
Prepared for submission to JINST1

Towards Single-Event Upset detection in Hardware2

Secure RISC-V processors3

N. Jonckers𝑎 B. Engelen𝑎 K. Appels𝑎 S. De Raedemaeker𝑎 L. Mariën𝑎 J. Prinzie𝑎4

𝑎KU Leuven, Dept. Electrical Engineering,5

Kleinhoefstraat 4, B-2440 Geel, Belgium6

E-mail: nain.jonckers@kuleuven.be7

Abstract: Single-event effects and hardware security show close similarities in terms of vulner-8

abilities and mitigation techniques. Secure processors address physical attacks from the outside,9

such as external laser stimulation, to compromise the program and extract sensitive information10

from the systems. To overcome this vulnerability, secure extensions to the hardware architecture are11

often built into modern processor cores. Given the limited design resources often found in space12

or high-energy physics experiment development teams, this article addresses the extent to which13

secure hardware architectures can be a reliable source of processor SEU detection.14

Keywords: Radiation-hard electronics, Digital electronic circuits, Radiation damage to electronic15

components, Single-Event Effects16

mailto:nain.jonckers@kuleuven.be


1 Introduction17

1.1 Processing systems in harsh environments18

The development of custom Application Specific Integrated Circuits (ASICs) for High-Energy19

Physics (HEP) has been the subject of numerous R&D decisions in recent decades. Typically,20

analog front ends are connected to digital readout chipsets that are very specific to a particular21

detector. While the digital readout systems in detectors used to be simple, they have become22

more complex over the years and cannot be reconfigured. Until now, microprocessors are not23

incorporated and used in detectors, but rather custom logic. Processor systems, on the other hand,24

offer the benefits of standardized organization and a high degree of reconfigurability: software25

programmability, standardized interconnect busses, and the use of an IP block library. The HEP26

community is currently exploring the possibility of using these processors for radiation-resistant27

control, monitoring, data acquisition, and data processing within detectors. The architecture of these28

processors should be open source to allow deep control of software and hardware implementation29

for optimal radiation resistant design and verification [1].30

Space applications also require fault tolerance. Examples include general-purpose processors31

for running Linux-like operating systems, on-board computers for real-time operating systems,32

microcontrollers for distributed simple control applications, data acquisition systems, data process-33

ing systems without an operating system, and artificial intelligence processors optimized for large34

matrix computations with special vector instructions. The advantages of using RISC-V processors35

for radiation-tolerant systems are that the instruction set and most of the associated cores are open36

source, allowing developers to become familiar with the details of the architecture and perform37

detailed fault injection simulations to develop specialized radiation-tolerant IP. The RISC-V archi-38

tecture is well-supported by academia and industry with a wide range of IP cores, software, and39

development tools, enabling rapid and efficient adoption in the community.[2].40

1.2 Single-event effects and hardware security41

Non-destructive Single-Event Effects (SEEs) are soft errors stimulated by high-energy particles42

that lead to bit flips in a logic system. SEEs can manifest as Single-Event Transients (SETs) in43

combinatorial logic or Single-Event Upsets (SEUs) in sequential logic such as flip-flops. SETs44

can be latched if the transient propagates to a flip-flop and occurs during a clock transition. As45

such, SEEs can cause erroneous operation in a microprocessor, resulting in incorrect calculations,46

unpredictable program execution, or severe crashes. The probability of SETs that manifesting47

themselves in errors increases linearly with the clock frequency due to the increased number of48

clock edges that occur[3].49

Hardware security has a broad context in the design of computer architectures [4]. Many50

implementations today provide secure extensions to prevent malicious physical attacks to corrupt51

or steal data from the system. Certain attacks attempt to compromise the program through laser52

or EMI stimulation aimed at inducing errors in the system to extract information. Thus, if secure53

extensions are able to detect these errors, they can potentially be useful in radiation environments.54

– 2 –



2 Ibex RISC-V Core55

The Ibex core is an open-source 32-bit RISC-V processor, initially designed by ETH Zurich and56

the University of Bologna, and now maintained by lowRISC. It implements either the 32-bit integer57

