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Abstract

Mapping problem-space features into solution-space featis a
fundamental configuration problem in software product lare
gineering. A configuration problem is defined as generatirg t
most optimal combination of software features given a negqui
ments specification and given a set of configuration rulestedti
approaches however provide little support for expressorgpex
configuration rules between problem and solution spacestinat
port incomplete requirements specifications. In this paperpro-
pose an approach to model complex configuration rules based o
generalization of the concept of problem-solution feaiaterac-
tions. These are interactions between solution-spacerésathat
only arise in specific problem contexts. The use of an exjstiol

to support our approach is also discussed: we use the DLVansw
set solver to express a particular configuration problem lagia
program whose answer set corresponds to the optimal combina
tions of solution-space features. We motivate and illtstoar ap-
proach with a case study in the field of managing dynamic adapt
tions in distributed software, where the goal is to geneaatepti-
mal protocol for accommodating a given adaptation.

Categories and Subject DescriptorsC.2.4 Distributed Systenjs
Distributed Applications; D.2.11Yoftware Engineeririjg Soft-
ware Architectures

General Terms Algorithms, design, performance, reliability

Keywords Software product line engineering, configuration know-
ledge, problem-solution feature interactions, defaudfidp DLV,
distributed runtime adaptation

1. Introduction

Mapping problem-space features into solution-space featis a
fundamental configuration problem in software producelengi-
neering (SPLE) [16]. In SPLE [36], product configuration]di-

ten boils down to selecting the required features and suigsely

instantiating a software product from a set of implemeotatirte-
facts based on configuration knowledge [15]. In other waadsn-
figuration problem is defined as generating the most optimmal-c
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bination of software features given a requirements spetidic and
given a set of configuration rules. Current approaches hemnmo-
vide little support for complex mappings that support inpbete
requirements specifications. A detailed account of thepeaghes
is provided in Section 6. The need for more complex mappings s
as support for n-ary configuration rules that support tolegan-
complete requirements specifications is motivated in 8e@i

In this paper, we propose an approach to model complex config-
uration rules based on a generalization of the concept dfi@nm
solution feature interactions [42]. These are interastibatween
solution-space features that only arise in specific proldentexts.
In order to precisely specify the interaction between thensoe
features, we need to take into account specific propertiabeof
problem domain.

Our proposed approach is based on four key principles. &first
all, we separate the software system description into (&paire-
ments specification, (2) solution-space features and @)l@m-
solution feature interactions. Secondly, we use featureéaisd23]
to model both the requirements specification and the solgpace
features. The first feature model represents the differeqire-
ments and characteristics that are relevant for a partienldprod-
uct, the second feature model represents the different &sigul
decisions that can be applied to instantiate the resultiftyvare.
Thirdly, the problem-solution feature interactions seagean inter-
mediate step to map the requirements specification to thico!
space artefacts. Fourthly, we use default logic [39] to rhadel
reason about problem-solution feature interactions. Agsailt,
the approach supports reasoning about complex mappings fro
problem-space to solution-space features.

The main contribution of the paper is an approach that com-
bines the concepts of configuration knowledge and feattieeao-
tion, and the provisioning of automated support for appytinat
approach in complex mappings. We therefore discuss thefuse o
existing tool to support our approach: the DLV [30, 1] ansaetr
solver is used to express a particular configuration prokdsna
logic program whose answer set corresponds to the optimabico
nations of solution-space features.

We motivate and illustrate our approach with a case studydn t
field of distributed runtime adaptation where the goal is¢neyate
an optimal adaptation protocol for a given adaptation regugis-
tributed runtime adaptation is the problem of adapting #ibisted
system at runtime in a safe and coordinated way. More caelgret
it concerns binding or unbinding multiple interdependeminpo-
nents [48] with a distributed application at runtime whilegerv-
ing global state consistency [33]. Consider for instanesattidition
or removal of a fragmentation service in a messaging aggita
[51] that consists of a fragmenting component at the clisle that
fragments large messages that exceed a certain threshibhiren



assembling component at the server side which reassenhigies t
messages again. Mainly as a consequence of the interdemende

egy of executing different reconfiguration tasks in patgl].
Such a customization strategy results in less servicemtisruand

between these components, these must be added or removed taherefore satisfies the responsiveness requirement.better

gether in an atomic fashion without causing message omissio
The rest of this paper is structured as follows. Section 2 de-
scribes the running example we use throughout the remawfder
the paper, motivates the need for complex mappings in configu
ration knowledge and sets the scope for our work. SectioreB8 th
makes the case for problem-solution feature interactisreafig-
uration knowledge and default logic as a conceptual frareeti@n
4 discusses our approach. Subsequently, we apply the appi@a
our case study in Section 5. Finally, related work is disedss
Section 6 and we conclude the paper in Section 7.

2. Background

This section introduces DyReS as a case study, positionaankr
in a software product line context and motivates the needdor-
plex mappings as part of the configuration knowledge.

2.1 DyReS

DyReS is an adaptation support system that we have developed
[51] based on the vision and principles of the NeCoMan middle
ware [21]. Currently, DyReS extends two industrially-ugat-
dlewares (Spring and JBoss) with runtime support for imgietn

ing distributed adaptations of a client-server based egfitin in

a coordinated and safe way. DyReS enables the developer-to im
plement a distributed runtime adaptation in a coordinatey ex-
ecuting an adaptation protocol between the nodes involvahea
adaptation. An adaptation protocol typically consists eéguence

of four reconfiguration tasks: installation (installingsneompo-
nents), finishing (bringing old components to a safe statefi;
vation (unbinding any old and binding any new components) an
removal (removing old components). Each reconfiguratisk ta
structured as a sequence of one or more reconfiguratiomadbo
creating/removing, binding/unbinding, starting/stogpiinterrupt-
ing/resuming components or imposing a safe state on them.

