
Mapping Problem-Space to Solution-Space Features:
A Feature Interaction Approach

Frans Sanen Eddy Truyen Wouter Joosen
DistriNet, Department of Computer Science,

Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{frans.sanen,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract
Mapping problem-space features into solution-space features is a
fundamental configuration problem in software product lineen-
gineering. A configuration problem is defined as generating the
most optimal combination of software features given a require-
ments specification and given a set of configuration rules. Current
approaches however provide little support for expressing complex
configuration rules between problem and solution space thatsup-
port incomplete requirements specifications. In this paper, we pro-
pose an approach to model complex configuration rules based on a
generalization of the concept of problem-solution featureinterac-
tions. These are interactions between solution-space features that
only arise in specific problem contexts. The use of an existing tool
to support our approach is also discussed: we use the DLV answer
set solver to express a particular configuration problem as alogic
program whose answer set corresponds to the optimal combina-
tions of solution-space features. We motivate and illustrate our ap-
proach with a case study in the field of managing dynamic adapta-
tions in distributed software, where the goal is to generatean opti-
mal protocol for accommodating a given adaptation.

Categories and Subject DescriptorsC.2.4 [Distributed Systems]:
Distributed Applications; D.2.11 [Software Engineering]: Soft-
ware Architectures

General Terms Algorithms, design, performance, reliability

Keywords Software product line engineering, configuration know-
ledge, problem-solution feature interactions, default logic, DLV,
distributed runtime adaptation

1. Introduction
Mapping problem-space features into solution-space features is a
fundamental configuration problem in software product-line engi-
neering (SPLE) [16]. In SPLE [36], product configuration [11] of-
ten boils down to selecting the required features and subsequently
instantiating a software product from a set of implementation arte-
facts based on configuration knowledge [15]. In other words,a con-
figuration problem is defined as generating the most optimal com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $5.00

bination of software features given a requirements specification and
given a set of configuration rules. Current approaches however pro-
vide little support for complex mappings that support incomplete
requirements specifications. A detailed account of these approaches
is provided in Section 6. The need for more complex mappings such
as support for n-ary configuration rules that support tolerating in-
complete requirements specifications is motivated in Section 2.

In this paper, we propose an approach to model complex config-
uration rules based on a generalization of the concept of problem-
solution feature interactions [42]. These are interactions between
solution-space features that only arise in specific problemcontexts.
In order to precisely specify the interaction between the software
features, we need to take into account specific properties ofthe
problem domain.

Our proposed approach is based on four key principles. Firstof
all, we separate the software system description into (1) a require-
ments specification, (2) solution-space features and (3) problem-
solution feature interactions. Secondly, we use feature models [23]
to model both the requirements specification and the solution-space
features. The first feature model represents the different require-
ments and characteristics that are relevant for a particular end prod-
uct, the second feature model represents the different key design
decisions that can be applied to instantiate the resulting software.
Thirdly, the problem-solution feature interactions serveas an inter-
mediate step to map the requirements specification to the solution-
space artefacts. Fourthly, we use default logic [39] to model and
reason about problem-solution feature interactions. As a result,
the approach supports reasoning about complex mappings from
problem-space to solution-space features.

The main contribution of the paper is an approach that com-
bines the concepts of configuration knowledge and feature interac-
tion, and the provisioning of automated support for applying that
approach in complex mappings. We therefore discuss the use of an
existing tool to support our approach: the DLV [30, 1] answerset
solver is used to express a particular configuration problemas a
logic program whose answer set corresponds to the optimal combi-
nations of solution-space features.

We motivate and illustrate our approach with a case study in the
field of distributed runtime adaptation where the goal is to generate
an optimal adaptation protocol for a given adaptation request. Dis-
tributed runtime adaptation is the problem of adapting a distributed
system at runtime in a safe and coordinated way. More concretely,
it concerns binding or unbinding multiple interdependent compo-
nents [48] with a distributed application at runtime while preserv-
ing global state consistency [33]. Consider for instance the addition
or removal of a fragmentation service in a messaging application
[51] that consists of a fragmenting component at the client side that
fragments large messages that exceed a certain threshold and a re-

assembling component at the server side which reassembles these
messages again. Mainly as a consequence of the interdependence
between these components, these must be added or removed to-
gether in an atomic fashion without causing message omissions.

The rest of this paper is structured as follows. Section 2 de-
scribes the running example we use throughout the remainderof
the paper, motivates the need for complex mappings in configu-
ration knowledge and sets the scope for our work. Section 3 then
makes the case for problem-solution feature interactions as config-
uration knowledge and default logic as a conceptual frame. Section
4 discusses our approach. Subsequently, we apply the approach to
our case study in Section 5. Finally, related work is discussed in
Section 6 and we conclude the paper in Section 7.

2. Background
This section introduces DyReS as a case study, positions ourwork
in a software product line context and motivates the need forcom-
plex mappings as part of the configuration knowledge.

2.1 DyReS

DyReS1 is an adaptation support system that we have developed
[51] based on the vision and principles of the NeCoMan middle-
ware [21]. Currently, DyReS extends two industrially-usedmid-
dlewares (Spring and JBoss) with runtime support for implement-
ing distributed adaptations of a client-server based application in
a coordinated and safe way. DyReS enables the developer to im-
plement a distributed runtime adaptation in a coordinated way ex-
ecuting an adaptation protocol between the nodes involved in the
adaptation. An adaptation protocol typically consists of asequence
of four reconfiguration tasks: installation (installing new compo-
nents), finishing (bringing old components to a safe state),acti-
vation (unbinding any old and binding any new components) and
removal (removing old components). Each reconfiguration task is
structured as a sequence of one or more reconfiguration actions for
creating/removing, binding/unbinding, starting/stopping, interrupt-
ing/resuming components or imposing a safe state on them.

The main idea behind DyReS is as follows. A client-server ap-
plication typically exhibits a number of application-specific char-
acteristics and desires some specific requirements with respect to
how the adaptation protocol should coordinate the adaptation. The
design of DyReS consists of a generic adaptation protocol, that
works in all cases, and a set of optional customization strategies that
optimize the generic adaptation protocol for a specific application
based on the application-specific characteristics and requirements.
Generally, an adaptation protocol that is customized towards an ap-
plication its requirements and characteristics can perform more ef-
ficiently (cfr. also [20, 51]).

Application-specific requirements are quality requirements of
importance, such as responsiveness, availability and reliability of
the distributed application. For example, when the responsiveness
of the application may not be affected by the adaptation, a tempo-
rary service disruption can not be tolerated. Obviously, these qual-
ity requirements have an influence on what will be the most optimal
configuration of solution-space features.

