good patterns again at another location. In the second example, for
instance, items 2 and 3 are likely to form a compact pattern again because they share
the same width. This is particularly apparent in the later stages of the search, when the
solution is already quite good in terms of quality. It could be viewed as a form of related
removal.

However, dramatically destroying the solution can hinder the chances of finding better
solutions. Radically ruining a solution too often can result in a lot of wasted time. Because
the most impactful nodes are closest to the root of the tree, they are less numerous
compared to the less impactful nodes at the bottom of the tree. Due to the fact that
the ruin method selects nodes at random, removals with a significant impact have a lower
chance of occurring. This could be viewed as a sort of built-in balancing mechanism.

Algorithm 1 Ruin phase

Input: A solution S = {C,E} where C is a set of cutting patterns
and E is a set of excluded items, bin area limit Alim, and
the average number of nodes to be removed µ

Output: A modified (ruined) solution S′

1: function ruin(S,Alim, µ)
2: S′ = {C ′, E′} ← S
3: i ∈R {1, ..., 2µ− 1}
4: while i > 0 or

∑
c∈C′ Ac ≥ Alim do

5: c ∈R C ′

6: Nc ← item and structure nodes of c
7: n ∈R Nc

8: c′ ← remove(c, n)
9: C ′ ← C ′ \ {c}

10: if c′ is not empty then
11: C ′ ← C ′ ∪ {c′}
12: En ← items in n
13: E′ ← E′ ∪ En

14: i← i− 1

15: return S′

Algorithm 1 provides the pseudocode for the ruin phase. The number of nodes to be
removed, i, is uniformly randomized (∈R) at each iteration and averages out at µ (line 3).
The procedure continues ruining until i nodes have been removed or while the total bin
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area of the modified solution exceeds the bin area limit Alim (line 4). For each removal,
a cutting pattern c is selected uniformly at random (line 5). A random item or structure
node n is selected from c (lines 6-7). This node is removed from c, resulting in c′ (lines
8-9). Finally, both the set of cutting patterns and the set of excluded items associated
with the modified solution S′ are updated (lines 10-13).

4.3. Recreate

During the recreate phase, the (ruined) solution needs to be rebuilt. This is done by
inserting items into either leftover nodes or new bins. Of course, due to the bin area limit,
it is highly unlikely that it will be possible to insert all items.

Algorithm 2 Recreate phase

Input: A solution S = {C,E} where C is a set of cutting patterns
and E is a set of excluded items, bin area limit Alim

Output: A modified (recreated) solution S′

1: function recreate(S,Alim)
2: S′ = {C ′, E′} ← S
3: Ẽ ← E′

4: while Ẽ ̸= Ø do
5: emr ← most restricted item ∈ Ẽ
6: O ← insertion options for emr for all cutting patterns ∈ C ′

7: if O = Ø then //attempt to open new bin

8: ∆← Alim −
∑

c∈C′ Ac

9: if there is a bin with A < ∆ then
10: c← empty cutting pattern using random bin with Ac < ∆
11: C ′ ← C ′ ∪ {c}
12: O ← O ∪ {insertion options for emr in c}
13: if O ̸= Ø then //insert the item

14: o← select best (with blinks) ∈ O
15: c← cutting pattern of o
16: c′ ← insert(c, o)
17: C ′ ← C ′ \ {c} ∪ {c′}
18: E′ ← E′ \ {emr}
19: Ẽ ← Ẽ \ {emr}
20: return S′

Algorithm 2 provides the pseudocode for the recreate phase. During this phase, all
currently excluded items have the opportunity to be inserted into the solution (lines 3-4).
Set Ẽ corresponds to all items which have yet to receive a chance at insertion. At each
iteration, the most restricted item is selected as the next insertion candidate (line 5). The
restrictiveness of an item is determined by its number of possible insertion places: the more
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possibilities, the less restricted1. When multiple items are deemed equally restricted, a
random item is selected. The definition of insertion options is provided in Section 4.3.1 in
addition to how their costs are calculated. For the selected item, emr, all insertion options
are generated (line 6). If there are no available options (line 7), an attempt is made to
open a new bin (lines 8-12). Only bins which will not result in exceeding the bin area limit
Alim are eligible (lines 8-9). If possible, a new and empty cutting pattern is created with
a random eligible bin (lines 10-11) and the set of insertion options is updated (line 12). If
the item can be inserted (line 13), all options are evaluated (line 14) and eventually the
item is inserted into the solution (lines 15-18). Most of the time, the cheapest option is
selected in a greedy fashion, but sometimes the best option are blinked over. The concept
of blinks is explained in Section 4.3.2. Regardless of whether a successful insertion takes
place, item emr is removed from Ẽ as it has now received a chance at insertion (line 19).
Once every item has been given a chance to be inserted, a recreated solution S′ is returned
(line 20).