The main idea behind DyReS is as follows. A client-server ap-
plication typically exhibits a number of application-sg&cchar-
acteristics and desires some specific requirements wigeceso
how the adaptation protocol should coordinate the adaptalihe
design of DyReS consists of a generic adaptation protobat, t
works in all cases, and a set of optional customizationegjias that
optimize the generic adaptation protocol for a specific igppibn
based on the application-specific characteristics andrergents.
Generally, an adaptation protocol that is customized tdavan ap-
plication its requirements and characteristics can perfmore ef-
ficiently (cfr. also [20, 51]).

Application-specific requirements are quality requiretaenf
importance, such as responsiveness, availability andhiéty of
the distributed application. For example, when the respensss
of the application may not be affected by the adaptationmgpte
rary service disruption can not be tolerated. Obviouslgséhqual-
ity requirements have an influence on what will be the mostogit
configuration of solution-space features.

Application-specific characteristics are an equally ingatr
part of the description of the problem space, since the egpli
tion and its components may have specific characteristatscn
be exploited to further optimize the resulting configurataf the
adaptation protocol, or, on the contrary, forbid certaitirojza-
tions. A stateless session model of the distributed appicas
an example characteristic that can allow for a custominatioat-

1DyReS stands for Dynamic Reconfiguration Support.
Source code and contact information are available at

http://www.cs.kuleuven.be/distrinet/projects/DyReS.

In general, a customization strategy can concern differett
ters: composition order, alternative implementation congmts,
sequence of execution, configuring complex componentsighe r
way, etc. In our work, we model customization strategiesaser
mental refinements of the generic adaptation protocol.riimgile-
mentation into reusable implementation components camohe d
using aspect-oriented programming [51].

2.2 Software product line engineering

In our work, we aim to develop a feature-based software miodu
line for the design of a family of adaptation protocols asickel

in Figure 1. A specification of an adaptation protocol by a ham
reconfigurator is in the DyReS product line a configuratiomtfilat
is directly parsed into a customized adaptation suppotesysA
feature can be defined as a characteristic of a system thiaibitev
to the end-user [23] or as a distinguishable characteribtt is
relevant to some stakeholder [15]. Our domain analysisémsdted
in a set of application-specific requirements and charsties, i.e.
problem-space features. The domain design consists of erigen
adaptation protocol in combination with customizatioratsgies,
i.e. solution-space features.

We use feature models [23] to model both these problem-space
and solution-space features. A feature model represeatsaim-
mon and variable features of a family of systems in a specific d
main and the relationships between them. Features candtedel
hierarchically through an and/or relationship in combmatwith
cardinality constraints to represent alternative or atideatures.
Crosscutting the hierarchy, features can require or erchttier
features too. Although our approach does not prescribe taiser
syntax to be used, we use trées

Separating problem and solution space is an important trend
in SPLE, e.g. the work in [32] enables the separation of carce
between product line and software variability. Softwargalaility
refers to the “ability of a software system or artefact toffieiently
extended, changed, customized or configured for use in izylart
context” [47]. Product line variability [36, 24] is specifio SPLE
and describes the variation between the systems that b&oag
product line in terms of properties and qualities, like feas that
are provided or requirements that are fulfilled. For the farof
adaptation protocols in DyReS, product line variabilitydiefined
by the application-specific requirements and charactesiswhile
customization strategies describe the software vartgbili

The rest of this paper will focus on the configuration prob-
lem that is indicated by the dashed rectangle in Figure 1.df w
consider the requirements and characteristics of a spagifiica-
tion as problem-space features and the customizatioregiestas
solution-space features, our configuration problem bailsrdto
generating the most optimal adaptation protocol given aireg
ments specification of the requirements and charactegisfithe
particular application.

2.3 Complex mappings

To handle the configuration problem, we adopt a generatige pr
gramming (GP) view. GP is a software engineering paradigsada
on modeling software system families such that, given dquaatr
requirements specification, a highly customized and ogguhin-
termediate or end product can be automatically manufagttare
demand from elementary, reusable implementation compsgn
means of configuration knowledge [15].

2More specifically, we use single-rooted directed acyclaptys as defined
in [44].
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Figure 1. SPLE for the design of adaptation protocols. An oval is usadadel an activity, a rectangle represents an artefact Re3y
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Figure 2. Elements of configuration knowledge. [15]

Figure 2 shows the different elements of configuration kaowl
edge. As one can see, this involves illegal feature comioinsit
in the problem or solution space, default settings, defdeften-
dencies, construction rules and optimizations. This paperostly
concerned with the problem of (i) modeling and reasoning ove
construction rules while respecting feature interactimd (ii) en-
abling optimization while supporting defaults in the cazmoom-
plete requirements specifications.

cess to the source code. Even simple one-to-one mappingsafro
problem-space to a solution-space feature possibly doork vf
the knowledge about the problem-space feature is incomplet
non-existing to begin with. In Section 3.2, we present a oetiec
example of such a complex, n-ary mapping that may suffer ftam
incomplete requirements specification.

Hence, the proposed approach needs to offer a means for ex-
pressing complex, n-ary relationships between featurasdtoss
the problem and solution space and provides a means to hamdle
tentially incomplete requirements specifications.

