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Pannexins, distant relatives of the connexin
family with specific cellular functions?
Catheleyne D’hondt* Raf Ponsaerts Humbert De Smedt** Geert Bultynck and
Bernard Himpens
Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N, Leuven, Belgium
Intercellular communication (IC) is mediated by gap
junctions (GJs) and hemichannels, which consist of
proteins. This has been particularly well documented
for the connexin (Cx) family. Initially, Cxs were thought
to be the only proteins capable of GJ formation in verte-
brates. About 10 years ago, however, a new GJ-forming
protein family related to invertebrate innexins (Inxs) was
discovered in vertebrates, and named the pannexin
(Panx) family. Panxs, which are structurally similar to
Cxs, but evolutionarily distinct, have been shown to be
co-expressed with Cxs in vertebrates. Both protein
families show distinct properties and have their own
particular function. Identification of themechanisms that
control Panx channel gating is a major challenge for
future work. In this review, we focus on the specific
properties and role of Panxs in normal and pathological
conditions.
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Introduction

Intercellular communication (IC) is essential to coordinate

cellular responses in tissues and organs, thereby fulfilling an

essential role in the spreading of signaling, survival, and death

processes. Gap junctions (GJs) mediate IC between cells.

GJs are plaques of GJ channels, which are proteinaceous

channels formed by the docking of two hemichannels of

adjacent cells (Fig. 1).(1,2) It was thought that in vertebrates

only connexins (Cxs) were able to form GJs. In invertebrates,

another family of GJ proteins was identified, the innexins

(Inxs). Orthologs for Inxs have been recently discovered in
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vertebrates, and named pannexins (Panxs).(3) Although Cxs

and Inxs/Panxs evolved independently and display little

sequence homology (reviewed in Ref.(4)), they possess many

common structural and functional properties, including their

ability to form GJs and hemichannels and to participate in IC

processes.

Inxs, Cxs, and Panxs belong to one superfamily.(5,6) The

invertebrate Inx family counts 25 genes in Caenorhabditis

elegansand8Drosophilamelanogastergenes.(6,7) Cx isoforms

are members of the highly conserved multigenic family of

transmembrane proteins consisting of 21 human(8,9) and 20

mouse(10) Cx genes, which are named on the basis of their

predicted molecular mass (between 26 and 60kDa).(10–12)

The vertebrate Panx family counts only three members in

mammals: Panx1 [426 amino acids (aa), 47.6 kDa], Panx2

(664 aa, 73.3 kDa), and Panx3 (392 aa, 44.7 kDa).

The potential physiological roles of GJs depend on their

protein subunit composition, which defines their conduc-

tance and permeability properties, and are limited by the

kind of signals and metabolites they allow to pass (Fig. 1).

Some GJs are more permeable to anions, whereas others

show preference for cations or exhibit little charge

selectivity.(13,14)

While docked hemichannels form GJ channels, unpaired

hemichannels can function as channels in membranes,

similar to regular ion channels(15–31) (Fig. 1). Functional

hemichannels were first described for Cx46,(15,16) but have

now also been described for several other Cxs,(17–28) and

more recently for Inxs(29) and Panxs.(30–33) Hemichannels for

Cx, Inx, or Panx are called connexons,(34–36) innexons, or

pannexons,(37,38) respectively.

Under basal physiological conditions, connexons and

pannexons are closed.(39) However, changes in the extra-

cellular and intracellular environment can lead to opening of

these hemichannels and release of intracellular signaling

molecules into the extracellular environment. It is important to

note that the response to a certain extracellular or intracellular

change or trigger may be very different for connexons and

pannexons. Indeed, Cx43 hemichannels have mainly been

reported to be opened under ischemic conditions(19,40–45) and

by strong depolarization (>þ40mV),(20,46) although Cx32

hemichannels are also activated by low rises in free
1



Figure 1. Schematic representation of the formation of gap junction (GJ) channels and hemichannels. A: Structure of innexin (Inx), connexin

(Cx), and pannexin (Panx), which are folded in the membrane in the approximate shape of an ‘‘M’’ and which consist of four typical hydrophobic

transmembrane domains (M1–M4) spaced by one cytoplasmic (CL) and two extracellular (EL1 and EL2) loops. Six transmembrane proteins

(Inxs, Cxs, or Panxs), which are radially arranged around a central pore, form an innexon, connexon or pannexon, respectively. Innexons,

connexons, or pannexons, which are located in the plasmamembrane, are called hemichannels. When they consist of identical protein subtypes,

they are called homomeric hemichannels, and when they consist of different protein subtypes, when two or more isoforms are expressed in the

same cell, they are called heteromeric hemichannels. The docking of two identical homomeric or heteromeric hemichannels results in a

homotypic GJ channel, while docking of two different homomeric or heteromeric channels forms a heterotypic GJ channel. B: Structure and

properties of Cx and Panx channels. (Partially modified from Mese et al.(89)) C: A table summarizing the main differences between Cx and Panx

channels.
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intracellular Ca2þ concentration ([Ca2þ]i). In contrast, Panx1

hemichannels seem to be activated by different physiological

stimuli, including mechanical stress during osmotic

shock,(39,47–49) strong depolarizations (>þ20mV), and acti-

vation of purinergic receptors, including P2Y1, P2Y2, and

P2X7, by ATP and other agonists.(50–58)

In non-excitable cells, two pathways for IC are important:

gap junctional intercellular communication (GJIC) and para-

crine intercellular communication (PIC).(22,59,60) In contrast to

GJIC, PIC does not require cell–cell apposition but involves

the release of diffusible extracellular messengers (Fig. 2).

Cells produce and release different types of signaling

molecules in the extracellular space. Released hydrophilic

messengers, which are unable to cross the plasma

membrane of the responding cell, bind as ligands to receptor

proteins that are present in the plasma membrane. These

receptors then relay the message across the membrane into

the interior of the cell.

