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Abstract: Detailed kinetic models play a crucial role
in comprehending and enhancing chemical processes. A
cornerstone of thesemodels is accurate thermodynamic and
kinetic properties, ensuring fundamental insights into the
processes they describe. The prediction of these thermo-
chemical and kinetic properties presents an opportunity for
machine learning, given the challenges associated with their
experimental or quantum chemical determination. This
study reviews recent advancements in predicting thermo-
chemical and kinetic properties for gas-phase, liquid-phase,
and catalytic processes within kinetic modeling. We assess
the state-of-the-art of machine learning in property predic-
tion, focusing on three core aspects: data, representation,
and model. Moreover, emphasis is placed on machine
learning techniques to efficiently utilize available data,
thereby enhancingmodel performance. Finally, we pinpoint
the lack of high-quality data as a key obstacle in applying
machine learning to detailed kinetic models. Accordingly,
the generation of large new datasets and further develop-
ment of data-efficient machine learning techniques are

identified as pivotal steps in advancing machine learning’s
role in kinetic modeling.

Keywords: kinetic modeling; mechanism generation; artifi-
cial intelligence; thermodynamics; reaction rate

1 Introduction

Detailed kinetic models are an extremely powerful tool to
gain insight into chemical processes. While experiments
yield valuable data on process parameter effects, they often
do not allow to gain mechanistic insights in a straightfor-
ward way. Detailed chemical kinetic models, on the other
hand, provide insight into how the overall reaction proceeds
but are tedious to develop. These detailed kinetic models
consist of molecules, and reactions linking these molecules.
For some processes, such as pyrolysis or combustion pro-
cesses, thesemodels can contain thousands ofmolecules and
tens of thousands of reactions. Figure 1 shows the size of
kinetic models of gas-phase processes developed during the
last and previous decades, illustrating that the model size
has increased over time.

Due to their size, large kinetic models are usually
generated automatically. Over time, many groups have
developed software for automatic kinetic model generation.
Examples of such software tools include Genesys (Vande-
wiele et al. 2012), RMG (Gao et al. 2016), NETGEN (Broadbelt
et al. 1994),MAMOX (Ranzi et al. 1997), and RING (Rangarajan
et al. 2012). Automatic kinetic model generators typically
operate based on user-defined reaction families. Initial
molecules undergo reactions according to these families,
producing new species. Subsequently, these newly formed
species engage in further reactions via the specified families,
resulting in a complex chemical reaction network. These
automatically generated reaction networks, however, often
need some manual manipulation, due to an incomplete re-
actionmechanism or an incorrect thermodynamic or kinetic
parameter assignment (vide infra) (Faravelli et al. 2019). In
practice, most detailed kinetic models are thus generated
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semi-automatically (Dogu et al. 2021; Miller et al. 2021; Zádor
et al. 2011).

Describing the thermodynamics of the molecules and
the kinetics of the reactions is essential for gaining insights
into the processes these reaction networks model. While
small kinetic models can have all their thermochemical and
kinetic properties fitted to experimental data, this becomes
impractical for larger models due to the vast number of
parameters involved, risking overfitting. This can thus lead
to different combinations of thermodynamic and kinetic
parameters that can describe the experimental trends, due
to a cancelation of errors (Katare et al. 2004; Park and Fro-
ment 1998). The obtained thermodynamic and kinetic values
thus have a high uncertainty. Additionally, experimental
data often only provide yields, output concentrations, and
conversions, necessitating the selection of a reactor model
alongside the kinetic model for regression purposes. For
simple processes, a simple reactor model, which describes
the concentration of the species as a function of time and the
position in the reactor via simple mathematical equations,
may be satisfactory. Examples of such simple reactormodels
include an ideal plug flow reactor model and a continuous
stirred-tank reactor model. However, for more complex
processes, constructing a suitable reactor model is more
challenging (Xu and Froment 1989; Zapater et al. 2024). This
increased complexity may introduce additional errors in
parameter fitting, leading to wrong mechanistic insights.

Given these challenges, thermodynamics and kinetics
are often computed using in silico methods, particularly for
large kinetic models. While quantum chemical methods

often offer accurate predictions, their computational de-
mand is prohibitive for large mechanisms. Hence, less ac-
curate but faster methods such as group additivity (Benson
et al. 1969) and reaction rules are commonly employed.
However, since quantum chemistry is time-consuming and
faster methods sacrifice accuracy, there exists an opportu-
nity for a more effective approach to calculate the necessary
thermodynamic and kinetic properties. Machine learning
emerges as a promising candidate to address this gap,
given its demonstrated utility in various areas of chemical
engineering such as computational fluid dynamics (CFD),
rational fuel design (Fleitmann et al. 2023; Kuzhagaliyeva
et al. 2022), and synthesis planning (Coley et al. 2018; Kochkov
et al. 2021; Pirdashti et al. 2013). Machine learning has also
been applied to predict outcomes of chemical processes. The
input to the machine learning model is in this case process
parameters such as inlet composition, temperature, and
pressure. Similar to detailed kinetic models combinedwith a
reactor model, the machine learning model predicts yields,
conversions, and outlet concentrations. The usual purpose of
these models is process optimization within a narrow range
of process parameters. However, these machine learning
models cannot be used to gain mechanistic insight into a
process due to their “black box” nature. While the machine
learning model may provide yield predictions, users lack
insight into how these predictions are generated. Moreover,
because these machine learning models are trained on
experimental data, their performance beyond the training
range may be uncertain. As mentioned above, machine
learning can be used within a kinetic modeling approach,

Figure 1: Evolution of the size of detailed kinetic
gas-phase models from 1996 to 2024. Data
until 2015 is based on the work of Van de Vijver
et al. (2015).
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namely, to predict the thermodynamics and kinetics. The
aforementioned method of automatic kinetic model gener-
ation, and where machine learning can be employed for
property prediction is shown in Figure 2. This figure shows
that first a reaction network is created based on the initial
molecules and the reaction families. These families can
include conventional reactions or more complex reaction
types such well-skipping reactions, represented by the
brown arrow. The latter reaction type, will, due to the
complexity of its underlying physics, be addressed in future
work. Once a reaction network is generated, the thermody-
namic and kinetic parameters must be assigned. As pre-
sented in Figure 2, the thermodynamic property of interest is
the Gibbs free reaction energy, determined by the enthalpy
of formation, the intrinsic entropy, and the heat capacity of
reactants and products. As these properties are temperature
dependent, they are often represented by NASA poly-
nomials, which allow to calculate the property value at a
given temperature, as shown in equations (1)–(3). In these
equations hi represents the enthalpy of a species i, si its
entropy, Cp,i its heat capacity, and R the gas constant.

hi

R
= a1T + a2

2
T2 + a3

3
T3 + a4

4
T4 + a5

5
T5 + a6 (1)

si
R
= a1 ln T + a2T + a3

2
T2 + a4

3
T3 + a5

4
T4 + a7 (2)

Cp, i

R
= a1 + a2T + a3T2 + a4T3 + a5T4 (3)

When looking at liquid-phase processes, also solvation
properties should be taken into account. Examples of such
properties are the enthalpy of solvation ΔHsolv, or the Gibbs
free energy of solvation ΔGsolv. A third type of process is
heterogeneous catalytic processes. For modeling these pro-
cesses, the adsorption enthalpy and entropy are of great
importance. Besides the thermodynamic effects, kinetics
effects are also important in detailed kinetic models. The
kinetics are described by the rate coefficients of the re-
actions in the models, as shown in Figure 2. The rate co-
efficients are often represented by the modified Arrhenius
equation, presented in equation (4), in order to include
temperature dependence. The pre-exponential factor A, the
activation energy Ea and the temperature exponent coeffi-
cient n are the parameters in this equation required to
describe the kinetics.

k = A · Tn · exp(−Ea

RT
) (4)

Throughout this work when we refer to either thermo-
dynamic or kinetic properties, these are the underlying
properties of interest.

In this article, we review the state-of-the-art in machine
learning for property prediction of molecules and reactions.
The first part deals with the discussion of the methods
currently incorporated in kinetic model generators for the
calculation of thermochemical and kinetic properties. After
that, machine learning approaches are discussed by their
three main pillars: the data, the representation of the data,
and the mathematical model. This is followed by an assess-
ment of alternative training methods that improve the pre-
diction performance. More specifically, we focus onmethods
that allow training on multiple datasets. Eventually, we
elaborate on the accuracy that can currently be achieved
withmachine learning and the impact of these accuracies on
detailed kinetic models. We end the review with the current
limitations that are encountered, hampering the imple-
mentation of machine learning in detailed kinetic models.

2 Classical methods for
thermodynamic and kinetic
property calculation

As mentioned in the introduction, fitting the properties to
experimental data is unfeasible for large kinetic models.

Figure 2: Process of automatic kinetic model generation and the role of
machine learning in facilitating thermochemical and kinetic property
prediction for this purpose.
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Therefore, in silico techniques to calculate these properties
are frequently used. The most fundamental way to calculate
thermochemical properties is via quantum chemistry. In this
approach, geometry optimization and energy calculations of
molecules are performed via designated quantum chemistry
packages like Gaussian (Frisch et al. 2016), TurboMole (Fur-
che et al. 2014), or ORCA (Neese 2012). For the geometry
optimization step, fast density functional theory (DFT)
methods are usually accurate enough. Once the optimal ge-
ometry is obtained, the energy of the structure must be
calculated. For these energy calculations, the earlier used
DFT methods are usually not accurate enough. Therefore,
more accurate quantum chemical methods such as coupled
cluster methods or CBS-QB3 (Montgomery et al. 1999) are
required. The use of these more advanced methods comes
at the expense of a higher computational time. Furthermore,
to achieve chemical accuracy i.e., deviations lower than
4.184 kJ/mol, corrections on the initial result might be
required to compensate for inappropriate assumptions. A
common example of such an assumption is the harmonic
oscillation approximation. Here, the vibrational partition
functions are calculated by assuming a harmonic potential
at the vicinity of the minimum. This approach only requires
a computationally-friendly calculation of the vibrational
frequencies, but may lack accuracy. One popular way to go
beyond this approximation is using the 1D-hindered rotor
scheme (Pfaendtner et al. 2007). In this scheme, the potential
energy surface for the rotation around a bond is calculated
for each rotatable bond. This increases the accuracy of the
property calculation but comes again at the expense of a
larger computational time since a lot of additional DFT-
calculations must be performed for the calculations of the
potential energy surfaces.

Next to gas-phase properties, solvation properties can
also be calculated quantum chemically (Cramer and Truhlar
1999; Klamt 2011; Tomasi et al. 2005). Many implicit solvation
models are available in popular quantum chemical pack-
ages, which canmodel solvent effects withoutmuch increase
in the computational time (Cramer and Truhlar 1999). Pop-
ular examples of implicit models are the polarizable con-
tinuum model (PCM) (Miertuš et al. 1981) and the solvation
model based on density (SMD) (Marenich et al. 2009). These
methods, however, often lack accuracy. Another option is to
model the solvent explicitly. This often yields more accurate
results, but, due to the larger system size, requires more
computational time. A third option is using the conductor
like screening model for real solvents (COSMO-RS) method
(Eckert and Klamt 2002; Klamt 1995; Klamt and Eckert 2000).
This semi-empirical method calculates solvent properties
by matching the quantum chemically calculated COSMO
surfaces of the solute and solvent. This approach shows

satisfactory results, but its performance on certain molecule
classes such as radicals remains unclear.