3. Feature interactions

This section motivates our approach and illustrates ountpwi

view that complex configuration rules can be seen as an eatens

of the feature interaction problem. We elaborate on ouonatie
incrementally. First, we summarize the more traditionavwion
modeling and reasoning about feature interactions. Ségond
present a concrete complex mapping between the problem and
solution space in DyReS and show that this mapping can be seen
as a problem-solution feature interaction. Thirdly, we mefihis
concept and integrate it with default logic to be able to gate

In our case study, configuration knowledge hence needs to sup the most optimal adaptation protocol while using defauttshie

port mapping a requirements specification into a corredailyfig-
ured end product. Furthermore, the configuration knowledgsls
to relate the requirements and characteristics of the @djwn un-
der reconfiguration to the most optimal set of customizasiate-
gies that can be applied to the generic adaptation protocol.

This configuration knowledge becomes quite complex in DyReS
First of all, the choice for a solution-space feature caredepon
different elements from both the problem and solution spé2g
Therefore, simple one-to-one mappings do not suffice toigpec
complex construction rules in which the selection of a ot
space feature depends on both problem-space and solptoe-s
features. On the contrary, we need more complex, n-ary mgppi
mechanisms. Secondly, incompleteness of requirementifispe
tions [38, 43] is an important problem in DyReS. Often human
reconfigurators, who are in charge of maintaining and exagha
running application, may not be able to precisely know how to
instantiate the problem-space feature model of DyReS imteea
cise requirements specification. This is for example the gawen
they are not familiar with the notions involved or do not haee

presence of incomplete requirements specifications.

3.1 Traditional view

In our approach, we propose to extend the established éiatier-
action framework with problem-solution feature interang and
use this as the conceptual basis for modeling complex caafigu
tion knowledge. A feature interaction traditionally is aefil as the
situation where two features that work correctly in isaat{when
composed with the base system) do not work correctly anyeiong
when they are combined together and composed with the sasre ba
system [26, 12]. In other words, a feature interaction iseovay

in which a feature modifies or influences another featurefimieg
overall system behavior (taken from [55]). Note that thifrdgon
allows for both positive and negative interactions. Beeainser-
actions often are implicit in feature composition, they diféicult

to understand. Therefore, a sound logic for modeling andorea
ing about feature interactions is necessary, e.qg. for findioorrect
combination of features as in [8].



3.2 Complex mappings

We now present an example of a complex mapping that involves
two solution-space features and one problem-space feaferant

in our case study that has been introduced in Section 2.1thEor
sake of completeness, note that the mapping described below
only valid in the context of a replacement adaptation, butwede
abstraction of this in the paper.

¢ Finish before activate This solution-space feature represents
the customization strategy of executing the finishing artd ac
vation reconfiguration tasks in sequence, i.e. finishinga@dy

components before new components become activated. As de-

scribed in [42], the downside of this solution is that seewits-
ruption may occur (cfr. [51]) due to driving involved compo-
nents to a quiescent or frozen state.

State synchronizationThis solution-space feature represents
another customization strategy that allows us to transfece
tion state from the old to the new components.

Persistent This problem-space feature is used to specify that
execution state of one or more of the components involved in a
adaptation is persistent (surviving more than one cliequest).
This is the opposite of transient state.

Informally, the mapping between these three features nieeds
behave as follows. Whefinish before activate becomes selected,
components are brought to a state where processing of alimem
ing client requests has completed. Therefore, all trahseate
(related to processing a single client request) is gonesiftent
state however survives execution of multiple client retpiesd
may need to be transferred to new components. However, many
client-server applications currently operate under &kas session
model wherepersistent state is not maintained in server compo-
nents. Under these circumstances, an optimal adaptataogot
thus does not includetatesychronization.

In other words,finish before activate depends on thatate
sychronization solution-space feature, but only in the specific
problem context where the adaptation involves componéras t
entail persistent state. Clearly, such knowledge is key to solving
the configuration problem at hand and crosses both the pnoble
and solution space. We experienced that specifying thid ki
configuration knowledge precisely enough is far from tiivia

Problem-solution feature interactions Our approach proposes to
use problem-solution feature interactions for expressomgigura-
tion knowledge consisting of complex, n-ary relationstipsveen
features that cross the problem and solution space. We dafine
problem-solution feature interaction as an interactiamien two

or more solution-space features that only arises based eroon
more problem-space features. In order to manage probléustieso
feature interactions, our approach enables modeling tihésac-
tions so we can enforce them (in case of positive interasfion
resolve them (in case of negative interactions).

is not good enough. More specificallynish before activate
only depends ontate synchronization if the application has per-
sistent state. Indeed, an application without persisteté svould
benefit from an optimized adaptation protocol that skiptestgn-
chronization. Therefore, we can specify the complex mappis
follows:

finish before activate N\ persistent

@)

— state synchronization

3.3 Default logic

We however argue that formula (3) is not sufficient either for
our purposes as listed in Section 2.3. It perfectly capttbhes
problem-solution feature interaction in the case where wenk

if the components involved in the adaptation contain ptsts
state or not. Unfortunately, it is only realistic to assurhattthe
requirements specification can be incomplete [38, 43] ohingt
might be known about the components containing persistate s
or not. Under such circumstances, the configuration knoyeestill
should be able to generate a complete and correct configarati
of solution-space features, although maybe less optimaltake
state synchronization just to be sure. Hence, we need to be able
to rely on default information. As a consequence, classagit
formulae (as e.g. in formula (3)) indeed are not sufficiemtdfwant

to model complex mappings such as the one in Section 3.2¢eln th
rest of this section, we discuss the use of default logic asansito
implement this kind of configuration knowledge and reasoouab
feature interactions [41].