IC both via GJIC and PIC has been extensively

documented for intercellular Ca2þ signaling. GJIC occurs

via the diffusion of different signaling molecules,

including Ca2þ or inositol 1,4,5-trisphosphate (IP3) through

GJs causing and modulating Ca2þ release from the

intracellular stores of the neighboring cells(61) (Fig. 2). Upon

reaching the cell boundaries, the intracellular Ca2þ wave
Figure 2. Intercellular Ca2þ-wave propagation in non-excitable cells in

paracrine intercellular communication (PIC). Stimulation of a single cell r

or Ca2þ release. TheCa2þ rise spreads from the SC to neighboring cells (N

GJIC and PIC, are involved in the intercellular propagation. GJIC is a direc

adjacent cells. PIC involves release of amessenger (e.g., ATP) into the extr

be released via hemichannels (Cx hemichannels, Panx hemichannels or a

other mechanisms (see text). It is hydrolyzed by ectonucleotidases to A

neighboring cells (NB1, neighboring cell 1; NB2, neighboring cell 2; NB3
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propagates to the surrounding neighboring cells as an

intercellular Ca2þ wave.(62,63)

A well-investigated paracrine factor in the propagation of

intercellular Ca2þ waves in many cell types is the hydrophilic

messenger ATP.(64–67) ATP can be released from healthy

cells(68–71) during mechanical deformation in response to

shear stress, stretch, or osmotic swelling, as well as during

hypoxia, inflammation and stimulation by various

agents.(71,72) In vitro evidence showed that ATP release

can occur via multiple mechanisms including vesicular

exocytosis(71) or via transport mechanisms, such as ATP-

binding cassette (ABC) transporters, plasmalemmal voltage-

dependent anion channels,(73) P2X7-receptor chan-

nels,(53,74–76) and also via Cx hemichannels(51,64,77–82) or

Panx hemichannels(69–71,83) (for review, see Ref.(84)).

As the Cx family is very extensive with many members and

a multiplicity of regulatory mechanisms, it seems remarkable

that the Panxs are conserved in vertebrates and are

expressed together with several members of the Cx family.

This suggests that Panxs fulfill specialized functions under

specific cellular conditions. The physiological function and

subcellular localization of Panx channels have long been the

subject of debate, and are still poorly documented. Recent

evidence for Panx1 activity in hippocampal neurons(85,86) and

new insights in the formation of Panx hemichannels(32,33)
volves both gap junctional intercellular communication (GJIC) and

esults in a Ca2þ rise in the stimulated cell (SC) via Ca2þ influx and/

B), resulting in intercellular Ca2þ-wave propagation. Twomechanisms,

t exchange of a mediator (IP3 and/or Ca
2þ) between the cytoplasm of

acellular space, which acts on receptors on neighboring cells. ATP can

combination of P2X7 receptor channels with Panx hemichannels) or

DP and AMP. ATP and ADP act on P2Y and/or P2X receptors on

, neighboring cell 3).
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suggest a specific cellular function of Panx hemichannels. In

this review, we summarize the current view on the regulation

and function of Panx channels in normal and pathological

conditions. We focus particularly on specific mechanisms that

discriminate Panxs from the broad Cx family.
How to discriminate between Cx and Panx
channels?

It is very difficult to experimentally discriminate between Cx

and Panx channel families, since (i) subtype-specific blockers

for Cx and Panx channels are not available(31,87,88); (ii) cells

can express multiple Panx and Cx isoforms; and (iii) natural

hemichannels can function as heterooligomers(89) with

atypical sensitivity to blockers.

A myriad of chemical products used to block GJs are non-

specific, and both Panxs and Cxs have a high sensitivity to

drugs routinely used to block hemichannels (see Table 1).

Great caremust be exerted in using pharmacological blockers

to identify Cx or Panx channels, since ‘‘cross-inhibition’’ of Cx/

Panx channels and volume-regulated anion channels

(VRACs), which share certain functions, by pharmacological

agents has been reported(90) (see Table 1). Panx channels

share some pharmacological properties with P2X7 recep-

tors,(91) and P2X7 receptor inhibitors have also been shown to

block Panx channels (see Table 1).

Cx-mimetic peptides, corresponding to sequences of the

extracellular loops of Cxs, are used to inhibit Cx GJ channels

and hemichannels.(81,87,92–95) Surprisingly, 32Gap24 and
43Gap27 attenuate Panx currents,(87) questioning the speci-

ficity of Cx mimetic peptides (see Table 1). Panx mimetic

peptides (10Panx) inhibit Panx hemichannels,(74,86,87) but one

study showed that 10Panx also inhibited Cx46 hemichan-

nels(87) (see Table 1). Antibodies against Panxs, such as

Pannexin-1 K-20 (Santa Cruz),(5,47,96–101) or custom made

antibodies 4512(86,97) and 4515,(85,97) ANT0027 (Dia-

theva)(30,102) were also used to block Panx channels.

Differences between Cx and Panx channels can also be

studied by tagging tetracysteine and fluorophores to the N and

C termini of recombinant Cx and Panx channels and

performing patch-clamp experiments, a recently developed

method.(103)

Finally, siRNA and shRNA have been used to specifically

knockdown Panx channels.(52,74,86,101,104–106)

The use of Panx gene knockout animals would provide

important insights in the physiological role of Panx channels.

However, Panx1-deficient mice are viable without any obvious

phenotype,(107) suggesting redundancy between different

Panx isoforms or an overlap in function between Cx and Panx

hemichannels. Nevertheless, the lack of phenotype in normal

mice does not necessarily indicate that Panx hemichannels do

not fulfill important roles under pathophysiological conditions.
4

Structural properties of Cx and Panx
channels

Hemichannels can be homomeric (identical Cx/Panx sub-

types) or heteromeric (different Cx/Panx subtypes)(13)

(Fig. 1). The docking of two identical homomeric or

heteromeric hemichannels results in a homotypic GJ channel,

while docking of two different homomeric or heteromeric

hemichannels forms a heterotypic GJ channel (Fig. 1).

Nearly all cells in the human body express at least one of

the Cx genes and most vertebrate cell types express several

different Cx isoforms in a temporal-, spatial-, and differentia-

tion-specific manner.(108) Formation of functional Cx GJs

(homotypic as well as heterotypic GJ channels) and Cx

hemichannels (homomeric as well as heteromeric hemi-

channels) has been described in many cell types.(2,26,46,61,109)

These channels differ from each other by their unitary

conductance,(110) permeability,(111) and regulation,(108) which

is crucial for maintaining proper embryonic development and

sustaining tissue function in the adult organism. It has also

become increasingly clear that Cxs have profound effects on

gene expression (reviewed in Ref.(112)) and the presence of a

Cx subtype can also influence the channel formation of other

Cx subtypes.(113)

Panxs are expressed in many different cell types and

abundantly in the vertebrate central nervous system,(114) and,

like Cxs, the membrane expression of Panx1 might also be

regulated by other Panx subtypes. While all Cx subtypes are

able to form homomeric connexons, only Panx1(31) and Panx3

(albeit when overexpressed)(37) form homomeric pannexons.