In addition, quantum chemical calculations are also
valuable for property prediction of compounds in catalytic
reactions. In heterogeneous catalysis, adsorption properties
of reactants and products are required for the development
of heterogeneous catalytic models. These properties can be
determined ab initio but are challenging to predict as (I) the
adsorption site is often ill-defined, (II) the obtained values
generally have lower accuracy, (III) and the calculations are
much more computationally intensive. Here, we will elabo-
rate on the nature of these three challenges. Within het-
erogeneous catalysis, it is often up to debate what the exact
nature of the adsorbed species is. In metal catalysts, the type
of site such as bridge, terrace, or edge determines the sta-
bility of the adsorbed complex. Moreover, the catalyst
structure in operando conditions can differ from what is
experimentally determined at other conditions. Also in
zeolite catalysis, the location of the acid site in the frame-
work influences the adsorption properties. It is unfortu-
nately not straightforward to determine the exact structure
of the active site as the exact location of the Bronsted acid
site is often unknown. Second, the complex nature of the
adsorbed complex limits the accuracy of ab initio calcula-
tions. Adsorption properties can be calculated statically
(i.e., via transition state theory) at a DFT level of theory.
However, these approaches often fail to predict the
adsorption entropy accurately, even though heuristics exist
(De Moor et al. 2011a). For zeolite adsorption properties
typical accuracies are in the order of ∼8 kJ/mol (Berger et al.
2023), while more accurate methods exist for metal sites
(Sauer 2019). To overcome this shortcoming, molecular dy-
namics calculations, in which the geometry and energy of a
species is tracked over time, can be performed which allow
to achieve chemical accuracy. These increase the accuracy of
the calculations, but also significantly increase the compu-
tational cost.

Kinetic properties can be obtained by following the
same procedures described above for the reactants and
transition state, as presented by transition state theory
(Truhlar et al. 1996). Finding the correct transition state
structure is significantly more challenging than finding the
geometry of a stable species. This is because finding a tran-
sition state structure requires a good initial guess, which is
hard to automate and therefore often requires human
intervention. A bad initial guess could namely result in
finding a too energetic saddle point or not converge to a
saddle point at all. Overall, the quantum chemical procedure
thus consists of many time-consuming steps. For reaction
networks containing thousands of molecules and tens of
thousands of reactions, these calculations are unfeasible,
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certainly if they require human interventions. Therefore,
less accurate but faster and automated methods are
often relied on to calculate thermochemical and kinetic
properties.

The most popular computationally friendly approach to
calculate molecular properties is group additivity, intro-
duced by Benson et al. (1969). This method relies on the
assumption that the thermodynamic properties of a mole-
cule can be calculated by summing a certain contribution
from every group in the molecule. The contribution that
every group gives is usually obtained by regression towards
ab initio or experimental values. The downside of this
approach is that every group contribution is constructed
based on the local neighborhood of that group, ignoring
longer-range interactions. This problem has been partially
mitigated by adding correction terms like non-nearest-
neighbor interactions and ring strain corrections (Cohen
1996). Although these corrections improve the predictions,
the accuracy might be insufficient for certain molecules,
especially complex structures like polycyclic molecules. Also
for the fast prediction of solvation properties, different
methods have been proposed. Mintz and coworkers (Mintz
et al. 2008; Mintz et al. 2009), for example, introduced a
linear free energy relationship to predict the enthalpies of
solvation. Group additive methods have also been applied to
predict solvation properties (Khachatrian et al. 2017). The
downside of these methods is that they only consider one
solvent or one class of solvents. Consequently, the fitting
proceduremust be repeated for every new solvent or solvent
class. Likewise, group additive approaches have also been
developed for adsorbed species to calculate the adsorption
energy (Gu et al. 2017; Salciccioli et al. 2010; Wittreich and
Vlachos 2022). One major drawback of this approach is that
new group additive values (GAVs) are required for every
catalyst surface. A d-band model (Greeley et al. 2002;
Hammer and Nørskov 1995) can be used to extrapolate to-
ward other catalysts but has some limitations (Esterhuizen
et al. 2020; Gajdoš et al. 2004; Vojvodic et al. 2014; Xin and
Linic 2010; Xin et al. 2014). Furthermore, group additive
models have also been developed for zeolite frameworks. Yu
et al. (2023) developed a group additive method for the
estimation of thermodynamic properties for a wide range of
compounds relevant to methanol-to-olefins in a SAPO-34
catalyst. Besides group additivity, other linear relationships
have been developed for the estimation of adsorption
properties in heterogeneous catalysts. For example in zeo-
lites, De Moor et al. (2011b) and Nguyen et al. (2011) found a
linear relation between the adsorption energy and the
number of carbon atoms for both linear paraffins and linear
olefins, which have been shown to be also accurate for

branched hydrocarbons (Denayer et al. 1998). In another
approach, taken by RMG-cat, an automatic catalytic reaction
network generator, adsorption properties are estimated
based on the similarity of the queried compound and an
existing library. This library comprises small hydrocarbons,
nitrogenates, and oxygenates on metal sites (Goldsmith and
West 2017).

There are manymethods to predict kinetic properties in
a fastmanner. Evans and Polanyi introduced a famous linear
free-energy relationship to predict the activation energy of a
reaction based on the reaction energy (Evans and Polanyi
1936). This relationship, which has been used extensively in
kinetic models (Froment 2013), has been extended to include
more effects (Roberts and Steel 1994), and account for non-
linear relationships (Blowers and Masel 2000). Similar to
thermodynamic properties, kinetic properties can be calcu-
lated via group additive methods. A popular approach to
employ group additivity in kinetics is to define a reference
reaction with a corresponding value for a given reaction
family. GAVs are calculated for all possible structural
changes to the surrounding groups of the reactive center
(with respect to the reference reaction) (Atkinson 1987; Saeys
et al. 2004; Sabbe et al. 2008b). The target kinetic property
then equals the sum of the value of the reference reaction
and all group contributions of the made structural changes.
Note that this is different from the group additivity scheme
used for the calculation of thermodynamic properties. Here,
for the calculation of kinetic properties, only groups in the
surrounding of the reactive center (usually the atoms in the
alpha-position) are considered, while for thermodynamic
properties, all groups in the molecule are considered. This
approach has been used to calculate activation energies, as
well as pre-exponential factors of reactions (Paraskevas et al.
2015, 2016; Sabbe et al. 2008b, 2010; Van de Vijver et al. 2018).
Another popular approach to predicting kinetics is rate
rules. In this approach, a rule to calculate the rate of a certain
type of reaction is constructed. A ‘type of reaction’ is here
usually defined as all reactions with a certain substructure
in and around the reactive center. The rate rule for such a
reaction type can range from an Evans-Polanyi relationship
to more complex rules (Johnson and Green 2024).

Overall, these fast methods to calculate thermodynamic
and kinetic properties are significantly less accurate than
the quantum chemical results on which they are based.
Quantum calculations often do yield satisfactory results but
are computationally too expensive, in particular for large
kinetic models. Machine learning, on the other hand, is a
promising technique to obtain fast predictions that are
closer to quantum chemical accuracy than the traditional
approximative approaches.

L. Tomme et al.: Machine learning for property prediction 5



3 Machine learning for molecular
property prediction

In this and the next chapter, machine learning methods to
predict thermodynamic and kinetic properties will be dis-
cussed. Machine learning models transform the input
(molecule or reaction) into the targeted output (thermody-
namic or kinetic properties). During the training step, the
model learns how to predict the output by regression toward
training data. Once themodel is trained, its performance can
be assessed by evaluating the predictions of a test dataset.
The quality and the amount of the data thus have a strong
influence on the final performance of themodel. Data is thus
the first important pillar for the creation of machine
learning models. This data (training or test) can usually not
be fed to the machine learning model ‘as is’. First, it needs to
be represented in a way that can be treated by a machine
learning model. This introduces the second pillar: repre-
sentation. Once the data (training or test) is converted to a
suitable representation, it is fed into a machine learning
model. The choice of the mathematical model is also an
important step in generating machine learning models.
Therefore, model choice is the third and last pillar on which
machine learning models are built. In this and the following
chapter, machine learning models for the prediction of
molecular and reaction properties will be described via
these three pillars.

3.1 Thermodynamic datasets

The first step in creating a machine learning application is
collecting data. This is one of the most important elements
determining the success of the machine learning model as
low-quality or sparse data is detrimental to the final model
performance. Different datasets exist that contain a high
amount of molecules, such as GDB-17 (Ruddigkeit et al. 2012)
or the PubChem database (Kim et al. 2019). These datasets,
however, only contain molecules, and no thermodynamic
properties linked to them. Therefore, these datasets are not
suitable for the prediction of thermodynamic properties. For
machine learning methods aimed at the prediction of ther-
modynamic properties, the data must link the input of the
model with the targeted output. One of the most popular
datasets containing gas-phase thermodynamic properties is
QM9 (Ramakrishnan et al. 2014). This dataset was con-
structed by first taking a subset of the GDB-17 dataset. More
specifically, only non-ionic molecules with a maximum of
nine heavy atoms (all atoms excluding hydrogen) are

considered. Furthermore, all molecules containing atoms
other than carbon, hydrogen, oxygen, nitrogen, and fluorine
are also excluded from the subset. Lastly, all charged mole-
cules except zwitterionic species are removed from the
dataset. This resulted in the QM9 dataset containing 133,885
molecules, for which thermodynamic properties have been
calculated using the DFT method B3LYP/6-31G(2df,p). In this
way, the dataset links the 3D geometry of molecules with the
following important properties: the zero-point vibrational
energy, the internal energy at 0 K, the internal energy at
298.15 K, the enthalpy at 298.15 K, the free energy at 298.15 K,
and the heat capacity at 298.15 K. The accuracy of the cal-
culations was tested by comparing the atomization en-
thalpies in the dataset with enthalpies calculated by the
more accurate G4MP2, G4, and CBS-QB3 methods. For all of
these methods, the mean absolute difference in the enthalpy
of atomization was around 20 kJ/mol. Other properties such
as the energy of theHOMOand LUMOare also present in this
dataset but are less relevant for kinetic modeling purposes.
Besides the 3D geometry of molecules, line-based identifiers
such as SMILES and InChI are provided. More details about
how molecules can be represented will be given in the next
section. Although this dataset has been used widely, it has
some serious shortcomings regarding kinetic modeling.
First, the achieved accuracy of the calculations is very low.
Furthermore, the dataset contains a significant amount of
less occurring species, such as molecules containing three-
or four-rings. Lastly, the dataset only contains closed-shell
neutral species, which is not suitable for radical mecha-
nisms. The latter problem has been mitigated by the work of
St. John et al. (2020). They constructed a dataset containing
40,000 closed-shell and 200,000 radical species. The closed-
shell molecules in this dataset were constructed by taking all
neutral molecules from the PubChem database. Only mole-
cules containing carbon, hydrogen, nitrogen, and oxygen,
with a maximum of 10 heavy atoms were considered. In
contrast to the QM9 dataset, zwitterionic species are not
present in this dataset. Radicals were generated by breaking
all single, non-ring bonds of the closed-shell molecules
homolytically. Thermodynamic properties were calculated
for both the closed- and open-shell molecules using the M06-
2X/def2-TZVP DFT method. This M06-2X functional is
considered to be more accurate than the B3LYP functional
used for the QM9 dataset. With this method, important
thermodynamic properties such as enthalpy and free en-
ergies were calculated. The molecules in this dataset are
represented by their 3D structures, as well as their SMILES
string, similar to the QM9 dataset. For completeness, we note
ANI-1 as another large dataset containing 20 million data
points (Smith et al. 2017). These data points correspond to

6 L. Tomme et al.: Machine learning for property prediction



different off-equilibrium conformations of 57,462 small
molecules. The usefulness of these off-equilibrium confor-
mations is rather limited for direct machine learning of
thermodynamic properties. This dataset, however, can be
used to train neural network potentials. These kinds of
neural networks predict the structure of the potential en-
ergy surface, which can then be used to optimize molecules
and predict their properties. This technique is however
outside the scope of this review. More information about
machine learning potentials can be found in the following
reviews (Behler 2021; Kocer et al. 2022; Manzhos and Car-
rington 2021). A downside of the discussed datasets is that the
properties therein are calculated via DFT methods. As
already indicated, more advanced quantum chemical cal-
culations might be required to obtain sufficiently accurate
predictions of thermochemical properties. These more
advanced techniques are computationally more demanding
and might require human interventions, for example, to
perform the 1D-hindered rotor scheme. These difficulties
prevent the construction of large databases with more
accurately predicted properties. However, smaller datasets,
usually not for machine learning purposes, have been con-
structed. Amajor disadvantage of this data is that it is spread
around the scientific literature. It is therefore unfortunately
challenging to collect all thermodynamic data present in the
literature. Nonetheless, Table 1 summarizes a selection of
dataset sources and their specifications.