Default logic has been originally proposed by Reiter as a non
monotonic logic to formalize reasoning with default asstions
[39]. It allows making plausible conjectures when facedhwiit-
complete information and draw conclusions based upon gssum
tions [5]. As an intuitive example of what can be expressed; ¢
sider the well-known principle of justice in our Western toué
that, in the absence of evidence to the contrary, we assuate th
the accused is innocent. Next, we overview both the symtaatiar
and semantics (informally) of default logic by applyingatdur ex-
ample interaction from the previous section. We subsetyuatgo
discuss the relevance of using default logic to support ppr@ach.

A default theory T is a pairlW{/, D) consisting of a sel of
logic formulae (background theory or facts of T) and a Beof
default rules. The default rule explicitly representing edample
interaction is presented below.

finish before activate : persistent

- 4
state synchronization
According to formula (4), if we know thafinish before
activate is true andpersistent can be assumed, we can conclude
state synchronization. The three parts of a default rule are called
the prerequisitep, justificationsy; and conclusiory respectively.
Hence, the general explanation of any default rule is givefifb
we believe that prerequisite is true, and the justificatindnsis-

Logic formulae already have been considered elsewhere as angnt with our current beliefs, we also believe the conchsidn

appropriate means to model feature interactions. E.g]imp{8po-
sitional formulae are used to model constraints where arfeae-
quires or excludes another feature through the use ahairiics
relationship. Note that specifying the example interacts a sim-
ple dependency between solution-space features only, e.g.

1)

or as a simple one-to-one mapping between a problem-space
and solution-space feature, e.g.

finish before activate — state synchronization

persistent — state synchronization

)

other words, given a default : i1, 12, .../x, its informal mean-
ing is: if ¢ is known, and if it is consistent to assurje, v, ...
then concludey. It is consistent to assume; iff the negation of
1) is not part of the background theoWy [10]. At this point, it is
important to realize that classical logic is not approgriat model
this situation. The problem with such a rule (cfr. (3)) isttise
have to definitely establish if there jgrsistent state involved or
not (basically because of the closed world assumption [18§)
a consequence, théate synchronization feature never would
become selected if nothing is known about persistence.
The semantics of default logic typically is defined in terms

of extensions. Intuitively, an extension seeks to extdndback-



ground theory) with “reasonable” conjectures based on fipdi-a
cable default rules. More formally, a defayt: 1,2, .../x, is
applicable to a deductively closed set of formulaéf o € E and
-1 ¢ E,—)e ¢ E, ... You can think ofE as the context in which
 should be known and with which; should be consistent.

Discussion on the relevance of defaults for our approachwe
now discuss our default rule (4) together with its meanirig inore
detail. Intuitively, the rule states that theate synchronization
feature needs to be selected if fieish before activate feature is
selected, unless there is no persistent state containéihvaihe
of the components involved in the adaptation. The defau# ru
represents the following scenarios correctly.

o If the finish before activate solution-space feature becomes
selected as a result of applying the configuration knowledgk
nothing is known aboupersistent state, then the background
theoryW will include finish before activate as a fact and say
nothing about persistence. Because of default rule (4y, exd
tensions indicating to also select théate synchronization
feature are valid ones. This is causedfish before activate,
the prerequisite, being true and the justificati@nsistent be-
ing not inconsistent with what is currently known. Similarl
the same conclusion will be drawn if thersistent feature is
selected as problem-space feature as part of the requitemen
specification.

On the other hand, if the requirements specification indiat
that components involved in the adaptation entail pensiste
state, W will include persistent. When there is no persistent
state,W includes— persistent. If the latter is known, valid
extensions will not includestate synchronization because
default rule (4) no longer can be applied. If the former isknp
the default rule remains applicable.

This way, the specific problem context on which our exam-
ple interaction depends is made explicit via the justifmadi in
default rule (4). Hence, we were able to express thatfthih
before activate solution-space feature only requires th&ite
synchronization solution-space feature when theersistent
problem-space feature is selected as part of the requiterapac-
ification. More generally, this rule can be used to arrivéhatrhost
optimal combination of solution-space features, basecherspe-
cific problem context indicated by problem-space features.

Default rules are perfectly capable to express the morelsimp
intuitive binary interactions between two features: treification
part becomes true. Alternatively, default logic can be usembm-
bination with classical logic rules, too. We refer the raadeSec-
tion 5 for concrete examples of such interactions.

4. Approach

This section summarizes our approach. Section 4.1 preflemts
high-level overview of the approach. Subsequently, Secti@ in-
tegrates the proposed approach with default logic. FinSigtion
4.3 discusses the use of DLV to support the approach.

4.1 Overview
A schematic overview highlighting the key artefacts of the-p
posed approach is depicted in Figure 3.

e Product line variability is modeled through a problem-spac
feature model. Features in this model express requireraants
characteristics of a specific application.

¢ The instantiation of the problem-space feature model isra pa
ticular requirements specification.

¢ A solution-space feature model is used to model the software
variability. Our solution-space features represent keyygede-
cisions that can be applied to instantiate the resultinthsoé.

e The instantiation of the solution-space feature model mod-
els the optimal configuration of solution-space features. A
optimal configuration of solution-space features satisties
application-specific requirements and maximally expldiits
characteristics of the application.

e Problem-solution feature interactions are used as a means t
model the configuration knowledge. They enable us to map the
problem-space features to an optimal configuration of smiut
space features.