Very recently different studies have demonstrated the

presence of functional Panx hemichannels by showing dye

uptake via Panx hemichannels.(52,74,86,87,91,105,115–118) Panx1

hemichannel activities have been clearly demonstrated, but

no active Panx2 hemichannels have been described yet.(119)

Functional Panx1 (homotypic channels) and Panx1/Panx2

(heterotypic channels) GJ channels were demonstrated with

patch clamp experiments in Xenopus oocytes.(119) The

measured currents were, however, much smaller than Cx

GJ currents in oocytes(33) andmouse neuroblastoma cells,(37)

implying that these GJ currents are minimal and that the

functional form of Panx1 channels is mainly a single

membrane pannexon (hemichannel).(32,33,120) As yet, no

evidence of canonical Panx GJs has been found in cultured

neurons, and glia.(121) Until recently, Panxs had not been

ultrastructurally identified as GJs or as any other membrane

structure in vertebrate species. Morphological and ultra-

structural studies in crayfish axons(122,123) and in rodent

spinal cord,(124) both expressing Panxs, revealed small

rosette-like GJ plaques that were completely different from

the Cx GJ plaques, which have a bright punctate staining.

Shestopalov and Panchin(4) hypothesized that these small

rosette-like GJ plaques and the fine puncta observed in the
BioEssays 9999:1–22, � 2009 Wiley Periodicals, Inc.



Table 1. Pharmacological inhibitors of large conductance channels

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

Carbenoxolone

(CBX)

<50–100mM(224,225) Cx46:

50–100mM(31)
IC50¼ 5mM(31) EC50¼ 0.175mM(53) EC50¼3–10mM(90)

Cx50: EC50¼
118mM(226)

Cx43: EC50¼
3mM(90)

50mM(104) IC50¼2–4mM(74)

10–100mM(227) IC50¼2–4mM(74) 5–10% increase(229)

Cx32: 100mM(82) Human

Panx1: IC50¼2�
1mM(229)

Cx26: IC50¼
21mM(228)

Mouse

Panx1: IC50¼ 4

�0.6mM(229)

Cx30: 100mM(79)

Mefloquine Cx50: EC50¼
34mM(226)

Cx50: 5mM(232) 50–100 nM(104) EC50¼2.5 nM(53) IC50¼ 1.19�0.07 -

mM(234)

IC50

Cx36¼0.3mM(230)
Cx50: 10mM(232) NE(74) NE(229)

IC50

Cx50¼1.1mM(230)
Cx30.2: IC50¼
5.5mM(233)

Human/mouse

Panx1: NE(229)

Cx43: >10mM(231)

Flufenamic acid

(FFA)

20–60mM(235) Cx46 and 50:

3mM(31,236)
30mM(31) EC50¼ 0.655mM(53) n/a

Cx50: 47mM(235) Cx 43: >100mM(227) 0.3mM(104) NE(229)

Cx50: EC50¼
41mM(226)

Cx26: 200mM(237)

Cx43: 25–50mM(80)

Cx38: 50mM(238)

Niumic acid Cx50: EC50¼ 173 -

mM(226)
Cx50 11mM(236) Human Panx1:

>1mM(229)
NE(229) 200mM(239)

300mM(235) Mouse Panx1:

>1mM(229)

NPPB [5-nitro-2-(3-

phenylpropyl-

amino)-benzoic

acid]

Cx50: 100mM(235) Cx43: 30–

100mM(90)
IC50 of �50mM(115) n/a 300mM(90)

Cx46: IC50 of

�50mM(115)
Human

Panx1: IC50¼21

� 4mM(229)

IC50¼14.6mM(228)

Cx46 and 50:

15mM(236)
Mouse

Panx1: IC50¼15

� 2mM(229)

123mM(239)

IC50¼27mM(240)

15% increase(229)

4,40-Diisothiocyana-

tostilbene-2,20-

disulfonic acid

(DIDS)

NE(235) Cx46 and

50: NE(236)
Human

Panx1: IC50¼11

� 2mM(229)

Human: 195mM(229) 200mM(239)

Cx43: NE(80) Mouse

Panx1: IC50¼11

� 2mM(229)

Mouse: 130mM(229) IC50¼ 256mM(240)

Rat: 90mM(229)

NE(241)

pHi Cx26:

6.95� 0.02(242)
6(243) Low pH(98) [Hþ]: IC50¼

0.4mM¼>

pH¼ 6.4(244)

>8(245)

Cx32:

6.47� 0.03(242)

Cx37: 6.9� 0.02(242)

(Continues)
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Table 1. (Continued )

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

Cx40:

6.67� 0.04(242)

Cx43:

6.71� 0.03(242)

Cx45:

6.98� 0.03(242)

Cx46:

7.03� 0.08(242)

Cx50:

7.17� 0.03(242)

Tamoxifen Cx43: 3–25mM(246) Cx43 n/a NE(247) EC50: >100mM(248)

5–10mM 10mM(90)

(90) IC50¼ 2.6mM(240)

Cx46 and

50: NE(236)

Octanol 0.1mM(249) Cx50: 177mM(236) n/a <1.5mM(53) NE(227)

Cx43: EC50�
120mM (250)

Cx43: 10mM–

1mM(227)

Cx 37 and 40:

4mM(251)
Cx43: 1mM(252)

Cx43: 1mM

Cx38: 1.5mM(238)

Heptanol 1mM(249) Cx43: �1mM(227) NE(74) <1.5mM(53) NE(227)

Cx43: 1mM(254,255) Cx43: 1mM(252) NE227

Cx43: 2mM(256) Cx43: 0.2–2mM(257)

Cx 37 and 40:

4mM(251)
Cx30: 2mM(258)

Halothane Cx43: 1.6mM(259) Cx43: 2mM(253) n/a NE(261) n/a

Cx43: 2–4mM(260) (41)

Cx43: EC50¼ 0.92 -

0.92mM(257)

18a-Glycyrrhetinic

acid

1.5mM(262) Cx43: 10mM(227) n/a n/a NE(227)

2mM(224) Cx26: 35mM(263) NE(265)

Cx37: 10mM(264)

Cx45: 40mM(265)

18b-Glycyrrhetinic

acid (bGA)

2mM(262) Cx46 and 50:

2mM(236)
n/a n/a 50mM(90)

25mM(226) Cx43: 35mM(46)

Cx43: 10mM(39)

Cx43: 20mM(253)

2-Aminoethoxydi-

phenyl borate

(2-APB)

Cx36 and 50: IC50¼
3.0mM(266)

Cx32 (homomeric):

IC50�47mM(267)
n/a n/a IC50¼122.8mM(268)

Cx50: IC50¼
3.4mM(266)

Cx32/26

(heteromeric):

IC50�47mM(267)

Cx45: IC50¼
18.1mM(266)

Cx46: IC50¼
29.4mM(266)

Cx43: IC50¼
51.6mM(266)

Proadifen hydro-

chloride (SKF-

525A)

Cx26:(269) Cx26: 100mM(263) n/a n/a n/a

Cx43: 75mM(270)

(Continues)
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Table 1. (Continued )

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

Oleamide Cx 37 and 40:

200mM(251)
Cx43: 50mM(39) n/a n/a n/a

Mg2þ 10mM(271) Cx43: 10mM–

1mM(227)
n/a IC50¼0.5mM(244) 1mM(275)