One downside of these different data sources is shown in
the ‘Method’ column of Table 1. Since there is not one gold
standard method to perform quantum chemical calcula-
tions, these calculations are often performed at different
levels of theory. The different (biased) errors of these
methods introduce an additional challenge in the subse-
quent training of the machine learning model. Another
shortcoming of this data is the gaps in the molecular space.
Combining the datasets in Table 1 will namely miss impor-
tant molecule classes, such as species containing both oxy-
gen and a halogen atom or ionic species other than
hydrocarbons. To identify these gaps and to gather data from
various sources, different initiatives have been started to
develop large databases from literature data. The RMG
database, for example, combines data from 45 different li-
braries (Johnson et al. 2022). Another example containing
enthalpies of formation is the Active Thermochemical Ta-
bles (ATcT) (Ruscic et al. 2004). A downside is that for these
collected datasets, different calculation methods are used.
Datasets containing experimentally measured values can
overcome this problem. The NIST Computational Chemistry
Comparison and Benchmark Database (CCCBDB) contains,
next to computational values, experimental thermochemical
properties of more than a thousandmolecules. Similarly, the

commercial DIPPR database contains around 2000 mole-
cules with the corresponding experimentally measured
enthalpy of formation and entropy (Bloxham et al. 2021;
Thomson 1996). However, overall, a large dataset containing
accurately predicted or measured thermochemical proper-
ties does not exist at this moment. This limited size of the
accurate datasets is one of the reasons thatmakes traditional
methods such as group additivity still the most popular
choice to predict thermodynamic properties while making
detailed kinetic models.

All previously presented datasets comprise thermo-
chemical properties of gas-phase molecules. To include
machine learning in liquid-phase kinetic models, databases
containing the Gibbs free energy of solvation are essential.
The Minnesota Solvation database contains 3037 solute-
solvent pairs for which the free energy of solvation has been
experimentally determined (Marenich et al. 2020). For both
the solvent and solute the 3D coordinates, calculated at the
M06-2X/MG3S level of theory, are included. Similarly, the
CompSol database contains experimental free solvation en-
ergies at different temperatures and pressures for 14,102
solvent-solute pairs (Moine et al. 2017). Another literature
dataset is FreeSolv, published by Mobley and Guthrie (2014).
This dataset contains 643 small molecules for which the
hydration free energy in water has been measured. Ver-
meire and Green (2021) combined the aforementioned
datasets and an additional dataset developed byGrubbs et al.
(2010) into one big database, comprising 10,145 solvent-solute
pairs including 291 solvents and 1,368 different solutes with
their experimental Gibbs free energy of solvation. Along
with this experimental dataset, they have also developed a
quantum chemically calculated dataset containing one
million solvent-solute combinations. The Gibbs free energies
of solvation in this dataset were calculated using the COSMO-
RS methodology described in Section 2. Using this method-
ology, the calculation of the thermodynamic properties of N
different species inM different solvents only requires N +M
quantum chemical calculations.

This combinatorial advantage is not present for
adsorption properties. Different databases exist for the
properties and structure of catalytic materials such as metal
catalysts, zeolites, and metal-organic-frameworks (MOF)
(Jain et al. 2013; Kirklin et al. 2015). However, these databases
do not include adsorption properties. The determination of
the adsorption energies of N species onM different surfaces
usually requires N × M quantum chemical calculations,
making the construction of large databases time-consuming.
Similar to gas-phase species, catalytic thermodynamic data
is often spread around different publications (Andersen
et al. 2019; Dickens et al. 2019; Esterhuizen et al. 2020; García-
Muelas and López 2019; Schmidt and Thygesen 2018; Xu et al.
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2021). However, also for surface species, databases that
combine different data sources have been developed. One
example is the pGrAdd software of the Vlachos group (Wit-
treich and Vlachos 2022). The package allows the calculation

of thermodynamics based on group additivity. For these
group additive schemes, data of surface species have been
collected. This dataset contains standard enthalpies, en-
tropies, and heat capacities, mainly of species on the Pt(111)

Table : Selection of thermodynamic databases found in the literature.

Molecule type Number of
data points

Molecule
representation

Properties Method Source(s)

Oxygenates (including radicals)  SMILES ΔfH°

ΔS°

Cp

CBS-QB
+ D-HR
+ SOC
+ BAC

Paraskevas et al. ()

Hydrocarbons (including radicals)  SMILES ΔfH° CBS-QB
+ BAC

Sabbe et al. ()

Hydrocarbons (including radicals)  SMILES + D geometry ΔS°

Cp
BLYP/
-G(d,p)
+ D-HR

Sabbe et al. (a)

Carbenium ions  Name ΔfH°

ΔS°

Cp

CBS-QB
+ D-HR
+ SOC
+ BAC

Ureel et al. (a)

Alkanes, alkyl hydroperoxides
(including radicals)

 SMILES ΔfH°

ΔS°

Cp

STAR-D or
STAR-D_DZ

(Ghosh et al. b, a)

Oxygenated polycyclic aromatic
hydrocarbons (including radicals)

 Name + D geometry ΔfH°

ΔS°

Cp

G
+ D-HR

Wang et al. ()

Molecules relevant to
atmospheric chemistry

 D geometry + Lewis
structure

ΔfH°

ΔS°

Cp

G Khan et al. ()

Silicon-hydrogen compounds  Lewis structure ΔfH°

ΔS°

Cp

G Wong et al. ()

H, C, O, N, and S containing
species

 InChI ΔfH° CBS-QB
+ D-HR
+ SOC
+ BAC

Pappijn et al. ()

Small combustion molecules  Name + Lewis
structure

ΔfH°

ΔS°

Cp

RQCISD(T)/
cc-PV∞QZ
+ D-HR
+ SOC
+ BAC

Goldsmith et al. ()

Cyclic hydrocarbons and
oxygenates (including radicals)

, SMILES + InChI ΔfH°

ΔS°

Cp

CBS-QB
+ SOC
+ BAC

Dobbelaere et al.
(a)

Radicals containing C, O, and H , SMILES ΔfH°

ΔS°

Cp

CBS-QB
+ AEC
+ BAC

Pang et al. ()

H, C, O containing species , SMILES + InChI ΔfH°

ΔS°

Cp

G
+ D HR

Yalamanchi et al. ()

Halocarbons (including radicals) , SMILES ΔfH°

ΔS°

Cp

G
+ D HR

Farina et al. ()

Only datasets containing enthalpy of formation, standard entropy, and heat capacities are considered. The following abbreviations have been used: D-HR,
D-hindered rotor; SOC, spin-orbit corrections; BAC, bond additive correction; AEC, atom energy corrections.
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surface. Another example is the Catalysis-Hub project
(Winther et al. 2019). This project collected reaction energies,
including adsorption energies, from more than 50 publica-
tions in one database. Similarly, a collection containing
experimental datasets was constructed by Wellendorff et al.
(2015). However, the limited size of this dataset makes it
unusable for training large machine learning models. A
bigger dataset was created in the Open Catalyst project,
namely the OC20 dataset (Chanussot et al. 2021). This dataset
was created by performing DFT relaxations on 1,281,040
catalyst-adsorbate combinations. In this publication three
community challenges were also launched, each with their
designated dataset. The first task is to predict the energy of
and the forces on a (non-optimized) geometry. The second
challenge is to predict the relaxed structure starting from the
initial geometry. These two tasks are thus mainly relevant
for the development of neural network potentials. This field
of machine learning is, as mentioned before, out of the scope
of this review. The third task, namely the prediction of the
relaxed energy from the initial structure, is more relevant
for this review. The dataset corresponding to this task links
hundreds of thousands of initial geometry guesses to their
relaxed energy and is therefore very relevant for the direct
prediction of adsorption energies. Predicting the energy
from an initial geometry guess could namely mean that
the adsorption energy could be calculated in fractions of
a second. In general, surface species data faces the same
limitations as gas-phase data, but even stronger due to
the increased computational complexity of determining
adsorption properties. The data is often spread around
literature and only encompasses a certain range of the mo-
lecular space. Furthermore, most databases are constructed
by performing static quantum chemical calculations, instead
of the more accurate molecular dynamics approach. The
absolute accuracy of this data can therefore be questioned.

Overall, there clearly are limitationswhen looking at the
data pillar for the prediction of thermodynamic properties.
Large datasets already exist, but are usually calculated at a
low level of theory. More accurate data is spread around the
literature and contains important gaps i.e., for some mole-
cule classes there is no accurate data available. Liquid-phase
properties are less available than gas-phase data. Nonethe-
less, large datasets describing solute-solvent pairs and
their free energy of solvation exist. This is not the case for
adsorbed species on catalytic surfaces, for which there is
little data describing their thermodynamic properties
around literature andwhere quantum chemical calculations
still lack accuracy to obtain chemically accurate properties
at a reasonable computational cost. The collection of data is
thus a major challenge in the creation of machine learning
models predicting thermodynamic properties.

3.2 Molecular representation

Once the data is obtained, the molecules need to be
computationally represented for the machine learning
model. An ideal computational representation should
answer to certain criteria which will be outlined here. A first
desired property of a representation method is its unique-
ness. This means that one molecule, using a representation
method, can only be represented in onemanner. If this is not
the case, one molecule may be represented in two different
ways, leading to two different property predictions by the
machine learningmodel. This propertymay seem trivial, but
in what follows, an example will be shown for which this is
not the case. Secondly, the representation must be unam-
biguous. This means that a certain representation can only
correspond to one molecule. If not, two molecules with the
same representation will always get the same prediction
from the machine learning model, which is clearly unde-
sirable. A third important factor is that the representation
must be easy to generate. The aim of the machine learning
models discussed here is to obtain a fast prediction of the
thermodynamic properties. If the representation step in this
process takes a long time, the main advantage of machine
learning is lost.

One of the most commonways to represent molecules is
line-based string identifiers. These are identifiers in which a
molecule is represented by a single string. The most used
line-based identifier is the simplified molecular input line
entry system (SMILES) string (SMILES – A simplified chem-
ical language). This SMILES string describes a molecule
unambiguously and is easy to generate. However, the
SMILES string is not unique i.e. for one molecule many
correct SMILES can be generated. This shortcoming can be
remedied by using canonical SMILES, for which a mathe-
matical algorithm re-orders the atoms and corresponding
string, making it a unique representation. A challenge with
this representation is that it is based on the bonds between
the atoms. Deriving the correct bonds and bond orders may
be challenging when only the 3D coordinates of the atoms
are known. Another popular string-basedmethod to identify
molecules is the International Chemical Identifier (InChI)
(Heller et al. 2015). This representation is unique, unambig-
uous, and easy to generate. A downside of InChI with respect
to SMILES is that it is less human-readable. A third string-
based representation of molecules that is worth mentioning
is SELFIES (Krenn et al. 2019). The major advantage of this
representation is that it is robust, meaning that when certain
grammar rules are followed, every possible SELFIES string
is related to a valid molecule. Therefore, this representation
is promising to be used in generative machine learning
models. However, due to its novelty, it has not been widely
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used in the general representation of molecular data, or as
input for predictive machine learning models (Krenn et al.
2022). The aforementioned line-based identifiers only
represent molecules in a 2D manner. They are in fact un-
ambiguous using a 2D view but may be ambiguous when
considering 3D conformations of molecules. Different con-
formers will namely be represented in the same way.

To properly represent a conformer of the molecule, 3D
informationmust be incorporated into the representation. It
is unfeasible to store all the 3D information i.e., the co-
ordinates of the atoms, in a string. Therefore, a 3D molecule
is usually represented via specific file formats such as
xyz-files, mol-files, or sdf-files. While all these text-based
representations (string or file) are readable for computers,
they can usually not be used directly as input to a machine
learningmodel. An exception to this is the recently emerging
language models. These models can directly use the SMILES
representation as input.