The proposed approach solves our configuration problem-by en
abling us to generate the most optimal instantiation of thet®n-
space feature model given a particular instantiation optioblem-
space feature model and given a set of problem-solutionurfeat
interactions. We model and reason about the configuratiowkn
edge by formalizing the problem-solution feature intdmat in
default logic.

4.2

Figure 3 also shows how each of the artefacts in our approach i
tegrates with default logic. First of all, both the problepace and
solution-space feature model and feature interactionsinvihese
models can be represented in standard propositional oicpted
logic, e.g. as proposed in [7] by Batory et al. Secondly, we us
default rules to model problem-solution feature inte@tdi as ex-
plained in Section 3.3. The complete set of default ruleegivs
D. Next, we model the concrete instantiation of the probl@aecs
feature model, i.e. a requirements specification, as olkgoeand
theory W. Finally, the solution to our configuration problem, i.e.
the optimal instantiation of our solution-space featuredeipis
given by the extensio®’ of (W ,D).

In our default rules, we distinguish between three prediat

Integration with default logic

1. kdd(X) indicates a key design decision. The parameter matches
with the name of the solution-space feature that expre$ses t
concrete key design decision.

2. eq(X) defines an application-specific requirement. The pa-
rameter contains the name of the problem-space feature that
matches with the concrete requirement.

3. char(X) models a characteristic of the application that can
be exploited. The concrete characteristic that matches tivi
name of the corresponding problem-space feature is indlade
parameter.

Below, the abstract structure of a default rule is shown.eRul
(5) generalizes over the example interaction from Sectiérapd
states thatkdd(a) requireskdd(b) if we can assumehar(k).

In rule (6), the justification part includes an assumptiontwthe
application-specific requirements or its negation.

kdd(a) : char(k) 5)
kdd(b)

kdd(a) : —req(l) ©)
kdd(b)

To compute an extensioR, given a background theoryy,
and given a set of default rule), we adopt answer set program-
ming (ASP) [31]. ASP is a powerful paradigm from the field of
non-monotonic reasoning [18] in artificial intelligenceid based
on the stable model [35] semantics of logic programming. An a
swer set solver is a program for generating stable modelsswer
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Figure 3. A schematic overview of our approach.

sets. In essence, we use ASP to express a particular cotiigura 5. Case study
problem as a logic program whose answer set corresponde to th In this section, we provide further details on DyReS, ouecady

optimal combinations of solution-space features. We datiely of distributed runtime adaptation. We start from the maingex-
specify what a solution to the configuration problem shooluk| ample introduced in Section 2 and work through the generatfo
like and leave it for the answer set solver to try to find a sofut the most optimal configuration of software features. Foistiee of
that solves the problem. The results of this computatiorcalied understandability, bear in mind that the requirementsiipation
models: they are consistent explanations of the world g¢balting modeled via problem-space features corresponds to theatiph-
configuration of solution-space features) as far as theesohn de- specific requirements and characteristics of the appticatnder
rive it. By default, most solvers generate all possible arswod- reconfiguration, while the solution-space features moeg! de-

els.b||—|oweve{, if the logic ?rogr am tLepres.entllng the conjlglun sign decisions that represent different strategies faoeniging the
problem contains inconsistencies, there simply is no mode generic adaptation protocol.

4.3 Supporting our approach in DLV 5.1 Expressing the application-specific requirements and

Our approach uses the DLV [30, 1] answer set solver to compute characteristics

correct and optimal solutions for our configuration probledur In DyReS, a feature model of 39 features is used to model both
choice for DLV as a tool is based on its systemic support fenam the requirements and characteristics of the applicatia will

set programming and its ability to express disjunctione (dgical be adapted. A subset of this feature model is shown at thefleft

negation, which is indicated by thesign) and default rules. DLV qf service requirements, characteristics of the appbeatself and

is able to implement default rules because the deductiveumo  the components. A detailed description of this model alyelzas
of an answer set for a logic program with negation as failara i been described elsewhere [42].

consistent extension for the default theory of that samgraro, . . . . .
and vice versa [31]. The equivalent implementations of uiefa ~ Quality of service requirements We consider responsiveness,
rules (5) and () in DLV are shown below to illustrate how this availability and reliability to be the most relevant quglittributes

can be done. as perceived by the end user during an adaptation. The servic
disruption tolerated, graceful service degradation &ttt and ro-
kdd(b) :- kdd(a), not -char(k). bustness features respectively concretize these regeitsmAn
kdd(b) :- kdd(a), not req(l). example instantiation of the problem-space feature madela

o ) requirements specification in DLV looks as follows.
The prerequisite and the conclusion of the default rule tmeco

the body, respectively the head of the rule in DLV. The jusdifion req(robustness) .
is negated by negation as failure and copied in the rest dialg. req(small).
Intuitively, not -char (k) is true if we have no information on
-char (k) or in other words when we can assuriear (k), i.e.
the first justification in default rule (5). Similar reasog@apply
for believing the negation afeq(1). Note that a default without
justifications matches a rule without negation as failure trat a
fact can be represented by a default rule with both the puésites
and justifications being true.

The robustness QoS feature demands from the adaptatian prot
col that client requests never will be rejected by the sefugither-
more, it is stated that a small service disruption is tolige.g.
when the application gets frozen in the course of driving gom
nents to a safe state). Clearly, these QoS requirementsalnagk
fect on how a distributed runtime adaptation should be peréal.