Cx32: IC50¼
1.30mM(272)

Cx32: 1mM(273)

Cx46: 5mM(16,274)

Ba2þ NE(276) Cx43: 10mM–

1mM(227)
n/a n/a n/a

Cx32: 1mM(273)

Gd3þ n/a Cx43: 50mM(80) NE (0.1–1mM) (74) n/a n/a

Cx43: 10mM(253)

Cx46 and 50:

3mM(236)

2mM(227)

Cx32: 100–

200mM(272)

La3þ NE(40) Cx43: 0.1mM(40) NE(74) n/a n/a

NE(79) Cx43: 10mM–

1mM(227)

Cx37 and 40:

5mM(251)
Cx43: 1mM(41)

100mM(177)

Cx30: 100mM(79)

Cx30.2: 5–

100mM(233)

Sr2þ n/a Cx43: 10mM–

1mM(227)
n/a n/a n/a

Zn2þ n/a Cx46: 10mM(232) n/a IC50�5mM(278) n/a

2mM(227) IC50¼ 11mM(244)

30mM(277) NE(279)

Extracellular Ca2þ NE(227) 2mM(227) NE(227) IC50¼2.9mM(244) n/a

Cx26: 3.5mM(228)

Cx26: 2–4mM(215)

Cx32: IC50¼
107mM(272)

Cx32: EC50¼
1.3mM(273)

Cx38: 3mM(280)

Cx46: 0.1mM(274)

Cx26, Cx34.7, Cx35,

Cx43, Cx27.5,

Cx44.1, and Cx55.5:

2mM(281)

Cx50: 5mM(243)

Intracellular Ca2þ Cx43:

IC50¼ 310nM(282)
Cx32: Opened by

�500nM(82)
Opened by high

[Ca2þ]i
(31)

IC50¼2.9mM(244) Opened by high

[Ca2þ]i
(283)

Opened by limited

range of [Ca2þ]i
(227)

Retinoic acid n/a Cx38: 1–10mM(280) n/a n/a n/a

Cx26, Cx34.7, Cx35,

Cx43, Cx27.5,

Cx44.1, and

Cx55.5: EC50¼
0.44mM(281)

(Continues)
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Table 1. (Continued )

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

IAA-94 n/a Cx43: 50–

200mM(90)
Mouse

Panx1: IC50¼95�
6mM(229)

n/a 200mM(90)

Cx46 and

50: NE(236)

4-Acetamido-40-

isothiocyanostil-

bene-

2,20-disulfonic

acid (SITS)

n/a Cx46 and

50: NE(236)
Human

Panx1: IC50¼13�
3mM(229)

n/a 0.5mM(284)

Mouse

Panx1: IC50¼11

� 3mM(229)

Cx mimetic peptide

Gap24

n/a Cx32: 0.25mg/L(82) 200mM(87) n/a n/a

(32Gap24:

GHGDPLHLEEV-

KC)

Cx mimetic peptide

Gap26

Cx43: 200mM(87) Cx43:

300mM(286,287)
n/a n/a n/a

(43Gap26:

VCYDKSF-

PISHVR;

Cx37 and 40:

300mM(285)
Cx43: 0.25mg/L(82)

37,40Gap 26: VCYD-

QAFPISHIR)

Cx43: 160mM(288)

Cx37: 160mM(264)

Cx43: 200mM(87)

Cx mimetic peptide

Gap27

Cx43: 300mM(131) Cx43: 0.25mg/L(290) NE(74) n/a n/a

(43Gap 27:

SRPTEKTIFII;

Cx43: 200mM(87) Cx43: 0.25mg/L(82) 200mM(87)

40Gap 27:

SRPTEKNVFIV)

Cx43: 600mM(289) Cx43: 190mM(288)

Cx37, 40, and 43:

300mM(285)
Cx43: 1mg/mL(53)

Cx37: 160mM(264)

Cx mimetic peptide

Gap36

n/a Cx43: 130mM(288) n/a n/a n/a

Panx mimetic pep-

tide (10Panx1:

WRQAAFVDSY)

n/a Cx46: 200mM(87) IC50¼30–50mM(74) n/a n/a

200mM(87)

400mM(291)

200mM(74)

100mM(86)

500mM(105)

Pannexin1 peptide

E1b,

SSFSWRQAAFV-

DS

n/a n/a 200mM(87) n/a n/a

Probenecid n/a n/a IC50¼�150mM(115) NE(229) n/a

Human

Panx1: IC50¼ 360�
21mM(229)

Mouse

Panx1: IC50¼ 352�
31mM(229)

(Continues)
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Table 1. (Continued )

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

Benzoyl-benzoyl-

ATP (BzATP)

Cx46: NE(91) 20mM(91)

BBG (Coomassie

brilliant blue G)

n/a n/a 0.1mM(91) 0.1mM(53) n/a

ATP n/a Cx46: NE(91) Human

Panx1: IC50¼ 825�
56mM(229)

n/a n/a

Mouse

Panx1: IC50¼ 752�
42mM(229)

200mM(91)

UTP n/a n/a Human

Panx1: IC50¼ 1350

�
60mM(229)

NE(229) n/a

Mouse

Panx1: IC50¼ 1256

�
56mM(229)

GTP n/a n/a Human

Panx1: IC50¼ 1420

�
108mM(229)

NE(229) n/a

Mouse

Panx1: IC50¼ 1290

�
87mM(229)

Polyethylene glycol

(PEG)

n/a n/a PEG1500:

200mM(87)
n/a n/a

Primaquine-1 (PQ1) Cx43: 10mM(231) n/a PQ1 protects neuro-

retinal cells from

ischemic apopto-

sis(231), this can

suggest Panx hemi-

channel involve-

ment.(86,177)

n/a n/a

PQ4 Cx43: 10mM(231) n/a n/a n/a n/a

Meclofenamic acid

(MFA)

Cx50: EC50¼
21mM(226)

NE(45) n/a n/a n/a

Cx50: 100mM(235)

Arachidonic acid Cx43: 20mM(259) n/a n/a n/a 4–5mM(292)

Cx43: EC50�
32mM(250)

Oleic acid Cx43: 20mM(259) n/a n/a n/a n/a

Cx43: EC50�
35mM(250)

Oleyl alcohol Cx43: EC50�
35mM(250)

n/a n/a n/a n/a

Palmitoleic acid Cx43: EC50�
60mM(250)

Cx45: 50mM(265) n/a n/a NE(265)

Cx43: 50mM(276)

Cx 37 and 40:

50mM(251)

Stearic acid Cx43: EC50�
102mM(250)

n/a n/a n/a n/a

Caprylic acid Cx43: EC50�
185mM(250)

n/a n/a n/a n/a

(Continues)
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Table 1. (Continued )

Drug Cx GJ channels Cx hemichannels Panx channels P2X7 VRAC

Palmitic acid Cx43: EC50� 243 -

mM(250)
n/a n/a n/a n/a

Methyl-oleyl ester Cx43: EC50� 690 -

mM(250)
n/a n/a n/a n/a

Ouabain Cx43: 0.1mM(276) n/a n/a n/a NE(293)

NE, no effects; n/a, data not available or unknown; all ions are for extracellularly applied except intracellular Ca2þ.
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cell junctional area of HeLa and LNCaP cells might represent

GJs formed by Panxs.