However, mostly, the aforementioned representations
should first be converted to some sort of mathematical
representation of the molecule. One of the most common
representations for machine learning purposes is the nu-
merical vector. Different features, such asmolecularmass or
number of atoms can be chosen as elements of this vector. It
is important to consider the ambiguity when constructing
vectors in this manner. Only selecting the molar mass and
number of atoms would namely lead to many molecules
having the same representation. Furthermore, the chosen
feature must be easy to calculate. For example, using
quantum chemical properties of the molecule would slow
down the representation step significantly. Over time, many
open-source and commercial packages to automatically
generate such properties have been developed. Examples of
such tools include Mordred (Moriwaki et al. 2018), ChemoPy
(Cao et al. 2013b), Dragon (Mauri et al. 2006), and others (Yap
2011; Cao et al. 2013a). By using these tools, users can create
vectors containing up to thousands of features in a reason-
ably short time period and without much manual inter-
vention. In addition to these features, also structural

features can be added. The structural features describe the
presence or count of a substructure in the molecule. A
popular way to include these substructures is the molecular
access system (MACCS) key. This key encodes 166 sub-
structures into a single representation vector, as shown in
Figure 3.

This is an example of a well-established fingerprint that
can be used for various purposes. These fingerprints are
often included in cheminformatic packages such as RDKit
(Landrum 2013), OpenBabel (O’Boyle et al. 2011), and CDK
(Steinbeck et al. 2003). Other examples of such fingerprints
are the RDKit fingerprint and the extended-connectivity
fingerprint (ECFP) (Rogers and Hahn 2010). This ECFP
fingerprint starts by assigning an initial representation to
each atom. For a user-defined number of iterations, each
atom representation is then updated based on the repre-
sentations of the neighboring atoms. In this way, each atom
has a final representation not only describing itself, but also
its environment. These atom representations are then
combined to obtain one molecular representation. The
advantage of these built-in fingerprints is that they do not
require expert knowledge. Furthermore, these fingerprint
methods have the advantage of being unique and easy to
generate. However, in some cases, for example, if two mol-
ecules contain the same groups or substructures, the rep-
resentation might be ambiguous. Another downside is that
these representations are not tailored to the targeted pur-
pose. Furthermore, they do not include 3D information of the
molecule.

One classical way of including 3D information is using
Coulomb matrices (CM) (Montavon et al. 2012; Rupp et al.
2012). The diagonal elements of this matrix represent the
atoms, and the off-diagonal elements contain the Coulomb
repulsion between two nuclei. An advantage of using such a
representation of the geometry is that it is invariant to
external translations or rotations. Usually, a machine
learning model requires a fixed-length vector as input.
Therefore, this matrix must first be converted to a fixed-size
matrix. This can be done by adding zeros (zero padding)

Figure 3: Generation of the MACCS key for two
different molecules. Every element in the
vector corresponds to a different substructure.
If the substructure is present in the molecule,
the corresponding value is set to 1. Else, the
value is set at 0.
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until the desired matrix size is obtained. To transform
this matrix into a vector, one can list all the elements of the
matrix in vector form. More often, the eigenvalues of
the matrix are calculated and put into a fixed-length vector
(Montavon et al. 2012). Ordering the eigenvalues in
descending order makes the representation invariant to
atom numbering. Since the representation is now invariant
to translation, rotation, and numbering, it is a unique rep-
resentation of the molecule. Furthermore, the representa-
tion is easy to generate and unambiguous, even using a 3D
view. Another method for adding geometrical information
in the molecular representation is using histograms of dis-
tances, angles, and dihedrals (HDAD), first introduced by
Faber et al. (2017) and further developed by Dobbelaere et al.
(2021a). First, histograms are made of all distances, angles,
and dihedral angles between atom types. Then, for each
histogram, a number of Gaussians is fitted as shown for
three histograms in Figure 4. After that, a vector containing
the probability that a feature is found under eachGaussian is
created for each geometric feature (distance, angle, dihe-
dral). This vector has a length equal to the total number of
Gaussians. These vectors are then added to obtain a repre-
sentation vector of the molecule. A disadvantage of this
approach is that the representation of a molecule is depen-
dent on the dataset in which it is included. Again, this
representation is invariant to translation, rotation, and
atom numbering of the molecule, and is thus unique.
Furthermore, it describes a molecule unambiguously in a 3D
manner. Fitting the Gaussians over the histograms may be
challenging, but once this is performed, the representation
vector is also easy to determine. Besides the two geometrical
representation methods presented here, many other ap-
proaches can be used (Faber et al. 2017; Hansen et al. 2015;
Plehiers et al. 2021).

The earliermentioned ECFP is afingerprint that is based
on the graph representation of the molecule. In this molec-
ular graph, every node corresponds to an atom of the
molecule, and every edge corresponds to a bond of the
molecule. Once this graph is created, a priori defined

operations are performed on the graph to obtain a numeri-
cal representation of themolecule. However, since the use of
graph neural networks (GNNs) has recently become more
popular, the transformation to a numerical vector is no
longer needed. GNNs can namely take graphs as input to
predict molecular properties. Therefore, next to string and
vector representations, a graph is the third way to represent
a molecule for machine learning purposes. For a molecular
graph to be suited as input of a GNN, feature vectors must be
assigned to the nodes (atoms) and/or edges (bonds). Common
atom features to include in the vector are atomic number,
number of bonded hydrogen atoms, number of non-
hydrogen bonds, and implicit valence (Pathak et al. 2020;
Rogers and Hahn 2010; Yang et al. 2019). Also more chemi-
cally inspired features such as electronegativity can be
added. The most common choice of bond feature is the bond
type i.e., single double, triple, and aromatic. This can be
extended tomore specific features such as whether the bond
is conjugated or whether the bond is in a ring (Pathak et al.
2020; Yang et al. 2019). It is also possible to include 3D in-
formation of a molecule in its graph representation (Gas-
teiger et al. 2020). Gilmer et al. (2017), for example, included
an encoding of the bond length in the bond feature vector
when the geometry of the molecule was available. These
graphs give a unique representation of the molecule when
the atomic number is chosen as an atom feature and the
bond order as a bond feature. It is also unambiguous in a
2D view. If 3D information is added, it can also describe
different conformers unambiguously. Furthermore, using
cheminformatic packages like RDKit, the molecular graph
and its features are also easy to determine. For predicting
properties, these graphs are treated byGNNs. By doing this, a
latent vector representation of the molecule is created.
However, since this vector representation is created by a
machine learningmodel, this will be discussed in Section 3.3.
For completeness wemention that the representation graph
is sometimes constructed in a different manner. In these
cases the nodes still correspond to the atoms in themolecule,
but the edges are assigned differently. Namely, an edge can

Figure 4: Histograms and fitted Gaussians of the C–C distance, the C–C–H angle, and the C–C–H–H dihedral angle.
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be added between atoms (nodes) that are closer to each other
than a user-defined cutoff distance (Batzner et al. 2022;
Gasteiger et al. 2020; Schütt et al. 2018, 2021). Setting this
cutoff distance very high can even lead to a fully connected
graph. In graphs created with a cutoff distance bond orders
cannot be used as edge features. Therefore, the user must
rely on geometrical features such as the interatomic
distance.

An overview of important properties of the discussed
representation methods is shown in Figure 5. As mentioned
before, uniquemeans that onemolecule corresponds to only
one representation. Unambiguous means that one repre-
sentation corresponds to one molecule (not considering
conformers). The 3D information property shows if any
conformational information is contained in the representa-
tion. In Figure 5, the box is half-shaded if it is the user’s
choice whether to include it. A property is easy to generate if
it can be created within fractions of a second. Note that if 3D
information is used (like in CM, HDAD, and possibly graphs),
the representation is only easy to generate if the geometry is
already available. A representation is classified as human
readable if it is simple to determine from the representation
what the corresponding molecule is. For this category, half-
shaded represents that it requires experience to deduce the
initial molecule. Furthermore, a representation is tunable if
the user can make choices in the representation, to tune it
for the desired task. The last row shows if a representation
requires bond knowledge to be generated. If this is required
and only the 3D coordinates of the atom are given, the bonds
in the molecules must be generated based on interatomic
distances. These bonds can be assigned in different ways,
influencing the uniqueness of the representation.

For the prediction of solvation properties in a single
solvent, the molecular representation stated above can be
used (Ferraz-Caetano et al. 2023; Goh et al. 2017; Hutchinson
and Kobayashi 2019; Rong et al. 2020; Wu et al. 2018; Yang
et al. 2019). However, for predicting solvation properties in a

variety of solvents, a solvent representationmust be created.
Since solvents are molecules, they can be represented by a
SMILES string. Again, this is usually not sufficient for ma-
chine learning purposes. To use it as input, the stringmust be
translated into a numerical representation. One option is to
embed both the solute and solvent in a feature vector (Chen
et al. 2023; Liao et al. 2023a; Subramanian et al. 2020). Both
the representation of the solute and solvent are then used as
input for a machine learningmodel. In this case, care should
be taken so that the representations are tailored to describe
solvation effects. Solvation is namely dominated by inter-
molecular forces, while the gas-phase thermodynamic
properties are determined by intramolecular interactions.
An example of such a tailored representation is the COS-
MOtherm feature vector. These features are well suited to
describe solvation effects but require quantum chemical
calculations. However, when the number of different sol-
vents is low in comparison to the total number of data points,
the few time-consuming quantum chemical calculations are
justifiable. Another option is to represent both the solute and
solvent with a graph (Chung et al. 2022; Pathak et al. 2020;
Vermeire and Green 2021). Here, again, the atom and/or
bond features are preferable specific to describe the solva-
tion process. In principle, it is also possible to have a graph
input for the solute and a vector input for the solvent. Ma-
chine learning models that can treat these inputs will be
discussed in the next section.

For the prediction of adsorption energies, selecting
features to construct a suitable representation of the catalyst
is the most popular approach. Often, the d-band center and
other density of state features are used together with some
limited feature selection tools (Andersen et al. 2019; Fung
et al. 2021; Goldsmith et al. 2018; Nayak et al. 2020; Toyao et al.
2018; Xu et al. 2021). The downside is the requirement of DFT
calculations of the catalytic materials to obtain the molecu-
lar representation. This is thus only justifiable if the number
of different catalysts is low in comparison to the total

Figure 5: Overview of important properties of
the discussed molecular representation
methods. A cell is colored in gray if the
representation follows the desired property.
For the 3D information property the cell is half-
filled if it is the user’s choice whether or not to
include the 3D information. For the human-
readable property, the cell is half-filled if it
requires experience of the user to interpret the
representation.
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number of data points. To lower the computational cost, it is,
however, possible to estimate these d-band features at a
reduced computational cost (Noh et al. 2018). Even more
computationally demanding than using d-band features is
using DFT-calculated energies of certain species-catalyst
combinations to calculate the adsorption energies of another
species-catalyst pair (Andersen and Reuter 2021; García-
Muelas and López 2019; Tran andUlissi 2018). The generation
of this representation is computationally less intensive than
the quantum chemical determination of the adsorption
properties for all adsorbate-catalyst pairs but is still too time-
consuming for kinetic modeling applications. In addition to
these computationally expensive representations, it is also
possible to use easy-to-calculate features such as electro-
negativities and atomic radii (Andersen and Reuter 2021;
Esterhuizen et al. 2020). Ideally, one does not need to
compute ab initio properties as an input to obtain model
predictions. Therefore, Xie and Grossman (2018) used the
atom coordinates of the metal crystal as an input for their
model to facilitate material property prediction. It should be
noted that this is only an inexpensive representation if the
geometry of the catalyst is already known. Also for the
calculation of adsorption energies, graph representations
have been used (Pablo-García et al. 2023). In this approach,
the adsorbate and catalyst were encoded as one graph, and
the node feature vector was a one-hot encoding of the cor-
responding element. Overall, by employing either the known
geometry or other easy-to-determine features as model
input, a much more user-friendly and faster prediction is
achieved which is essential for the automatic generation of
kinetic models.

In conclusion, there are three main types of molecular
representation for machine learning purposes: string
representation, vector representation, and graph repre-
sentation. Also when looking at solvation or adsorption
properties, molecules can be represented via a vector or
graph representation. The advantage of the graph repre-
sentation is that it contains a lot of information. It contains
information about the atoms of the molecule, and with
which bonds they are connected. Such a high amount of
information is usually not contained in a vector repre-
sentation. This is because all informationmust be compiled
into a fixed-length vector. The least amount of chemical
information is contained in a SMILES string. This might be
counterintuitive since this SMILES is often the starting
point of graph representations. However, for a machine
learning model, the SMILES input is just a string without
any additional meaning. The graph representation is thus
the most complete representation of the molecule. How-
ever, in the next chapter, a major disadvantage of this
graph representation will be touched upon.