In order to know in which way an execution of a distributedmda

In DLV, we accomplish our goal of generating an optimal con- . . ; : .
figuration of solution-space features with fackg) and rules D): tation affects the quality attributes of a particular agalion, the
characteristics of the application must also be described.

facts are the input data and rules can be used to derive one or
more solutions of the configuration problem. We already feain Characteristics of the application and its component£harac-

out that problem-solution feature interactions repregmportant teristics that can be exploited to optimize a particularpsatdon
configuration knowledge which maps problem-space intotswiu protocol are situated both on the level of the applicatieglitand
space features. In summary, the rules in our logic programess its components. An example description in DLV of component

relationships between solution-space features or relstips that characteristics with an effect on the adaptation protosajiven
cross the problem and solution space. Facts, on the contiesy below. It states that the adaptation involves an old compioweéh
ignate which application-specific requirements and charistics persistent (cfr. our example) and externally dependentugian
have to be taken into account for a particular configuratimbp state. In addition, the component does not provide statesfiea
lem. support on its own.



| Application-specific characteristics and requirements |

Application
Customization strategies

Order finishing - activation

Stateful

| Temporary service degradation tolerated ‘

]
el State synchronization

| Higher memaory footprint tolerated ‘

| Internally dependent |

[ Higher bandwidth consumption tolerated |

Finish before activate
Activate before finish

Invocation marking

| Additional message ordering support |

Externally dependent

| Higher CPU consumption tolerated

O
State transfer support

Figure 4. Feature model of application-specific requirements andacheristics (left) and customization strategies (rightpyReS.

char (persistent) .
char (externally_dependent) .
-char (state_transfer_support) .

5.2 Expressing the customization strategies

The different customization strategies are modeled viacarsk
feature model of 31 features, of which a subset is depictédgn
ure 4 at the right side. A detailed description of the congpliia-
gram can be found in [42]. For now, it suffices to know that each
customization strategy represents a key design decisiohoan
to shape the concrete adaptation protocol. An importariatir
ity point of an adaptation protocol in DyReS relates to theéeor
between finishing and activation. The downside of the geneo-
tocol that finishes any old components before activating oees
(calledfinish before activate) is that service disruption may occur
due to driving involved components to a quiescent or frozates
By already activating new components before old ones arshiiai,
we can benefit from a reduced service disruption. Note that th
activate before finish customization strategy involves more than
simply swapping the order in which DyReS executes the finghi
and activation actions respectively [51]. We modeled thisabil-

ity point as follows in DLV.

kdd (order_fin_act)
kdd (customization_strategies).
kdd(finish_before_activate) v
kdd(activate_before_finish)
kdd (order_fin_act).
-kdd(activate_before_finish)
kdd(finish_before_activate).
-kdd(finish_before_activate)
kdd (activate_before_finish).

It says that for a set of customization strategies, the doder
tween finishing £in) and activation4ct) needs to be established.
This order can be either finish before activate or activaterbein-
ish but not both. Obviously, other customization strategian be
represented in a similar fashion.

5.3 Expressing the configuration knowledge

Configuration knowledge in DyReS needs to enable us to gerera
correct and the most optimal set of customization strasegjieen a
description of the application-specific requirements amatacter-
istics. We discuss multiple categories of configurationvidedge.
First, we provide some extra examples of complex mappingsein
DyReS case study. Subsequently, we discuss two specia ofse

such complex mappings: simple and weaker mappings. We com-
bine the rules expressing problem-solution feature intemas with
rules modeling the more simple relationships between isolut
space features only. The latter can be seen as semanticaiotsst

to which any solution for the configuration problem shoultiexe.

Complex mappings In our approach, complex mappings are
modeled as problem-solution feature interactions. Se@i@ al-
ready presented an example of an interaction between twtao!
space features which only occurred depending on a probpemes
feature. Another example of a complex mapping is illustidig
the problem-solution feature interaction and its DLV eaqiéwt be-
low. The details of this equivalence already have been ptedén
Section 4.3.

kdd(activate before finish)

kdd(additional message ordering support)

: char(ordered)

kdd (additional_message_ordering_support)
kdd(activate_before_finish),
not -char (ordered).

This mapping expresses that if we know that activate before
finish is an applicable customization strategy and if we caume
char(ordered), additional message ordering support also will get
selected as an applicable customization strategy.

Simple mappings We model simple, binary one-to-one mappings
in which a problem-space feature directly can be mapped to a
solution-space feature as a default rule with its justificabeing
true. E.g. the default rule

req(robustness) : true

kdd(finish before activate)
is implemented in DLV as follows:

(8)

kdd(finish_before_activate)
req(robustness) .

The rule expresses that the robustness QoS requiremeirerequ
the finish before activate customization strategy.

Weaker mappings The last category of configuration rules in-
volves weaker mappings. The idea of a weaker mapping is that w
map problem-space into solution-space features givingriprito
knowledge inferred via one of the other categories. For @@m



req(small) : kdd(activate before finish)

kdd(activate before finish) ®)
says that if only a small service disruption is tolerated coe-
clude kdd(activate before finish) if we can assume it. On the
contrary, if the rest of our configuration knowledge leadthde-
duction of —kdd (activate before finish), this rule never will fire.
Otherwise, we further can optimize the generic adaptatiotopol
according to the activate before finish customization sgatThe
DLV version of the default rule implementing this weaker 1pizg
is shown below.

kdd(activate_before_finish) :-
req(small),
not -kdd(activate_before_finish).

