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Abstract. The success of inverse material model identification depends on the interaction between 
the adopted material model, the design of the heterogeneous specimens, the quality of the full-field 
measurements and the employed inverse identification method. Although inverse identification 
with full fields usually uses either FEMU or nonlinear VFM algorithms, a range of specimen 
designs and heterogeneity indicators have been proposed to assess the quality of the measured field 
and specimen design. While many studies investigate the effects of strain field heterogeneity on 
material model identification, few of them address the comprehensive interaction of all the above 
features and investigate their interactions during inverse identification through identifiability 
analysis. In this study, we analyze the identifiability of the parameters of the YLD2000-2d model 
used to describe the plastic anisotropy of steel sheet DC04 using a perforated biaxial specimen 
with the nonlinear VFM method. For this purpose, we performed a virtual DIC experiment with 
known material parameters by simulating the test in ABAQUS/Standard, generating synthetic 
images and reconstructing the strains via stereo DIC. Before inverse identification with a nonlinear 
sensitivity-based VFM, we analyzed the sensitivity of the virtual work to parameter changes and 
performed an identifiability analysis. 
Introduction 
The reliability of numerical analyses in structural mechanics depends largely on the accurate 
modeling of materials. For metallic materials, the models are usually formulated in the form of 
complex algebraic differential equations, especially when a comprehensive representation of 
advanced material properties is desired. In addition to the formulation itself, these models include 
a number of parameters that must be determined by appropriate material tests.  

Particularly when characterizing sheet metal, the free parameters of the models are traditionally 
determined using uniaxial standard tests. Usually, only certain parameters can be determined with 
analytical expressions derived from statically determined test configurations. Consequently, these 
tests are designed to measure homogeneous deformations determined by electrical strain gages or 
extensometers, which easily correlate with the global force measured by the load cell of the testing 
machine. This approach is commonly referred to as Materials testing 1.0 (MT1.0) [1]. 

Alternatively, the advent of optical technologies has opened new possibilities for characterizing 
material behavior. The use of 3D scanners and cameras enables the precise measurement of 
heterogeneous body displacements and deformations under load. The ability to accurately track 
and quantify displacements and strains enables engineers to assess material behavior and make 
informed design decisions. 
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Digital image correlation (DIC) [2] is one of the most commonly used techniques for measuring 
strain fields. In this approach, sequentially captured images are processed to extract valuable 
information that facilitates the study of both local behavior and global responses in structures. In 
addition, DIC can theoretically operate in real time and provides the ability to monitor structural 
responses under dynamic loading conditions. This feature makes DIC a powerful tool for various 
applications ranging from material testing to structural analysis and product development. 

These novel technologies unleashed a potential for development of novel material calibration 
strategies, where a richness of full-field measurement of displacements, strains and eventually 
stresses over a complete Region of interest (ROI) can be analyzed and employed for material 
calibration. This triggered also a reconsideration of test specimen designs which are needed to be 
tailored for novel optical measurement technologies to fully exploit the potential, resulting in a 
new paradigm in material testing using complex tests, full-field measurements and inverse 
identification to identify mechanical constitutive parameters, known as Material testing 2.0 
(MT2.0) [3].          

There are a number of new identification methods, including the Virtual Field Method (VFM) 
[4], [5] the Equilibrium Gap Method (EGM) [6] and the Constitutive Equation Gap Method 
(CEGM) [7]. In addition, methods such as the Reciprocity Gap Method (RGM) [8], Finite Element 
Model Updating (FEMU) [9], [10], Integrated Mechanical Image Correlation (I-MIC) [11], 
Integrated Digital Image Correlation (I-DIC) [12] and various combined theoretical-experimental 
approaches [13-14] have been developed. While the novel identification strategies aim to reduce 
the calibration effort compared to conventional material testing, they mainly utilize the 
heterogeneity of deformation to determine several material model parameters simultaneously. In 
the most desirable and ideal case, the concept of MT2.0 would allow the identification of all 
material parameters from a single heterogeneous test, which remains an open question to date. 

Originally, these methods were applied to problems of elasticity, but have evolved over time. 
Currently, the most commonly used techniques for solving plasticity problems are FEMU and 
VFM. FEMU, known for its user-friendly approach, uses an optimization algorithm to minimize 
the discrepancy between the measured and calculated results of finite element analysis (FEA). This 
method has proven successful in identifying parameters for various plasticity models, including 
Hill48 [15] and YLD2000-2d [16]. On the other hand, VFM, which is based on the principles of 
virtual work, was originally developed for the determination of elastic properties [17]. In later 
applications, however, the range of application was successfully extended to plasticity problems 
[18–22]. 