(I) or 32-bit embedded (E) RISC-V base standard. On top of this base standard, the core also58

implements the multiplication and division (M), compressed instructions (C) and bit manipulation59

(B) extensions. These extensions and the base instruction set are implemented in a two-stage pipeline60

with an optional third “write-back” stage [5].61

Since the parameters of the Ibex core are highly parametrisable, many different “flavors” of62

this core are possible. The developers define four different parametrized configurations, namely:63

“micro” (RV32EC), “small” (RV32IMC w. 3-cycle multiplier), “maxperf” (RV32IMC w. 1-cycle64

multiplier, branch target ALU and writeback stage) and “maxperf-pmp-bmfull” (RV32IMCB w.65

1-cycle multiplier, branch target ALU, writeback stage and 16 PMP regions) [6].66

This research focuses itself on the “small” configuration since it was the only configuration67

that, at the time of writing, was fully verified.68

2.1 Security features69

Aside from the RV32IMC RISC-V specification, the “small” configuration of the Ibex core also70

implements several security features. These features allow the core to detect malicious tampering71

at runtime, significantly increasing it’s hardware security to external attacks. To signal a possible72

security alert, the Ibex core provides three output signals, namely alert_major_internal_o,73

alert_minor_o and alert_major_bus_o that respectively generate a trigger if there was a74

possibly malicious major, minor or system bus event [7].75

Since these features make use of a.o. Error Correcting Code (ECC), register glitch detection,76

dual core lockstepping, etc. [7], they may also be suited to detect SEUs and/or SETs stimulated77

by radiation. This hypothesis is further investigated in this paper and will turn out, given a minor78

modification, to be true.79

3 Test methodology80

In order to validate the applicability of Ibex’s security mechanisms for SEE detection, a framework81

was developed to inject faults into the processor core. In this section, we describe the Register82

Transfer Level (RTL) simulation framework to inject bitflips into the code of the Ibex core. We83

focussed at injecting bitflips into flipflops (i.e. SEUs) since SETs could become negligible in84

downscaled CMOS nodes.85

3.1 Test flow86

When injecting faults into flipflops at RTL-level, each flipflop must be identified to acquire its87

hierarchical name. A generic synthesis was performed (= elaboration) using Cadence® Genus™88

to obtain a list of flipflop register (as indicated in figure 1). During simulation this list is used to89

target the flipflops to stimulate SEUs.90

Aside from this flipflop list, the simulator also needs an application software programme91

that runs on the Ibex processor. Ideally this programme should use the majority of the RISC-V92

– 3 –



Ibex
code

(SystemVerilog)

Prog.
code

(C code)

Generic
synthesis

(Genus)

FF list

Compiler
(riscv-gcc)

Machine
code

Make system

Golden sim.
(CoCoTB w. Xcelium)

SEU injection sim.
(CoCoTB w. Xcelium)

Golden
reference

SEU
report

Figure 1: Block diagram of the test flow

instructions so that a good coverage is guaranteed when injecting bitflips. To obtain this goal, we93

used the Dhrystone (version 2) benchmark. Since Dhrystone is a benchmark programme, it should94

use (almost) all RISC-V instructions supported by the Ibex core to give a representative benchmark95

figure. This benchmark is also relatively lightweight and easy to set up. It is not as accurate96

when compared to more modern benchmarks like Coremark®, but this is hardly a concern for the97

presented SEU simulations [8, 9]. This Dhrystone programme is compiled (using GCC, the GNU98

Compiler Collection) into machine code which can be loaded into the (virtual) instruction memory99

of the Ibex core.100

Once both the flipflop list and the machine code are generated, these two outputs, together with101

the Ibex SystemVerilog RTL-code, are used by the simulator to launch a simulation run.102

The CoCoTB python library, together with Cadence® Xcelium™ as a backend simulator was103

used to implement the test framework. We use the CoCoTB python library to make the injection104

of bitflips easier. Since CoCoTB allows us to call any net from the top-level module using the105