4.3.1. Insertion Options

An insertion option defines how exactly an item is inserted into a leftover node. If 90◦

rotation is allowed, there are two possible orientations for each item. Due to the guillotine
constraint, each feasible orientation of an item in a leftover node, in turn, generates two
insertion options depending on the direction of the first cut (vertical or horizontal). As
a result, there are at most four different ways of inserting an item into a leftover node.
An illustrative example of these four possibilities is shown in Figure 6. For each excluded
item, all leftover nodes capable of fitting the item are considered.

All insertion options have an associated cost. This cost is used as a measure of an
option’s desirability and is calculated using Equation 1. Inserting items not only consumes
existing leftover nodes, but also generates new ones. The cost of an insertion option o
corresponds to the difference in total leftover value before and after the insertion. Each
leftover node thus has a corresponding value (Equation 2) and the aim is to minimize the
loss in value resulting from insertion.

nu
o : leftover node used by insertion option o

N c
o : set of leftover nodes created by insertion option o

α : leftover area value exponent

cost(o) = value(nu
o )−

∑
n∈Nc

o

value(n) (1)

value(n) = (widthn · heightn)α (2)

As shown in Equation 2, the value of a leftover node increases polynomially with
respect to area. This is to encourage the heuristic to preserve large contiguous leftover
areas instead of many smaller ones. Generally speaking, it will be easier to pack items
into few, but larger, leftover nodes rather than many small ones. In Figure 6, option (b)

1Determining the most restricted item can be performed in linear time (O(n)) by caching the insertion
options for all excluded items in a table and performing updates throughout the recreate phase.
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has the lowest cost since it preserves the largest leftover value.
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Figure 6: Four options of inserting an item into a leftover node (widthnu
o

= 4, heightnu
o

= 3, α = 2,
2BP|R|G).

The value of exponent α has an impact on the behavior of the algorithm because it
defines the ordering of insertion options. Making this value too large can lead to the
creation of very few well-sized leftover areas. It will ignore many medium-sized leftover
nodes and only care about a few large ones. On the other hand, setting the value of α too
small can be detrimental for preserving large leftover areas.

4.3.2. Blinks

Always selecting the best option would result in a deterministic recreate phase and
may lead to making the same bad decisions over and over again. To combat this, it is
sometimes necessary to turn a blind eye to an insertion option. The concept of blinks was
first introduced by Christiaens and Vanden Berghe [6] in a state-of-the-art heuristic for
solving Vehicle Routing Problems. The general idea, however, is also applicable here.

In a pure best-fit, the best option is always selected. But with blinks, there is a small
chance for an option to be ignored. Blinking rate β defines the likeliness of skipping over
an option. Equation 3 shows the chance of an option being selected based on its rank r.
A value for β of 0.05, for example, means each option has a 5% chance of being ignored.

p(r) = (1− β)β(r−1) r ∈ {1, ...,∞} (3)

Blinking exhibits the same behavior as Heuristic-Biased Stochastic Sampling, introduced
by Bresina [3], with an exponential bias function. However, as Christiaens and Van-
den Berghe [6] note, blinking is more efficient since there is no need to sort options based
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on their fitness.

4.4. Evaluation

After each ruin and recreate iteration, the solution needs to be evaluated. This is
accomplished by determining the quality of the solution in question, as explained in Section
4.4.1. Based on this quality, the solution is either accepted or rejected using the Late-
Acceptance Hill-Climbing metaheuristic, which is described in Section 4.4.2.