Application-specific characteristics are an equally important
part of the description of the problem space, since the applica-
tion and its components may have specific characteristics that can
be exploited to further optimize the resulting configuration of the
adaptation protocol, or, on the contrary, forbid certain optimiza-
tions. A stateless session model of the distributed application is
an example characteristic that can allow for a customization strat-

1 DyReS stands for Dynamic Reconfiguration Support.
Source code and contact information are available at
http://www.cs.kuleuven.be/∼distrinet/projects/DyReS.

egy of executing different reconfiguration tasks in parallel [21].
Such a customization strategy results in less service disruption and
therefore satisfies the responsiveness requirement better.

In general, a customization strategy can concern differentmat-
ters: composition order, alternative implementation components,
sequence of execution, configuring complex components the right
way, etc. In our work, we model customization strategies as incre-
mental refinements of the generic adaptation protocol. Their imple-
mentation into reusable implementation components can be done
using aspect-oriented programming [51].

2.2 Software product line engineering

In our work, we aim to develop a feature-based software product
line for the design of a family of adaptation protocols as depicted
in Figure 1. A specification of an adaptation protocol by a human
reconfigurator is in the DyReS product line a configuration file that
is directly parsed into a customized adaptation support system. A
feature can be defined as a characteristic of a system that is visible
to the end-user [23] or as a distinguishable characteristicthat is
relevant to some stakeholder [15]. Our domain analysis has resulted
in a set of application-specific requirements and characteristics, i.e.
problem-space features. The domain design consists of a generic
adaptation protocol in combination with customization strategies,
i.e. solution-space features.

We use feature models [23] to model both these problem-space
and solution-space features. A feature model represents the com-
mon and variable features of a family of systems in a specific do-
main and the relationships between them. Features can be related
hierarchically through an and/or relationship in combination with
cardinality constraints to represent alternative or optional features.
Crosscutting the hierarchy, features can require or exclude other
features too. Although our approach does not prescribe a certain
syntax to be used, we use trees2.

Separating problem and solution space is an important trend
in SPLE, e.g. the work in [32] enables the separation of concerns
between product line and software variability. Software variability
refers to the “ability of a software system or artefact to be efficiently
extended, changed, customized or configured for use in a particular
context” [47]. Product line variability [36, 24] is specificto SPLE
and describes the variation between the systems that belongto a
product line in terms of properties and qualities, like features that
are provided or requirements that are fulfilled. For the family of
adaptation protocols in DyReS, product line variability isdefined
by the application-specific requirements and characteristics, while
customization strategies describe the software variability.

The rest of this paper will focus on the configuration prob-
lem that is indicated by the dashed rectangle in Figure 1. If we
consider the requirements and characteristics of a specificapplica-
tion as problem-space features and the customization strategies as
solution-space features, our configuration problem boils down to
generating the most optimal adaptation protocol given a require-
ments specification of the requirements and characteristics of the
particular application.

2.3 Complex mappings

To handle the configuration problem, we adopt a generative pro-
gramming (GP) view. GP is a software engineering paradigm based
on modeling software system families such that, given a particular
requirements specification, a highly customized and optimized in-
termediate or end product can be automatically manufactured on
demand from elementary, reusable implementation components by
means of configuration knowledge [15].

2 More specifically, we use single-rooted directed acyclic graphs as defined
in [44].

��������	
���
������������

�

���������	
�����
�����������	���
����������	���	

���������	
���
������������

��	����������
	��������	

�������
���
������

�������

�
�����
���
������

�������

�����������	
	
����������

������
���� 	�	

������
��	���

������
��
�����������

�

��������
�����������	
�����������

������������
�

��������

��
�����������

�

�
�
!
�
"#

$
#
�
"#

$
$
�
"#

�

�
�
�
%
"�
�
&
"�

#
$
#
�
"#

$
$
�
"#

�

Figure 1. SPLE for the design of adaptation protocols. An oval is used to model an activity, a rectangle represents an artefact in DyReS.

��������	
���

��������	
�����
����
	�

�
���
�

��������	
���

��
�
����
���	��
��

�������
������������

��������
�
��������

������������������������

����
�����
���
������������

��
������
����

��
������
	
��
���
�

���������������
�

��	���������

Figure 2. Elements of configuration knowledge. [15]

Figure 2 shows the different elements of configuration knowl-
edge. As one can see, this involves illegal feature combinations
in the problem or solution space, default settings, defaultdepen-
dencies, construction rules and optimizations. This paperis mostly
concerned with the problem of (i) modeling and reasoning over
construction rules while respecting feature interactionsand (ii) en-
abling optimization while supporting defaults in the case of incom-
plete requirements specifications.

In our case study, configuration knowledge hence needs to sup-
port mapping a requirements specification into a correctly config-
ured end product. Furthermore, the configuration knowledgeneeds
to relate the requirements and characteristics of the application un-
der reconfiguration to the most optimal set of customizationstrate-
gies that can be applied to the generic adaptation protocol.

This configuration knowledge becomes quite complex in DyReS.
First of all, the choice for a solution-space feature can depend on
different elements from both the problem and solution space[42].
Therefore, simple one-to-one mappings do not suffice to specify
complex construction rules in which the selection of a solution-
space feature depends on both problem-space and solution-space
features. On the contrary, we need more complex, n-ary mapping
mechanisms. Secondly, incompleteness of requirements specifica-
tions [38, 43] is an important problem in DyReS. Often human
reconfigurators, who are in charge of maintaining and evolving a
running application, may not be able to precisely know how to
instantiate the problem-space feature model of DyReS into apre-
cise requirements specification. This is for example the case when
they are not familiar with the notions involved or do not haveac-

cess to the source code. Even simple one-to-one mappings from a
problem-space to a solution-space feature possibly don’t work if
the knowledge about the problem-space feature is incomplete or
non-existing to begin with. In Section 3.2, we present a concrete
example of such a complex, n-ary mapping that may suffer froman
incomplete requirements specification.

Hence, the proposed approach needs to offer a means for ex-
pressing complex, n-ary relationships between features that cross
the problem and solution space and provides a means to handlepo-
tentially incomplete requirements specifications.

3. Feature interactions
This section motivates our approach and illustrates our point of
view that complex configuration rules can be seen as an extension
of the feature interaction problem. We elaborate on our rationale
incrementally. First, we summarize the more traditional view on
modeling and reasoning about feature interactions. Secondly, we
present a concrete complex mapping between the problem and
solution space in DyReS and show that this mapping can be seen
as a problem-solution feature interaction. Thirdly, we define this
concept and integrate it with default logic to be able to generate
the most optimal adaptation protocol while using defaults in the
presence of incomplete requirements specifications.

