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Abstract
Passive smartphone measures hold significant potential and are increasingly employed in psychological and biomedical research to 
capture an individual's behavior. These measures involve the near-continuous and unobtrusive collection of data from smartphones 
without requiring active input from participants. For example, GPS sensors are used to determine the (social) context of a person, 
and accelerometers to measure movement. However, utilizing passive smartphone measures presents methodological challenges 
during data collection and analysis. Researchers must make multiple decisions when working with such measures, which can result 
in different conclusions. Unfortunately, the transparency of these decision-making processes is often lacking. The implementation of 
open science practices is only beginning to emerge in digital phenotyping studies and varies widely across studies. Well-intentioned 
researchers may fail to report on some decisions due to the variety of choices that must be made. To address this issue and enhance 
reproducibility in digital phenotyping studies, we propose the adoption of preregistration as a way forward. Although there have been 
some attempts to preregister digital phenotyping studies, a template for registering such studies is currently missing. This could be 
problematic due to the high level of complexity that requires a well-structured template. Therefore, our objective was to develop a 
preregistration template that is easy to use and understandable for researchers. Additionally, we explain this template and provide 
resources to assist researchers in making informed decisions regarding data collection, cleaning, and analysis. Overall, we aim to 
make researchers' choices explicit, enhance transparency, and elevate the standards for studies utilizing passive smartphone measures.

Keywords Preregistration · Digital phenotyping · Open science · Reproducibility · Ambulatory assessment · Transparency · 
Mobile sensing

In recent years, there has been a growing trend in utilizing dig-
ital phenotyping to capture and analyze individuals' behavior. 
Digital phenotyping involves the real-time and moment-by-
moment quantification of an individual's behavioral patterns 
using data collected from personal digital devices (Torous 
et al., 2016). In particular, smartphones are capable of con-
tinuously capturing a wide range of data sources, includ-
ing GPS locations, Wi-Fi connections, calls, text messages, 
movement patterns, and app usage throughout a study. The 
use of passive measures is promising due to their ability to 
both minimize participant burden and capture behavior in a 
real-world context. This makes them particularly valuable for 
researchers seeking to understand behavioral patterns in natu-
ral settings, and thus can provide insights that complement 

laboratory-based experiments. Overall, passive measures are 
expected to transform health care, education, and clinical 
practice (Huckvale et al., 2019; Jongs, 2021; Seiferth et al., 
2023; Velozo et al., 2022), providing new opportunities to 
study phenomena relevant to a wide range of research fields.

The promise of implementing digital phenotyping methods 
at a large scale across different contexts and fields of study 
comes with a growing need for guidance on what counts as 
best practice. Passive measures present numerous methodo-
logical challenges, particularly in the areas of data collection, 
cleaning, and analysis (Davidson, 2022; Hicks et al., 2019; 
Huckvale et al., 2019; Onnela, 2021; Velozo et al., 2022). 
Even before data collection begins, researchers must concep-
tualize the constructs they are interested in studying, which 
can be particularly challenging in digital phenotyping studies 
where constructs are often poorly defined (Huckvale et al., 
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2019; Langener et al., 2023; Mohr et al., 2017). Addition-
ally, researchers face critical decisions when selecting the 
device and app to capture individuals' behavior (Davidson, 
2022; Velozo et al., 2022). Further, due to the large amount 
of data generated, thorough data-cleaning procedures are nec-
essary (Hicks et al., 2019). Lastly, often more computation-
ally intensive methods, such as machine learning models, are 
used, which require various analytical decisions. For example, 
researchers must determine how to divide data into training 
and test sets and how to tune hyperparameters to optimize 
model performance (Yang & Shami, 2020).

Previous research has shown that different decisions made 
during the research process can result in different conclu-
sions. For instance, the choice of a specific time scale for data  
summarization and analysis has been shown to influence the 
accuracy of prediction (Bos et al., 2019; Cai et al., 2018;  
Heijmans et al., 2019; Langener et al., 2024a, 2024b; Sun et al.,  
2023). Moreover, the method chosen for data preprocessing 
and different modeling decisions can impact, for example, the 
accuracy of predicting sleep quality, mood, and depression 
(Niemeijer et al., 2022). Hence, it is essential to transparently 
document the choices made in order to ensure the reproduc-
ibility of findings (Wrzus & Schoedel, 2023).

Implementing open science practices in digital phenotyp-
ing can improve transparency, reproducibility, and replica-
tion. Specifically, preregistering study design and analysis 
plan encourages researchers to make informed decisions  
and report their analysis choices and findings (Nosek et al., 
2018). Preregistration involves registering research questions,  
analysis plans, and analytical steps in advance, ensuring that 
these choices are not influenced by the study outcomes (Nosek  
et al., 2018). This process aids in identifying analyses that 
were planned a priori versus those conducted post hoc (Nosek 
et al., 2019). Moreover, preregistration offers the advantage 
of detecting questionable research practices and minimizing 
the impact of publication bias by making all studies discover-
able (Nosek et al., 2019). In addition, the effort involved in 
planning a study and preregistering those plans may reduce 
the likelihood of problems arising later while conducting 
the study and analysis. Unfortunately, despite the numerous 
benefits, preregistration is rarely practiced in studies utilizing 
passive smartphone measures. However, recently, researchers 
have started to point out that preregistration is an important 
way to enhance the usefulness of digital phenotyping studies 
(Davidson, 2022; Velozo et al., 2022).

The limited adoption of preregistration might be attrib-
uted, in part, to the challenge of anticipating all of the fork-
ing paths in the vast garden of digital phenotyping research. 
Unlike other research fields, where templates exist to assist 
researchers in considering specific decisions ahead of time 
(e.g., Kirtley et al., 2021), such a template is currently missing 
for digital phenotyping studies. This absence creates a hurdle 
for researchers who want to preregister their study plans.

In this paper, we present an accessible and user-friendly 
preregistration template that guides researchers in making 
informed decisions regarding data collection, cleaning, and 
analysis. The purpose of this tutorial paper is to serve as a 
narrative companion guide, explaining the considerations 
and providing further information behind the main topics for 
each section of the preregistration template. For each topic, 
we aim to emphasize the importance of transparent commu-
nication of how a given smartphone sensing study will be 
conducted and the reasoning behind it. We specifically focus 
on research that uses passive smartphone measures. However, 
we believe that this template is easily adaptable for other pas-
sive data types, for example, coming from wearable devices 
such as smartwatches, pollution sensors, specific devices for 
measuring physiological parameters (heart rate, insulin), or 
research-grade accelerometers. It may also be a useful guide 
for passive non-worn data collection devices, from vehicle/
door counters to GPS devices mounted on bicycles to digital 
medicine bottle caps. By lowering the barriers for preregis-
tration, we aim to promote normative change toward sound 
scientific conduct among our research community who will 
embrace smartphone sensing methods over the next decades.

Process of developing a preregistration 
template

The development of the preregistration template began during 
a Hackathon named “Developing a template and tutorial for 
preregistering studies using passive smartphone measures” 
organized at the Society for the Improvement of Psychologi-
cal Science Conference 2023. A review of the existing lit-
erature was conducted, focusing on the challenges encoun-
tered when working with passive smartphone measures (e.g., 
Davidson, 2022; Hicks et al., 2019; Onnela, 2021; Velozo 
et al., 2022). Additionally, we incorporated literature that 
provides guidelines for the use of machine learning models, 
which are commonly employed in studies utilizing digital 
phenotyping (Collins et al., 2015). We were inspired by exist-
ing preregistration templates, such as the template designed 
for preregistering experience sampling method (ESM) studies 
(Kirtley et al., 2021), and aimed to extend them for digital 
phenotyping studies.