Recently, different arguments were raised as to why the

formation of Panx GJ channels is less likely. First, Boassa

et al.(32,33) showed that Panx1 is glycosylated in the lumen of

the endoplasmic reticulum (ER) at its second extracellular

loop at Asn254. This glycosylation(32) and the bulky

carbohydrate moieties of the extracellular domain of Panx1

interfere with intercellular channel formation.(33) Similar

conclusions were obtained for Panx3.(37) Moreover, upon

deglycosylation, GJ formation increased significantly in pairs

of oocytes expressing Panx1,(32) indicating that glycosylation

hinders GJ formation. Secondly, the preference of Panxs for

hemichannel formation may also be an intrinsic property of

these proteins. While Cxs and Panxs share a number of

structural similarities, there are also important differences

particularly in the extracellular loops, the number of cysteine

residues, the cytoplasmic loop, and the N and C termini,

which can influence the formation and properties of GJ

channels and/or hemichannels.(125) In GJ channels, the

cysteine residues form intramolecular disulfide bonds

between the two extracellular loops of each protein, resulting

in the formation of anti-parallel beta sheets, which resemble

the beta-barrel structure of porin channels. Upon docking, the

beta-barrel structures of each opposing hemichannel inter-

digitates and hydrogen bonds stabilize this structure.(126) In

Panxs, each extracellular loop contains 50–68 aa but only two

conserved cysteine residues, while Cxs harbor three

cysteines in their relatively small (�30 aa) loops(3,5,96) except

for Cx23, which has only two conserved cysteine residues.(17)

Panxs(32,33) and Cx23,(127) having only two cysteines,

preferentially form hemichannels, suggesting that the number

of conserved cysteine residues may play role in the

determination of hemichannels. However, Cx23 is also

capable of forming functional GJs and hemichannels in

zebrafish,(17) suggesting that also the length of the extra-

cellular loops plays an important role in the docking process.

In addition, the N and C termini show great variation in terms

of sequence and length between Cxs and Panxs and between

different Cx subtypes.(128–131) N-terminal additions result in

non-functional GJ channels or hemichannels.(20) Accordingly,

an intact N terminus is required for hemichannel gating and

IC,(117) and the C terminus also plays an important role in
10
channel gating. Moreover, the cytoplasmic carboxyl-tail and

loop are susceptible to various post-translational modifica-

tions (e.g., phosphorylation), which have regulatory roles.(132)

Phosphorylation of Cxs regulates the assembly and modula-

tion of the physiological properties of these channels.(132–134)

Post-translational modifications may also alter the gating

mechanisms of Panxs and the regulation of channel

formation and channel permeability.(133,135–137)
Properties in trafficking and turnover of
Cx and Panx channels

Cxs are known to have a short half-life, estimated at 1.5–5 h

depending on the cell type,(59) whereas the half-life of Panxs is

more than 6 h.(37) This points to a different regulation of Panx

trafficking and expression levels.

Previous studies have shown that Panxs are not only

localized in the plasma membrane, but that Panx1 is

abundantly detected in intracellular organelles and Golgi

apparatus.(30,101,138,139) Accordingly, Panx1 overexpression

in LNCaP (human prostate cancer epithelial cells) showed

accumulation in both the plasma membrane and in the

ER,(101) implying that post-translational modification and

assembly of pannexons share the same route demonstrated

for Cxs.(140,141) The ER-bound Panx1 could be either a pool of

unprocessed precursor proteins(121,138) or assembled func-

tional pannexons that serve as ER-Ca2þ-release channels,

thereby facilitating Ca2þ leakage from the ER.(101)

Panx trafficking has been investigated by differences

between tagged and untagged Panxs and by treating the cells

with brefeldin A (BFA),(32,33) which promotes Golgi break-

down.(142,143) Both wild-type and Myc or tetracysteine-tagged

Panx1 areN-glycosylated and properly trafficked to the plasma

membrane. In contrast to tagged Cxs, Myc or tetracysteine-

tagged Panxs are degraded at a faster rate than wild-type

oligomers, suggesting that the tags might interfere with some

molecular chaperones important for stabilizing Panxs at the cell

surface.(32) They concluded that Panx1 is initially glycosylated

in the ER and modified later in the Golgi apparatus where it

resides en route to the plasma membrane.

Glycosylation of membrane proteins can affect their

folding, stability, trafficking, and function.(144–148) In oocytes,
BioEssays 9999:1–22, � 2009 Wiley Periodicals, Inc.
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both glycosylated and non-glycosylated forms of Panx1 are

present,(33,37,121) indicating that glycosylation does not

influence the folding of Panx1. Glycosylated Panx1 is targeted

to the plasma membrane and the non-glycosylated Panx1 is

retained in intracellular compartments. N-Glycosylation of

Panx1 could be a significant mechanism for regulating Panx1

trafficking to the cell surface, hereby possibly affecting its

function in different tissues.(32) In Xenopus oocytes pairs,

localization of Panx1 at the cell surface is rescued when

glycosylation-deficient mutant proteins are co-expressed with

Panx1 wild-type proteins.(32) Glycosylated Panx1 would be

predominantly expressed at the plasma membrane to form

hemichannels and non-glycosylated Panx1, if localized at the

cell surface, could potentially form intercellular channels.

However, it remains unclear whether this non-glycosylated

form can be targeted to the mammalian cell surface in vivo,

but its very existence suggested an impact on cell–cell

communication mechanisms.