3.1 Traditional view

In our approach, we propose to extend the established feature inter-
action framework with problem-solution feature interactions and
use this as the conceptual basis for modeling complex configura-
tion knowledge. A feature interaction traditionally is defined as the
situation where two features that work correctly in isolation (when
composed with the base system) do not work correctly any longer
when they are combined together and composed with the same base
system [26, 12]. In other words, a feature interaction is some way
in which a feature modifies or influences another feature in defining
overall system behavior (taken from [55]). Note that this definition
allows for both positive and negative interactions. Because inter-
actions often are implicit in feature composition, they aredifficult
to understand. Therefore, a sound logic for modeling and reason-
ing about feature interactions is necessary, e.g. for finding a correct
combination of features as in [8].

3.2 Complex mappings

We now present an example of a complex mapping that involves
two solution-space features and one problem-space featurerelevant
in our case study that has been introduced in Section 2.1. Forthe
sake of completeness, note that the mapping described belowis
only valid in the context of a replacement adaptation, but wemake
abstraction of this in the paper.

• Finish before activate This solution-space feature represents
the customization strategy of executing the finishing and acti-
vation reconfiguration tasks in sequence, i.e. finishing anyold
components before new components become activated. As de-
scribed in [42], the downside of this solution is that service dis-
ruption may occur (cfr. [51]) due to driving involved compo-
nents to a quiescent or frozen state.

• State synchronizationThis solution-space feature represents
another customization strategy that allows us to transfer execu-
tion state from the old to the new components.

• PersistentThis problem-space feature is used to specify that
execution state of one or more of the components involved in an
adaptation is persistent (surviving more than one client request).
This is the opposite of transient state.

Informally, the mapping between these three features needsto
behave as follows. Whenfinish before activate becomes selected,
components are brought to a state where processing of all remain-
ing client requests has completed. Therefore, all transient state
(related to processing a single client request) is gone. Persistent
state however survives execution of multiple client requests and
may need to be transferred to new components. However, many
client-server applications currently operate under a stateless session
model wherepersistent state is not maintained in server compo-
nents. Under these circumstances, an optimal adaptation protocol
thus does not includestatesychronization .

In other words,finish before activate depends on thestate
sychronization solution-space feature, but only in the specific
problem context where the adaptation involves components that
entailpersistent state. Clearly, such knowledge is key to solving
the configuration problem at hand and crosses both the problem
and solution space. We experienced that specifying this kind of
configuration knowledge precisely enough is far from trivial.

Problem-solution feature interactions Our approach proposes to
use problem-solution feature interactions for expressingconfigura-
tion knowledge consisting of complex, n-ary relationshipsbetween
features that cross the problem and solution space. We definea
problem-solution feature interaction as an interaction between two
or more solution-space features that only arises based on one or
more problem-space features. In order to manage problem-solution
feature interactions, our approach enables modeling theseinterac-
tions so we can enforce them (in case of positive interactions) or
resolve them (in case of negative interactions).

Logic formulae already have been considered elsewhere as an
appropriate means to model feature interactions. E.g. in [8], propo-
sitional formulae are used to model constraints where a feature re-
quires or excludes another feature through the use of animplies
relationship. Note that specifying the example interaction as a sim-
ple dependency between solution-space features only, e.g.

finish before activate → state synchronization (1)

or as a simple one-to-one mapping between a problem-space
and solution-space feature, e.g.

persistent → state synchronization (2)

is not good enough. More specifically,finish before activate
only depends onstate synchronization if the application has per-
sistent state. Indeed, an application without persistent state would
benefit from an optimized adaptation protocol that skips state syn-
chronization. Therefore, we can specify the complex mapping as
follows:

finish before activate ∧ persistent

→ state synchronization
(3)

3.3 Default logic

We however argue that formula (3) is not sufficient either for
our purposes as listed in Section 2.3. It perfectly capturesthe
problem-solution feature interaction in the case where we know
if the components involved in the adaptation contain persistent
state or not. Unfortunately, it is only realistic to assume that the
requirements specification can be incomplete [38, 43] or nothing
might be known about the components containing persistent state
or not. Under such circumstances, the configuration knowledge still
should be able to generate a complete and correct configuration
of solution-space features, although maybe less optimal: we take
state synchronization just to be sure. Hence, we need to be able
to rely on default information. As a consequence, classicallogic
formulae (as e.g. in formula (3)) indeed are not sufficient ifwe want
to model complex mappings such as the one in Section 3.2. In the
rest of this section, we discuss the use of default logic as a means to
implement this kind of configuration knowledge and reason about
feature interactions [41].

Default logic has been originally proposed by Reiter as a non-
monotonic logic to formalize reasoning with default assumptions
[39]. It allows making plausible conjectures when faced with in-
complete information and draw conclusions based upon assump-
tions [5]. As an intuitive example of what can be expressed, con-
sider the well-known principle of justice in our Western culture
that, in the absence of evidence to the contrary, we assume that
the accused is innocent. Next, we overview both the syntactic sugar
and semantics (informally) of default logic by applying it to our ex-
ample interaction from the previous section. We subsequently also
discuss the relevance of using default logic to support our approach.

A default theory T is a pair (W , D) consisting of a setW of
logic formulae (background theory or facts of T) and a setD of
default rules. The default rule explicitly representing our example
interaction is presented below.

finish before activate : persistent

state synchronization
(4)

According to formula (4), if we know thatfinish before
activate is true andpersistent can be assumed, we can conclude
state synchronization . The three parts of a default rule are called
the prerequisiteϕ, justificationsψi and conclusionχ respectively.
Hence, the general explanation of any default rule is given by “if
we believe that prerequisite is true, and the justification is consis-
tent with our current beliefs, we also believe the conclusion”. In
other words, given a defaultϕ : ψ1, ψ2, .../χ, its informal mean-
ing is: if ϕ is known, and if it is consistent to assumeψ1, ψ2, ...
then concludeχ. It is consistent to assumeψi iff the negation of
ψi is not part of the background theoryW [10]. At this point, it is
important to realize that classical logic is not appropriate to model
this situation. The problem with such a rule (cfr. (3)) is that we
have to definitely establish if there ispersistent state involved or
not (basically because of the closed world assumption [18]). As
a consequence, thestate synchronization feature never would
become selected if nothing is known about persistence.