3.3 Machine learning models for molecules

Following the view of Dobbelaere et al. (2021b), the third big
pillar of machine learning, besides data and representation,
is themachine learningmodel. The type of model that can be
used depends on the type of representation that is chosen. If
the molecule is represented by a numerical vector, a wide
variety of machine learning models are suited for the task.
Any model that transforms the input vector to the target
output can be chosen. The simplest option is linear regres-
sion. However, due to their simplicity and linearity, these
models are not within the scope of this machine learning
review. Besides these linearmodels, more complexmethods,
such as support vector regression (SVR) (Dashtbozorgi et al.
2012; Yalamanchi et al. 2019, 2020), kernel ridge regression
(KRR) (Faber et al. 2017; Noh et al. 2018; Rupp et al. 2012) or
feedforward neural networks (FNN) (Dashtbozorgi et al.
2012; Dobbelaere et al. 2021a; Li et al. 2017; Yalamanchi et al.
2019) are often used for the prediction of thermochemical
properties. When the molecule is represented by a mathe-
matical graph, these classical methods are not suitable. In
this case, GNNs are used. These are neural networks spe-
cifically dedicated to processing graph data. Many different
GNNs have been developed to predict molecular properties
(Wieder et al. 2020). Mostly, these models are based on
iteratively updating the node representation based on its
surroundings. However, other methods have been designed
that update this representation based on the complete graph
(Kearnes et al. 2016; Wu et al. 2018). Here, we will discuss
message passing neural networks (MPNN), which is themost
used architecture for predicting thermochemical properties
(Ma et al. 2020; Wieder et al. 2020). As discussed in the rep-
resentation section, the input to such models is a graph G.
Each node in this molecular graph has an associated feature
vector. This is a requirement if a node-centered MPNN,
which is the most occurring type, is used. This feature vector
will be denoted as xv, where v is the node of which this is the
feature vector. Often, also the edges have an associated
feature vector. The vector of the edge between node v andw
will be denoted as evw. In node-centered MPNNs, every node
v has a hidden state htv at timestep t. This hidden state is
updated every iteration. First, the hidden state must be
initialized, as shown in equation (5).

h0v = init(xv) (5)

This initialization function can be as simple as
init(xv) = xv. However, then, the size of the hidden state h0v is
fixed to the same size as xv. This limits the number of
hyperparameters that can be tuned by the user. For this
reason, and to give themodelflexibility in constructing these
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initial hidden states, learned matrices are usually used for
this initialization (Ma et al. 2020; Hasebe 2021). In this
context, ‘learned’ means that it can change during the
training procedure. An example of such an initialization
function is shown in equation (6), where Winit is a learned
matrix, binit a learned bias vector, and σ a nonlinear acti-
vation function. However, in general, this initialization
function can be any function or even a neural network.

init(xv) = σ(W init xv + binit) (6)

After initialization, the iterative procedure of MPNNs
starts. Every iteration consists of two stages: the message
passing stage and the update stage. In the message passing
stage, every node receives information from its neighboring
nodes. The messages the node receives are then added to
create the overall message mt

v received by node v, as pre-
sented in equation (7).

mt+1
v = ∑

w∈N(v)
Mt(htv, evw, htw) (7)

In this equation N(v) denotes the collection of all neighbors
of node v and Mt the message function at iteration t. The
function Mt, which can be different for every iteration, is
chosen by the user. The function can be as simple as
Mt(ht

v, evw, h
t
w) = ht

w (Duvenaud et al. 2015). However, mostly
this message function contains learned matrices or is a
complete neural network. Once every node has received an
overall message, its hidden state must be updated based on
this message, as shown in equation (8), in which Ut is the
update function at iteration t.

ht+1
v = Ut(htv,mt+1

v , xv) (8)

Again, the complexity of this update function can range
from simple arithmetic operations to a neural network. One
special, but frequently used update function is the gated
recurrent unit (GRU) (Feinberg et al. 2018; Liao et al. 2019;
Withnall et al. 2020). This learned unit, originally designed
for recurrent neural networks, has found its popularity in
GNNs in recent years. After T iterations, every node has a
learned representation describing its environment. This
approach thus very much resembles the earlier mentioned
ECFP, with the significant difference that here, thefinal atom
representations are learned, whereas in the ECFP proced-
ure, the atom representations are fixed. Finally, the hidden
states of all nodes are converted to the targeted thermody-
namic property, as is shown in equation (9).

ŷ = out({hT
v |v ∈ G}) (9)

In this equation, the output function out can be any function,
learned orfixed, that transforms the node representations to

the prediction(s). Mostly, it is a learned function inwhich the
first step is adding all the hidden representations, ∑

v∈G
hTv , to

obtain a single vector. It should be noted that this summed
vector serves as a latent vector representation of the mole-
cule. This latent representation is then fed to an FNN in
the second step to obtain the prediction(s). Before feeding
this latent representation to the FNN, it can be extended
with additional features. These can, for example, be the
temperature at which the target thermodynamic property is
calculated/measured. Another option is to add features
describing the solvent or catalyst (Heid and Green 2022). In
this way, a graph representation of the molecule can be
combined with a vector representation of the solvent or
catalyst. Besides this popular approach, other output func-
tions have also been proposed (Duvenaud et al. 2015; Schütt
et al. 2017). The discussedmethod of converting amolecule in
a graph and the iterative procedure that follows it is shown
in Figure 6.

More details about MPNNs and GNNs can be found in
the work of Gilmer et al. (2017) and the review of Wieder
et al. (2020). One major advantage of using a graph repre-
sentation in combination with a GNN is that the model can

Figure 6: Representation of the construction of the molecular graph of
3-hexene, and a visualization of the iterative step in the MPNN.
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optimize the latent vector representation of themolecule for
the given task by tuning the model parameters. Depending
on the task and even the training data, themolecule will thus
be represented by a different vector. Another advantage is
that, since this vector representation is learned, expert
knowledge is not really required to construct a machine
learning model. A drawback of using GNNs is that they
contain a high number of parameters and are as a conse-
quence very data-intensive.

The last type of molecular representation that could be
used as input for a machine learning model is the SMILES
string itself. In these machine learning models, the SMILES
strings are converted to a latent representation. Historically,
recurrent neural networks (RNNs)were used to perform this
task (Gómez-Bombarelli et al. 2018; Xu et al. 2017). Over
recent years, great advances have been achieved in the field
of natural language processing (NLP) (Devlin et al. 2018;
Vaswani et al. 2017). The main novelty of these works is that
language can be treated only using attention mechanisms,
removing the need for RNNs. More details about this new
technique can be found in the original publications (Devlin
et al. 2018; Vaswani et al. 2017). The first part of such lan-
guage models is usually a Bidirectional Encoder Represen-
tations from Transformers (BERT) (Chithrananda et al. 2020;
Wang et al. 2019; Wu et al. 2022; Zhang et al. 2021). This
encoder transforms a string, here the SMILES of the mole-
cule, to a mathematical vector representation. After this
BERT encoder, an FNN is usually used to predict the target
property from the vector representation (Wang et al. 2019;
Zhang et al. 2021). It is possible to train this combination of
the BERT encoder and FNN via the conventional method.
However, these two parts can also be trained separately.
Alternatively, a transfer learning approach is frequently
used to improve the prediction accuracy. This separate
training and transfer learning approach will be discussed in
a following section.

The models used for the prediction of solvation prop-
erties are similar to the ones used for the prediction of gas-
phase properties. For the prediction of solvation energies in
the same solvent for all data points, the solvent does not need
to be represented, and the solute can be embedded similarly
to gas-phase molecules. Therefore, the same model archi-
tectures can also be used. When the solvent differs along the
dataset, the solvent must also be represented. When the
solvent and solute are each represented by a feature vector,
the vectors can be concatenated to obtain one vector
describing the solute-solvent pair. This vector can then be
used to calculate the target property using any of the
aforementioned models that transform a vector into a
numerical output (Chen et al. 2023; Liao et al. 2023a). If the
solute and solvent are represented by a graph, GNNs can be

used to treat them. After the iteration step, the latent rep-
resentation of both are concatenated and then fed into an
FNN (Chung et al. 2022; Vermeire and Green 2021). Also other
techniques to predict solvation energies exist. For example,
some works calculate interactions between atoms of the
solute and solvent, mimicking the physical solvation process
(Lim and Jung 2021; Pathak et al. 2020). Based on these
interactions, the solvation energies are then calculated. As
mentioned before, it is also possible to have a graph input for
the solute and a vector input for the solvent. The solvent
representation is then appended to the latent solute repre-
sentation in the GNN.

The prediction of adsorption energies can be done in
an analogousway to the prediction of solvation energies. In
principle, the catalyst feature vector can be appended to
the adsorbate descriptor. This larger vector can then again
be used as input to a classical machine learning model
(SVR, KRR, FNN) (Nayak et al. 2020; Toyao et al. 2018).
However, most models for predicting adsorption energy
are for a single adsorbate. Using the catalyst descriptor
solely is thus sufficient in this case. Fung et al. (2021)
created a machine learning model that could handle
varying catalysts and adsorbates. After some steps latent
feature vectors were obtained which were then concate-
nated. This vector was then fed into a feedforward neural
network to obtain the adsorption energy prediction. Pablo-
García et al. (2023) also predicted the adsorption energies of
various adsorbate-catalyst combinations. The complete
adsorbate-catalyst pair was embedded in a single graph.
Therefore, a single GNN could be used to predict the
adsorption energy. Besides this work, others have also used
GNN to predict adsorption energies or related properties
using a similar approach (Ghanekar et al. 2022; Li et al.
2023). While the number of machine learning models for
direct thermochemical property prediction for heteroge-
neous catalysts remains limited, many efforts have been
made in the area of neural network potentials for catalytic
processes. Especially to predict the OC20 datasets, many
machine learning potentials have been developed (Gas-
teiger et al. 2021; Liao et al. 2023b; Zitnick et al. 2022).
Furthermore, important steps are being taken in model
development for the prediction of crystal properties (Park
and Wolverton 2020; Xie and Grossman 2018). Xie and
Grossman (2018) developed a crystal graph convolutional
neural network specifically for material property predic-
tion. Park and Wolverton (2020) improved upon this model
by incorporating information on Voronoi tessellated crys-
tal structures. These types of models allow a complete and
unique representation of the materials which is an
important prerequisite for the prediction of adsorption
energies in heterogeneous catalysts.
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When selecting a model, an important consideration is
its data requirements. Some models necessitate less data for
training compared to others. For instance, training a large
neural network (i.e., one with a high number of parameters)
with a small dataset often leads to overfitting. Conversely,
employing the same dataset to train a smaller neural
network or simpler models like SVR or KRR tends tomitigate
overfitting. This phenomenon can pose challenges when
using a graph representation since it must always be paired
with GNNs, which typically have numerous parameters.
Thus, while a graph offers themost complete representation,
it may not be optimal when data availability is limited. Using
a string representation presents a similar issue. The BERT
encoder, for example, comprises numerous parameters
that require fitting, potentially resulting in overfitting.
Nonetheless, as previously mentioned, alternative training
methods can be employed to address this issue, whichwill be
discussed in Section 5.