4.4.1. Solution Quality

Due to bin area limit constraints, the recreate phase will most likely be unable to
incorporate all items into the solution. The goal, therefore, is to guide the heuristic
towards a feasible solution. Equation 4 describes how two solutions are compared against
each other.

ES : set of excluded items in solution S
N l

S : set of leftover nodes from cutting patterns in C in solution S
ae(S) :

∑
e∈ES

widthe · heighte

vl(S) :
∑

n∈N l
S

value(n)

compare(S1, S2) =


91 if ae(S1) < ae(S2) //S1 superior

1 if ae(S1) > ae(S2) //S2 superior

91 if ae(S1) = ae(S2) and vl(S1) > vl(S2) //S1 superior

1 if ae(S1) = ae(S2) and vl(S1) < vl(S2) //S2 superior

0 otherwise //equal

(4)
A solution is always superior if it excludes less item area. If two solutions include

the same item area, the one with the highest total leftover value is superior. Therefore,
leftover value can be viewed as a tiebreaker in the evaluation of solutions. Note that,
despite the fact that the objective is to minimize the total bin area, this factor is not
explicitly included in the cost function. Total bin area is irrelevant so long as it remains
below the limit. As mentioned in Section 4.1, the limit is lowered every time a new feasible
solution is reached.

4.4.2. Late-Acceptance Hill-Climbing

GDRR employs the Late Acceptance Hill-Climbing (LAHC) metaheuristic, introduced
by Burke and Bykov [4]. This local search algorithm accepts non-improving moves when
a candidate solution is better than the best solution a certain number of iterations ago.
The pseudocode in Algorithm 3 shows how LAHC is implemented.

The main argument for using LAHC is its scale independence. Given that LAHC is
insensitive to the scale of the objective function, the metaheuristic does not need to be
tuned on an instance-specific basis. This is a major advantage over metaheuristics that
make use of cooling schemes, such as Simulated Annealing.

Furthermore, since solutions are accepted based on their superiority with respect to
previous solutions, no absolute difference in cost is needed. The only requirement is being
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able to compare two costs. No delta value is necessary. This allows for the easy use of
tiebreakers, such as the one outlined in Section 4.4.1, where the amount of included item
area always dominates leftover value.

The final argument for using LAHC is that there is only a single parameter to tune:
the history length (Lh). This parameter defines how far back to look when evaluating a
solution.

Algorithm 3 GDRR

Input: A starting solution S = {C,E} where C is a set of cutting patterns
and E is a set of excluded items, bin area limit Alim,
history length Lh, the average number of nodes to remove µ,
and the current best solution Sbest

Output: The best (complete) solution Sbest

1: function gdrr(S,Alim,Lh, µ, Sbest)
2: for all k ∈ {0, ...,Lh − 1} do Sk ← S

3: i← 0
4: S∗ = {C∗, E∗} ← S //local optimum (incomplete)

5: while no stopping criteria met do
6: S′ ← ruin(S∗,Alim, µ)
7: S′ ← recreate(S′,Alim)
8: v ← i mod Lh
9: if compare(S′, Sv) ≤ 0 or compare(S′, S∗) ≤ 0 then //solution accepted

10: S∗ ← S′

11: if compare(S∗, Sv) < 0 then //fitness array updated

12: Sv ← S∗

13: i← i+ 1

14: if E∗ = Ø then //complete solution reached

15: Sbest ← S∗

16: A′
lim ←

∑
c∈C∗ Ac

17: Snext ← ruin(Sbest,A′
lim, 0)

18: Sbest ← gdrr(Snext,A′
lim,Lh, µ, Sbest)

19: return Sbest

Algorithm 3 provides a high-level overview of GDRR. As mentioned in Section 4.1, the
heuristic will continuously attempt to fit all items inside the bins while respecting the bin
area limit constraint. This limit is lowered each time the heuristic is able to construct a
feasible solution.