The semantics of default logic typically is defined in terms
of extensions. Intuitively, an extension seeks to extendW (back-

ground theory) with “reasonable” conjectures based on the appli-
cable default rules. More formally, a defaultϕ : ψ1, ψ2, .../χ, is
applicable to a deductively closed set of formulaeE iff ϕ ∈ E and
¬ψ1 /∈ E,¬ψ2 /∈ E, ... You can think ofE as the context in which
ϕ should be known and with whichψi should be consistent.

Discussion on the relevance of defaults for our approachWe
now discuss our default rule (4) together with its meaning into more
detail. Intuitively, the rule states that thestate synchronization
feature needs to be selected if thefinish before activate feature is
selected, unless there is no persistent state contained within one
of the components involved in the adaptation. The default rule
represents the following scenarios correctly.

• If the finish before activate solution-space feature becomes
selected as a result of applying the configuration knowledgeand
nothing is known aboutpersistent state, then the background
theoryW will include finish before activate as a fact and say
nothing about persistence. Because of default rule (4), only ex-
tensions indicating to also select thestate synchronization
feature are valid ones. This is caused byfinish before activate ,
the prerequisite, being true and the justificationpersistent be-
ing not inconsistent with what is currently known. Similarly,
the same conclusion will be drawn if thepersistent feature is
selected as problem-space feature as part of the requirements
specification.

• On the other hand, if the requirements specification indicates
that components involved in the adaptation entail persistent
state,W will include persistent . When there is no persistent
state,W includes¬ persistent . If the latter is known, valid
extensions will not includestate synchronization because
default rule (4) no longer can be applied. If the former is known,
the default rule remains applicable.

This way, the specific problem context on which our exam-
ple interaction depends is made explicit via the justifications in
default rule (4). Hence, we were able to express that thefinish
before activate solution-space feature only requires thestate
synchronization solution-space feature when thepersistent
problem-space feature is selected as part of the requirements spec-
ification. More generally, this rule can be used to arrive at the most
optimal combination of solution-space features, based on the spe-
cific problem context indicated by problem-space features.

Default rules are perfectly capable to express the more simple,
intuitive binary interactions between two features: the justification
part becomes true. Alternatively, default logic can be usedin com-
bination with classical logic rules, too. We refer the reader to Sec-
tion 5 for concrete examples of such interactions.

4. Approach
This section summarizes our approach. Section 4.1 presentsthe
high-level overview of the approach. Subsequently, Section 4.2 in-
tegrates the proposed approach with default logic. Finally, Section
4.3 discusses the use of DLV to support the approach.

4.1 Overview

A schematic overview highlighting the key artefacts of the pro-
posed approach is depicted in Figure 3.

• Product line variability is modeled through a problem-space
feature model. Features in this model express requirementsand
characteristics of a specific application.

• The instantiation of the problem-space feature model is a par-
ticular requirements specification.

• A solution-space feature model is used to model the software
variability. Our solution-space features represent key design de-
cisions that can be applied to instantiate the resulting software.

• The instantiation of the solution-space feature model mod-
els the optimal configuration of solution-space features. An
optimal configuration of solution-space features satisfiesthe
application-specific requirements and maximally exploitsthe
characteristics of the application.

• Problem-solution feature interactions are used as a means to
model the configuration knowledge. They enable us to map the
problem-space features to an optimal configuration of solution-
space features.

The proposed approach solves our configuration problem by en-
abling us to generate the most optimal instantiation of the solution-
space feature model given a particular instantiation of theproblem-
space feature model and given a set of problem-solution feature
interactions. We model and reason about the configuration knowl-
edge by formalizing the problem-solution feature interactions in
default logic.

4.2 Integration with default logic

Figure 3 also shows how each of the artefacts in our approach in-
tegrates with default logic. First of all, both the problem-space and
solution-space feature model and feature interactions within these
models can be represented in standard propositional or predicate
logic, e.g. as proposed in [7] by Batory et al. Secondly, we use
default rules to model problem-solution feature interactions, as ex-
plained in Section 3.3. The complete set of default rules gives us
D. Next, we model the concrete instantiation of the problem-space
feature model, i.e. a requirements specification, as our background
theoryW . Finally, the solution to our configuration problem, i.e.
the optimal instantiation of our solution-space feature model, is
given by the extensionE of (W ,D).

In our default rules, we distinguish between three predicates.

1. kdd(X) indicates a key design decision. The parameter matches
with the name of the solution-space feature that expresses the
concrete key design decision.

2. eq(X) defines an application-specific requirement. The pa-
rameter contains the name of the problem-space feature that
matches with the concrete requirement.

3. char(X) models a characteristic of the application that can
be exploited. The concrete characteristic that matches with the
name of the corresponding problem-space feature is included as
parameter.

Below, the abstract structure of a default rule is shown. Rule
(5) generalizes over the example interaction from Section 2.1 and
states thatkdd(a) requireskdd(b) if we can assumechar(k).
In rule (6), the justification part includes an assumption w.r.t. the
application-specific requirements or its negation.

kdd(a) : char(k)

kdd(b)
(5)

kdd(a) : ¬req(l)

kdd(b)
(6)

To compute an extensionE, given a background theory,W ,
and given a set of default rules,D, we adopt answer set program-
ming (ASP) [31]. ASP is a powerful paradigm from the field of
non-monotonic reasoning [18] in artificial intelligence. It is based
on the stable model [35] semantics of logic programming. An an-
swer set solver is a program for generating stable models or answer

����������	

�������	���

��������	
������
�

��������	���
���������

�������������
�

��	�����
����	�	�������	����

����	���	
�

�
�
�
�
��
�
�
��
�

�
�
�
��
�
�

��
�

!�������"�
��
������#��$��"��#���

!�������"�
��
�������������	��#���

���$��"%�������	
���������	��������	�

�
�
&
�
��

�
�
�
��
�
�

��
�

Figure 3. A schematic overview of our approach.

sets. In essence, we use ASP to express a particular configuration
problem as a logic program whose answer set corresponds to the
optimal combinations of solution-space features. We declaratively
specify what a solution to the configuration problem should look
like and leave it for the answer set solver to try to find a solution
that solves the problem. The results of this computation arecalled
models: they are consistent explanations of the world (the resulting
configuration of solution-space features) as far as the solver can de-
rive it. By default, most solvers generate all possible answer mod-
els. However, if the logic program representing the configuration
problem contains inconsistencies, there simply is no model.

4.3 Supporting our approach in DLV

Our approach uses the DLV [30, 1] answer set solver to compute
correct and optimal solutions for our configuration problem. Our
choice for DLV as a tool is based on its systemic support for answer
set programming and its ability to express disjunctions (the logical
or), negation as failure (indicated bynot and in contrast with true
negation, which is indicated by the- sign) and default rules. DLV
is able to implement default rules because the deductive closure
of an answer set for a logic program with negation as failure is a
consistent extension for the default theory of that same program,
and vice versa [31]. The equivalent implementations of default
rules (5) and (6) in DLV are shown below to illustrate how this
can be done.

kdd(b) :- kdd(a), not -char(k).
kdd(b) :- kdd(a), not req(l).