4 Machine learning for reaction
property prediction

4.1 Kinetic datasets

Machine learning of reaction properties is less common in
literature than the prediction of molecular properties. One
of the main reasons for this gap is the availability of data.
Reaction datasets are not as well established as molecular
datasets. The first reason for this is the computational cost
of constructing one. Constructing reaction databases usu-
ally requires searching, optimizing, and calculating the
energy of transition states. This search and optimization
procedure on transition states is computationally more
demanding than it is on stable species. This higher
computational cost leads to smaller datasets. Furthermore,
the theoretical reaction space is larger than the molecular
space (Stocker et al. 2020). Building a general machine
learning model to predict properties for a wide range of
inputs, would thus require more data when treating
reactions, in comparison with having molecules as input.
The lack of sufficient qualitative data is thus a major
bottleneck for machine learning of kinetic properties.
Nonetheless, efforts have been made to construct reliable
datasets. One example is the datasets designed by the Green
group (Grambow et al. 2020b; Spiekermann et al. 2022a).
First, molecules involving hydrogen, carbon, nitrogen, and
oxygen, with six or seven heavy atoms were selected from
the GMB-7, which is a subset of the GDB-17 database.
Starting from the optimized geometry of these molecules,

transition states were sought via a single-ended method at
the B97-D3/def2-mSVP level of theory. In single-ended
methods, transition states are searched for starting from
the reactant(s), while not having any knowledge about the
products (Zimmerman 2015). After checking the validity of
the transition state, the reaction energy and the activation
energy were calculated at the B97-D3/def2-mSVP level of
theory. This resulted in a dataset of approximately 16,000
reactions. To increase the accuracy, the geometry optimi-
zations and energy calculations were reperformed at
the ωB97-D3/def2-mSVP and the CCSD(T)-F12a/cc-pVDZ-F12
levels of theory for a dataset of approximately 12,000
reactions. Remarkable about this dataset are the types of
reactions. Since the reactions are generated via an auto-
matic single-ended method, a high variety of reaction types
is obtained. This can both be an advantage and a disad-
vantage, depending on the aim of the machine learning
model. A downside of these reaction datasets is that they
only contain unimolecular reactions. Although the
reactions can be reversed to obtain bimolecular reactions,
the dataset still describes a limited range of the chemical
reaction space. Either the reactants or products would
consist of only one species. This limitation is not present in
the work of Zhao et al. (2023b). They calculated the kinetics
for almost 177,000 reactions. First neutral closed-shell
molecules were selected from the PubChem database. The
selected molecules consisted of C, H, O, and N, and con-
tained no more than 10 heavy atoms. On these initial
reactants, reactions are enumerated where two bonds are
broken, and two bonds are formed. Both the reactant and
the product are then used as input for a double-ended
transition state search, at the GFN2-xTB level of theory. In
such a double-ended search, a transition state is sought
based on both the reactant(s) and product(s). Often, this
search resulted in transition states relating to unexpected
reactants and/or products. These unintended reactions
were retained to increase the diversity of the dataset.
Because of this, also bimolecular reactions and reactions
breaking or forming less or more bonds are included in this
dataset. For these reactions, the energetics were calculated
at the B3LYP-D3/TZVP level of theory. In contrast to the
previous dataset, not only reaction and activation energies
were calculated, but also Gibbs free reaction and activation
energies. A downside of the aforementioned reaction
datasets is that the kinetic properties are calculated at a
level of theorywith a relatively low accuracy i.e., all but one
are calculated using a DFT method. Furthermore, these
datasets are constructed by automatically generating
possible reactions. The first ones were constructed by
searching for a transition state on the potential energy
surface. The last database was constructed by breaking and
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forming bonds in the molecular graph. Both approaches
may lead to reactions that are irrelevant or even unrealistic
to occur in reality. The kinetics of a more relevant class of
reactions was calculated by von Rudorff et al. (2020). They
calculated the activation energy for thousands of E2 and SN2
reactions. These reactions are relevant in synthetic chem-
istry, but less prevalent in high-temperature reaction net-
works. Data considering high-temperature reactions is,
similar tomolecular data, usually spread around literature.
Table 2 shows a selection of high-temperature reaction data
calculated at a high level of theory that is available in the
literature.

This table shows two types of data sources. The first four
sources contain data to construct kinetic GAVs, whereas the
last two sources contain data to construct detailed kinetic
models. The advantage of the data generated for GAV pur-
poses is that it only contains data of a strictly defined reac-
tion class. This facilitates the generation of a machine
learningmodel aimed at the prediction of the kinetics of that
reaction class solely. The downside of these sources is their
limited number of data points. On the contrary, when
calculating kinetics for kinetic models, more data points are
generated. However, these reactions span a wide range of
reaction classes, which makes the creation of reaction class-
specific machine learning models infeasible. Similar to mo-
lecular datasets, the RMG database has collected data from
diverse sources in one database. Again, the downside of such
a collected database is that the included propertiesmay have
a different calculation method and accuracy. The same issue
is present in the NIST Chemical Kinetics Database (Mallard
et al. 1992). However, the advantage of this database is that it,
besides computed kinetic properties, also contains experi-
mentally measured properties, which are generally more
accurate.

Datasets concerning liquid-phase reactions are scarcer.
One challenge in generating machine learning suitable
databases is the size of the liquid-phase reaction space.
Where the gas-phase reaction space was already consider-
ably larger than the molecular space, adding solvents adds
another dimension. Therefore, a high amount of data is
required to generate a machine learning model that can
predict kinetic properties throughout the complete liquid-
phase reaction space. Constructing a machine learning
model for only a part of the space requires less data, but will
only cover a very small application range. An advantage is
that in principle, generating datasets for liquid-phase
reactions is not much more computationally demanding
than gas-phase calculations, provided that the solvent effects
are included in a simple manner e.g., implicit solvent model
or COSMO-RS. Such an approach was taken by Stuyver et al.
(2023). They calculated the free reaction energy and the free
activation energy of around 5000 cycloaddition reactions in
water. The energies were calculated at the B3LYP-D3(BJ)/
def2-TZVP level of theory. The solvent effects were included
in this calculation using the implicit SMDmodel. This dataset
only covers a small fraction of the chemical space, since it
only covers one reaction class and one solvent. Nonetheless,
this is a good example of the type of data that is required to
trainmachine learningmodels. A dataset that covers a larger
portion of the reaction space was presented by Jorner et al.
(2021). They collected around 500 rate constants of nucleo-
philic aromatic substitution reactions. The dataset contains
reactions in different solvents and thus covers a significant
part of the chemical reaction space. Furthermore, all rates
are determined experimentally and are thus more reliable
than computational values. In this work, the rates were also
calculated quantum chemically. This resulted in a mean
absolute difference of 12.26 kJ/mol on the free activation

Table : Selection of high-temperature kinetic databases calculated at a high level of theory found in the literature.

Reaction type Number of
data points

Reaction
representation

Properties Method Source(s)

Hydrogen transfer between oxygenates  Drawing + TS geometry Arrhenius CBS-QB
+ D HR

Paraskevas et al. ()

Radical addition and β-scission of
oxygenates

 Drawing + geometries Arrhenius CBS-QB
+ D HR

Paraskevas et al. ()

Intramolecular hydrogen abstraction  Drawing + TS geometry Arrhenius CBS-QB
+ D HR

Van de Vijver et al. ()

Carbon-centered radical additions and
β-scissions

 Drawing + TS geometry Arrhenius CBS-QB
+ D HR

Sabbe et al. (c)

Nitroethane flame reactions  Chemkin file format Arrhenius QCISD(T)/CBS Zhang et al. ()
Tetrafluroropropene combustion
reactions

, Chemkin file format Arrhenius CBS-QB Needham and
Westmoreland ()

Arrhenius properties include the pre-exponential factor A, activation energy Ea, and may include the temperature coefficient n.
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energy in comparison with the experimental values. This
shows that statically calculated liquid-phase rates may not
be accurate enough to construct quantitative detailed kinetic
models as these values are not chemically accurate (below
4.184 kJ/mol). Nevertheless, combining these calculations
with a machine learning model to predict the experimental
rates lowered the error to 3.64 kJ/mol, showing the useful-
ness of these less accurate calculations. Other relevant
liquid-phase reaction data was published by Chung and
Green (2024). In this work, instead of performing the com-
plete workflow of calculating of in-solvent reaction rates,
only the solvent correction on the gas-phase reaction rate
was calculated using the COSMO-RS theory. This resulted in a
dataset of almost 8,000,000 datapoints, based on around
26,000 gas-phase reactions published by Grambow et al.
(2020b), and a dataset of approximately 500,000 datapoints
based on 1870 gas-phase reactions published by Harms et al.
(2020). These large datasets show the strength of the COSMO-
RS theory in the generation of large in-solvent reactions.
Namely, after a quantum chemical calculation on the reac-
tion species (reactants, products, and transition states) and
the solvents, the solvent correction of many different re-
actions in many different solvents can be calculated rela-
tively quickly. Databases of catalytic reactions face the same
challenges as liquid-phase reactions. The catalytic material
adds another degree of freedom to the already large chem-
ical reaction space. Therefore, it is difficult to construct a
dataset covering the complete, or a significant fraction of this
catalytic reaction space. An additional challenge compared
to liquid-phase reactions is the computational cost of
generating datasets. Quantum mechanical catalytic calcula-
tions take, even when a static approach is taken, more
computational time than liquid-phase calculations, due to
the high number of atoms/electrons. Furthermore, for cat-
alytic reactions, it is hard to exactly know the location of the
transition state, which is less of an issue for gas-phase
reactions. These limitations make the construction of large
datasets containing computed catalytic reaction rates
unfeasible. One place where catalytic reaction kinetics are
available is the earlier mentioned Catalysis-Hub. This data-
base contains, besides adsorption energies, reaction and
activation energies of surface reactions.

In terms of data, the same problems are thus facedwhen
predicting reaction properties as when predictingmolecular
properties. The scarcity of high-fidelity data is also a major
problem when predicting kinetics, even more outspoken
than was the case for molecular properties. This is mainly
due to the higher computational cost of constructing such
large datasets. Furthermore, since the reaction space is
larger than the molecular space, more data is required to
give a complete description of the space. Relatively large

datasets still exist, but they contain properties calculated at a
low level of theory. Similar to molecules, more accurate
datasets are spread around the literature. For liquid-phase
or catalytic reactions, only task-specific datasets exist.

4.2 Reaction representation

A key step in creating machine learning models to predict
kinetics is the representation of the chemical reactions.
Representing reactions is challenging since there are some
significant differences between molecules and reactions. A
molecule is something static, whereas reactions are a
dynamic process inwhichmolecules are converted into each
other. Ideally, a reaction would be represented by all
atomic configurations along the reaction path. However, it is
hard and memory-demanding to store reactions that way.
Therefore, reactions are often represented by only their
initial state (reactants) and end state (products), as shown in
Figure 7A. This figure also shows a problem with this type of
representation. Based on the representation, the reaction
could be a 1,2-H shift or a 1,3-H shift. This reaction repre-
sentation is therefore ambiguous. Amachine learningmodel
would predict the kinetic properties (e.g. activation energy)
of the 1,2-H shift and the 1,3-H shift with these reactants and
products as equal, which is not correct. A popular way to
make the reaction representation unambiguous is to include
atommapping as shown in Figure 7B. In this approach, every
atom in the reactants is linked with the corresponding
atom in the products.With atommapping, it is now clear that
the reaction shown in the figure belongs to the 1,3-H shift
reaction class. This representation, however, is merely a
human-readable drawing of the reaction. For computational
purposes, the reaction must be converted to a computer-
readable format. The simplest way to achieve this is again
using a line-based identifier like reaction SMILES (Reaction
SMILES and SMIRKS) or Reaction InChI (RInChI) (Grethe
et al. 2018). The reaction SMILES is constructed by separating
the reactants’ and the products’ SMILES by a ‘>>’ sign. A
major advantage of this representation is that, since every
atom is represented separately in a SMILES string, atom
mapping can be contained in the reaction SMILES string.
Less frequently used is the RInChI representation (Grethe
et al. 2018). The downsides of this representation are that it is
less human-readable and cannot incorporate atommapping.
These line-based representations are usually not the input to
a machine learning model, unless when working with an
NLP model.

As was the case for molecules, reactions are frequently
represented by a mathematical vector. Often, these reaction
vectors are created from themolecular feature vectors of the
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reactants and products. One of the most common ways to
do this is through difference fingerprints, introduced by
Schneider et al. (2015). In this approach, the representation
vectors of all reactants are added to obtain one representa-
tion vector of all reactants. The same procedure is performed
for the products to obtain a vector describing all products.
Finally, the reactants vector is subtracted from the products
vector to obtain a reaction representation vector. This type
of reaction representation, or others based on the difference
between reactants and products, has been employed in
many works (Ghiandoni et al. 2019; Patel et al. 2009; Probst
et al. 2022). This popular method has several advantages.
First of all, it is a flexible method. Any molecular feature
vector can be used to generate the reaction vector. Secondly,
after taking the difference between the reactants and
products, only what changes during the reaction remains.
The vector thus gives an intuitive representation of the re-
action. Thirdly, this reaction representation does not require
atom mapping. On the one hand, this results in a limited
representation of the reactions, as was discussed before. On
the other hand, not requiring atom mapping allows the use
of reaction datasets for which mapping is not available.