Proposed core elements of a preregistration 
template for studies using passive 
smartphone measures

In the remaining sections of this paper, we elaborate on the  
decisions that need to be made when dealing with passive  
smartphone measures, which are also incorporated in our 
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preregistration template. More specifically, we review each  
section and corresponding decisions required when filling 
out the template, providing explanations of their impor-
tance and the considerations that need to be addressed 
when making them. Our focus is on the sections and ele-
ments that hold particular importance for studies utilizing 
passive smartphone measures; thus, some elements are 
only briefly mentioned. A comprehensive version of the 
template and examples can be found on our OSF page: 
https:// osf. io/ jy7xg/. Researchers who want to use this 
template are invited to complete each section that applies 
to their research and then upload the template as an “open-
ended” registration in OSF.1 We discuss six core themes 
that are important when working with passive smartphone 
measures, which also form the basis of our template's 
structure: the (1) conceptualization of constructs and 
research question, (2) data collection and sampling plan, 
(3) data processing and feature engineering, (4) missing 
data handling, (5) data analyses, and (6) replicability and 
open science practices.

Conceptualization and research question

Before a study begins, researchers must make decisions 
about the design of their study. This section focuses on for-
mulating a clear research question and deciding on differ-
ent research designs (e.g., exploratory vs. confirmatory, idi-
ographic vs. nomothetic). We also consider the specification 
and operationalization of key constructs (see Textbox 1 for 
all proposed elements in our template, with those discussed 
in greater detail in this paper highlighted in bold).

Textbox 1 Proposed elements to preregister in the section 
“Conceptualization and research question”.

• Study information and research question
     o  Title

      o  Authors
      o  Subject/discipline
      o  Study purpose and (well-defined) research question
      o  Hypotheses
      o  Study type and blinding
      o  Study design
      o  Rationale for using passive sensing
• Operationalization of main constructs
      o  Main constructs of interest
      o  Assumptions

Bold topics are further detailed in this tutorial paper.

Study information and research question

Study purpose and (well‑defined) research question Providing 
clear information about the study aim and formulating a well-
defined research question is useful in all studies, but particu-
larly in digital phenotyping studies, which often gather large 
amounts of data. The research aim can fall into two primary 
categories: confirmatory, which involves the testing of specific 
hypotheses often using inferential statistics, or exploratory, 
where the objective is to find new patterns in the data, subse-
quently leading to the generation or modification of hypoth-
eses, models, and theories (Höfler et al., 2022). In exploratory 
approaches, researchers often seek correlations between pas-
sive measures and an outcome variable. Therefore, specifying 
a clear study purpose and a well-defined research question can 
be useful to limit the number of data patterns to be explored 
(Höfler et al., 2023). To make the research process transparent,  
the preregistration should indicate which part of the study is  
exploratory and which part is confirmatory (Höfler et al., 2023).

A common study purpose among researchers utilizing 
digital phenotyping data is developing a prediction model to 
predict a certain outcome. The primary goal is to develop a 
new prediction model, validate a prediction model, or both 
(Collins et al., 2015; Velozo et al., 2022). Studies aiming to 
develop a new prediction model typically involve some form 
of validation, often through the use of training and testing sets.

Study design The research methodology of a study can be 
further classified into two primary categories: idiographic and 
nomothetic (individualized vs. non-individualized). In nomo-
thetic approaches, researchers aim to make general observations/
predictions about the population under study. In contrast, idi-
ographic approaches target predictions customized to individuals 
over time (Molenaar, 2004; Molenaar & Campbell, 2009).

Operationalization of main constructs

Main constructs of interest The importance of conceptual 
clarity is widely acknowledged in psychological research 
(Bringmann et al., 2022). Conceptual clarity can be diffi-
cult to achieve when utilizing passive smartphone measures, 
where it is not always evident what is measured (Davidson, 
2022). Researchers must reflect on the main constructs of 
interest and define how they are operationalized.

Assumptions When using passive smartphone measures, 
researchers often make certain assumptions about what each 
measure represents. For example, previous studies used GPS 
data as a measure of social behavior. However, it is not yet 
clear which part of the social behaviors these measures cap-
ture and how accurately they capture the intended construct 
(Langener et al., 2023; Tsapeli & Musolesi, 2015). Often these 
assumptions are left implicit, making it difficult to build on 

1 It is our goal that the template will be included as part of the stand-
ard OSF preregistration options in the future.
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prior research (Langener et al., 2023). In addition, it is often 
unclear which data should be used as ground truth, making 
validation studies challenging (Roos et al., 2023).

To ensure robustness and a proper understanding of study 
results, it is necessary to know the constructs that passive 
measures are meant to capture and to validate assumptions 
about what passive measures capture. While conducting 
validation studies is a research objective on its own, it can 
be a good starting point to refer to previous studies that have 
examined the relationship between the passive measures and 
the constructs of interest. Using constructs that are opera-
tionalized in the same way across studies will help to com-
pare the results of different studies (Huckvale et al., 2019).

Data collection and sampling plan

Several decisions come into play during data collection, poten-
tially influencing the study outcome. This section delves into 
aspects such as the selection of devices and sensors, the fre-
quency of data collection, and the methodology used for par-
ticipant recruitment (see Textbox 2 for all proposed elements, 
with those discussed in greater detail highlighted in bold).

Textbox 2 Proposed elements to preregister in the section 
“Data collection and sampling plan”.

• Study context
      o  Time and location
      o  Study duration
• Device and sensor
      o  Devices
      o  Sensors
• Sampling strategy
• Participants
      o  Recruitment and study procedure
      o  Impact of your study
      o  Sample composition
      o  Sample size
      o  Stopping rule
      o  Outreach to the participants
• Data export, storage, and sharing
      o  Data export
      o  Data storage
      o  Data sharing (see Replicability and open science practices)
• Other data streams
• Secondary data analysis/using existing datasets
      o  Time of preregistration
      o  Explanation of existing data
      o  Knowledge about existing data
      o  Prior analysis performed

Bold topics are further detailed in this tutorial paper.

Study context

Time and location Different environments and season-
ality might have an impact on the collected data. For 
example, GPS or accelerometer data will probably differ 
if they were collected in a warm area relative to a cold 
area, because people may behave differently in warm areas 
(Mohr et al., 2017). Additionally, the variable of interest 
can be affected by seasonal effects (Digital Sensing Work-
shop Participants, Workgroup 3, 2023). To the extent that 
location data are informed by cell towers, they can also 
be less precise in rural areas or where there is otherwise 
poor coverage.

Device and sensor

Devices When using passive smartphone measures, 
researchers usually use different devices to collect the data. 
This decision is often driven by practical considerations, 
such as the compatibility of data collection apps only with 
Android devices, thereby excluding the use of iOS devices. 
The quality of data may vary across different devices, and  
suboptimal devices could introduce measurement error (Nelson  
et  al., 2020; Velozo et  al., 2022). Moreover, variations 
between devices can impact the interpretability of the col-
lected data (Davidson, 2022; Nelson et al., 2020).

In some studies, participants use their personal smart-
phones, while in others, they are provided with a smartphone 
(Harari et al., 2016). While providing smartphones might 
enhance data quality and standardize measures across par-
ticipants, it could impose an additional burden on the partici-
pants. Furthermore, participants may use a provided device 
differently from their own smartphone, potentially influ-
encing the results. Additionally, sometimes participants use 
multiple phones during the study or switch their phones dur-
ing the study period, which could introduce biases, as usu-
ally data from only one phone of a participant are collected 
during the study and should be checked by the researcher.

Sensors Researchers often use a variety of sensors to collect 
data (e.g., GPS, Bluetooth, or Wi-Fi), and multiple sources 
can even be used to collect the same information. For exam-
ple, if location data are the focus of the study, the native 
smartphone GPS might be used, along with additional data 
exported from the Google Maps timeline. In such cases, 
the exact source of the data collection may not be known 
to the researcher. Google, for example, uses nearby Wi-Fi 
networks, cell towers, and GPS for location services, which 
adds complexity to understanding data sources.

Measurement errors can arise in data collection 
depending on the app and sensors used (Davidson, 2022). 
Researchers should assess whether the chosen sensors and/
or app(s) used have been validated (Hicks et al., 2019). In 
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the preregistration, researchers are invited to reflect on the  
estimated reliability and accuracy of the measures (Davidson,  
2022; Nelson et al., 2020), and to justify why this level  
of reliability is suitable for the study design (Nelson et al., 
2020). While there are currently no standardized norms in 
the field for these evaluations, reflecting on the reliability 
of measures represents a proactive step toward establishing 
standards.