These glycosylation mechanisms show that the regulation

mechanisms of Panx hemichannel expression are different

from to those of Cx hemichannels, which are mainly regulated

by their rapid turnover, resulting in a low number of active

channels.(149,150)
Cx and Panx hemichannels: gating and
regulation

The fact that in vertebrates Cxs and Panxs are co-expressed

and evolutionarily distinct implies that both protein families

have their own specific function. However, the exact

physiological difference between the two channel-forming

protein families is still unknown. Cxs and Panxs have different

primary sequence and properties, suggesting a different

regulation.(97,151) To sustain ionic gradients and avoid lethal

effects of prolonged channel opening, Cx/Panx-hemichannel

gating must be regulated very carefully in time. It is now clear

that different extracellular and intracellular stimuli can

influence the gating-state and gating-kinetics of hemichan-

nels.
Voltage-sensitive gating

Not only trafficking and expression, but also channel gating is

a highly regulated and finely tuned process. Voltage-patch

clamp studies showed that positive transmembrane potentials

open Panx1 channels.(98) Recordings of single Panx- or Cx-

channel currents show the presence of multiple substates

with variable transition rates. Panx1 exhibits at least five open

states: the fully open state and no less than four subconduc-

tance states with 5, 25, 30, and 90% of the maximal

conductance.(47,119) Panx channels rarely remain in fully open

or closed states, residing mainly in the subconductance
BioEssays 9999:1–22, � 2009 Wiley Periodicals, Inc.
states. The unitary conductance of Panx hemichannels is

larger (�500 pS(47)), compared to a unitary conductance of

15–300 pS in Cx channels.(152)

Information on gating of Cx hemichannels is reviewed in

more detail by Saez et al.(23) Cx hemichannels appear to have

two types of voltage-dependent gating mechanisms (for

review, see Ref.(153)). A first type, called ‘‘loop gating’’ is slow

and closes the channels at negative membrane potentials.

This type of gating is controlled by pore-lining residues in the

first extracellular loop of Cxs(154) and is modulated by

extracellular Ca2þ and by docking of hemichannels. A second

type of gating, called ‘‘fast Vj gating’’ can close the channel to

a substate, either at positive potentials (e.g., in Cx26, Cx30,

Cx46, and Cx50 hemichannels) or at negative potentials (e.g.,

in Cx31, Cx43, and Cx45 hemichannels). Fast Vj gating is

thought to be due to a ‘‘ball and chain’’ interaction of either the

C terminus (e.g., in Cx43) or the N terminus (e.g., in Cx26 and

Cx32) with the intracellular loop.(155–158) Charged residues in

the first positions of the N-terminal domain of Cx26 and Cx32

have been reported to be involved in sensing voltage.(159)

Within the intracellular loop of Cx43, H142 in the L2 region of

the cytoplasmic loop has been identified as a voltage-sensor

for fast Vj gating.
(160)

Panx hemichannels slowly close upon hyperpolarization

(Vm< –20mV), probably via loop gating, and partially close to

a substate after depolarizations to positive membrane

potentials of aboutþ20mV.(31,47,97,119) Similar to heteromeric

Cx hemichannels, heteromeric Panx1/Panx2 hemichannels

exhibited modified voltage-gating kinetics with respect to

homomeric Panx1 channels.(119)
Mechanical stress

Cx46 hemichannels are mechanosensitive, but the mechan-

osensitivity of other Cx subtypes is not clear yet. The opening

of these channels could be triggered by mechanical stress at

negative transmembrane potentials. At positive voltages,

mechanical stress closes the channel.(48) Although still

speculative, Cx26 was proposed to be involved in

mechano-transduction of sound waves in the cochlea(161)

and a putative role for Cx43 hemichannels and P2 receptors

has been proposed as a mechanoreceptor complex involving

the primary cilium of bovine chondrocytes.(162) For Panx1, the

probability of channel opening is highly increased during

mechanical stretch, which illustrates its mechanosensitiv-

ity.(39,47,49)
Extracellular Ca2R

The regulation of hemichannels by extracellular Ca2þ is

strikingly different between Panxs and Cxs. Under normal

physiological conditions (extracellular Ca2þ concentration

([Ca2þ]0)¼ 1–2mM) connexons are closed,(39) likely due to
11
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loop gating (slow Vj gating). However, removal of

extracellular Ca2þ leads to Cx hemichannel opening.

Accordingly, the pore diameter of Cx43 hemichannels is

increased by lowering the [Ca2þ]0, indicating that the

probability of Cx43 hemichannels opening is controlled by

extracellular Ca2þ. These Ca2þ-dependent conformational

changes are regulated by the hydrophobic extracellular

domains of Cxs.(163) As low [Ca2þ]0 favors the opening of

Cx hemichannels, it is likely that Cx hemichannels are

open under conditions in which [Ca2þ]0 and [Mg2þ]0 is

reduced, as in ischemic brain.(164,165) In contrast, Panx

hemichannel activation is unaffected by changes in [Ca2þ]0
levels.(31)
Intracellular Ca2R

[Ca2þ]i also regulates the opening and closure of Cxs and

Panxs hemichannels in a different way. The opening of Cxs

hemichannels, like Cx32 display a biphasic bell-shaped Ca2þ

dependence, indicating that rises in [Ca2þ]i below 500nM

(submicromolar range) promote hemichannel opening,

whereas rises in [Ca2þ]i above 500nM (micromolar range)

inhibit hemichannel opening.(82) In contrast, patch-clamp

experiments on Panx1 expressed in Xenopus oocytes

revealed that these channels have a linear dependence

on Ca2þ, which means that higher [Ca2þ]i leads to larger

Panx1 currents.(98) [Ca2þ]i above the resting levels (>100 nM)

seem to be sufficient to activate Panx1 opening. However,

increase in [Ca2þ]i does not appear to be a requisite for Panx1

hemichannel activation in hippocampal neurons, since the

activation of Panx1 channels through N-methyl-D-aspartate

receptors (NMDARs) was independent of the increase in

[Ca2þ]i, demonstrated by Panx1 hemichannel opening in the

presence of intracellular Ca2þ buffers.(86) Nevertheless, it is

likely that Panx1 hemichannels are opened during agonist-

induced Ca2þ signaling, thereby playing an important role in

mediating ATP release and IC.

The effect of [Ca2þ]i may be a direct effect of Ca2þ on the

Panx1 protein, since Panx1 hemichannels are activated by

submicromolar concentrations of Ca2þ. However, a role for

calmodulin on Panx1 hemichannels cannot be ruled out, since

calmodulin is an important regulator of Cx50(166) and

Cx32(167) channel gating, and interacts with other Cx

isoforms.

Not only does [Ca2þ]i regulate Panx1 hemichannel activity,

Panx1 may also control [Ca2þ]i, since Panx1 has been

implicated in regulating the passive Ca2þ leak from the ER.