Reactions can also be represented using mathematical
graphs. A common way is using the molecular graphs for all
reactants and products (Grambow et al. 2020a; Kwon et al.
2022;Wen et al. 2021). These graphs are then all used as input

for a machine learning model. Since multiple graphs are
used as input, customized machine learning models must be
used. It is also possible to convert the reaction into a single
graph, so that simple GNNs, as described in the molecular
property prediction section, can be used. This single graph
representation of the reaction is known as the condensed
graph of reaction (CGR), based on the imaginary transition
structure introduced in the 1980s (Fujita 1986). The CGR is
constructed by converting every atom of the reactants or
products into a node of the graph. Then edges are added
between atoms that are bonded in either the reactants or the
products. In this way, the reaction is represented as a type of
pseudomolecule, as shown in Figure 7C (Hoonakker et al.
2011a). In this figure, the dashed lines represent dynamic
bonds, which are bonds that change during the reaction
(Hoonakker et al. 2011b). Just as for a molecular graph,
feature vectors must be allocated to each node and edge.
These vectors are created by combining features of the atom/
bond in the reactants with its features in the products (Heid
andGreen 2022). In this way, changes during the reaction are
incorporated into a single graph and classical GNN can be
used. Note that for this graph representation, atommapping
is required to match the atoms in the reactants with the
atoms in the products (Madzhidov et al. 2015).

Reactions can thus be represented by a string, a vector,
or one or more graphs. For the prediction of liquid-phase or

Figure 7: An example showing the need for
atom mapping to represent a reaction
unambiguously and the generation of the
CGR. (A) The reaction of 2-butyl to 1-butyl,
which can proceed via a 1,2-H shift and a 1,3-H
shift. (B) The atom-mapped reaction, making
clear that it is a 1,3-H shift reaction. (C) The
pseudomolecule representing the reaction, in
which the dynamic bonds are represented
with dashed lines. (D) the CGR of the reaction
(without showing the feature vectors associ-
ated with the nodes and edges).
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catalytic reaction kinetics, this representation must be
combined with a representation of the solvent and catalyst,
respectively. In the reaction SMILES string representation
these reagents are represented in the following way:
“reactants > solvent.catalyst > products”. For vector repre-
sentations of the reaction, the solvent and/or catalyst can
also be represented by a vector. The same solvent and
catalyst representation methods for solvent and catalyst
representation as applied in molecular property prediction
can be used. Also when the reaction is represented by a
graph, a vector representation of the solvent or the catalyst
can be used. The input to themachine learningmodel is then
one or more graphs and a vector. In the molecular property
prediction section, it was already discussed how these can be
combined in a machine learning model.

Similar to molecules, reactions are mainly represented
by a string, vector, or one or more graphs. The representa-
tion of reactions is very similar to the representation of
molecules because the reaction representations are often
obtained by constructing the molecular representation of
the reactants and products. The properties of the reaction
representation (uniqueness, unambiguity, ease to generate)
are usually linked with the corresponding properties of the
used molecular representation method. However, special
care should be taken to ensure unambiguity. To ensure the
unambiguity of the reaction representation, it is important
that atom mapping is included in the representation in any
way. This can be done explicitly, for example in reaction
SMILES, or implicitly, like in the CGR representation of a
reaction.

4.3 Machine learning models for reactions

The preceding section highlighted that reactions are depic-
ted using data structures previously introduced in the mo-
lecular representation section, allowing for the utilization of
the same machine learning models. When a reaction is
represented by a vector, conventional machine learning
models like SVR, KRR, or FNNs are applicable. Similarly,
when combined with a vector representation of the solvent
or catalyst, these models remain suitable. Likewise, if the
reaction is represented by a single graph, the aforemen-
tioned GNNs can be employed. When the input also contains
a vector representation of the solvent or catalyst, this vector
can be appended to the latent vector representation of the
reaction. When the input consists of multiple graphs, a more
specific architecture must be designed. Usually, all graphs
are fed into a GNN to obtain a latent representation of every
node(atom) and/or edge(bond) in the graphs. Then, there
are two main methods to combine these representations to

obtain a prediction of the target kinetic property. The first
one is to first create the latent molecular representation of
the reactants and products. These are then combined into
one vector, e.g., by concatenating or subtracting them,which
can then be fed into an FNN (Kwon et al. 2022; Wen et al.
2022), as shown in Figure 8A. When subtracting the latent
molecular vectors, an identical approach to the earlier
described representation method of Schneider and
coworkers is taken, now incorporated in amachine learning
model. The second option is first combining the node
representations of the reactants with the corresponding
node representations of the products (Grambow et al. 2020a;
Wen et al. 2021). Then the same output functions as used
in classical MPNNs can be used to convert these combined
atom representations to the target property, as shown in
Figure 8B. Note that to combine the representation of the
corresponding atoms, atom mapping is required. For these
two methods, again, possible vector representations of the
solvent or catalyst can be added to the latent reaction rep-
resentation. Another popular feature to add to this latent
representation, when predicting the activation energy, is the
reaction energy. The Evans–Polanyi relationship showed
that there is a correlation between the reaction and activa-
tion energy. Adding this reaction energy can thus help the
model in obtaining an accurate prediction of the activation
energy. Also here, the reaction SMILES representation can

Figure 8: Visualization of the readout step of an MPNN when having
multiple graph inputs by (A) creating latent reactants and products
representations and combining them to make a latent reaction
representation which is then fed into an FNN, or (B) creating an ‘atom
reaction representation’ for every atom in the reactants/products. These
are then fed into an output function similar to equation (9).
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be directly used as input of a machine learning model, using
the BERT encoder. This BERT model, combined with an FNN
has been used to predict yields of organic reactions by
Schwaller et al. (2021b). Although the model is used for yield
prediction, it can also be utilized to predict kinetics, as was
also stated in the conclusion of this work. Also for reactions,
the BERT encoder and the FNN can be trained separately or
via a transfer learning approach. These approaches will be
discussed in the following section.

5 Data-efficient machine learning

A challenge that remains is that classical machine learning
approaches may lead to unsatisfactory accuracies, often
because of a lack of good-quality data. Therefore, techniques
have been developed to improve the performance of these
models despite a low amount of adequate data. Here, we
will discuss several approaches to achieve these improved
accuracies.

A first popular technique is transfer learning. The term
transfer learning can be interpreted in different ways. Here,
we define transfer learning as any method that transfers
knowledge from one machine learning model to another
machine learning model. A popular transfer learning tech-
nique applied to all kinds of neural networks is pretraining-
finetuning, shown in Figure 9A. In this approach, a neural
network is first trained by a large inexpensive low-fidelity
dataset in the pretraining step. This results in a machine
learning model that can predict the target property, but at a
lower level of accuracy because of the low-fidelity data.
Thereafter, in thefinetuning step, themodel is retrained by a
smaller amount of high-fidelity data, to improve the accu-
racy of the model. In this finetuning, the parameters of
the earlier trained model are used as initial values of the
parameters in the optimization procedure. In this way, the
pretrained model requires less high-fidelity data as it
already has grasped some essential knowledge from the
inexpensive low-fidelity data. If the model were trained on
the small dataset only, the model would probably get over-
fitted due to the high number of parameters combined with
the low amount of data. As a result, an accurate machine
learningmodel can be obtained evenwithout sufficient high-
fidelity data. This technique has already been applied
several times to predict thermodynamic and kinetic prop-
erties. Ureel et al. (2023b) trained machine learning models
to predict the enthalpy of formation, standard entropy, and
heat capacity of species belonging to different molecule
classes. Using group additivity, they created a large, less
accurate, dataset for the pretraining step. The finetuning
step was performed using a smaller high-fidelity quantum

chemical dataset. This transfer learning approach per-
formed better than training on the small dataset only, but
also improved upon the group additivity model, despite us-
ing the same quantum chemical data. This thus shows that,
using this transfer learning approach, a machine learning
model can outperform the classical group additivity
approach, even for a small dataset. Also solvation free en-
ergies have already been predicted using transfer learning
(Vermeire and Green 2021). Here, the larger low-fidelity
dataset was a quantum chemical dataset, while the smaller
more accurate dataset contained experimental values. This
pretraining-finetuning approach has also been applied to
the prediction of activation energies in multiple works
(Grambow et al. 2020a; Heid and Green 2022; Spiekermann
et al. 2022b). In these works, both the pretraining and

Figure 9: Two data-efficient machine learning techniques. (A) The
transfer learning method. The black dataset represents the high-fidelity
dataset, the white dataset is the low-fidelity dataset. (B) The delta-
machine learning approach. The representation of the datasets is iden-
tical to (A). The black-and-white dataset represents the difference be-
tween the high-fidelity and low-fidelity data.
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finetuning steps contained quantum chemically calculated
data. The difference between the two datasets is that the
finetuning data is calculated at a higher level of theory.
Furthermore, Chung and Green (2024) also used transfer
learning to predict the solvent correction on gas-phase re-
action rates. In this work, the pretraining dataset contains a
high amount of uncommon reactions, while the finetuning
dataset is smaller, but contains more common reactions.
Grambow et al. (2019) also used a transfer learning approach
to predict thermodynamic properties but in a slightly
different manner. Here, a GNN was trained via transfer
learning. Different from the previously stated works, only
the output function of the GNN was finetuned. The other
parameters, i.e., the parameters in the initialization and
iterative step, were kept fixed after pretraining. A quite
similar approachwas taken by Al Ibrahim and Farooq (2022).
In this work an MPNN, followed by an FNN was pretrained
on the QM9 dataset. The learned latent molecular repre-
sentation in the MPNN, combined with the ECFP fingerprint
of the molecule, was then used as input to another FNN that
predicts the reaction rate of reactions containing this
molecule. Here, the FNN of the second model predicting re-
action rates was thus trained from scratch, without any
pretraining. This is in contrast to the aforementioned
method used by Grambow et al. (2019). In that approach, the
complete model was thus pretrained, while only a part was
finetuned. The opposite technique, namely only pretraining
a part of the model, is very popular in language models. As a
reminder, these language models usually consist of a BERT
encoder, which transforms the input string into a mathe-
matical vector, and an FNN, which transforms that vector
into a prediction of the target property. Specific NLP tech-
niques allow to train the BERT encoder solely afterwhich the
BERT encoder and the FNN can be jointly finetuned. A major
advantage of the approach is that pretraining the encoder
does not require labeled data, i.e., molecules or reactions
linked with their target property. As a result, solely SMILES
or reaction SMILES strings are sufficient to pretrain the
model. How this pretraining step is performed is outside the
scope of this review, but can be found in the following works
that used this technique (Schwaller et al. 2021a; Wang et al.
2019; Zhang et al. 2021). It is also possible to freeze the BERT
encoder’s parameters and only optimize the subsequent FNN
in the finetuning step. In fact, this completely separates the
two steps: the pretraining step creates a vector representation
of the molecule/reaction using the BERT encoder, and the
finetuning step trains an FNN to transform that vector to the
target property. Since the second step is now independent of
the encoder, any machine learning model that transforms a
vector to the target output can be used (e.g. KRR, SVR, FNN).
Another advantage of this independence is that after the

pretraining step (training of the encoder), the molecular/re-
action representation vector can be used ‘as is’ for many
prediction tasks, without the need to train the encoder again.
This has been employed multiple times for the prediction of
reaction properties. Schwaller et al. (2021a) trained a BERT
encoder to obtain a vector representation of the reaction
named rxnfp. This fingerprint has then been used to create a
variety of machine learning models in other works (Griffiths
et al. 2024; Heid and Green 2022; Probst et al. 2022).