The prerequisite and the conclusion of the default rule become
the body, respectively the head of the rule in DLV. The justification
is negated by negation as failure and copied in the rest of thebody.
Intuitively, not -char(k) is true if we have no information on
-char(k) or in other words when we can assumechar(k), i.e.
the first justification in default rule (5). Similar reasonings apply
for believing the negation ofreq(l). Note that a default without
justifications matches a rule without negation as failure and that a
fact can be represented by a default rule with both the prerequisites
and justifications being true.

In DLV, we accomplish our goal of generating an optimal con-
figuration of solution-space features with facts (W) and rules (D):
facts are the input data and rules can be used to derive one or
more solutions of the configuration problem. We already pointed
out that problem-solution feature interactions representimportant
configuration knowledge which maps problem-space into solution-
space features. In summary, the rules in our logic program express
relationships between solution-space features or relationships that
cross the problem and solution space. Facts, on the contrary, des-
ignate which application-specific requirements and characteristics
have to be taken into account for a particular configuration prob-
lem.

5. Case study
In this section, we provide further details on DyReS, our case study
of distributed runtime adaptation. We start from the motivating ex-
ample introduced in Section 2 and work through the generation of
the most optimal configuration of software features. For thesake of
understandability, bear in mind that the requirements specification
modeled via problem-space features corresponds to the application-
specific requirements and characteristics of the application under
reconfiguration, while the solution-space features model key de-
sign decisions that represent different strategies for customizing the
generic adaptation protocol.

5.1 Expressing the application-specific requirements and
characteristics

In DyReS, a feature model of 39 features is used to model both
the requirements and characteristics of the application that will
be adapted. A subset of this feature model is shown at the leftof
Figure 4 and distinguishes between three main dimensions: quality
of service requirements, characteristics of the application itself and
the components. A detailed description of this model already has
been described elsewhere [42].

Quality of service requirements We consider responsiveness,
availability and reliability to be the most relevant quality attributes
as perceived by the end user during an adaptation. The service
disruption tolerated, graceful service degradation tolerated and ro-
bustness features respectively concretize these requirements. An
example instantiation of the problem-space feature model,i.e. a
requirements specification in DLV looks as follows.

req(robustness).
req(small).

The robustness QoS feature demands from the adaptation proto-
col that client requests never will be rejected by the server. Further-
more, it is stated that a small service disruption is tolerated (e.g.
when the application gets frozen in the course of driving compo-
nents to a safe state). Clearly, these QoS requirements havean ef-
fect on how a distributed runtime adaptation should be performed.
In order to know in which way an execution of a distributed adap-
tation affects the quality attributes of a particular application, the
characteristics of the application must also be described.

Characteristics of the application and its componentsCharac-
teristics that can be exploited to optimize a particular adaptation
protocol are situated both on the level of the application itself and
its components. An example description in DLV of component
characteristics with an effect on the adaptation protocol is given
below. It states that the adaptation involves an old component with
persistent (cfr. our example) and externally dependent execution
state. In addition, the component does not provide state transfer
support on its own.

Figure 4. Feature model of application-specific requirements and characteristics (left) and customization strategies (right)in DyReS.

char(persistent).
char(externally_dependent).
-char(state_transfer_support).

5.2 Expressing the customization strategies

The different customization strategies are modeled via a second
feature model of 31 features, of which a subset is depicted inFig-
ure 4 at the right side. A detailed description of the complete dia-
gram can be found in [42]. For now, it suffices to know that each
customization strategy represents a key design decision onhow
to shape the concrete adaptation protocol. An important variabil-
ity point of an adaptation protocol in DyReS relates to the order
between finishing and activation. The downside of the generic pro-
tocol that finishes any old components before activating newones
(calledfinish before activate) is that service disruption may occur
due to driving involved components to a quiescent or frozen state.
By already activating new components before old ones are finished,
we can benefit from a reduced service disruption. Note that this
activate before finish customization strategy involves more than
simply swapping the order in which DyReS executes the finishing
and activation actions respectively [51]. We modeled this variabil-
ity point as follows in DLV.

kdd(order_fin_act) :-
kdd(customization_strategies).

kdd(finish_before_activate) v
kdd(activate_before_finish) :-

kdd(order_fin_act).
-kdd(activate_before_finish) :-

kdd(finish_before_activate).
-kdd(finish_before_activate) :-

kdd(activate_before_finish).

It says that for a set of customization strategies, the orderbe-
tween finishing (fin) and activation (act) needs to be established.
This order can be either finish before activate or activate before fin-
ish but not both. Obviously, other customization strategies can be
represented in a similar fashion.

5.3 Expressing the configuration knowledge

Configuration knowledge in DyReS needs to enable us to generate a
correct and the most optimal set of customization strategies given a
description of the application-specific requirements and character-
istics. We discuss multiple categories of configuration knowledge.
First, we provide some extra examples of complex mappings inthe
DyReS case study. Subsequently, we discuss two special cases of

such complex mappings: simple and weaker mappings. We com-
bine the rules expressing problem-solution feature interactions with
rules modeling the more simple relationships between solution-
space features only. The latter can be seen as semantic constraints
to which any solution for the configuration problem should adhere.

Complex mappings In our approach, complex mappings are
modeled as problem-solution feature interactions. Section 3.2 al-
ready presented an example of an interaction between two solution-
space features which only occurred depending on a problem-space
feature. Another example of a complex mapping is illustrated by
the problem-solution feature interaction and its DLV equivalent be-
low. The details of this equivalence already have been presented in
Section 4.3.

kdd(activate before finish) : char(ordered)

kdd(additional message ordering support)
(7)

kdd(additional_message_ordering_support) :-
kdd(activate_before_finish),
not -char(ordered).

This mapping expresses that if we know that activate before
finish is an applicable customization strategy and if we can assume
char(ordered), additional message ordering support also will get
selected as an applicable customization strategy.

Simple mappings We model simple, binary one-to-one mappings
in which a problem-space feature directly can be mapped to a
solution-space feature as a default rule with its justification being
true. E.g. the default rule

req(robustness) : true

kdd(finish before activate)
(8)

is implemented in DLV as follows:

kdd(finish_before_activate) :-
req(robustness).

The rule expresses that the robustness QoS requirement requires
the finish before activate customization strategy.