Sampling strategy

Passive smartphone measures can be continuously captured 
throughout the day. However, collecting data continuously, 
such as GPS coordinates, often leads to fast battery drain 
(Velozo et al., 2022). Consequently, researchers frequently 
decide to adopt alternative data collection approaches—by 
sampling at specific time intervals, when particular events 
occur, or a combination of both (Wrzus & Schoedel, 2023).

When researchers opt for data sampling, one common 
strategy is to establish a fixed time interval, such as every 
10 min, for data collection. Choosing an appropriate time 
scale requires careful consideration of the expected fluctua-
tions in the measured variables (Velozo et al., 2022). This 
determination can be made through theoretical reasoning or 
by conducting a pilot study (Velozo et al., 2022). A widely 
used guideline suggests that the sampling frequency should 
be at least twice the frequency of the smallest expected fluc-
tuation in the variable of interest (Bogdan, 2009), especially 
when considering that sampling frequency may be less than 
anticipated due to pushback from the underlying operating 
system (Currey & Torous, 2023; Niemeijer et al., 2023). 
Nevertheless, when deciding on a sampling frequency, the 
researcher should consider practical constraints, such as bat-
tery drain, which could reduce participant retention.

On top of that, researchers frequently employ event-triggered  
data collection. This method involves collecting data  
based on specific events or participant actions. For instance, 
during periods of increased movement, GPS coordinates 
may be recorded more frequently than when the participant 
remains at a particular location for an extended period.

A specific form of event-triggered data collection can be 
used when combining passive sensing with ESM (see also 
section Other data streams). When ESM and passive sensing 
are combined, passive sensing can be used to prompt partici-
pants to complete their ESM questionnaires. For instance, 
researchers can utilize passive sensing to trigger question-
naires based on specific contexts or behaviors of interest, 
such as drinking behavior. GPS data, for example, can be 
employed to automatically initiate a questionnaire when the 
participant enters a bar and is thus likely to drink (Ebner-
Priemer & Santangelo, 2024).

Participants

Recruitment and study procedure Passive smartphone 
measures present a hurdle for participant recruitment 
because often sensitive information, such as GPS data, is 
collected and battery drain may increase. As a result, par-
ticipating in such studies could be burdensome for some 
individuals. Therefore, building trust among the population 
being studied becomes a critical consideration. Some indi-
viduals may be hesitant to participate in a study involving 
such data, leading to potential biases in the studied popula-
tion (Wrzus & Schoedel, 2023).

Sample composition Furthermore, within a sample, het-
erogeneity often exists. Factors such as demographics and 
lifestyles can influence how people interact with their smart-
phones and how often they carry their phone with them. 
Given that many studies have limited sample sizes, they 
may struggle to account for this diversity. To address this, 
researchers should define their study sample based on their 
specific research question. When recruiting participants, 
researchers must evaluate how representative their sam-
ple is of the population that they aim to generalize to. It is 
crucial to assess whether the selected groups in the study 
adequately represent the diversity and characteristics of the 
population being studied (Digital Sensing Workshop Par-
ticipants, Workgroup 3, 2023). One strategy for obtaining a 
more diverse sample might be to offer the study in different 
languages and to have a contact person for participants to 
contact throughout the study.

Sample size In line with this, researchers must address the 
potential statistical inference issues that may arise when 
working with a small sample size—characterized by a small 
number of participants and/or a restricted number of meas- 
urement time points. A study with insufficient sample size 
could lead to underpowered results, diminishing the ability  
to detect meaningful effects (Davidson, 2022). Therefore, the  
sample size chosen and why it is appropriate to effectively 
answer the research question should be justified (Collins 
et al., 2015). When determining the sample size, it is help-
ful to consider the number and distribution of variables and 
the expected measurement error of the sensors used (Digital 
Sensing Workshop Participants, Workgroup 3, 2023), as well 
as doing a power analysis (Lafit et al., 2021).

Outreach to the participants Researchers often reach out to 
participants during the study. This is particularly relevant in 
intervention studies where researchers may engage with par-
ticipants to implement specific interventions. However, out-
reach may also be necessary even in nonintervention studies, 
such as when dealing with missing data to enhance adherence 
(Digital Sensing Workshop Participants, Workgroup 3, 2023). 
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Reaching out to participants might (unintentionally) impact 
the measured outcome (Digital Sensing Workshop Partici-
pants, Workgroup 3, 2023) and lead to behavior change. For 
instance, participants might alter their behavior if they feel 
observed based on the feedback received during outreach.

Furthermore, sometimes collected data are shared with 
participants, which might impact their behavior (Davidson, 
2022). If a commercial app is utilized for data collection, 
complete avoidance of data sharing with participants may 
be impossible, as they can often assess parts of their data 
through the app itself in a participant-friendly dashboard.

Data export, storage, and sharing

Data export Different strategies exist for exporting the col-
lected data. Some studies may require participants to manu-
ally send their data to the research team, introducing poten-
tial human error or biases. In contrast, in other studies, data 
export is automated through the data collection app, offering 
a more standardized approach.

Data storage Passive smartphone measures present a chal-
lenge in terms of privacy and security due to the lack of 
adequate regulations (Davidson, 2022; Velozo et al., 2022). 
Thus, it should be actively addressed how the data are 
stored in a safe way (Huckvale et al., 2019; Jagesar et al., 
2021; Mulder et al., 2018). Often researchers also decide to 
anonymize their data, which will be discussed in the section 
Data cleaning—anonymization. Another consideration here 
is that if data are uploaded to the cloud, the location of the 
servers could be in one or multiple other countries, which 
can require data processing agreements to be in place.

Other data streams

Researchers often integrate various data types alongside 
passive smartphone measures. When gathering additional 
data, it is essential to specify all the types of data collected 
and the conceptual relationship between the passive smart-
phone measures and other data sources.

For instance, a researcher might choose to administer 
pre- and post-questionnaires to assess clinical symptoms or 
psychological disorders, aiming to examine the differences in 
passive smartphone measures between distinct groups (e.g., 
Jongs et al., 2020). Moreover, researchers may use the experi-
ence sampling method (ESM) to actively capture symptoms 
and individuals' perceptions of specific situations throughout 
the day. When employing ESM, researchers may also ben-
efit from adhering to the (Pre)registration template for ESM 
research (for more information see Kirtley et al., 2021).

Secondary data analysis/using existing datasets

When using digital phenotyping, large data sets are often 
collected and used for multiple studies. When conducting 
analyses on existing datasets, researchers must be transpar-
ent about the data they have previously encountered and 
whether any analyses have been performed on them (for 
more information see also van den Akker et al., 2021). 
Researchers should openly acknowledge their familiarity 
with the dataset, especially those aspects that are relevant 
to their hypotheses. There are some scenarios that cross-
cut the distinction between preregistration before data 
are created and post-registering secondary data analyses 
(Kirtley et al., 2021). For instance, when a study project 
is designed to address not one single but multiple research 
questions, it may be too impractical to write one extensive 
registration. Users of the template may opt to preregister 
methods and primary hypotheses before data collection, 
and add further co-registrations of analyses planned after 
data collection has started but relevant trends in the data 
related to the hypotheses remain unknown (Benning et al., 
2019).

Data processing and feature engineering

Passive sensing collects a large amount of unstructured 
and private sensitive data, often requiring preprocessing 
before analysis. In this section, we delve into decisions to 
be made during feature creation, data anonymization, and 
quality control (see Textbox 3 for all proposed elements, 
with those discussed in greater detail highlighted in bold).

Textbox 3 Proposed elements to preregister in the section 
“Data processing and feature engineering”.

• Feature creation
      o  Automatically generated summary measures
      o  Summary measures calculated by the researcher
      o  Aggregation choices to compute features
      o  Overview of variables
• Data anonymization
• Quality control

Bold topics are further detailed in this tutorial paper.