The LAHC fitness array is initially filled entirely with the starting solution (line 2).
This array keeps track of the last Lh best solutions. During each local search iteration, the
solution is partially destroyed and rebuilt (lines 6-7) according to the procedures described
in Sections 4.2 and 4.3. Index v corresponds to the index of the first element in the fitness
array. Instead of shifting all elements of the fitness array every time a new solution is
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accepted, the head of the array is moved (line 8). This is similar to how a circular buffer
works. In order for a modified solution (S′) to be accepted, it must either be superior
or equal to the best solution Lh iterations ago (Sv) or improve upon the local optimum
(S∗) (lines 9-10). The fitness array is only updated with improving values (line 11-12).
The implementation of LAHC is analogous to that outlined in Burke and Bykov [4], but
with one major exception. Counter i is only incremented when a solution is accepted
(line 13). This is in contrast to Burke and Bykov’s original LAHC, where the counter is
always incremented. The main motivation behind this decision is to avoid the heuristic
from becoming a pure hill-climbing algorithm in later stages and thus easily getting stuck
in local optima.

If a solution is obtained that has no excluded items (line 14), GDRR has reached its
current goal. When this occurs, the best complete solution Sbest is updated (line 15), a
new bin area limit A′

lim is calculated based on the total bin area of Sbest (line 16) and a
starting solution for the next goal Snext is created which complies with this new limit (line
17). Finally, GDRR is ‘restarted’ for the next goal (line 18). Once a stopping criterion is
met, the best complete solution is returned (line 19).

In essence, the heuristic continuously strives towards feasibility with an iteratively
lowering bin area limit. To initiate the optimization, Algorithm 3 can be called with an
empty S (no cutting patterns and all items excluded) and with Alim set to ∞. There is
no need for a separate algorithm to create an initial solution.

4.5. Multithreading

Multithreading can help to improve the performance of the heuristic and makes use
of the capabilities of modern processors. Each thread runs its own separate instance
of GDRR, but a single global bin area limit is shared across all threads. This means
that once one thread reaches a feasible solution, the limit is lowered across all threads.
Solutions themselves are, by contrast, not shared between threads. This is mainly to
preserve diversity.

The multithreaded implementation is largely analogous to Algorithm 3. The only
major difference is that the bin area limit is not only lowered when the heuristic reaches a
feasible solution (lines 12-14), but rather whenever any thread reaches a feasible solution
at the current limit. It goes without saying that the best feasible solution among all
threads is saved.

Threads are almost entirely independent and only influence each other indirectly.
There are, for example, no explicit mechanisms in place to avoid duplicate searched areas.
Due to the vast search space and the heuristic containing a number of stochastic elements
(e.g. blinks), there is no real need for such mechanisms.

Multithreading is primarily used to maintain diversity, not necessarily to accelerate
execution speed. The use of multithreading is particularly beneficial for instances with
many different bins. At later stages of the optimization, solutions are often too fixed to
significantly change the combination of used bins. Multithreading helps overcome this
issue since different threads can have solutions that are close in terms of quality, but
consist of very different combinations of bins. This level of diversity would be difficult to
achieve with only a single thread, as it would require very extreme ruin procedures.
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5. Computational Results

To evaluate the performance of GDRR, the algorithm was tested on a number of
different benchmarks from the literature. These benchmarks contain datasets with both
identical and heterogeneous sets of bins. Oliveira et al. [26] provides a central repository
for a large number of cutting and packing datasets from the literature. All datasets
included in the repository are formatted in the same structure, which saves a lot of time
when testing across a number of different benchmarks.

Section 5.1 defines how the parameters of GDRR were configured for the computational
experiments. The performance of the algorithm is then evaluated in Sections 5.2-5.5.
Finally, Sections 5.6 and 5.7 analyze the impact of multithreading and calculation time on
the performance of GDRR. All experiments were conducted on an Intel Xeon Gold 6240
CPU (2.6GHz) with 8GB of RAM. For the comparisons in Sections 5.2-5.5, GDRR was
configured to use 8 threads and 600 seconds of runtime. Solutions for all datasets tested
in the comparison are included as an online supplement of this paper.