Weaker mappings The last category of configuration rules in-
volves weaker mappings. The idea of a weaker mapping is that we
map problem-space into solution-space features giving priority to
knowledge inferred via one of the other categories. For example,

req(small) : kdd(activate before finish)

kdd(activate before finish)
(9)

says that if only a small service disruption is tolerated, wecon-
clude kdd(activate before finish) if we can assume it. On the
contrary, if the rest of our configuration knowledge leads tothe de-
duction of−kdd(activate before finish), this rule never will fire.
Otherwise, we further can optimize the generic adaptation protocol
according to the activate before finish customization strategy. The
DLV version of the default rule implementing this weaker mapping
is shown below.

kdd(activate_before_finish) :-
req(small),
not -kdd(activate_before_finish).

5.4 Generating the most optimal configuration

After describing the feature models for the application-specific
requirements and characteristics and the different customization
strategies respectively, we listed some example configuration rules.
A semi-complete overview of all relevant configuration knowledge
in DyReS and concrete example adaptation protocols alreadyhave
been described elsewhere (in [42] and [51] respectively).

Experiments show that we are able to calculate the most optimal
configuration of solution-space features, i.e. the most optimal set
of customization strategies, for a given requirements specification.
Our DLV implementation consists of 34 rules prescribing howthe
customization strategies are related to one another on the one hand
and 39 rules enabling 28 mappings between problem-space and
solution-space features on the other hand.

For example, suppose that we start from all the facts that
have been described in Section 5.1. In other words, DLV has
req(robustness), req(small), char(persistent), etc. as
part of the background theoryW .W also includes the axioms im-
plementing the solution-space feature model, e.g. as illustrated in
Section 5.2. Remember thatD contained the problem-solution fea-
ture interactions. DLV’s first answer to one of our experiments was
the following correct configuration of solution-space features (and
thus a valid element of the extension setE).

1 {kdd(customization strategies),kdd(adaptation_
2 type),kdd(order_fin_act),kdd(finishing_or_not)
3 ,kdd(activation_or_not), kdd(state_synchroniza
4 tion),kdd(finish_before_activate),-kdd(activat
5 e_before_finish),-kdd(invocation_marking),-kdd
6 (additional_message_ordering_support),kdd(repl
7 acement),kdd(finishing),kdd(activation),kdd(st
8 ate_transfer),kdd(distributed),kdd(interrupt),
9 kdd(impose_safe_state),kdd(coordinated),kdd(in
10 vocation_queuing),kdd(monitoring)}

The simple mapping in rule (8) results inkdd(finish_before
_activate) being selected (cfr. line 4). Consequently, the com-
plex mapping expressed in default rule (4), selectskdd(state
_synchronization) (cfr. line 3) as another solution-space fea-
ture. Note that, althoughreq(small) is true, the weaker mapping
expressed in rule (9) can not be applied under these circumstances
since it is no longer consistent to assumekdd(activate_before
_finish). We make abstraction of the other predicates but it
should be clear that the set of all the predicates in the depicted
DLV answer denotes a complete and correct instantiation of the
solution-space feature model.

5.5 Discussion

We finally discuss some of our experiences with applying the pro-
posed approach to the domain of distributed runtime adaptation.

First of all, combining simple and weaker mappings providesus
with a way of prioritizing between configuration rules: conclusion
X of a rule implementing a simple mapping can turn a rule repre-
senting a weaker mapping (with the negation of that same conclu-
sionX) unapplicable. E.g., rule (9) no longer can be applied in our
case study if rule (8) fires. However, if we have two simple map-
pings or two weaker mappings with contradicting conclusions, it
currently is impossible to have one take precedence over theother.
DLV’s built in support for taking care of priorities normally can
help us to accommodate this issue.

Secondly, the result of applying the configuration knowledge
can result in multiple answers in the answer set for a particular con-
figuration problem. Typically, the less is known from the require-
ments specification, the more configurations of solution-features
are possible. Currently, our approach does not support a wayto
evaluate these different solutions and select one3. However, all gen-
erated solutions are valid and optimal w.r.t. the initial configuration
problem. On the other hand, it is also possible that DLV cannot
generate any solutions. If there are no answers at all, we still are
unclear about how to proceed. We could for instance try to find
the minimal set of application-specific characteristics and require-
ments that can be omitted so we can find a correct configurationof
solution-space features.

Finally, there are some limitations of rule-based systems in gen-
eral, such as problems concerning knowledge acquisition, consis-
tency checking, modularity and maintenance [19]. Obviously, the
severeness of these problems largely depends on the scale ofthe do-
main in which one tries to solve a particular configuration problem.
In future work, we plan to integrate our approach with description
logics (DL) [17], e.g. using OWL [40]. DL techniques typically
support consistency checking and offer modularity mechanisms.

6. Related work
As stated in Section 2, we take the approach of Metzger et al.
[32] distinguishing between product-line (problem space)variabil-
ity and software (solution space) variability models as thestarting
point of our work. They connect both kinds of models by means
of generic cross links namedx-links. Models and x-links are for-
mally represented so that consistency between both models can
be checked as a satisfiability problem, similar to existing feature
model analysis approaches [8]. As such, this work focuses onthe
automation of crucial consistency checks during SPLE, bothat
early stages of the development as well as during product line evo-
lution. The focus of our work rather is on the automatic deriva-
tion of optimal software configurations from requirement specifi-
cations; therefore, both approaches are complementary. Webelieve
that x-links and our concept of problem-solution feature interac-
tions are quite similar in nature. However, by using defaultlogic
we have generalized our concept into generic configuration rules
that are able to deal with incomplete requirement specifications.
The latter is a key issue in the application-specific configuration of
dynamic adaptation support systems and middleware in general.
In the remainder of this section, we first discuss the relation to
other approaches that focus on automating the application configu-
ration phase starting from feature models. Thereafter, we position
our work in a more broadly space of related work.

Automated configuration In Beuche’s pure::variants approach
[11], component implementations are annotated with formulae in
propositional logic to indicate for which combinations of features
these components are suited best. A Prolog-based constraint solver
is used to automatically deduce the optimal set of components

3 Architecture evaluation tools such as SonarJ [3], Lattix [2] or alike might
be useful in this regard.

given a feature model instantiation. Similarly, Czarneckiet al. [14]
directly annotate model templates with feature presence conditions
based on which the model template can be automatically instan-
tiated given a feature model instantiation. In comparison to our
approach, these approaches do not represent configuration knowl-
edge in a separate modeling artefact. Our approach separates prob-
lem and solution space and relates both through explicit problem-
solution feature interactions. As a result, we focus on reasoning
over the key design decisions in the solution space without being
restricted to a certain software development paradigm (instead of
enforcing any architectural style or modeling template beforehand).