5.4 Generating the most optimal configuration

After describing the feature models for the applicationesfic
requirements and characteristics and the different custdion
strategies respectively, we listed some example configuaratles.
A semi-complete overview of all relevant configuration khesige
in DyReS and concrete example adaptation protocols already
been described elsewhere (in [42] and [51] respectively).
Experiments show that we are able to calculate the most aptim

configuration of solution-space features, i.e. the mosnitset
of customization strategies, for a given requirementsifipation.
Our DLV implementation consists of 34 rules prescribing hbe
customization strategies are related to one another omiiaéand

First of all, combining simple and weaker mappings proviggs
with a way of prioritizing between configuration rules: carsion
X of a rule implementing a simple mapping can turn a rule repre-
senting a weaker mapping (with the negation of that samelgonc
sion X)) unapplicable. E.g., rule (9) no longer can be applied in our
case study if rule (8) fires. However, if we have two simple map
pings or two weaker mappings with contradicting conclusjah
currently is impossible to have one take precedence oventtes.
DLV’s built in support for taking care of priorities normglican
help us to accommodate this issue.

Secondly, the result of applying the configuration knowkedg
can result in multiple answers in the answer set for a pdati@on-
figuration problem. Typically, the less is known from the ug-
ments specification, the more configurations of solutiaitfees
are possible. Currently, our approach does not support atway
evaluate these different solutions and selectodewever, all gen-
erated solutions are valid and optimal w.r.t. the initiahfiguration
problem. On the other hand, it is also possible that DLV canno
generate any solutions. If there are no answers at all, Weasgi
unclear about how to proceed. We could for instance try to find
the minimal set of application-specific characteristicd saquire-
ments that can be omitted so we can find a correct configurafion
solution-space features.

Finally, there are some limitations of rule-based systengeh-
eral, such as problems concerning knowledge acquisitiomsis-
tency checking, modularity and maintenance [19]. Obvigusie
severeness of these problems largely depends on the stladedar-
main in which one tries to solve a particular configuratiookpem.

and 39 rules enabling 28 mappings between problem-space and™n future work, we plan to integrate our approach with degn

solution-space features on the other hand.

For example, suppose that we start from all the facts that
have been described in Section 5.1. In other words, DLV has
req(robustness), req(small), char(persistent), etc. as
part of the background theo#y’. W also includes the axioms im-
plementing the solution-space feature model, e.g. agridited in
Section 5.2. Remember thBX contained the problem-solution fea-
ture interactions. DLV's first answer to one of our experitsesas
the following correct configuration of solution-space teat (and
thus a valid element of the extension &8t

{kdd(customization strategies),kdd(adaptation_
type) ,kdd(order_fin_act) ,kdd(finishing_or_not)
,kdd(activation_or_not), kdd(state_synchroniza
tion) ,kdd(finish_before_activate),-kdd(activat
e_before_finish),-kdd(invocation_marking) ,-kdd
(additional_message_ordering_support) ,kdd(repl
acement) ,kdd(finishing) ,kdd(activation) ,kdd (st
ate_transfer) ,kdd(distributed) ,kdd (interrupt),
kdd (impose_safe_state) ,kdd(coordinated) ,kdd (in
vocation_queuing) ,kdd(monitoring)}
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The simple mapping in rule (8) resultsidd (finish_before
_activate) being selected (cfr. line 4). Consequently, the com-
plex mapping expressed in default rule (4), selactd (state
_synchronization) (cfr. line 3) as another solution-space fea-
ture. Note that, althougheq (small) is true, the weaker mapping
expressed in rule (9) can not be applied under these ciramces
since it is no longer consistent to assukad (activate_before
_finish). We make abstraction of the other predicates but it
should be clear that the set of all the predicates in the tipic
DLV answer denotes a complete and correct instantiatiorhef t
solution-space feature model.

5.5 Discussion

We finally discuss some of our experiences with applying tiee p
posed approach to the domain of distributed runtime adaptat

logics (DL) [17], e.g. using OWL [40]. DL techniques typibal
support consistency checking and offer modularity mecrasi

6. Related work

As stated in Section 2, we take the approach of Metzger et al.
[32] distinguishing between product-line (problem spacae)abil-

ity and software (solution space) variability models asdtzeting
point of our work. They connect both kinds of models by means
of generic cross links namedlinks Models and x-links are for-
mally represented so that consistency between both models c
be checked as a satisfiability problem, similar to existiegttire
model analysis approaches [8]. As such, this work focuseth@n
automation of crucial consistency checks during SPLE, laith
early stages of the development as well as during produeeo-
lution. The focus of our work rather is on the automatic deriv
tion of optimal software configurations from requiremenedifi-
cations; therefore, both approaches are complementarpeliieve
that x-links and our concept of problem-solution featurerac-
tions are quite similar in nature. However, by using deféagic

we have generalized our concept into generic configuratitesr
that are able to deal with incomplete requirement specidioat
The latter is a key issue in the application-specific conéigan of
dynamic adaptation support systems and middleware in gener
In the remainder of this section, we first discuss the ratatm
other approaches that focus on automating the applicatiofigu-
ration phase starting from feature models. Thereafter, ogitipn
our work in a more broadly space of related work.

Automated configuration In Beuche’s pure::variants approach
[11], component implementations are annotated with foamuh
propositional logic to indicate for which combinations ebfures
these components are suited best. A Prolog-based cotnstohiar

is used to automatically deduce the optimal set of compaenent

3 Architecture evaluation tools such as SonarJ [3], Lattpoj2alike might
be useful in this regard.



given a feature model instantiation. Similarly, Czarnestial. [14]
directly annotate model templates with feature presennditions
based on which the model template can be automaticallyrinsta
tiated given a feature model instantiation. In comparisoror
approach, these approaches do not represent configurabovi-k
edge in a separate modeling artefact. Our approach separate
lem and solution space and relates both through explichipno-
solution feature interactions. As a result, we focus onaeiag
over the key design decisions in the solution space witheurtdh
restricted to a certain software development paradigne@usof
enforcing any architectural style or modeling templatebatiand).