Both FEMU and VFM suffer from certain drawbacks that prevent them from gaining wider 
acceptance in the industrial engineering community. Inverse identification with FEMU is 
extremely computationally intensive for plasticity models because the optimization algorithm 
requires the results of FEM for all material points in a region of interest (ROI) in each iteration, as 
well as repeating all FEM analyses for perturbed values of all model parameters in each iteration. 
Each FEM analysis also involves equilibrium iterations, and for each iteration of the FEM analysis, 
the complete stress field needs to be computed. VFM is much more computationally efficient for 
elasticity, but becomes computationally intensive for plasticity, where the stress field must also be 
reconstructed at each iteration. 

The second problem hindering wider practical application arises from the conditioning of the 
optimization problem, which may arise solely from the user's understanding of the underlying 
identification/optimization problem [23]. Consequently, the optimization process can be ill-posed 
and lead to poor convergence, a non-unique solution or, in extreme cases, to no solution at all. An 
illustrative example of such an ill-posed optimization scenario is the attempt to identify isotropic 
hardening behavior from the linear elastic material response or to determine the hardening 
exponent for small plastic strains. In both cases, no information is contained in the measured strain 
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fields and there is no physical correlation between the parameters sought and the measured 
response.  

While the two problems described above can be associated with a low sensitivity of the resulting 
strain or stress field to parameter changes, the more difficult case occurs when parameters are 
correlated. Such an example would also lead to an ill-posed problem where no unique solution can 
be found and the optimization process does not effectively converge to the desired solution. An 
illustrative example is the problem of identifying isotropic strain hardening and plastic anisotropy 
when all parameters describing hardening and anisotropy are included in the optimization. In this 
particular case, the same full-field response can be obtained by proportionally increasing the 
parameters for the hardening curve or the anisotropy.   

In this paper, we present an approach to perform an identifiability analysis of the nonlinear 
Virtual Field Method (VFM) specifically applied to the identification of plastic anisotropy using 
the perforated biaxial cruciform specimen developed by Coppieters et al. [24]. The first step is to 
investigate the sensitivity of the stress fields associated with the virtual work and thus determine 
the rank of the parameter sensitivity. In the final step, we calculate the correlation matrix and find 
that only a certain set of parameters can be reliably identified for the specific material model and 
heterogeneous test configuration. 
Methodology 
In order to investigate the identifiability of the parameters of a material model when they are 
identified using nonlinear sensitivity based VFM [25], we have relied on a methodology of virtual 
experimentation, where a numerical simulation is performed to obtain synthetically deformed 
images, which are afterwards processed with DIC. The identifiability of the material parameters—
when the identification is subjected to nonlinear VFM—is then investigated. 

For this particular purpose, the entire methodology was carried out in the following steps, which 
are shown in Fig. 1: 

- Finite element simulation of a perforated biaxial cruciform sheet metal test specimen. The 
shape of the specimen was taken from [24], [26], while the material of the sheet was assumed to 
correspond to the actual material behavior of a 1.2 mm thick DC04 steel sheet. The material 
behavior is assumed to be plastically anisotropic, using the YLD2000-2d yield function to describe 
plastic anisotropy and Swift's hardening law for isotropic hardening behavior. The material is fully 
characterized in Coppieters et al. [27]. 

- Generation of synthetic images of the deformed specimen shape. Based on the calculated 
displacement field and the corresponding nodal displacements, a deformed speckle images can be 
generated from a generic optimal speckle pattern. The procedure for generating images is 
described in detail by Lava et al. [28]. 

- DIC post-processing. After the deformed images have been generated, the data can be post-
processed with a DIC code that generates the “experimental” displacement field. Since the virtual 
experiment is generated using a known material model, the virtual data can be used to evaluate the 
identification quality of the nonlinear sensitivity based VFM. It should be noted that the chosen 
virtual experimentation approach enables to mimic the entire measurement chain, including image 
noise and effects caused by camera calibration. 

- Analysis of identifiability. Prior to the inverse identification procedure using nonlinear 
VFM, an identifiability analysis should be performed. The identifiability analysis includes a 
calculation of the internal virtual work sensitivity matrix, which is further analyzed for the 
sensitivity rank and the collinearity of the parameters. The procedure closely follows the work of 
Zhang et al. [28] and [29], who applied the identifiability analysis to FEMU and deep notch 
experiment. 
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Fig. 1. The concept of virtual experimentation. The idea is to simulate the material response of 
the heterogeneous sample with known material parameters (a) and to re-identify the parameters 
(e) by synthetic image deformation (b) and DIC processing of the deformed images (c). Before 

inverse identification with the nonlinear VFM, the user should know which parameters are 
identifiable for the material model used based on the employed heterogeneous test (d). 