To our knowledge, two other approaches represent configura-
tion knowledge in a separate artefact. First, Van der Storm et al.
[53] map problem-space feature models to software artefacts in a
separate modeling step. In particular, n-to-1 mappings (expressed
in propositional logic) are supported in order to select software arte-
facts when certain combinations of problem features are selected.
Our approach tackles the opposite problem, namely the inclusion
of combinations of solution features depending on a selection of
specific problem-space features. Secondly, Tun et al. [52] have re-
cently extended the approach of Metzger et al. [32] by integrating
it with the Jackson-Zave framework for requirements engineering.
Based on this conceptual basis, Tun et al. define a general proce-
dure for deriving an optimal software configuration given a require-
ments specification. Although x-links in Metzger’s approach are in
principle generic n-to-n mappings, Tun et al. only give simple ex-
amples of one-to-one mappings. A strong point of Tun’s approach
is that its derivation process can take into account quantitative con-
straints. The major difference between our approach and theabove
two approaches is that by expressing the mappings in defaultlogic,
our approach can deal with incomplete requirements specifications.

As we use the DLV answer set solver, our approach is also
strongly related to software configuration approaches thatare in-
spired by artificial intelligence (AI) research on physicalprod-
uct configuration (i.e. structure-oriented configuration tasks of as-
sembling mechanical products from parts) [19, 46]. Krebs etal.
[28] explore the usage of the configuration system Konwerk [19]
for mapping customer requirements to configuration of software
components in product lines for embedded systems. Similar to
our approach, Myllärniemi et al. [34] use the Smodels answer set
solver [35] for automatically finding a software component com-
position that satisfies given functional and non-functional require-
ments [13]. A major difference with our approach is that we fo-
cus on the configuration of (solution-space) feature modelswhereas
these existing AI approaches focus on configuring componentmod-
els with classification and aggregation relationships. Feature mod-
eling however focuses on capturing choices (e.g., alternative and
optional features) rather than different kinds of relationships be-
tween components [4]. For this reason and on a more detailed level
of comparison, our approach prefers to use the DLV system over
Smodels because DLV supports disjunction and classical negation
whereas Smodels does not. On the other hand, the Smodels infer-
ence engine is more efficient than DLV but this is not a problemin
our approach because the computational complexity of our config-
uration problem is relatively low.

Broader context In this last part of the related work section, we
discuss the position of our work in the broader field of software
product line engineering and model-driven development. Recently,
several researchers are interested in simplifying the mapping be-
tween problem and solution space in order to alleviate the fea-
ture traceability problem by means of exploring ideas like feature-
oriented programming [37], feature-oriented software development
[25], aspect-oriented programming [29] and multi-dimensional
separation of concerns [49]. Various SPLE approaches support the
(meta-)modeling and traceability of variability across the different

phases of SPLE [9, 50, 6, 45, 36]. These approaches give guidance
on bridging the gap between high-level requirements and detailed
design through providing essential documentation, design, and as-
sessment practices. These approaches form thus a sensible starting
point for applying the above automated software configuration ap-
proaches. Design spaces [9] guide the application developer at stat-
ing requirements, preventing incomplete or inconsistent require-
ments. Finally, an existing model driven development approach for
product lines [54] combines model weaving and model transfor-
mation in order to support powerful transformations from problem
to solution space while taking into account functional and non-
functional requirements. Functional and non-functional require-
ments are modeled as separate feature models that are mappedto
problem-space and solution-space models respectively. This map-
ping is performed either using a negative variability approach (sim-
ilar to [14]) or by a positive variability approach (which performs
aspect weaving [27] on the model level [22]). Orthogonal to this,
model-to-model transformations are leveraged for automatically
obtaining solution-space models from problem-space models. The
approach is powerful and targets the full SPLE process whileour
approach only targets the application configuration phase.Possi-
bly our approach can be used to deal with interactions between
functional and non-functional feature models in their approach, but
it is not clear whether there is a case for such interactions in this
model-driven SPLE approach.

7. Conclusion
Mapping problem-space features into solution-space features is a
fundamental configuration problem in software product-line engi-
neering. In this paper, we have proposed an approach to model
complex configuration rules based on the concept of problem-
solution feature interactions. These are interactions between solu-
tion-space features that only arise in specific problem contexts. The
approach allows us to generate the most optimal configuration of
solution-space features, given a requirements specification and a
set of configuration rules. We have proposed to use default logic
to model complex mappings between problem-space and solution-
space features. We also have discussed the use of the DLV answer
set solver to support our approach by expressing a particular config-
uration problem as a logic program whose answer set corresponds
to the optimal combinations of solution-space features. The advan-
tages of the approach are twofold. First, we can express complex
mappings that involve multiple features that cross the problem and
solution domain. Secondly, incomplete requirements specifications
do not keep us from generating optimal configurations of solution-
space features. We have motivated and illustrated our approach
with a case study from the field of managing dynamic adaptations
in distributed applications.

References
[1] The dlv tutorial. http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/.

[2] Lattix. http://www.lattix.com.

[3] Sonarj. http://www.hello2morrow.com/products/sonarj.

[4] M. Antkiewicz and K. Czarnecki. Featureplugin: featuremodeling
plug-in for eclipse. In M. G. Burke, editor,ETX, pages 67–72, 2004.

[5] G. Antoniou. A tutorial on default logics. ACM Comput. Surv.,
31(4):337–359, 1999.

[6] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite, R. L. Nord,
K. Pohl, B. Ramesh, and A. Vilbig. A meta-model for representing
variability in product family development. In F. van der Linden, editor,
PFE, volume 3014 ofLNCS, pages 66–80. Springer, 2003.

[7] D. Batory. Feature models, grammars, and propositionalformulas. In
SPLC 2005, 2005.

[8] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated analysis of
feature models: challenges ahead.ACM, 49(12):45–47, 2006.

[9] L. Baum, M. Becker, L. Geyer, and G. Molter. Mapping requirements
to reusable components using design spaces. InRE 2000, page 159,
Washington, DC, USA, 2000. IEEE Computer Society.

[10] P. Besnard.Introduction to Default Logic. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1989.

[11] D. Beuche. Composition and Construction of Embedded Software
Families. PhD thesis, 2003.

[12] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Fea-
ture interaction: a critical review and considered forecast. Computer
Networks, 41(1):115 – 141, 2003.

[13] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-Functional
Requirements in Software Engineering. Springer, October 1999.

[14] K. Czarnecki and M. Antkiewicz. Mapping features to models: A
template approach based on superimposed variants. InGPCE, volume
3676 ofLNCS, pages 422–437. Springer, 2005.