Feature creation

Automatically generated summary measures Often the easi-
est data to gain access to and begin analyzing are the daily 
reported features by the digital sensing device developers. 
For example, in Apple’s ecosystem, the “Health App” can 
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report measures such as daily activity level, sleep data anno-
tated with sleep stages, resting heart rate, and more. These 
features are heavily processed from the raw data streams 
utilizing algorithms that researchers will likely never gain 
access to. Moreover, the algorithms used to develop these 
features can change over time, even within the course of a 
single study, heavily influencing the resulting feature values  
(Mohr et al., 2017). To enable reproducibility, it is criti- 
cal to document where a given data stream is derived from, 
any software or application versions associated with it, and 
where on the spectrum of minimally processed data to pre-
defined data summaries a given set of features lie (Onnela, 
2021; Velozo et al., 2022). These steps are not always pos-
sible given proprietary restrictions from companies produc-
ing consumer devices, but should be done to the best of a 
researcher's ability. For future studies, researchers should also 
aim to assess the validity of exported variables.

Summary measures calculated by the researcher The more 
common use case, however, is that researchers do not access 
data that have already been preprocessed on the device (i.e., 
online), but must do the preprocessing themselves, i.e., 
offline after the data collection. This step is often called 
feature extraction and, depending on the types of data to be 
preprocessed, requires many decisions by the researchers. 
For example, when working with app usage data, research-
ers are usually not interested in a single type of app (such as 
WhatsApp, Instagram, or TikTok), but in broader, psycho-
logically meaningful categories (e.g., communication and 
social media). Accordingly, researchers have to categorize 
individual apps in a first step (Sust et al., 2023). It is best to 
specify in the preregistration whether a ready-made schema 
(e.g., Schoedel et al., 2022) is to be used or a new, individual 
scheme is to be created. Another example is the preprocess-
ing of GPS data, which are often stored in raw form as lati-
tude and longitude (e.g., 48.156016, 11.583221). Research-
ers usually enrich these coordinates in a first step with 
information from location databases (e.g., HERE, Open-
StreetMap, Google Maps) to extract indicators for mobility 
behaviors, such as places visited (e.g., restaurants, cafés, 
shops, etc.; see Müller et al., 2022, for a tutorial on GPS data 
processing). Here again, researchers are confronted with 
many questions such as in which radius of the raw coordi-
nates to search for places or what to do if several places fall 
within this radius—if, for example, a store, a hairdresser, and 
a café can be found at the same address. In addition, depend-
ing on the location database used, individual places might 
again have to be categorized (for empirical illustration, see 
e.g. Schoedel et al., 2023).

We think that the two examples illustrate that preprocess-
ing can become arbitrarily complex, especially as there may 
additionally be anomalies in the data that researchers might 
not foresee during the preregistration phase. Nevertheless, 

we argue for specifying as many decisions as possible in the 
preregistration. One helpful approach in this context is to 
collect pilot data on single persons and to set up the preproc-
essing pipeline before preregistration. This not only helps 
to specify some researcher's degree of freedom in advance, 
but also has the positive side effect of explicitly checking 
the data quality before the data collection. In this context, 
researchers can also fall back on standardized feature extrac-
tion frameworks that can relieve some of the preprocessing 
work (e.g., DBDP,2 Open mHealth,3 Rapids4).

Aggregation choices to compute features When computing 
certain variables, researchers have to decide on aggregation 
methods, such as a specific time window. For instance, GPS 
coordinates are transformed into measures that reflect how 
much time an individual has spent at certain places (e.g., a 
restaurant) within the past hour or day. This process involves 
selecting a time window to aggregate passive data, spanning 
from brief intervals of a few minutes to more extended dura-
tions of weeks. This also becomes relevant when combin-
ing passive sensing with other data streams (e.g., question-
naires) that are measured on a different time scale (for more 
information see Velozo et al., 2022). The choice of the time 
window must align with theoretical and conceptual consid-
erations, which means that researchers must ensure that the 
selected time scale matches the intended construct that they 
aim to measure (for more information see Langener et al., 
2024a, 2024b). Previous research has shown that the time 
scale chosen to summarize variables can affect the results of 
the analysis (Cai et al., 2018; Langener et al., 2024a, 2024b; 
Schoedel et al., 2020; Sun et al., 2023).

At the same time, researchers face the decision of which 
method to employ in calculating features within a speci-
fied time interval. For example, when determining the time 
spent at a restaurant during the day, researchers might opt to 
calculate the sum of durations or compute an average using 
metrics such as the median or mean, or more robust alterna-
tives like the Huber mean (Huber, 1992).

Data anonymization

Data anonymization is important for enabling the shar-
ing of collected data publicly or for compliance with 
regulatory guidelines like the European Union General 
Data Protection Regulation (EU-GDPR). However, pas-
sive smartphone measures collect a variety of private and 

2 https:// dbdp. org
3 https:// www. openm health. org/
4 https:// www. rapids. scien ce/1. 9/

https://dbdp.org
https://www.openmhealth.org/
https://www.rapids.science/1.9/


8296 Behavior Research Methods (2024) 56:8289–8307

sensitive information, presenting challenges for both data 
storage and anonymization (Onnela, 2021). If possible, 
identifying information should be removed from the data. 
For example, Wi-Fi connections should be replaced with 
an anonymized key (for more information on data stor-
age and anonymization see Jagesar et al., 2021). For GPS 
data, a random error can be added, the location data can 
be centered around a centroid, or sensitive locations can 
be masked. In addition, location data can be labeled—
enriched with more information, such as whether the par-
ticipant was in a bar or a restaurant (this should be done 
before anonymization).

Some data sources, such as heart rate data, are an 
indicator of health status, so they are considered special 
category data (according to the EU-GDPR regulation). 
Similarly, to the extent that GPS locations can reveal spe-
cial category data (e.g., church visits indicating religious 
beliefs), app usage patterns can also reveal personal or 
special category data (e.g., type of dating app indicating 
sexual orientation). Overall, free-text data (including app 
names), audio data, photo data, and GPS data are particu-
larly likely to be identifiable, and each stream should be 
treated with appropriate care.

Researchers should also consider what level of 
anonymization is needed for their data. For example, data 
that will be made available to other researchers (i.e., open 
access) may require additional steps to ensure anonymiza-
tion, such as replacing timestamps.

A priori approaches to anonymization may be prereg-
istered, without knowing the exact de-identifying data 
manipulations in advance. In such cases, the preregistra-
tion may refer to the respective decision body (e.g., study 
advisory board, institutional review board) or process 
(e.g., regular anonymization reviews) that will deter-
mine final measures that apply to data collection and data 
sharing.

Quality control

Digital phenotyping data are often unstandardized and noisy 
(Huckvale et al., 2019). For example, technical errors might 
lead to implausible data (Onnela, 2021). Therefore, research-
ers should indicate which quality control checks they con-
duct and how to manage the existence of unrealistic data 
and outliers.

A good initial step is to verify whether the defined sam-
pling scheme is fulfilled. For instance, if a sensor was sampled 
every minute, it should be verified whether this was actually 
carried out. If the sensor is sampled more or less frequently, 
researchers should specify the method of handling it, such as 
computing the mean value or indicating missingness.

Labeling data as missing is common in digital phenotyp-
ing studies because it is not immediately obvious when data 

are missing. For example, measures such as app usage may 
be zero because no app was used or because the app used to 
collect the data crashed. Therefore, researchers often come 
up with strategies to exclude data (i.e., labeled as missing). 
Such strategies are, for example, to include a day's data only 
if at least half of that day's data are recorded (Nickels et al., 
2021). The strategy chosen to label missing data has been 
shown to affect the outcome of analyses and should therefore 
be preregistered (Langener et al., 2024a, 2024b).

Another step is to check for unrealistic data points, such as 
excessively high step counts, or GPS artifacts, such as errone- 
ous GPS points in a sequence. It can be difficult or impossi-
ble to establish a universal rule for handling outliers, as it can 
vary from study to study (Nelson et al., 2020). Nevertheless, 
transparency is crucial in disclosing the procedures and rea-
sons for excluding data. It should be specified whether outli-
ers are eliminated due to technical impossibilities and clearly 
evident artifacts or for statistical robustness. Some exclusions 
may occur after the data analysis, which were not included in 
the preregistration due to unforeseen circumstances. In such 
cases, this should be reported in the main manuscript.

