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EDITORIAL

Emerging Role of Neutrophil Extracellular Traps 
in Subarachnoid Hemorrhage
Jens Witsch , MD; Thilo Witsch, MD; Kimberly Martinod , PhD

In the days to weeks following spontaneous sub-
arachnoid hemorrhage (SAH), up to 30% of patients 
develop brain infarcts, the imaging correlate of delayed 

cerebral ischemia (DCI).1 DCI is of clinical relevance due 
to its high incidence, its demonstrated negative impact 
on outcome, and its delayed occurrence relative to the 
index SAH. The latter suggests a therapeutic window of 
opportunity.1,2 However, DCI cannot be predicted due to 
a lack of reliable biomarkers, and prevention is centered 
on the use of the oral calcium antagonist nimodipine, 
which reduces the risk of DCI and poor outcomes. Other 
more effective treatments are unavailable because DCI’s 
pathophysiology is not understood.3 Anatomically, vaso-
spasm of the larger brain vessels and, on a cellular level, 
neutrophil-mediated inflammation have been linked to 
secondary injury processes and DCI.4,5 However, large-
vessel vasospasm and DCI are correlated poorly,6 and 
neutrophils have complex and essential roles in immu-
nity, tissue repair, and resolution of inflammation. Thus, 
interventions targeting large-vessel vasospasm or broad 
blockade of neutrophil recruitment or function are not 
suitable treatment strategies.

See related article, p XXX

In this issue of Stroke, Nakagawa et al7 present a 
study that follows both conceptual frameworks of DCI 
pathophysiology, vasospasm, and neutrophils, further 
downstream by investigating a potential association 

between microvasospasm and neutrophil extracellular 
traps (NETs) in a mouse model of SAH. NETs are DNA 
filaments decorated with cytotoxic and proinflammatory 
proteins, secreted by neutrophils into the extracellular 
space in response to pathogens or damage-associated 
molecular patterns. Maladaptive roles of NETs include 
thrombus formation, plaque destabilization, and endothe-
lial dysfunction.8–10

Nakagawa et al developed a blood injection SAH 
mouse model combining it with in vivo 2-photon micros-
copy to visualize small brain vessels and the space and 
cells surrounding them. In their experiments conducted 
in 65 C57 black 6 adolescent mice, they confirmed that 
erythrocytes enter the perivascular space and gradually 
disappear over 2 to 5 days. Concomitantly, they found 
that neutrophils from the host’s circulation infiltrated the 
perivascular space with timing, which coincided with the 
development of pearl-string–like microvasospasms of 
pial mouse vessels. The authors meticulously measured 
these microvasospasms using 2 methods, a visual and 
a semiautomated approach, with comparable results. 
Their study defines microvasospasm as a reduction of 
the vessel diameter of >20% and in a sensitivity analysis 
as a reduction of >40% (again, results are comparable). 
The main results of the study included that (1) antibody-
mediated depletion of neutrophils significantly reduced 
vasospasm compared with isotype controls, (2) perivas-
cular neutrophils released NETs (demonstrated by stain-
ing of key NET components, by intracisternally injected 
SYTOX Green staining, and by intracisternally injected 
fluorescein isothiocyanate–conjugated antineutrophil 
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elastase antibody and PE [phycoerythrin]-conjugated 
anti-H3 [histone H3] antibody, paired with subsequent in 
vivo perivascular visualization of the NETs components, 
as well as direct time-lapse visualization of neutrophils 
secreting NETs), and (3) NET degradation through intra-
cisternal administration of exogenous DNase (deoxyri-
bonuclease) slowly removed NETs from the perivascular 
space and significantly reduced microvasospasms in 
DNase-treated mice compared with controls.

Most notable is that Nakagawa’s study suggests 
that NETs, a known driver of immunothrombosis, are 
located in the immediate surrounding of pial blood ves-
sels after SAH in vivo; the presence of NETs is asso-
ciated with microvasospasms; and NET depletion is 
associated with improvement of microvasospasms. The 
study results complement recent findings describing 
intravascular NETs in mice and peripheral blood NETs 
in humans post-SAH and implicate NETs in the patho-
physiology of DCI.11–13 Although more mechanistical 
insights are needed, Nakagawa et al’s study supports 
the role of NETs as a potential treatment target to pre-
vent secondary ischemia after SAH. The demonstra-
tion of perivascular NETs comes with the caveat that 
in vivo visualization of NETs is technically challenging 
and error-prone, as SYTOX Green staining is not NET-
specific nor does it necessarily indicate extracellularly 
released DNA (compromised cell membranes also 
lead to SYTOX Green positivity in cells). However, the 
authors performed subsequent immunohistochemistry 
to identify specific neutrophil components and demon-
strated a reduction in SYTOX Green signal after DNase 
administration, which indirectly suggests that the 
SYTOX Green–positive areas were, in fact, extracellular 
and of neutrophil origin.

From a clinical perspective, when trying to translate the 
findings in mice to human disease, the ubiquity of micro-
vasospasm (and its association with NETs) complicates 
matters. Recent studies have also shown nearly ubiqui-
tous microvasospasm in the pial arteries of mice after 
induced SAH.14–16 One of these prior studies showed a 
reduction in vasospasm after intravenous administration 
of the iron scavenger deferoxamine, whereas Nakagawa 
et al now showed a reduction in microvasospasm after 
NET inhibition. While these results are not contradictory 
(iron from free heme may trigger neutrophil-mediated 
inflammation, which can result in NETs formation and 
secretion),17 the ubiquity of microvasospasm in mice and 
the sporadic nature of DCI in humans beg the question 
of what other factors are needed to produce DCI. Do 
patients with SAH, like this mouse model, develop ubiqui-
tous microvasospasm? If they do, why do only about one-
third of patients develop macroscopically visible infarcts? 
Do the other two-thirds develop mini infarcts not visible 
on conventional clinical imaging? Or are microvaso-
spasms contributing to ischemia-promoting machinery 
that produces infarcts only after an ischemic threshold 

has been surpassed? Is it the interplay between micro-
vasospasm, the associated reduction in blood flow, and 
intravascular thrombosis (possibly driven by intravascular 
NETosis) that leads to DCI? Future studies have many 
questions to answer, for which Nakagawa et al’s work 
has opened the door.
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