To our knowledge, two other approaches represent configura-

tion knowledge in a separate artefact. First, Van der Stdral.e
[53] map problem-space feature models to software artefach
separate modeling step. In particular, n-to-1 mappingpréssed
in propositional logic) are supported in order to selectvgafe arte-
facts when certain combinations of problem features aectsd.
Our approach tackles the opposite problem, namely thesimriu
of combinations of solution features depending on a seleaf
specific problem-space features. Secondly, Tun et al. [82¢ he-
cently extended the approach of Metzger et al. [32] by irattgg
it with the Jackson-Zave framework for requirements ergyiimg.
Based on this conceptual basis, Tun et al. define a generegpro
dure for deriving an optimal software configuration giverequire-
ments specification. Although x-links in Metzger's apphoace in
principle generic n-to-n mappings, Tun et al. only give diengx-
amples of one-to-one mappings. A strong point of Tun’s apgio
is that its derivation process can take into account quetivét con-
straints. The major difference between our approach andhbee
two approaches is that by expressing the mappings in dedeyidt,
our approach can deal with incomplete requirements spatidits.
As we use the DLV answer set solver, our approach is also
strongly related to software configuration approaches dhatin-
spired by artificial intelligence (Al) research on physiqgabd-
uct configuration (i.e. structure-oriented configuratiasks of as-
sembling mechanical products from parts) [19, 46]. Krebalet
[28] explore the usage of the configuration system Konwef§ [1
for mapping customer requirements to configuration of safew
components in product lines for embedded systems. Sinvlar t
our approach, Myllarniemi et al. [34] use the Smodels anseé
solver [35] for automatically finding a software componeatne
position that satisfies given functional and non-functioeguire-
ments [13]. A major difference with our approach is that we fo
cus on the configuration of (solution-space) feature mosbbtyeas
these existing Al approaches focus on configuring compamenit
els with classification and aggregation relationshipstufeamod-
eling however focuses on capturing choices (e.g., altemaind
optional features) rather than different kinds of relasioips be-
tween components [4]. For this reason and on a more detawed |
of comparison, our approach prefers to use the DLV system ove
Smodels because DLV supports disjunction and classicaltioeg
whereas Smodels does not. On the other hand, the Smodets infe
ence engine is more efficient than DLV but this is not a probilem
our approach because the computational complexity of aufigso
uration problem is relatively low.

Broader context In this last part of the related work section, we
discuss the position of our work in the broader field of sofava
product line engineering and model-driven developmenteRgy,
several researchers are interested in simplifying the mgpipe-
tween problem and solution space in order to alleviate tlae fe
ture traceability problem by means of exploring ideas likatfire-
oriented programming [37], feature-oriented softwaresttgyment
[25], aspect-oriented programming [29] and multi-dimensil
separation of concerns [49]. Various SPLE approaches sufiyeo
(meta-)modeling and traceability of variability acrose tlifferent

phases of SPLE [9, 50, 6, 45, 36]. These approaches giverggda
on bridging the gap between high-level requirements andlildet
design through providing essential documentation, desigd as-
sessment practices. These approaches form thus a senaititeys
point for applying the above automated software configanadip-
proaches. Design spaces [9] guide the application deveitstat-
ing requirements, preventing incomplete or inconsistenjuire-
ments. Finally, an existing model driven development aggihdor
product lines [54] combines model weaving and model transfo
mation in order to support powerful transformations froralpem

to solution space while taking into account functional ameh-n
functional requirements. Functional and non-functioreduire-
ments are modeled as separate feature models that are nmtapped
problem-space and solution-space models respectiveiy.riiap-
ping is performed either using a negative variability apgio(sim-
ilar to [14]) or by a positive variability approach (whichnf@ms
aspect weaving [27] on the model level [22]). Orthogonalhiis,t
model-to-model transformations are leveraged for autmalat
obtaining solution-space models from problem-space nsodéle
approach is powerful and targets the full SPLE process while
approach only targets the application configuration phBsssi-
bly our approach can be used to deal with interactions betwee
functional and non-functional feature models in their aggh, but

it is not clear whether there is a case for such interactiortkis
model-driven SPLE approach.

7. Conclusion

Mapping problem-space features into solution-space ffeatis a
fundamental configuration problem in software producelengi-
neering. In this paper, we have proposed an approach to model
complex configuration rules based on the concept of problem-
solution feature interactions. These are interactionaéen solu-
tion-space features that only arise in specific problemeodst The
approach allows us to generate the most optimal configuratio
solution-space features, given a requirements spectficand a
set of configuration rules. We have proposed to use defagikt lo
to model complex mappings between problem-space and @oluti
space features. We also have discussed the use of the DL\éansw
set solver to support our approach by expressing a parnticofdig-
uration problem as a logic program whose answer set comespo
to the optimal combinations of solution-space featureg ddvan-
tages of the approach are twofold. First, we can express leamp
mappings that involve multiple features that cross the lerakand
solution domain. Secondly, incomplete requirements $ipations

do not keep us from generating optimal configurations oftsmiu
space features. We have motivated and illustrated our appro
with a case study from the field of managing dynamic adaptatio
in distributed applications.
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