Missing data handling (absence of data)

Missing data is a common challenge in smartphone sensing 
studies, arising from a variety of sources including sensor 
limitations, participant behavior, and connectivity issues. 
Sensor limitations, such as the restricted range of detect-
able input (e.g., the sensor range of Bluetooth proximity 
detection), often lead to data gaps. Moreover, participant 
non-compliance, such as insufficient charging or dictating 
messages rather than typing, culminates in lapses in data 
collection. Connectivity problems also interfere with both 
the transmission and storage of data. Patterns of missingness 
may introduce further complications when data are merged 
from heterogeneous sources, which may be intricately linked 
to the research question itself. For instance, comparing rates 
of non-collection in iOS and Android devices, Kiang et al. 
(2021) showcase how distinct missingness patterns may 
reflect selection bias tied to different sociodemographic 
characteristics. These limitations are always going to co-
occur and interfere with data collection when using a smart-
phone as a means to collect data. As a result of not consid-
ering missing data, reliable and valid conclusions can be 
difficult to draw, as statistical power is reduced, biases to 
parameter estimates are introduced, and most importantly, 
we ignore specific behaviors that may provide additional 
insight into the phenomena of interest (Woods et al., 2023). 
In turn, the reliability and generalizability of inferences and 
findings become irreproducible (Button et al., 2013). Thus, 
how missing data are handled is an important part of the 
preregistration (see Textbox 4 for all proposed elements, 
with those discussed in greater detail highlighted in bold).
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Textbox 4 Proposed elements to preregister in the section 
“Missing data handling (absence of data)”.

• Expectation of missingness
• Identification of missingness
• Handling missing data

Bold topics are further detailed in this tutorial paper.

Expectation of missingness Hence, users of our template are 
invited to declare all plausible sources and expected rates of 
missing data. Such information is ideally drawn from prior 
piloting or published reports.

Identification of missingness Next, the preregistration 
should inform about all related a priori decisions, specifi-
cally, how and at which thresholds missing data points will 
be identified (Hicks et al., 2019). This can be focused on a 
distinction between the missing data mechanisms where it 
can be completely at random, missing at random, and miss-
ing not at random. An example of missing not at random 
would be incomplete data due to low battery state, which is 
likely, on average, to occur later in the day.

Handling missing data As a result of these distinctions, it can 
allow us to specify how missing data will be handled, if a 
reduced (e.g. complete-case) dataset will be used, or if missing 
data will be imputed. Given the multitude of different imputa-
tion methods and related techniques (e.g., multiple imputation, 
missing indicator method, modeling weights based on missing 
data), the development of an appropriate imputation model 
and diagnostic checks can be guided by the growing body of 
literature to avoid introducing bias (e.g., Nguyen et al., 2021; 
Woods et al., 2023). The preregistration can also be used to 
clarify which amounts of available data are considered neces-
sary for conducting the primary analytical approach and which 
alternatives are planned if less data is obtained.

Data analysis

Machine learning models are frequently employed for ana-
lyzing the large amount of data collected in digital pheno-
typing studies. Consequently, the primary emphasis of this 
section is on the decisions involved in applying machine 
learning models to digital phenotyping data, with only brief 
discussions on other analytical topics (see Textbox 5 for all 
proposed elements, with those discussed in greater detail 
highlighted in bold). We assume that researchers using this 
tutorial possess some basic knowledge of machine learning; 
for those without such knowledge, we recommend introduc-
tory readings on the topic (for example, Pargent et al., 2023, 
for supervised machine learning).

Textbox 5 Proposed elements to preregister in the section 
“Data analysis”.

• Machine learning models
      o  Task
      o  Cross-validation setup
      o  Performance evaluation
      o  Machine learning algorithm
      o  Feature selection
• Other statistical analysis
      o  Statistical model
      o  Multilevel model
      o  Analytical problems
      o  Inference criteria
• Transformation of variables
• Sensitivity and multiverse analysis
• Exploratory analysis

Bold topics are further detailed in this tutorial paper.

An important consideration when choosing a data analysis 
approach is whether the research goal is idiographic or nomo-
thetic, as this will influence which analytical methods are suit-
able. In the context of machine learning models, the decision 
between these approaches influences the selection of CV strate-
gies. For nomothetic modeling, it is advisable for the training and 
test sets to consist of different participants (Saeb et al., 2016); 
otherwise the model may generalize less well to a new popula-
tion. However, depending on the specific application scenario, 
researchers may choose a CV setup wherein participants overlap 
between the training and test sets. This approach might be pre-
ferred, for instance, when developing an ongoing intervention for 
a particular population. In such cases, the potential limitation in 
generalizability should be discussed. For idiographic modeling, 
it is important to take the temporal order of the data into account 
(see Prediction task and cross-validation setup section).

If researchers are interested in doing other statistical 
analysis, numerous methods are available for analyzing data 
from nomothetic and idiographic perspectives, or combin-
ing both. As previously mentioned, the ESM preregistration 
template is a good starting point for delving deeper into sta-
tistical analyses, particularly for nomothetic models. For idi-
ographic methods, Piccirillo and Rodebaugh (2019) provide 
a comprehensive overview, reviewing key statistical methods 
in psychology, with relevance extending to other fields.

Regardless of which way is chosen to analyze the data, 
researchers should make sure that the method aligns with 
their idiographic or nomothetic research focus.

Machine learning models

Prediction task and cross‑validation setup Machine learning 
often follows an exploratory approach, rather than testing 
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predefined hypotheses as in classical confirmatory statis-
tics. The aim commonly is to develop models that can make 
generalizable predictions on new data or discover novel pat-
terns. However, whether confirmatory or exploratory, prop-
erly partitioning data for training and evaluation sets allows 
for an unbiased estimate of model performance. Out-of-
sample validation supports robust evaluation of a predictive 
model’s ability to generalize to unseen data. Overfitting can 
occur when researchers "peek" at the test data or if informa-
tion "leaks" between partitions. Preregistration strategies can 
enhance integrity, even for exploratory machine learning.

Machine learning competitions can support unbiased eval-
uations of machine learning methods. Platforms like Kaggle 
provide standardized datasets where competitors submit predic-
tions for held-out test observations that the platform evaluates, 
comparing performance metrics without exposing the ground 
truth labels. This procedure ensures that competitors have equal 
access to train data while guaranteeing that overfitting to the test 
set cannot occur, providing an unbiased evaluation. Researchers 
can adopt similar strategies by preregistering how they will par-
tition available data between training (model development) and 
validation (performance assessment) sets. Preregistering these 
procedures promotes transparency about researcher degrees of 
freedom while preventing questionable tactics.

In addition to robust partitioning procedures, strategies 
that limit post hoc modifications following observation of 
test set performance should be included in preregistered 
analysis plans. Using separate individuals/teams to prepare 
predictions versus evaluate results provides additional insur-
ance against bias. This approach is analogous to clinical tri-
als where researchers evaluating patient outcomes remain 
blinded to patient treatment assignments to prevent their 
expectations from inadvertently influencing results. While 
absolute isolation between teams may prove logistically 
infeasible for smaller studies, an emphasis on evaluating 
preregistered machine learning pipelines in an automated 
fashion provides a degree of methodological safeguarding 
as well. For example, analysis plans could specify details of 
cross-validation (CV) schemes, like using a nested tenfold 
validation approach with 10 inner loops for hyperparameter 
tuning and 10 outer loops for performance estimation, rely-
ing on a predefined random seed of 29,736 for reproduc-
ibility. Overall, as with large-scale modeling competitions, 
preregistration offers clear benefits for exploratory machine 
learning analyses by minimizing analytical flexibility that 
could undermine the validity of performance assessments.

One classic approach to out-of-sample validation is the 
train–test split. While straightforward, this method has the 
drawback of not using the entire dataset for training, poten-
tially leading to suboptimal model performance, particu-
larly in smaller datasets. Alternatively, CV maximizes data 
utilization, offering a more reliable performance estimate, 
especially in the case of limited data.