[15] K. Czarnecki, U. Eisenecker, and K. Czarnecki.Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley Profes-
sional, June 2000.

[16] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation in software
product families: a case study.Journal of Systems and Software,
74(2):173–194, 2005.

[17] F. M. Donini, M. lenzerini, D. Nardi, and A. Schaerf. Reasoning in
description logics. pages 191–236, 1996.

[18] M. L. Ginsberg, editor.Readings in nonmonotonic reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[19] A. Günter and C. Kühn. Knowledge-based configuration: Survey and
future directions. InXPS, pages 47–66, London, UK, 1999. Springer-
Verlag.

[20] J. Hillman and I. Warren. An open framework for dynamic reconfigu-
ration. pages 594–603, 2004.

[21] N. Janssens.Dynamic Software Reconfiguration in Programmable
Networks. PhD thesis, Department of Computer Science, K. U. Leu-
ven, Leuven, Belgium, 2006.

[22] J.-M. Jézéquel. Model driven design and aspect weaving. Software
and System Modeling, 7(2):209–218, 2008.

[23] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.Feature-
Oriented Domain Analysis (FODA) Feasibility Study. 1990.

[24] K. Kang, J. Lee, and P. Donohoe. Feature-oriented product line
engineering.Software, IEEE, 19(4):58–65, Jul/Aug 2002.

[25] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz,
and S. Apel. Featureide: A tool framework for feature-oriented soft-
ware development. InICSE, pages 611–614. IEEE, 2009.

[26] D. Keck and P. Kuehn. The feature and service interaction problem in
telecommunications systems: a survey.Software Engineering, IEEE
Transactions on, 24(10):779–796, Oct 1998.

[27] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
L., and J. Irwin. Aspect-Oriented Programming. InECOOP, volume
1241 ofLNCS, 1997.

[28] T. Krebs, L. Hotz, and A. Gnter. Knowledge-based configuration
for configuring combined hardware/software systems. Inin Proc.
of 16. Workshop, Planen, Scheduling und Konfigurieren, Entwerfen
(PuK2002, pages 10–11, 2002.

[29] K. Lee, K. C. Kang, M. Kim, and S. Park. Combining feature-
oriented analysis and aspect-oriented programming for product line
asset development.SPLC, 0:103–112, 2006.

[30] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The dlv system for knowledge representation and rea-
soning.ACM Trans. Comput. Logic, 7(3):499–562, 2006.

[31] V. Lifschitz. Answer set programming and plan generation. Artificial
Intelligence, 138:2002, 2002.

[32] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G.Saval.
Disambiguating the documentation of variability in software product

lines: A separation of concerns, formalization and automated analysis.
RE 2007, pages 243–253, Oct. 2007.

[33] K. Moazami-Goudarzi.Consistency preserving dynamic reconfigura-
tion of distributed systems. PhD thesis, 1999.

[34] V. Myllarniemi, M. Raatikainen, and T. Mannisto. Usinga configura-
tor for predictable component composition. pages 47–58, Aug. 2007.

[35] I. Niemelä and P. Simons. Smodels - an implementation of the stable
model and well-founded semantics for normal lp. InLPNMR, pages
421–430, London, UK, 1997. Springer-Verlag.

[36] K. Pohl, G. Böckle, and F. J. van der Linden.Software Product
Line Engineering : Foundations, Principles and Techniques. Springer,
September 2005.

[37] C. Prehofer. Feature-oriented programming: A fresh look at objects.
In ECOOP, pages 419–443, 1997.

[38] R. P. D. Redondo and others. Supporting software variability by
reusing generic incomplete models at the requirements specification
stage. InICSR, volume 3107 ofLNCS, pages 1–10. Springer, 2004.

[39] R. Reiter. A logic for default reasoning.Artificial Intelligence, 13(1-
2):81–132, 1980.

[40] F. Sanen, E. Truyen, and W. Joosen. Managing concern interactions in
middleware. InDistributed Applications and Interoperable Systems,
volume LNCS 4531, pages 267–283, 2007.

[41] F. Sanen, E. Truyen, and W. Joosen. Modeling context-dependent as-
pect interference using default logics. InFifth workshop on Reflection,
AOP and Meta-data for Software Evolution, July 2008.

[42] F. Sanen, E. Truyen, and W. Joosen. Problem-solution feature inter-
actions as configuration knowledge in distributed runtime adaptations.
In 10th International Conference on Feature Interactions in Telecom-
munications and Software Systems. IOS Press, 2009.

[43] M. Schlick and A. Hein. Knowledge engineering in software product
lines. In ECAI 2000 - Workshop on Knowledge-Based Systems for
Model-Based Engineering, 2000.

[44] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A
survey and a formal semantics. pages 139–148, Sept. 2006.

[45] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof: A
framework for modeling variability in software product families. In
SPLC, volume 3154 ofLNCS, pages 197–213. Springer, 2004.

[46] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing
configuration knowledge with weight constraint rules. InProceedings
of the AAAI Spring 2001 Symposium on Answer Set Programming,
pages 195–201, Stanford, USA, March 2001. AAAI Press.

[47] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variabil-
ity realization techniques: Research articles.Softw. Pract. Exper.,
35(8):705–754, 2005.

[48] C. Szyperski.Component Software. Addison-Wesley, 2002.

[49] P. Tarr, H. Ossher, W. Harrison, and Jr. N degrees of separation: multi-
dimensional separation of concerns. InICSE, pages 107–119, New
York, NY, USA, 1999. ACM.

[50] S. Thiel and A. Hein. Systematic integration of variability into product
line architecture design. In G. J. Chastek, editor,SPLC, volume 2379
of Lecture Notes in Computer Science, pages 130–153. Springer, 2002.

[51] E. Truyen, N. Janssens, F. Sanen, and W. Joosen. Supportfor dis-
tributed adaptations in aspect-oriented middleware. InProceedings of
the 7th International Conference on Aspect-Oriented Software Devel-
opment, pages 120–131. ACM, 2008.

[52] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans. Relat-
ing requirements and feature configurations: A systematic approach.
In SPLC, 2009.

[53] T. van der Storm. Generic feature-based software composition. In
Software Composition, LNCS 4829, pages 66–80. Springer, 2007.

[54] M. Völter and I. Groher. Product line implementation using aspect-
oriented and model-driven software development. InSPLC, pages
233–242. IEEE Computer Society, 2007.

[55] P. Zave. An experiment in feature engineering. InProgramming
methodology, pages 353–377. Springer-Verlag NY, Inc., 2003.