_id("net-name", extended=False) method, we can easily inject bitflips by XOR-ing them106

with the required bit index: 𝑛𝑒𝑡 = 𝑛𝑒𝑡 ˆ (1 << 𝑏𝑖𝑡𝑛). In addition, the concurrent programming107

nature of CoCoTB allows us to design a highly structured and clear to read testbench [10].108

3.2 Golden reference model109

Simulations are performed in two passes. In the first pass, a golden fault-free reference model is110

generated, followed by a batch of SEU runs. The golden reference model will be the reference to111

the corresponding SEU injection run simulations. In order to monitor the state of the processor112

core, a 32-bit Cyclic Redundancy Check (CRC) checksum is calculated on all the output signals113

on a cycle-by-cycle basis. The golden CRC database is generated during the golden reference114

simulation. This checksum can then be compared during the SEU injection run to asses whether a115

stimulated SEE propagates to the output.116

– 4 –



3.3 SEU run117

Once the golden reference model is generated, we can rerun the simulation and inject bitflips using118

the extracted flipflop list described in section 3.1. As shown in figure 2, we run the simulation for119

a random time and then pick a random flipflop to stimulate a bitflip. Afterwards, we give the SEU120

𝑐ℎ𝑒𝑐𝑘_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 10 cycles to propagate to the output, and then we compare the current CRC to121

the golden reference CRC for that clock cycle. If no CRC error was found, the simulation continues122

and a new SEU is stimulated. Otherwise, the simulation is terminated and the results are logged.123

Fault injection runs are massively dispatched in parallel to achieve statistical relevant data.124

4 Results125

Start
simulation

Inject bitflip

Compare
CRC

Golden
reference

CRC errorAlert raised Alert raised

Undetected DetectedSilent
False

positive

YesNo

No YesNoYes

Figure 2: Single-Event Upset injection simula-
tion flow.

When running an SEU injection simulation, we126

classify four possible outcomes. (i: Detected)127

The SEU leads to a CRC error but is flagged by128

the Ibex alert signals; (ii: Undetected) the SEU129

leads to a CRC error but is not flagged by the130

Ibex alert signals; (iii: Silent) the SEU does not131

lead to a CRC error and no alert was raised; or132

(iv: False positive) the SEU does not lead to a133

CRC error but an alert was raised.134

Table 1 shows the total number of injected135

SEUs per logical block of the Ibex core, together136

with the false positives, detected and undetected137

bitflips. An injection is considered a false pos-138

itive if the Ibex core put any alert signal high139

but there was no error observed at the output.140

If any alert signal went high and an error was141

observed, or when there was no error and no alert went hight, then the injection is considered as142

detected. When an error was observed but the core did not assert any alert signal, only then is the143

injection considered as undetected.144

In these results, we can clearly see that the Ibex core does not detect all faults injected, namely145

some injected faults in the register file are not detected. After some code tracing, we found out that146

if we change the code below in the source file ibex_core.sv, that we are able to detect all faults147

in the register file as well.148

It seemed that some enable signals inhibited the correct functionality of the alert signals149

sometimes. If we therefore remove these signals from the combined alert signal, then we detect all150

errors in the register file. Unfortunately, this also comes at a cost since we now have an increased151

number of false positives, which is not desirable. Table 2 shows the SEU injection results with the152

above code fix.153

– 5 –



Table 1: Results of fault injection per logical block of the Ibex core

Ibex block Injected SEUs Detected Undetected Silent False positives
Fetch 16721 4400 0 10782 1539
Decode 5754 230 0 5516 8
Execute 3702 0 0 3699 3
LSU 3224 171 0 1555 1498
CSR 22590 155 0 19354 3081
Regfile 56537 13295 8686 30694 3862
Lockstep core 173601 0 0 73997 99604
Others 242 0 0 241 1
Total 282371 18251 8686 145838 109596
Total (%) 100 6.46 3.08 51.65 38.81

Table 2: Results of fault injection per logical block of the Ibex core - with code fix