In the context of time series data, such as sensing data, 
traditional k-fold CV, which involves random splitting into 
k equal parts, is often inadequate due to the sequential 
nature of the data. Traditional k-fold CV—which involves 
randomly splitting a dataset into k equal parts—offers inad-
equate protection for time series data (e.g., passive sensing) 
as the random splitting can lead to time leakage in which 
the model inadvertently learns from future data. Blocked 
k-fold CV can offer a solution, where data are divided 
into larger, contiguous blocks, maintaining chronologi-
cal order and breaking temporal dependencies (Bergmeir 
et al., 2018). Alternatively, a sliding time window or rolling 
origin approach (Bergmeir & Benítez, 2012) can be used, 
dividing the data based on a time component. Selecting the 
appropriate window size is critical and should be guided by 
the specific characteristics of the data and the underlying 
temporal patterns.

Another challenge in CV is the risk of data leakage dur-
ing feature extraction. For instance, if feature scaling (i.e., 
normalizing the variable) is performed using the range of the 
entire dataset, information from the test set could acciden-
tally influence the training process. To prevent this, feature 
processing should be conducted independently within each 
fold of the CV loop.

Similarly, adjusting the hyperparameters of a model is 
typically achieved through out-of-sample validation. For 
example, in random forest models we wish to tune hyper-
parameters that describe the number of trees and the depth 
of each tree (Breiman, 2001). These hyperparameters are 
tailored to the training dataset, necessitating their calibra-
tion within each cycle of the CV loop. This process forms 
a nested loop, which is computationally demanding. There-
fore, it requires significant planning and consideration for 
resource allocation, especially in large-scale studies or when 
working with complex models.

Performance evaluation Effective and transparent perfor-
mance evaluation is at the core of predictive modeling. 
Central to this process is selecting appropriate evaluation 
metrics and reporting on them consistently according to the 
TRIPOD guidelines (Collins et al., 2015). For regression 
models, R2 and mean squared error (MSE; or variations 
thereof) are commonly used, although it is currently unclear 
how R2 should be calculated in a multilevel setting (Piepho, 
2023; Rights & Sterba, 2023). In classification tasks, com-
mon metrics include accuracy, sensitivity, and specificity. 
However, in cases of severe class imbalance, more robust 
measures like the area under the receiver operating charac-
teristic (ROC) curve or the Matthews correlation coefficient 
are recommended (Halimu et al., 2019).

Furthermore, researchers should not only register the 
measures for assessing performance but also predefine their 
interpretation of plausible results. This means establishing 
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clear criteria for what constitutes “good” performance and 
setting acceptable levels of uncertainty. For example, in the 
context of depression detection, it is important to determine 
how many false positives are tolerable for use in clinical 
practice (Mohr et al., 2017). One way of doing this is by 
creating benchmark models that the predictive models can 
be compared to. These could be as simple as an intercept-
only model (representing an average) or models using “free” 
information that is readily available, like those based on tem-
poral factors (e.g., time of day). Such relative measures can 
enhance the transparency in evaluating complex predictive 
models against those using very little information.

Machine learning algorithm The decision-making involved 
in algorithm selection and model specification for digital  
phenotyping data becomes even more complex in the con-
text of machine learning and other advanced modeling 
approaches. Although initial guidance can be found in 
reporting protocols such as TRIPOD (Collins et al., 2015), 
the development of TRIPOD-AI (for artificial intelligence; 
Collins et al., 2024), TRIPOD-Cluster (for clustered data; 
Debray et al., 2023), and TRIPOD-P (for healthcare applica-
tions; Dhiman et al., 2023) demonstrates that existing frame-
works often fail to address challenges that arise in new areas 
such as digital phenotyping.

One key decision facing researchers modeling digital 
phenotyping data is whether to use a supervised or an unsu-
pervised modeling approach. Often the research question 
itself provides insights into whether a supervised or unsu-
pervised machine learning algorithm will be employed. 
Supervised learning approaches are designed to predict a 
target outcome, given a set of inputs. Examples of these 
approaches include elastic net regularized regression, ran-
dom forests, and Bayesian additive regression trees. Unsu-
pervised learning approaches do not specify an outcome and 
instead identify patterns within a given set of inputs (Hastie 
et al., 2009). In digital phenotyping studies, a combination 
of both approaches may be employed due to the substantial 
amount of data collected. Thus, unsupervised machine learn-
ing models may be utilized to reduce the number of predic-
tors (see the section Feature selection below).

Another type of machine learning is reinforcement learn-
ing, in which an “agent” learns the optimal behavior in an 
environment to receive the maximum reward (Kaelbling 
et al., 1996). When applying reinforcement learning to digi-
tal phenotyping data, researchers should specify the use of 
active versus passive reinforcement learning methods and 
provide justification for their selection. In active learning, 
an agent makes choices in order to optimize outcomes based 
on its changing environment. In passive learning, the agent 
follows and evaluates the performance of a pre-programmed 
algorithm or fixed set of rules, without making choices. Pas-
sive learning may be suitable with larger amounts of labeled 

data, whereas active learning can be an effective alterna-
tive when there is less available data or if this is difficult 
to acquire.

Feature selection Several approaches exist for selecting 
features to include in a machine learning model. Feature 
selection is often partially theory-driven, as when research-
ers include features that make sense from a theoretical 
point of view. In addition, researchers often use data-driven 
approaches for selecting which features are retained in the 
final model. To avoid violating the independence of the train- 
ing and test, researchers employing data-driven approaches 
must use only the training data to inform feature selection.

Filtering techniques are often used in feature selection, 
as when redundant features are removed based on their high 
correlation in the training data. Another common step is to 
remove features with zero or near-zero variance. Such fea-
ture selection techniques are, for example, implemented in 
the caret package in R and can be easily applied by research-
ers (Kuhn, 2008).

Some machine learning models have built-in feature 
selection techniques. For example, LASSO [least absolute 
shrinkage and selection operator] regression can handle 
unimportant features by shrinking the beta coefficient to 
zero (Tibshirani, 1996). In addition, decision trees assign 
importance to features based on how often they are used 
for partitioning. Decision trees can also be pruned to avoid 
overfitting, implicitly selecting the most important nodes/
features and removing unimportant features (Pargent et al., 
2023).

Another technique is feature/dimensionality reduction. 
Dimensionality reduction approaches represent a class of 
unsupervised learning methods that have increased rele-
vance for digital phenotyping studies (Barnett et al., 2018). 
Intensive longitudinal data can result in a large number of 
candidate variables (derived features), such as when aggre-
gating (e.g., mean, SD, range, kurtosis), or when using 
model parameters from networks. Additionally, there is 
often correlation among possible predictors, due to multi-
ple engineered features relying on the same raw data sensor 
stream, and because many features are generated for associ-
ated constructs (e.g., active minutes, calories burned, heart 
rate). Lastly, the relative infancy of our collective knowledge 
about digital phenotyping means that researchers often lack 
guidance about which sensors or derived features to include. 
Dimensionality reduction approaches can support the iden-
tification of new patterns among model inputs and are thus 
well suited to advancing current knowledge. For example, 
principal component analysis can be used to reduce the 
number of features included in the final model. The reduced 
number of features will be uncorrelated with each other, but 
will still retain the essential information from the original 
set of features (Wold et al., 1987).
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Other statistical analysis

Statistical model In addition to machine learning pipelines, 
researchers using passive sensing are sometimes interested 
in using other statistical analyses to describe and model rela-
tionships in the data. These may range from simple bivariate 
correlations to more complex techniques such as multilevel 
modeling or network analysis (Barnett et al., 2018; daSilva 
et al., 2021; Lekkas et al., 2022).

Multilevel model The ESM preregistration template (Kirtley 
et al., 2021) contains several useful questions to help specify 
multilevel models for time series data. The conclusions that 
can be drawn from such a model depend critically on several 
decisions made by researchers, such as how input features are 
created (see section Data processing and feature engineering), 
what outcomes are of interest, and how variables and models 
are selected in the final analysis. In particular, researchers 
should be aware of the additional complexities that may arise 
due to the temporal structure of the data, such as irregularly 
spaced measurements, unequal sampling frequencies of dif-
ferent variables, and the potential autocorrelation in the data. 
Further, it has been recently argued that adopting a more 
flexible complexity approach may better model the dynamic 
temporal relationships that cannot be examined in generalized 
linear mixed models (Hasselman & Bosman, 2020).