5.1. Parameters

GDRR has a number of parameters which must be configured. The tuning of these
parameters was conducted using the dataset from Ortmann et al. [27]. This dataset was
chosen because it contains a large variety of instances and has variable-sized bins. Hetero-
geneous bins enable gradual improvements in solution quality to be visible. All parameters
are tuned to achieve best results when optimizing for 600 seconds and 8 threads. Param-
eters are fixed and varied one by one to examine their individual effect on the behavior
of the algorithm. However, the history length (Lh) and the average number of removed
nodes (µ) were tuned as a pair since they are so closely related. The parameters listed
below are used throughout the experiments:

• Leftover valuation power: α
In Section 4.3.1, parameter α was defined as the power with which to multiply
the area of a leftover node in order to derive its value. The leftover value is not
only used to evaluate insertion options, but also as a tiebreaker when determining
a solution’s quality (Section 4.4.1). A greater α will favor few, but large, leftover
areas. When α is smaller, many medium-sized leftover pieces are not penalized as
much. Experiments show that the value of α has a minimal impact so long as it is
greater than 1. A value of 1.2 resulted in the best overall performance.

– α = 1.2

• History Length: Lh
Lh determines the length of the history queue in LAHC. The best value for Lh
depends largely on the size of the instance. The larger an instance, the shorter
the optimal history length. This is because larger instances result in less ruin and
recreate iterations per second and generally have more diverse neighborhoods. Pre-
liminary experiments resulted in the following rules of thumb:

– 0 < #items ≤ 100: Lh = 2000
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– 100 < #items ≤ 300: Lh = 1000

– 300 < #items ≤ 500: Lh = 500

• Average number of removed nodes: µ
As with Lh, the optimal value of µ depends on the instance size. Ruining the solution
less significantly results in more iterations per second, which is beneficial for larger
instances. Preliminary experiments showed that the following values for µ are a
suitable choice:

– 0 < #items ≤ 100: µ = 8

– 100 < #items ≤ 300: µ = 6

– 300 < #items ≤ 500: µ = 4

• Blink rate : β
Across the dataset, a blinking chance of 5% was deemed to be a good balance between
greediness and randomness.

– β = 0.05

5.2. Results for 2BP|O|G
To compare the performance of GDRR for the 2BP with guillotine cuts and no rotation

of items, the well-known instances from Berkey and Wang [1] (classes 1-6) and Lodi et al.
[21] (classes 7-10) are used. Each class has ten instances of 20, 40, 60, 80 and 100 items.
As a result, the dataset contains a total of 500 instances.

A comparison between GDRR and other heuristics in the literature is presented in
Table 1. The sum of bins for each instance category is displayed. As Cui et al. [11]
note, the majority of instances from this dataset have already been solved to optimality.
Therefore, the differences between algorithms might seem small. The comparison includes
a partial enumeration heuristic (ENH) by Lodi et al. [23], a constructive heuristic (CHBP)
by Charalambous and Fleszar [5], a hybrid heuristic algorithm (HHA) by Hong et al. [16],
the critical fit insertion heuristic (CFIH) by Fleszar [13] and the hybrid heuristic with
triple block patterns (HHTB) by Cui et al. [11]. For all of these heuristics, the best results
reported in each paper are presented in the comparison.

The proposed heuristic achieves the best scores in each category. However, it should
be noted that, with the exception of ENH[23], GDRR has longer runtimes than most of
the other algorithms. Since many of these algorithms are based heavily on constructive
approaches their runtimes are around or under the 1-minute mark.
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Class Number of items GDRR ENH [23] CHBP [5] HHA [16] CFIH [13] HHTB [11]

1

20 71 71 71 71 71 71
40 134 134 134 134 135 134
60 200 200 201 201 201 200
80 275 275 275 275 275 275
100 317 317 321 320 322 317
All 997 997 1002 1001 1004 997

2

20 10 10 10 10 10 10
40 19 20 20 19 20 20
60 25 25 26 25 27 25
80 31 32 33 31 32 31
100 39 39 39 39 40 39
All 124 126 128 124 129 125

3

20 52 54 52 52 53 52
40 94 96 97 94 96 94
60 139 140 140 140 141 139
80 189 190 196 192 195 189
100 223 225 230 228 226 223
All 697 705 715 706 711 697

4

20 10 10 10 10 10 10
40 19 19 19 19 19 19
60 24 25 25 25 25 25
80 31 33 33 32 33 31
100 37 39 39 38 39 37
All 121 126 126 124 126 122