Ibex block Injected SEUs Detected Undetected Silent False positives
Fetch 14995 4037 0 0 10958
Decode 5098 221 0 0 4877
Execute 3165 0 0 0 3165
LSU 2888 158 0 0 2730
CSR 20419 124 0 0 20295
Regfile 50796 19839 0 0 30957
Lockstep core 156316 0 0 0 156316
Others 230 0 0 0 230
Total 253907 24379 0 0 229528
Total (%) 100 9.60 0.0 0.0 90.40

Finally, we have also validated the area overhead of these security features. We have done154

this by synthesizing the Ibex core with and without security features in a 180 nm CMOS bulk155

technology. This resulted in an estimated area of 0.62𝑚𝑚2 with security features and 0.27𝑚𝑚2156

without. In other words, the Ibex security features come at a cost of roughly 130% area increase.157

5 Conclusions158

The hardware secure Ibex RISC-V core was tested to see if it could alert SEUs. The RTL code of159

the Ibex core was embedded in a CoCoTB simulation framework that implements the Dhrystone160

benchmark as an application program. Thanks to various protections such as a lockstepped core, a161

double program counter, and ECC protection in the register file, alerts were triggered when SEEs162

were injected into the design. With a small code change, the core was able to detect all injected163

SEUs, but at the cost of an increased number of false positives. From this, we can conclude hardware164

secure features can be used for radiation hardness applications.165

– 6 –



References166

[1] M. Andorno et al. “Rad-hard RISC-V SoC and ASIP ecosystems studies for high-energy167

physics applications”. In: Journal of Instrumentation 18 (2023). Publisher: IOP Publishing,168

p. C01018. doi: 10.1088/1748-0221/18/01/C01018.169

[2] Gianluca Furano et al. “A European Roadmap to Leverage RISC-V in Space Applications”.170

In: 2022 IEEE Aerospace Conference (AERO). 2022, pp. 1–7. doi: 10.1109/AERO53065.171

2022.9843361.172

[3] Kruckmeyer K Baumann R. Radiation Handbook for Electronics. Texas Instruments, 2019.173

[4] Nachiketh Potlapally. “Hardware security in practice: Challenges and opportunities”. In:174

2011 IEEE International Symposium on Hardware-Oriented Security and Trust. IEEE. 2011,175

pp. 93–98.176

[5] Ibex documentation. https://ibex-core.readthedocs.io/en/latest. Valid for commit 45b7272.177

[6] Ibex Github repository. https://github.com/lowRISC/ibex. Valid for commit 45b7272.178

[7] Ibex security features. https://ibex-core.readthedocs.io/en/latest/03_reference/security.html.179

Valid for commit 45b7272.180

[8] Reinhold P Weicker. “Dhrystone benchmark: rationale for version 2 and measurement rules”.181

In: AcM SIGPLAn notices 23.8 (1988), pp. 49–62.182

[9] Alan R Weiss. “Dhrystone benchmark”. In: History, Analysis,„Scores “and Recommenda-183

tions, White Paper, ECL/LLC (2002).184

[10] CoCoTB documentation. https://docs.cocotb.org/en/stable/index.html. Valid for version 1.7.2.185

– 7 –

https://doi.org/10.1088/1748-0221/18/01/C01018
https://doi.org/10.1109/AERO53065.2022.9843361
https://doi.org/10.1109/AERO53065.2022.9843361
https://doi.org/10.1109/AERO53065.2022.9843361
https://ibex-core.readthedocs.io/en/latest
https://github.com/lowRISC/ibex/tree/45b7272ee56c5de779287f15b44ae6c6824868da
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex/tree/45b7272ee56c5de779287f15b44ae6c6824868da
https://ibex-core.readthedocs.io/en/latest/03_reference/security.html
https://github.com/lowRISC/ibex/tree/45b7272ee56c5de779287f15b44ae6c6824868da
https://docs.cocotb.org/en/stable/index.html

	Introduction
	Processing systems in harsh environments
	Single-event effects and hardware security

	Ibex RISC-V Core
	Security features

	Test methodology
	Test flow
	Golden reference model
	seu run

	Results
	Conclusions
	References