Sensitivity analysis and multiverse analysis

As emphasized repeatedly, researchers face many critical deci-
sions during a passive sensing study for which no clear guide-
lines exist (Langener et al., 2024a, 2024b). For example, there 
may be many reasonable ways to aggregate data or to handle 
missing values. While most studies focus on reporting the results 
of a single analysis pipeline, a multitude of equally plausible 
alternatives allow for significant researcher degrees of freedom. 
This “multiverse” of choices (Steegen et al., 2016) involves 
exploring every possible option, thereby enabling an analysis 
of the effects of differing choices, which improves the robustness 
of the research results. Researchers should thus outline steps to 
assess how analytical decisions influence their findings.

Exploratory analysis

If there are any intentions to perform additional explora-
tory analyses beyond the scope of what has explicitly been 
preregistered, it is essential to elucidate the objectives and 
rationale behind these additional analyses. Clarity in defin-
ing the goals of these exploratory efforts is crucial for main-
taining transparency and rigor in the study.

Researchers should also explicitly commit that any analy-
ses not detailed in the preregistration will be presented as 
“exploratory” in the final paper.

Replicability and open science practices

Open science practices (e.g. data sharing) focus on mak-
ing data more openly available. Data sharing with other 
researchers can benefit the field, especially considering the 
typically small sample sizes and short study durations in 
current research. Pooling data across studies allows for more 
robust conclusions and broader generalizability of findings 
(Huckvale et al., 2019). To promote transparency and col-
laboration, researchers should reflect on whether they plan 
to share their data with other researchers and outline the 
methods they will use to do so in a secure manner (see sec-
tion Data cleaning—anonymization). Researchers should 
consider what data are shared with whom and the condi-
tions under which the data are reused or redistributed, and 
should follow the guidelines developed by government and 
commercial organizations.

As the number of options available for any given analyti-
cal approach continues to increase (e.g., Python vs. R, which 
version of R, which package in R, which version of the pack-
age, which settings were selected), so too does the impor-
tance of comprehensively reporting these relevant details. 
In addition to this transparency, threats to reproducibility 
caused by the complexity associated with data analysis and 
machine learning can be mitigated through the inclusion 
of source code. We encourage researchers to openly share 
their code used for preprocessing, feature engineering, and 
statistical modeling to enable scientific and computational 
reproducibility and transparency, as methods sections of 
publications rarely provide sufficient information to allow 
for full computational reproducibility. However, there may 
be limits to sharing code, such as not being allowed to share 
certain sensitive parts of the code (e.g., code that produces 
anonymous GPS data may use identifying data).

Further steps to increase reproducibility include more 
comprehensive solutions such as virtualization, in which 
platforms like Docker (Merkel, 2014) can be used to con-
tainerize the entire analytical environment (analysis pro-
gram, libraries, dependencies, etc.) into a container package 
that can then be used by other researchers (Onnela, 2021).

Discussion

Passive smartphone measures are a powerful tool and are 
increasingly used in psychological research. However, the 
use of passive smartphone measures involves a variety of 
decisions that can lead to different conclusions (Cai et al., 
2018; Langener et al., 2024a, 2024b; Niemeijer et al., 2022; 
Sun et al., 2023) and are not always reported transparently. 
To help researchers make these decisions and to improve the 
replicability and reproducibility of passive sensing studies, 
we developed a preregistration template. We discussed six 
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core themes that are particularly important when working 
with passive smartphone measures: (1) conceptualization of 
constructs and the research question, (2) data collection and 
sampling plan, (3) data processing and feature engineering, 
(4) missing data handling, (5) data analyses, and (6) repli-
cability as well as open science practices. We believe that 
by clarifying researchers' degrees of freedom and promoting 
transparency, the current standards of studies using passive 
smartphone measures will increase.

Navigating the garden of forking paths

Within the six core themes we have discussed throughout 
this paper, there are many choices to be made when using 
passive smartphone measures, and often researchers are 
not aware of all of them. Broadly, decisions to be made 
can be distinguished between “known knowns,” which 
represent what we are aware of and understand; “known 
unknowns,” which represent aspects that are recognized  
as gaps in our knowledge; and “unknown unknowns,” 
which is information beyond our awareness. This concep-
tualization is equally applicable to research in a broader 
context (Logan, 2009). In digital phenotyping studies, 
known knowns are easily identifiable elements such as self- 
developed algorithms during data processing and feature 
engineering. Known unknowns arise, for example, when 
researchers use commercial algorithms without access 
or in collaborative efforts where extensive documenta-
tion is impractical. Unknown unknowns arise in digital 
phenotyping studies, for example, when preprocessing 
steps have been taken that the researcher is not aware of, 
or when the underlying commercial algorithm changes. 
These decisions lend themselves in varying degrees to pre-
registration. Known knowns can easily be preregistered 
by researchers. Known unknowns should be explicitly 
disclosed in a preregistration, being as specific as pos-
sible. Unknown unknowns, however, are challenging to 
deal with because we cannot preregister things we do not 
know. Therefore, future research should aim to establish 
standards that minimize the unknown unknowns to make 
reporting more transparent.

In addition to the challenge of identifying all possible 
decisions that need to be made, researchers also face the dif- 
ficulty of choosing one option over another. Ideally, research- 
ers should not only preregister the choices they make but 
also justify and explain their decisions. This should be docu-
mented in both the preregistration and the paper, allowing 
other researchers to learn from previous work when faced 
with similar decisions. We acknowledge that this might not 
be an easy task, especially as digital phenotyping is a rather 
new field where substantial debate and consensus about 
particular decisions does not yet exist. Nevertheless, being 
open about this uncertainty can be beneficial, helping other 

researchers understand the decision-making process and 
potentially identifying new research areas if many research-
ers struggle with similar decisions and uncertainties.

Given the many choices and uncertainty that researchers 
face, robustness checks and multiverse analyses are often 
part of a preregistration offering a systematic approach to 
exploring various plausible decisions (Steegen et al., 2016). 
Practical constraints, however, limit the feasibility of test-
ing all potential decisions due to computational expense. To 
address this, we recommend that researchers report which 
decisions (e.g., hyperparameters, level of aggregation) they 
aim to test, and explicitly state whether other decisions 
would have been equally reasonable even if they cannot be 
tested. Ideally, researchers should think about which deci-
sions are most important for their research question and try 
to address those.

This paper delves into the myriad decisions researchers 
face when working with passive smartphone measures, pro-
viding guidance for informed decision-making. To orient the 
reader through the garden of forking paths of smartphone 
sensing methods (cf. metaphor by Gelman & Loken, 2013), 
we draw the attention to the crucial forks that we all encoun-
ter rather than imposing a single dogmatic route. However, 
it is important to acknowledge that some decisions are quite 
complex. Despite our discussion, the challenge of resolv-
ing these complex decisions may remain. To provide further 
guidance in making informed decisions, Table 1 summarizes 
some key references for additional resources.

Quality of preregistrations for studies using digital 
phenotyping

We explored the complexity of decision-making in digi-
tal phenotyping studies, emphasizing that researchers may 
encounter numerous decisions, some of which they may not 
be fully aware of. Consequently, it becomes crucial to con-
sider the quality requirements when preregistering such stud-
ies. Ideally, a good preregistration should be specific, precise, 
and exhaustive, which means that all steps to be taken are 
included, those steps are unambiguous, and there is no room 
left for other steps to be taken (Wicherts et al., 2016).

However, even with our proposed preregistration tem-
plate, writing such a comprehensive and unambiguous pre-
registration might remain challenging. Wrzus and Schoedel 
(2023) suggested that different parts of a preregistration may 
vary in specificity. For example, for preprocessing choices, 
the least specific approach would involve the absence of any 
reporting, a moderately specific level would involve pro-
viding an overview of preprocessing decisions, while the 
highest specificity would involve the integration of alter-
native preprocessing decisions into the statistical analysis. 
For confirmatory studies, the ideal is maximum specificity, 
which requires researchers to be as detailed as possible. For 
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exploratory studies, a lower level of specificity may be more 
appropriate, provided that it is transparent which decisions 
were exploratory and which were not.