5

20 65 66 65 65 66 65
40 119 119 121 119 120 119
60 180 181 183 181 182 180
80 247 247 247 247 248 247
100 282 286 288 287 290 282
All 893 899 904 899 906 893

6

20 10 10 10 10 10 10
40 17 19 19 18 19 17
60 21 22 22 22 22 21
80 30 30 30 30 30 30
100 32 35 34 35 34 32
All 110 116 115 115 115 110

7

20 55 55 55 55 56 55
40 111 113 112 111 115 111
60 158 159 160 159 161 158
80 230 232 233 232 232 231
100 271 275 275 273 274 271
All 825 834 835 830 838 826

8

20 58 58 58 58 60 58
40 113 113 114 113 116 113
60 161 162 163 162 165 161
80 224 226 226 225 227 224
100 277 280 279 279 281 277
All 833 839 840 837 849 833

9

20 143 143 143 143 143 143
40 278 278 279 278 278 278
60 437 437 438 437 437 437
80 577 577 577 577 577 577
100 695 695 695 695 695 695
All 2130 2130 2132 2130 2130 2130

10

20 42 44 44 43 43 43
40 74 74 74 74 75 74
60 101 102 103 102 104 101
80 128 130 130 130 132 128
100 158 159 163 160 163 159
All 503 509 514 509 517 505

Total bins: 7233 7281 7311 7275 7325 7238

Table 1: Results for the 2DBP|O|G benchmark from Berkey and Wang [1] and Lodi et al. [21]
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Class Number of items GDRR CHBP [5] A-B [29] SVCRG [10] CFIH [13] HHTB [11]

1

20 66 66 66 66 66 66
40 128 129 129 128 129 128
60 195 195 195 195 195 195
80 270 271 270 270 271 270
100 313 314 314 314 314 313
All 972 975 974 973 975 972

2

20 10 10 10 10 10 10
40 19 19 19 20 19 20
60 25 25 25 29 25 25
80 31 31 31 33 32 31
100 39 39 39 40 39 39
All 124 124 124 132 125 125

3

20 47 48 49 47 48 47
40 92 94 94 92 94 92
60 134 136 137 135 136 134
80 183 186 188 184 185 183
100 219 223 223 223 223 219
All 675 687 691 681 686 675

4

20 10 10 10 10 10 10
40 19 19 19 19 19 19
60 23 25 25 25 25 25
80 30 33 31 31 33 31
100 37 38 37 38 38 37
All 119 125 122 123 125 122

5

20 59 59 60 59 59 59
40 114 115 115 114 117 114
60 173 176 176 174 175 173
80 239 240 243 240 241 238
100 277 282 284 281 281 277
All 862 872 878 868 873 861

6

20 10 10 10 10 10 10
40 16 18 18 19 18 18
60 21 21 21 21 21 21
80 30 30 30 30 30 30
100 32 34 34 34 34 32
All 109 113 113 114 113 111

7

20 52 52 52 52 52 52
40 102 104 103 103 106 101
60 145 148 148 145 151 145
80 208 211 211 210 214 207
100 249 255 252 251 258 248
All 756 770 766 761 781 753

8

20 53 53 53 53 53 53
40 104 105 104 104 105 103
60 146 150 150 147 152 146
80 204 210 209 207 211 203
100 252 258 256 254 258 252
All 759 776 772 765 779 757

9

20 143 143 143 143 143 143
40 275 275 275 275 275 275
60 435 435 435 435 435 435
80 573 573 573 573 573 573
100 693 693 693 693 693 693
All 2119 2119 2119 2119 2119 2119

10

20 41 41 41 41 42 41
40 72 73 73 73 73 73
60 99 100 100 100 101 99
80 124 130 129 126 129 126
100 155 159 161 159 159 155
All 491 503 504 499 504 494

Total bins: 6986 7064 7063 7035 7080 6989

Table 2: Results for the 2DBP|R|G benchmark from Berkey and Wang [1] and Lodi et al. [21]
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5.3. Results for 2BP|R|G
To compare the performance of the heuristic for the 2BP with guillotine cuts and 90◦

rotation of items, once again the dataset by Berkey and Wang [1] and Lodi et al. [21] is
used. In addition to some of the heuristics from Section 5.2, this comparison also includes
an agent-based approach (A-B) by Polyakovsky and M’Hallah [29] and the sequential value
correcting heuristic (SVCRG) by Cui et al. [10].