Results 
The identifiability analysis was conducted following the methodology outlined above. To assess 
this, the sensitivity of the internal virtual work to the YLD2000-2d parameters was evaluated at 
each time frame and DIC acquisition point. Utilizing the extracted data, a sensitivity matrix was 
constructed, and from this matrix, the sensitivity rank of the YLD2000-2d parameters was 
determined. The results of the sensitivity rank for each parameter are depicted in a bar chart in Fig. 
2(a). Notably, parameter α7, associated with shear behavior in YLD2000-2d, significantly 
influences the internal virtual work. This parameter is conventionally determined through the 
standard uniaxial tensile test in the diagonal direction to the sheet's rolling direction (45°). 

The dominance of shear behavior is evident in Fig. 2(b), where the contour plot displays the 
maximum principal stress component. It reveals that stress is most pronounced at the fillets, 
oriented at a 45° angle to the horizontal (rolling) direction, resembling behavior observed in the 
uniaxial tensile test in the diagonal direction. Finally, from the perspective of the performance of 
the optimization algorithm, the value of α7 would effectively converge to the reference value, but 
a slightly different value of α7 would greatly affect the values of other parameters and normally, 
convergence of such optimization problem is poor. For such behavior a better strategy is to fix or 
determine α7 from uniaxial tensile test in the diagonal direction. Poor convergence of the 
optimization problem is usually associated with poor conditioning of the system matrix, which is 
usually characterized by the conditioning number defined as ratio between the largest and the 
smallest principal value of the system’s matrix. If the conditioning number is high, poor 
convergence is to be expected. 
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Fig. 2. Analysis of identifiability by parameter sensitivity rank. (a) When attempting to identify 

all parameters of YLD2000-2d from a perforated biaxial tensile test, it is clear that the 
parameter α7 exerts the greatest influence on the internal virtual work. (b) This behavior is 

expected since the specimen at the fillets, where the maximum principal stress is highest, closely 
mirrors the behavior observed in the uniaxial tensile test. 

Based on the conclusion above, and to fully exploit the potential of heterogeneous testing, it is 
reasonable to eliminate the parameter α7 from the identification procedure and determine its value 
from another test. The rationale behind such decision is eliminating the largest eigenvalues from 
the system’s matrix and thus improving the conditioning of the optimization. Based on the 
assumption that the parameter α7 is fixed, we re-evaluated the sensitivity matrix and parameters’ 
sensitivity rank. The results are presented in Fig. 3(a). 

 
Fig. 3. Analysis of identifiability with parameter α7 fixed. (a) Parameters α1, α2, α5 and α8 have 
the highest sensitivity rank and are potentially identifiable. (b) This may further be analyzed by 

collinearity analysis, where the interaction of parameters is analyzed via correlation matrix. 
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In this scenario, it is evident that the parameters α1, α2, α5 and α8 have the highest sensitivity 
rank, suggesting that the test inherently contains sufficient information for their identification. The 
inclusion of other parameters with a lower sensitivity rank would worsen the conditioning number 
of the system matrix and impair the optimization. However, it is crucial to consider the possibility 
that these parameters behave as linearly dependent during the inverse identification process. To 
investigate the possible interaction between α1, α2, α5 and α8, a correlation matrix was computed 
and is presented in Fig. 3(b). 

The correlation matrix reveals pairwise interactions between the parameters, with off-diagonal 
values exceeding ±0.8 potentially causing ill-conditioning of the identification. In our particular 
case, focusing on the pairwise interactions between α1, α2, α5 and α8, the largest observed value is 
0.36, suggesting that these parameters are not significantly correlated, allowing for their unique 
identification from the test. 

It is important to note that the presented analysis relies on synthetic data, and the identification 
quality of some parameters may be compromised by noisy data. Addressing this concern involves 
evaluating the parameters' confidence intervals, and this aspect is a subject for future studies [31].  
Summary 
To summarize, we have presented the identifiability study of the YLD2000-2d plastic anisotropy 
model, whose parameters are to be identified from a perforated biaxial tensile test using sensitivity-
based nonlinear VFM. 

- For this purpose, we performed a virtual experiment in which a numerical simulation is 
carried out to obtain synthetically deformed images that are subsequently processed with 
DIC. In a further step, the identifiability of the material parameters is investigated when the 
identification is subjected to nonlinear VFM. 

- We found that when all parameters are subjected to inverse identification, only the 
parameter α7 can be reliably identified, as the test closely mirrors the behavior observed in 
the uniaxial tensile test at 45° measured from the rolling direction of the sheet. 

- To fully exploit the potential of heterogeneous testing, the parameter α7 was fixed in a 
further step since a slightly different value of α7 would greatly affect the values of other 
parameters and normally, convergence of such optimization problem is poor. Based on fixed 
value of α7 we re-evaluated the identifiability of the other parameters and found that 
parameters α1, α2, α5 and α8 can be uniquely identified from the test, whereas all other 
parameters should be also fixed. Finally, further studies should be conducted to investigate 
the quality of the identification of these parameters when applied to noisy data. 
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