Overall, we believe that the responsibility for precision 
in preregistering digital phenotyping studies currently lies 
with the researcher, requiring them to determine the most 
suitable level of specificity. As noted by Wrzus and Schoedel  
(2023), an overly critical attitude toward preregistering 
digital phenotyping studies could hinder progress, as could 
overenthusiasm. Nevertheless, in the long run, more stand-
ards for preregistering and conducting digital phenotyping 
studies should be developed and adopted by researchers.

How to move forward

We have outlined many decisions researchers make while 
using passive smartphone measures and argued that pre-
registering them might increase reproducibility. However, 
improving the reproducibility of research also requires 
standardizing measures across studies and enabling mean-
ingful comparisons over time. Achieving this goal is chal-
lenging, as sensors and machine learning models continue 
to evolve. As a result, there is a trade-off between using 

standardized measures and adopting new and potentially 
better versions. This trade-off is particularly relevant when 
using passive data in health and clinical applications.

In the context of healthcare and clinical applications, 
approval by regulatory bodies such as the U.S. Food and Drug 
Administration (FDA) is typically requisite for market entry. 
To gain FDA approval, sensors must be verified and validated, 
meaning that physical parameters must be accurate and precise  
over time (i.e., verification) and that the outcome, such as a clin-
ical event, is appropriately addressed in the population being 
studied (i.e., validation, Food & Drug Administration, 2023a). 
Importantly, if different software versions are used, each should 
be validated against an older version. Likewise, an objective for 
future research should be the prevalidation of newly developed 
algorithms or sensors before their deployment (Food & Drug 
Administration, 2023c). In the future, we should aim to include 
such prevalidation as part of the preregistration process.

The FDA has recently introduced a “Predetermined 
Change Control Plan,” which provides a framework to reflect 
on potential modifications and changes (2023b). Such a plan 
includes how changes will be developed, implemented, and 
validated. It also includes an assessment of the potential 
benefits and risks. A goal for future research could be to 

Table 1  Key references

Topic Reference

Using passive measures combined with ESM • ESM preregistration template: Kirtley, O. J., Lafit, G., Achterhof, R., Hiekkaranta, 
A. P., & Myin-Germeys, I. (2021). Making the black box transparent: A 
template and tutorial for registration of studies using experience-sampling 
methods. Advances in Methods and Practices in Psychological Science, 4(1), 
2,515,245,920,924,686

• How to combine both measures: Velozo, J. D. C., Habets, J., George, S. V., 
Niemeijer, K., Minaeva, O., Hagemann, N., … & Delespaul, P. (2022). Design-
ing daily-life research combining experience sampling method with parallel data. 
Psychological Medicine, 1–10

Choosing a time scale to summarize and analyze the data • Langener, A. M., Stulp, G., Jacobson, N. C., Costanzo A., Jagesar, R., Kas, M. J., 
Bringmann L. F. (2024). It’s all about timing: Exploring different temporal resolu-
tions for analyzing digital phenotyping data. Advances in Methods and Practices in 
Psychological Science, https:// doi. org/ 10. 1177/ 25152 45923 12026 77

Applying machine learning models • Reporting Guidelines: Collins et al., (2024). Development of a reporting guideline 
for diagnostic and prognostic prediction studies based on artificial intelligence 
(TRIPOD-AI). https:// doi. org/ 10. 17605/ OSF. IO/ ZYACB

• Introduction to Supervised Machine Learning: Pargent, F., Schoedel, R., & 
Stachl, C. (2023). Best practices in supervised machine learning: A tutorial for 
psychologists. Advances in Methods and Practices in Psychological Science, 6(3), 
25,152,459,231,162,559

Transparency and reproducibility • Wrzus, C., & Schoedel, R. (2023). Transparency and reproducibility in mobile 
sensing research. Mobile Sensing in Psychology: Methods and Applications. 
Guilford Publications

• Benning, S. D., Bachrach, R. L., Smith, E. A., Freeman, A. J., & Wright, A. G. C. 
(2019). The registration continuum in clinical science: A guide toward transparent 
practices. Journal of Abnormal Psychology, 128(6), 528–540. https:// doi. org/ 10. 
1037/ abn00 00451

General overview covering multiple topics (book) • Mehl, M. R., Eid, M., Wrzus, C., Harari, G. M., & Ebner-Priemer, U. (Eds.). 
(2024). Mobile sensing in psychology: Methods and applications. The Guilford 
Press

https://doi.org/10.1177/25152459231202677
https://doi.org/10.17605/OSF.IO/ZYACB
https://doi.org/10.1037/abn0000451
https://doi.org/10.1037/abn0000451
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include more consideration of potential—whether intended 
or unintended—modifications to the sensors or algorithms 
used, and how these might affect the generalizability for 
future research results. If standards for passive sensing stud-
ies increase, consideration of potential modifications could 
also be part of the preregistration process.

Our preregistration template provides a resource for reflect-
ing on important decisions, recognizing that these decisions 
may evolve over time. Given the evolving nature of the field 
of digital phenotyping, we anticipate that certain decisions 
will become more or less relevant in the future. Therefore, 
we consider our template to be a starting point rather than an 
exhaustive list. Our goal is to update the preregistration tem-
plate over time, and we invite other researchers to contribute 
(for more information on how to contribute, see https:// osf. io/ 
8k3tm). Overall, we hope that this preregistration is a first step 
in raising the standards for passive sensing studies.

Glossary Digital phenotyping: Using data from personal digital devices 
to build a detailed picture of an individual's behavior and health. Sim-
ply put, a digital footprint that allows researchers and clinicians to 
understand patterns, tailor interventions to the individual, and predict 
future changes. In this paper, we use digital phenotyping interchange-
ably with passive sensing; Experience sampling method (ESM): Con-
sists of structured self-report diary techniques that are used to evaluate 
mood, symptoms, contextual factors, and personal appraisals as they 
naturally occur in the real-world environment of participants across 
time (Myin-Germeys & Kuppens, 2022); Exploratory vs. confirmatory 
research: In exploratory research the objective is to find new patterns 
in the data, subsequently leading to the generation or modification of 
hypotheses, models, and theories. In contrast, confirmatory research 
involves the testing of specific hypotheses often using inferential sta-
tistics (Höfler et al., 2022); Feature (creation/engineering): The term 
feature comes from machine learning jargon and is synonymous with 
the terms variable or predictor. Feature creation describes the pro-
cess of how variables are obtained from raw data in data preprocess-
ing. Feature engineering is a more general term that includes feature 
creation; Idiographic approach vs. nomothetic approach: In nomothetic 
approaches, researchers aim to make general observations/predictions 
about the population under study, also often called non-individualized 
research/models. In contrast, idiographic approaches target predictions 
customized to individuals over time, also often called individualized 
research/models (Molenaar, 2004; Molenaar & Campbell, 2009); Pas-
sive (smartphone) measures: Measures collected from smartphones (or 
other wearable devices). Here we use passive (smartphone) measures 
interchangeably with passive data. Data can be acquired through sen-
sors or phone logs. Sensors capture various data types. For instance, 
GPS sensors are used to determine the location, and accelerometers 
measure movement. Phone log data are derived from interactions with 
the device but not obtained through a physical sensor (e.g., app usage, 
text messages, and screen usage); Preregistration: The researcher pub-
lishes the study plan in a time-stamped database such as the Open Sci-
ence Framework as an immutable document that details the research 
question/hypotheses, design, and data analysis prior to analyses being 
conducted (Nosek et al., 2018; van den Akker et al., 2023a, 2023b); 
Reproducibility: If a study is reproducible, it means that “consistent 
results are obtained using the same input data; computational steps, 
methods, and code; and conditions of analysis” (National Academies 
of Sciences et al., 2019); Replicability: Refers to “obtaining consistent 
results across studies aimed at answering the same scientific question, 
each of which has obtained its own data” (National Academies of Sci-
ences et al., 2019)
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