Unlike in Section 5.2, GDRR does not always come out on top here. On average the
proposed heuristic achieves the best quality solutions, but there are some classes where
HHTB is superior.

5.4. Results for 2VSBP|O|G
The performance on instances with a heterogeneous set of bins is tested using three

well-known benchmarks. In this comparison, the average utilization is compared across
different algorithms. Utilization γ corresponds to the percentage of area of the bins that
are packed with items. A utilization of 95%, for example, corresponds to 5% wasted bin
area.

γ =
total item area

total bin area
· 100%

All the results from other heuristics in the tables are taken from the comparison per-
formed by Hong et al. [16]. Table 3 provides a comparison for the instances created by
Hopper and Turton [17] which consist of three problem categories, each containing five
instances. The second dataset was introduced by Pisinger and Sigurd [28] and is divided
into ten classes, the results for which are summarized in Table 4. Note that this dataset
does not define limits on the quantity of bins of each type. The last dataset, introduced
by Ortmann et al. [27], contains instances based on nice (relatively normal) and patholog-
ically (unusual, more extreme) sized items. These instances range from 25-500 items and
2-6 different bin sizes. Table 5 provides the results compared to other heuristics. For all of
these datasets and classes, GDRR always achieves the best solutions in terms of quality.

Class GDRR FFDH[8] BFDH[9] JOIN[24] FCOG[21] BFDH*[2] SAS[25] SASm[27] BFS[27] HHA[16]

M1 98.4 93.5 93.5 86.8 94.9 94.9 83.5 91.6 95.5 98.4
M2 97.2 87.5 88.8 82.8 89.6 89.6 81.7 88.0 90.0 95.6
M3 98.0 92.0 92.6 85.5 93.6 93.6 86.8 91.8 94.9 97.4

Average utilization [%]: 97.85 91.00 91.63 85.03 92.70 92.70 84.00 90.47 93.47 97.13

Table 3: Results for the 2VSBP|O|G benchmark from Hopper and Turton [17]

5.5. Results for 2VSBP|R|G
To the best of our knowledge, there are currently no algorithms available in the liter-

ature with which results for the 2BP variant with 90◦ rotation and heterogeneous sets of
bins can be compared. Since GDRR supports this variant, experiments were run on the
same three datasets in Section 5.4. The solutions are included in the online supplement
to facilitate comparisons in future research.
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Class GDRR FFDH[8] BFDH[9] JOIN[24] FCOG[21] BFDH*[2] SAS[25] SASm[27] BFS[27] HHA[16]

I 94.1 86.3 86.6 83.0 87.3 87.4 79.4 86.3 88.6 91.5
II 96.5 83.7 83.7 80.9 85.2 85.0 80.1 82.2 85.1 96.3
III 91.5 81.1 81.7 76.7 81.9 81.9 69.6 75.7 82.2 86.6
IV 93.5 80.0 80.0 79.1 82.7 82.1 76.0 78.0 82.0 91.7
V 89.3 80.4 81.1 77.6 81.3 81.2 72.6 78.3 81.4 84.6
VI 92.7 79.1 79.3 78.3 80.7 80.5 76.1 77.1 79.5 90.2
VII 90.1 79.9 80.2 79.6 80.8 80.6 74.0 80.4 80.9 86.9
VIII 89.4 80.7 81.1 74.2 81.3 81.2 76.4 79.5 81.6 85.9
IX 75.6 72.8 72.6 72.1 72.6 72.8 71.6 72.9 73.0 74.3
X 93.0 83.3 83.8 79.3 85.4 84.6 73.2 79.4 85.5 90.3

Average utilization [%]: 90.66 80.73 81.01 78.08 81.92 81.73 74.90 78.98 81.98 87.83

Table 4: Results for the 2VSBP|O|G benchmark from Pisinger and Sigurd [28]