Accumulation of ectopic eGFP-Panx1 in the ER leads to an

increased Ca2þ leak rate from the ER, whereas Panx1

knockdown decreased the efflux rate of Ca2þ from the

ER.(101) However, how Panx1 channels in the ER are

regulated is not known, e.g., by the ER-Ca2þ content and/
12
or by cytosolic Ca2þ. Nevertheless, the role of pannexons as

passive Ca2þ leak channels in the ER regulating the ER-Ca2þ

content should be further elucidated, andmay open important

perspectives for the role of pannexons in processes that are

highly dependent on the ER-Ca2þ content, like store-

operated Ca2þ influx, protein folding and apoptosis.
Intracellular pH

Intracellular acidification negatively influences the probability

of many Cx channels(168,169) being open. In addition, for

Panx1, induction of low intracellular pH by CO2 perfusion

abolishes the conductance.(98) Interestingly, while regions

involved in pH gating have been located in intracellular Cx

domains,(170) pH-induced conformational changes in Cx43

hemichannels could be detected extracellularly by atomic

force microscopy.(163) These observations(170) suggested that

the underlying mechanism is different from that for Ca2þ-

induced closure.(171)
Phosphorylation status

Differences in phosphorylation/dephosphorylation state of

Cx-serine/threonine and tyrosine residues within Cxs are

known to change the permeability of Cx channels (e.g., Cx43

channels(172,173)); therefore, it is likely that phosphorylation

also affects the properties of Panx channels, which are

predicted to have multiple phosphorylation sites.(37) Opening

of hemichannels induced by metabolic inhibition has been

proposed to imply dephosphorylation-induced dilation of

Cx43 hemichannels.(172) A role in metabolic inhibition for

pannexons is suggested, but still remains to be tested.
Regulation by oxidative mechanisms

Cx43 hemichannels are regulated by redox potential and

oxidative stress. On the one hand, reducing the intracellular

redox potential, either by chemical reducing agents (e.g.,

DTT) or by intracellular physiological reducing molecules

(e.g., GSH), results in enhanced Cx43-hemichannel activ-

ity.(174) This effect of reducing agents on the opening of Cx43

hemichannels is likely mediated by reduction of intracellular

cysteines that are located in the C-terminal tail of Cx43. On

the other hand, opening of Cx43 hemichannels is induced by

metabolic inhibition or ischemic conditions, which leads to

intracellular accumulation of NO and S-nitrosylation of the

three intracellular cysteines located in the C-terminal tail of

Cx43 hemichannels.(175) It is not clear how reducing agents

inhibit the increase in hemichannel permeability caused by

oxidative stress during metabolic inhibition, but yet enhance

hemichannel opening under normoxic conditions. This may

suggest that the same cysteine residues are substrates of
BioEssays 9999:1–22, � 2009 Wiley Periodicals, Inc.
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different redox reactions, including formation and reduction of

disulfide bonds, cysteine S-nitrosylation, and/or glutathiona-

tion.(176) Alternatively, the same modifications may lead to

different conformational changes or modulation of different

cysteine residues. Therefore, it will be essential to identify the

physiological function for each of the three cysteine residues

in the intracellular C-terminal tail of Cx43 by site-directed

mutagenesis approaches.

Also Panx1 hemichannels may open during oxygen and

glucose deprivation, thereby contributing to the anoxic

depolarization, a process often observed during ischemic

insults, which results in neuronal death.(177) As stated above,

Panx1 seems to regulate Ca2þ leakage from the ER, another

event promoting neuronal necrosis during ischemia.(101)

However, further investigations on the role of oxidative stress,

reactive oxygen species and S-nitrosylation of pannexons

should provide important mechanistic insights in these

processes.
ATP release via Cx and Panx
hemichannels

There is increasing evidence that Cx hemichannels are

involved in ATP release.(42,51,64,73,78,80,81,107,178–181) How-

ever, ATP release via Cx hemichannels has only been

demonstrated under non-physiological conditions. Since it

was demonstrated that ATP release occurs via Panx

hemichannels under physiological conditions, it was claimed

that ATP release, previously believed to occur through Cx

hemichannels, may actually occur via Panx hemichan-

nels.(30,38,107,151)

Panx1 hemichannel opening caused by an increase in

[Ca2þ]i leads to a rapid ATP release, and generation of an

ATP-specific induced current across the membrane.(47,98)

Depolarization-induced ATP release occurs in Panx1-expres-

sing oocytes.(47) Panx hemichannels contribute to ATP

release in astrocytes(38) and neurons.(86) In mouse taste

buds, ATP release via Panx1 hemichannels has been

suggested,(30) but Cx hemichannels have also been shown

to be involved.(73) Overall, it remains difficult to unequivocally

decide about the contribution of Cx and Px hemichannels in

different cell types and conditions.

Recent studies(99,116,182–184) suggested an interaction

between Panx1 and the P2X7 receptor. P2X7 receptors

are non-selective cation channels or form large pores that

allow ATP passage and can mediate apoptotic cell death.(75)

Pore formation is observed in some cell types, while other cell

types exhibit only the cation channel activity.(185) The

observation that P2X7 pore formation in oocytes occurred

in response to injection of macrophage mRNA(186) suggested

that an additional component is necessary for P2X7 pore

formation. Panx1 is the molecular counterpart of the
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permeabilization pore (or death receptor channel) recruited

into the P2X7 receptor signaling complex, and ATP-induced

activation of P2X7 induces prolonged activation of Panx1

channels resulting in cell death.(52) Exposure to exogenous

ATP of cells coexpressing Panx1 with either P2Y or P2X7

receptors results only in a transient activation of Panx1

channels. Qiu and Dahl(91) described a negative feedback

loop controlling Panx1 channel activity. Activation of P2X7 by

ATP leads to activation of Panx1 channels, but a significant

inhibition of Panx1 channels was prominent at ATP

concentrations slightly higher than required for activation of

purinergic receptors, including P2X7 and P2Y2. ATP-binding

to extracellular parts of the Panx1 channel resulted in specific

inhibition of Panx1-mediated currents, and Arg75 was shown

to be critical for this ATP-induced inhibition of Panx1-

mediated currents.(91)
Cx and Panx hemichannels: role in
cellular malfunction

Pannexons, with their ability for ATP-induced ATP release,

their activation upon elevation of [Ca2þ]i and their insensitivity

to physiological (1–2mM) levels of [Ca2þ]0, are able to open

under both physiological and pathological condi-

tions.(86,177,187) Panx1 has been implicated in long-

range Ca2þ-wave propagation and in cell response to several

pathological insults, including initiation of inflammatory

response,(74,105,188) different paradigms of cell death such

as ATP-induced cell death,(189) ischemic death of neurons(177)

and in tumor suppression(139) (Fig. 3).

Besides the role of GJs and hemichannels in the regulation

of the cell cycle (cell growth, proliferation, differentiation,

migration, and injury repair) exchange of molecules via

channels could play a role in cell death, e.g., by transferring

toxic factors or stimuli of apoptosis to adjacent cells. This has

been called the ‘‘bystander effect’’ or ‘‘kiss of death.’’(109,190–192)

GJIC, mediated by Cxs,(191,193,194) is demonstrated to be

involved in the bystander effect.