Above, transfer learning was presented as a method to
build amachine learningmodel using two datasets, usually a
less and a more accurate one. Another way to treat two
different data qualities is delta-machine learning, shown in
Figure 9B. In delta-machine learning, two datasets are
required: one dataset containing properties calculated at a
fast but less accurate method, and one with properties
calculated at a slower butmore accuratemethod. As opposed
to transfer learning, it is important that both datasets contain
the samemolecules or reactions. In delta-learning, instead of
training a model to predict the high-fidelity data point, a
model is trained to predict the difference between the high-
fidelity and low-fidelity data points. By doing so, themachine
learning model only needs to predict contributions not
included in the cheaper less accurate model. This approach
has been employed multiple times to predict the difference
between quantum chemically calculated properties and
experimentally measured properties (Hu et al. 2003; Meng
et al. 2023; Weinreich et al. 2021). Another task for which this
has been employed is to predict the difference between a low
level of theory and a high level of theory quantumchemically
calculated properties (Bogojeski et al. 2020; Ramakrishnan
et al. 2015; Ruth et al. 2022). For example, predicting the dif-
ference between the enthalpy of formation calculated at
G3MP2B3, and the formation enthalpy calculated at B3LYP
(Plehiers et al. 2021). The downside of this approach is that
B3LYP calculations are still required to obtain an estimate of
the G3MP2B3 calculated value. This B3LYP method is faster
than the G3MP2B3, but still takes a significant amount of
time, and is therefore not ideal for kinetic modeling pur-
poses. This can be mitigated by, instead of using the still
time-consuming low-level DFT method as a starting point,
using a semi-empirical method such as PM7 or GFN2-xTB
(Ramakrishnan et al. 2015; Zhao et al. 2023a).

6 Performance assessment of
machine learning models

In the previous sections, we have discussedmachine learning
models according to three pillars: data, representation, and
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model. Machine learning approaches from separate works
usually differ in more than one category, especially if a
detailed look is taken at the data, representation, and model.
For example, if the same dataset is used as a basis, but cleaned
in a different way, it can make the comparison between ap-
proaches less objective. Furthermore, even if the samedataset
is used for two different machine learning models, the data
could be split differently between the training and test sub-
sets, resulting in differing performances. Also, comparing the
different representations is difficult. The results obtained
when using vector representation of molecules or reactions
strongly depend on the expertise of the user selecting the
features. Also for graph representation, it is dependent on the
features assigned to the atoms and bonds. Another hidden
difference is the hyperparameter choice. Most machine
learning models require the choice of hyperparameters. A
change in these hyperparameters can lead to a significant
difference in performance. Thus, evenwhen exactly the same
data, data splits, representation, and type of model architec-
ture are used, different outcomes can be expected, due to a
difference in hyperparameters. This high number of degrees
of freedommakes a comparison between the performances of
different machine learning approaches often unreliable.
Therefore, here, we will only look at the performances ach-
ieved for different tasks, rather than making a comparison
between different approaches. For energies, predictions are
often assumed to be chemically accurate if the error is smaller
than 4.184 kJ/mol (Miller et al. 2021; Ruscic 2014). At a tem-
perature of 450 °C, this error on the Gibbs free activation
energy leads to a factor 2 error on the reaction rate constant.
This is assumed to be an acceptable error for applications in a
kinetic model. However, at room temperature, this error
corresponds to a factor 5 on the reaction rate constant.
Furthermore, the way researchers define ‘the error’ can vary.
Traditionally, the accuracy of thermochemical properties has
been described using the width of the 95% confidence inter-
val. Others,mainly in thefield ofmachine learning, rather use
themean absolute error (MAE) or the root mean square error
(RMSE). Evaluating the chemical accuracy ofmodels based on
different accuracy metrics can be ambiguous. Requiring the
width of the 95% confidence interval to be lower than
4.184 kJ/mol is usually stricter than requiring the MAE or the
RMSE to be lower than this value. Ruscic (2014) noted that
using the MAE as metric can underestimate the uncertainty
by a factor of 2.5–3.5 in comparisonwith thewidth of the 95%
confidence interval. Lastly, it is important to note that the
conventional value of 4.184 kJ/mol is rather chosen arbi-
trarily. It is by no means an important limit below which
models suddenly become accurate. Although this value is
rather arbitrary and the definition of ‘the error’ can vary, this
will be used as a reference to evaluate the performance of

machine learning models in what follows. It is important to
consider that the reported accuracies are with respect to the
test dataset. To obtain an evaluation of the total error on the
prediction, the accuracy of the test set datamust be taken into
account. For example, as mentioned before, the QM9 dataset
has a 20 kJ/mol deviation from values calculated at the G4
level of theory. Predicting the energies in this dataset with an
error lower that 4.184 kJ/mol would therefore not mean that
the obtained thermochemical properties are chemically
accurate.

The most basic task is the prediction of gas-phase
properties. The most used dataset to train models to predict
molecular gas-phase energies is QM9. Different works have
achieved energy MAE close to chemical accuracy using this
dataset (Faber et al. 2017; Pinheiro et al. 2020, 2022). These
works used both the vector and graph representation of
the molecules and a wide variety of machine learning
models. This QM9 is a high variety dataset, also containing
fewer occurring species, which may make the task more
difficult. However, when only a subset of QM9 is considered,
including only a certain type of molecules, predictions
within chemical accuracy can be reached (Dobbelaere et al.
2021a). This was achieved by combining the HDAD repre-
sentation with an FNN. In the same work, also other ther-
mochemical properties were predicted for a smaller, but
more accurate, dataset. The enthalpy of formation, standard
entropy, and heat capacity were predicted with MAEs of
9.34 kJ/mol, 3.86 J/mol/K, and 1.47 J/mol/K respectively. For
temperatures below 800 °C, this accuracy on the entropy
corresponds to errors on energies lower than the chemical
accuracy of 4.184 kJ/mol. The error on the enthalpy of for-
mation is rather large, while the same model reached
chemical accuracy on a subset of QM9. This is probably due
to the smaller dataset size, which makes the model more
prone to overfitting.

For the prediction of free solvation energies, RMSE of
around 6 kJ/mol can be achieved on the FreeSolv database
via the chemistry machine learning package MoleculeNet,
using a graph representation (Wu et al. 2018). Similar accu-
racies are achieved via the open-source chemical machine
learning package Chemprop, also using a graph represen-
tation (Heid et al. 2024; Yang et al. 2019). However, this
dataset is not a good benchmark to evaluate the prediction of
solvation energies, since it only includes water as a solvent.
Nonetheless, different studies predicting the solvation en-
ergies using suitable datasets (containing a variety of solutes
and solvents) show results within chemical accuracy (Chung
et al. 2022; Liao et al. 2023a; Pathak et al. 2020; Subramanian
et al. 2020; Vermeire and Green 2021). These works again
used both vector and graph representations combined
with different models. This might, however, still not give an
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objective representation of the performance. Often, when
test data is fed to themodel, themodel has already seen both
the solvent and the solute during training, only not together.
These test data points thus do not show an objective evalu-
ation of how themodelwould performwhen being fed a new
solute or solvent. Vermeire andGreen (2021) tested how their
machine learningmodel (GNN) would perform on solvents it
had not seen during training. For almost all tested solvents,
the RMSE was still within the limits of chemical accuracy.

For the prediction of adsorption energies, the models
using quantum chemical descriptors, such as the d-band
center, are irrelevant, since they are, due to their high
computational cost, not suited for kinetic modeling pur-
poses. If these d-band features are calculated in a faster
manner, this approach is interesting to consider. Noh et al.
(2018) showed that this faster approach could predict
adsorption energies of CO on a (100) facet with an RMSE of
17 kJ/mol, using a vector representation and KRR as model.
When the training dataset was extended via active learning,
an error of only 5 kJ/mol was achieved. This, however, only
considered one adsorbate. In anotherwork, a GNN created to
predict the adsorption energy of several adsorbates on
several catalysts yielded an MAE of around 17 kJ/mol, while
the accuracy onDFT data used for training and testingwas of
the same order of magnitude (Pablo-García et al. 2023). It is
thus unclear whether the error is due to the shortcomings of
the machine learning models, or the error on the training
and test data. In the field of predicting kinetics withmachine
learning, the focus has mainly been on the prediction of
the activation energy. For a dataset containing a high variety
of DFT-calculated gas-phase reactions, an MAE of around
18 kJ/mol was reached, using a GNN (Heid and Green 2022).
This large error is at least partially due to the variety of the
dataset. On another, smaller but more reaction-specific
dataset, the samemodel namely yielded anMAE of 11 kJ/mol.
Approximately the same accuracies were reached for the
same dataset in other works (Heinen et al. 2021; Stuyver and
Coley 2022). Lastly, models have also been trained to predict
the free activation energy of liquid-phase reactions, more
specifically nucleophilic aromatic substitutions. Models
trained and tested on this dataset show MAEs within
chemical accuracy (Heid and Green 2022; Jorner et al. 2021),
both when using a vector and graph representation.
Although this is partially due to the small range of activation
energies in the dataset, it is a very promising result showing
the potential of the prediction of the rate of relevant
reactions.

Transfer learning approaches usually yield better results
than training a model with a single dataset (Spiekermann
et al. 2022b; Vermeire and Green 2021). One approach in
particular interesting for kinetic modeling purposes is a

transfer learning approach where the pretraining is per-
formed using a GAV database. The advantage of this is that
only the same data as was needed to fit GAVs is required.
Models trained with this approach showed errors within
chemical accuracy,while this accuracywas not reachedwhen
predicting the properties with GAVs only. Also, delta-learning
yields better results than direct learning (Weinreich et al.
2021). Here, however, it is important for kinetic modeling
purposes that the low-level dataset is generated by a fast and
automated method. The improvements achieved when using
these fastermethodswith respect to direct prediction have, to
our knowledge, not yet been reported.

Overall, machine learning models show promising re-
sults to be used for kinetic modeling purposes. For most
properties, there are different models that show errors
within or close to the limits of chemical accuracy. Worse
accuracies are obtainedwhen themodel is trained for awide
range of molecules or reactions with a limited training
dataset size. Datasets containing only a small part of the
molecular or reaction space can usually make accurate
predictions, especially when using a transfer learning
approach.

7 Conclusion and perspective

This review explores the potential of machine learning to
predict thermodynamic and kinetic properties, focusing on
their integration into detailed kinetic models. Currently,
detailed chemical kinetic models rely on methods such as
quantum chemistry or rapid approximations like group
additivity for property prediction, each with its limitations:
quantum chemical calculations are slow and the rapid ap-
proximations are often inaccurate. Hence, machine learning
presents a promising alternative. We examine the current
state-of-the-art in machine learning for property prediction,
emphasizing three key pillars: data, representation, and
model. Notably, the scarcity of accurate data emerges as the
primary obstacle to machine learning’s integration into
detailed kinetic models. Accurate data exists but is scarce
and scattered around the literature. Larger datasets on the
other hand, typically comprise properties that are calculated
at a low level of theory.

The representation and model pillars are closely inter-
twined. Graph representations offer rich chemical infor-
mation but often require large machine learning models,
leading to overfitting when using small datasets. Conversely,
vector representations generally contain less detail but are
compatible with smaller models. Both types of representa-
tions, coupled with various mathematical models, yield
promising results across different property prediction tasks.
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Moreover, models trained on datasets covering only a
limited range of themolecular or reaction space consistently
yield chemically accurate results in prediction tasks, sug-
gesting that the current state of the representation and
model pillars suffices for kinetic modeling.

Although many advances have been made in these two
pillars, the main challenge lies in data scarcity. To mitigate
this, more data-efficient training techniques are needed.
Transfer learning, for instance, leverages a larger low-
fidelity dataset to aid training on a small high-fidelity data-
set, reducing overfitting. This method has demonstrated its
efficacy across various prediction tasks, even when utilizing
low-fidelity data generated through group additive values.

Delta-learning, on the other hand, trains models to
predict differences between low- and high-fidelity calculated
or experimentally determined properties. However, its
application in detailed kinetic models requires advance-
ments in semi-empirical techniques for efficient low-level
calculations to speed up the prediction process.

Overall, while progress has been made in developing
machine learning models and representations, overcoming
data scarcity remains crucial for their effective application
in detailed kinetic models. Addressing this challenge
through the creation of larger, more accurate datasets and
the development of data-efficient machine learning tech-
niques holds promise for enhancing the capabilities of ki-
netic modeling.
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