Class GDRR FFDH[8] BFDH[9] JOIN[24] FCOG[21] BFDH*[2] SAS[25] SASm[27] BFS[27] HHA[16]

Nice25i 99.8 73.9 73.6 70.6 73.9 73.6 68.3 71.8 73.6 94.3
Nice50i 93.5 76.7 76.7 73.3 77.9 77.7 70.8 73.1 77.8 89.2
Nice100i 91.8 79.4 79.4 77.5 79.9 79.4 75.7 76.3 79.4 88.3
Nice200i 92.6 82.0 82.0 81.5 84.5 84.5 78.5 79.4 84.5 91.0
Nice300i 93.3 85.8 85.8 83.3 86.0 86.5 80.2 81.7 86.8 92.0
Nice400i 94.3 85.1 85.1 82.7 86.6 85.7 80.2 81.0 85.7 92.8
Nice500i 94.1 87.2 87.2 84.8 87.7 87.7 81.8 83.8 87.7 93.1

Nice 94.04 81.44 81.40 79.10 82.35 82.15 76.50 78.15 82.21 91.52

Path25i 100 76.3 76.3 73.9 77.9 77.6 72.2 74.4 78.3 97.2
Path50i 98.1 76.4 78.6 74.2 81.6 79.4 72.4 75.6 81.9 94.9
Path100i 95.5 79.7 79.7 77.8 83.2 81.3 72.4 75.8 83.5 93.5
Path200i 94.6 84.1 84.0 81.8 88.0 85.9 77.7 79.0 87.5 93.3
Path300i 95.5 82.9 82.9 82.7 87.0 86.0 81.4 81.7 87.3 94.9
Path400i 95.4 82.7 82.7 82.3 89.6 87.0 79.9 80.1 88.5 94.8
Path500i 96.6 82.9 82.9 81.2 88.7 86.4 81.3 82.4 86.7 94.0

Path 96.43 80.71 81.01 79.13 85.14 83.37 76.76 78.43 84.81 94.66

Average utilization [%]: 95.24 81.22 81.35 79.26 83.89 82.91 76.78 78.43 83.66 93.10

Table 5: Results for the 2VSBP|O|G benchmark from Ortmann et al. [27]

5.6. Impact of multiple threads

To test the impact of multithreading on the solution quality, experiments were run
with a subset of instances from Ortmann et al. [27]. From each class, the first instance
with 6 different bins was selected. This decision was made because a greater variety of bins
allows for more gradual differences in solution quality to be visible. The results are shown
in Figure 7. As expected, the first few extra threads result in a significant performance
improvement. Increasing the number of threads from one to four, for example, results
in an improvement of 0.5% in average utilization. However, adding additional threads
quickly leads to diminishing returns.

5.7. Impact of calculation time

The impact of available calculation time on solution quality was tested using the same
subset of instances detailed in Section 5.6. Figure 8 shows how the heuristic scales with
respect to calculation time. Despite improvements slowing down, there are still gains to be
had, even after 30 minutes. This is most likely because the history length (Lh) was scaled
with respect to the calculation time. When running GDRR for 5 minutes, for example,
Lh was set to half of the value described in Section 5.1.
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Figure 7: Impact of multithreading on solution quality (600s of runtime)
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Figure 8: Impact of calculation time on solution quality (8 threads)

6. Conclusion

This paper introduced GDRR, a heuristic for solving the 2D bin packing problem with
guillotine constraints. Variants of the problem with a heterogeneous set of bins (variable-
sized) and 90◦ rotation of items are also supported. The heuristic contains a ruin and
recreate procedure which iteratively attempts to improve the solution. The search can be
described as being goal-driven since it continuously strives to create feasible solutions with
an ever decreasing limit of available bin area. To escape local optima, GDRR employs
the Late Acceptance Hill-Climbing metaheuristic. Unlike most other heuristics for this
problem, the focus lies primarily on the improvement phase rather than the constructive
aspect. It is capable of consistently producing the best results in terms of solution quality
across several benchmarks in the literature.

Future research may include exploring the 2BP variant without guillotine constraint
and other cutting and packing problems with real-world constraints. Finally, it would also
be interesting to investigate the applicability of a goal-driven approach in other types of
problems.
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