Panx1 is involved in the release of muramyl dipeptide

(MDP) from acidified vesicles into the cytosol.(195) MDP is the

microbial activator of nucleotide-binding oligomerization

domain 2 (Nod2), which induces NF-kB andMAPK activation,

resulting in the production of multiple anti-bacterial and

proinflammatory molecules. This role for Panx1 hemichan-

nels is similar to the recently described role for Cx43

hemichannels in the strategies exploited by bacterial patho-

gens to invade non-phagocytic cells.(196) It was also shown

that the Panx1 expression is elevated by a factor of 3–7 upon

exposure to diverse pro-inflammatory stimuli (e.g., TNF-a,

IFN-a, IFN-g, lipopolysaccharide, cold and systemic inflam-

mation),(4) suggesting that Panx1 is an essential component

of the acute inflammatory response at the cellular level. The
13



Figure 3. Regulation and role of Panx hemichannels. Panx hemichannels are activated via mechanical stimulation, positive membrane

potential, stimulation of purinergic P2Yand P2X receptors, increase in cytosolic Ca2þ and some pathological stressors. When Panx channels are

open, they are known to pass dye, Ca2þ, ATP and other small molecules, including pro-inflammatory molecules, muramyl dipeptide (MDP),

bacterial toxins and antigens. Low intracellular pH closes Panx hemichannels. Panxs are suggested to play a role in long-range Ca2þ-wave

propagation, vasodilation, initiation of inflammatory responses, wound healing, ischemic death of neurons and tumor suppression. Panxs also

might play a role in ER-related functions and epilepsy (dashed lines: transport).
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opening of large numbers of hemichannels following ischemia

or inflammatory injury has also been suggested to be a trigger

for the pathophysiological cascade, leading to cell depolar-

ization, collapse of ionic gradients, loss of small metabolites,

and elevation of intracellular Ca2þ.(4)

As stated above, Panx1 hemichannels have been shown to

represent the non-selective pore that opens upon P2X7

activation, hereby facilitating the entry of pro-inflammatory

molecules into the cytosol,(74,105,188) which are required for

activation of cryopyrin-dependent inflammosome and cas-

pase-1 cleavage.(188,197–199) Panx1 may play a role in

processing and secretion of cytokines. Although distinct

mechanisms of IL-1 release exist and some appear to be

Panx1 dependent, the exact role of Panx1 in IL-1 release

remains to be elucidated.(74,105) Acid-sphingomyelinase, as

an effector of P2X7-receptor-dependent p38 MAPK phos-

phorylation, is necessary and sufficient for release of IL-1-

containing microparticles, but it does not seem to interfere

with Panx1 pore functioning.(200) The interaction between
14
P2X7 and Panx1 was suggested to control the expression of

several proteins(99) and to play a role in wound healing. Panx1

expression was lacking in P2X7 knockout mice, resulting in a

delayed corneal reepithelialization. In addition, the expression

of proteins in the corneal epithelium was altered, resulting in

morphological changes in the stroma and compromised

wound healing.

The link between Panx1 hemichannel opening and ATP-

induced stimulation of P2X7 was also shown to contribute to

ATP-induced cell death.(52) A possible role for Panxs in cell

death has been suggested in the retina, where Panx

hemichannels mediate an increased ATP release during

elevation in pressure across the retina, leading to the death

of ganglion cells in acute glaucoma.(189) An intracellular role

for Panx channels was proposed(101) and a role was

suggested in the control of intra- and intercellular Ca2þ

signaling and homeostasis in the ER, which contribute to

the Ca2þ leakage of the ER and thereby affect the Ca2þ load

of the ER.
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Panx1 activation was shown to cause neuronal excito-

toxicity during stroke, leading to swelling, Ca2þ dysregulation

and ischemic neuronal death in pyramidal neurons.(177) A

recent study by the same authors(86) demonstrated that

opening of Panx1 hemichannels, which are expressed at

postsynaptic sites,(85) is triggered by NMDAR stimulation and

can contribute to postsynaptic responses in the hippocampus

during epileptiform seizure activity.

Cxs also function as tumor suppressors and numerous

studies have explored restoration of GJIC as a potential

therapy against cancer.(201) GJs are down-regulated in many

types of cancer, including gliomas, breast carcinoma, and

prostate cancers.(202,203) Restoring GJIC through ectopic

expression of Cx43 inhibited tumor growth.(204,205) Restoring

Panx1 expression also plays a tumor-suppressive role in C6

glioma cells.(139)

In a number of pathologies,(206) genetic mutations in Cx

genes have been shown to lead to alterations in important

biological functions of GJ channels and hemichannels. These

mutations lead to intracellular aggregation of specific iso-

forms,(59,207) disturbed IC,(59) and/or altered hemichannel

activity,(208,209) hereby causing symptoms of hereditary

human disorders. These diseases can be divided into six

major classes: neuropathic(210) or myelin disorders,(211) non-

syndromic(207,212–215) and syndromic deafness,(207,215) skin

diseases,(216,217) cataracts,(218,219) oculodentodigital dyspla-

sia,(220) and idiopathic atrial fibrillation(221,222) (for review, see

Ref.(223)). While genetic defects in Cxs are known to affect

different organs, no such defects have been attributed to

Panxs as yet, but it is very likely that they may be detected in

the future, and it can be anticipated that theymay play a role in

different pathologies.
Conclusions

Panxs, structurally similar to but evolutionarily distinct from

Cxs, are co-expressed with Cxs in vertebrates. Basic Panx

channel properties as well as their regulation are distinct from

those of Cxs, suggesting that both protein families have

specific cellular functions. Panxs mainly form hemichannels

that are important in paracrine signaling, and mediate

transmembrane transport of Ca2þ and ATP in response to

physiological and pathological stimuli. Panxs are suggested

to play a role in long-range Ca2þ-wave propagation,

vasodilation, initiation of inflammatory responses, ischemic

death of neurons, epilepsy, tumor suppression, and ER-

related functions. The increasing evidence on the role of

hemichannels in IC, and the novel insights in the formation of

Panx hemichannels emphasizes the importance of investi-

gating Panx function particularly in comparison to Cx

hemichannels. Up to now, few studies allow a direct side-

by-side comparison of Panx and Cx hemichannels in the
BioEssays 9999:1–22, � 2009 Wiley Periodicals, Inc.
same cellular context, which would reveal functional differ-

ences. In addition, the role and regulation of Panx

hemichannels in physiological and pathophysiological condi-

tions remains largely unexplored. Identification of the

mechanisms that control opening and closing of these

channels is a major challenge for future work. The question

about a unique physiological function of Panx hemichannels is

as yet unanswered, as a Panx1-knockout mouse was viable

with no obvious phenotype. Nevertheless, the availability of

such animal and/or cellular models is required to further

assess the significance of Panxs for normal cell physiology,

IC, and responses to pathological conditions.
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