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Abstract: We study point-line configurations through the lens of projective geometry and matroid
theory. Our focus is on their realization spaces, where we introduce the concepts of liftable and
quasi-liftable configurations, exploring cases in which an n-tuple of collinear points can be lifted to
a nondegenerate realization of a point-line configuration. We show that forest configurations are
liftable and characterize the realization space of liftable configurations as the solution set of certain
linear systems of equations. Moreover, we study the Zariski closure of the realization spaces of
liftable and quasi-liftable configurations, known as matroid varieties, and establish their irreducibility.
Additionally, we compute an irreducible decomposition for their corresponding circuit varieties.
Applying these liftability properties, we present a procedure to generate some of the defining
equations of the associated matroid varieties. As corollaries, we provide a geometric representation
for the defining equations of two specific examples: the quadrilateral set and the 3× 4 grid. While the
polynomials for the latter were previously computed using specialized algorithms tailored for this
configuration, the geometric interpretation of these generators was missing. We compute a minimal
generating set for the corresponding ideals.

Keywords: matroids; point-line configurations; matroid varieties; Grassmann–Cayley algebra
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1. Introduction

The axiomatic definition of matroids was established in 1935 by Whitney [1], with
MacLane highlighting their intimate connection with projective geometry soon after [2].
One prominent tool in this context is the Grassmann–Cayley algebra, which constructs
polynomial equations from a given set of synthetic projective geometric statements, see
e.g., [3,4]. Here, we provide other geometric tools for constructing such polynomials and
apply them in specific examples to demonstrate that the constructed polynomials minimally
generate the corresponding ideal.

A matroid, denoted by M, is a combinatorial object that extends the notion of linear
independence from vector spaces. The matroid records all possible combinations of linearly
independent vectors within a given set of vectors in a vector space; see [1,5]. If this process
is reversible, meaning that given a matroid M, we can identify such a vector collection,
these vectors are called a realization of M. The space of all realizations of M is denoted as
ΓM. The matroid variety VM of M is defined as the Zariski closure of this realization space.
This notion, introduced in [6], gives rise to a deep combinatorial structure called the matroid
stratification of the Grassmannian. However, understanding the geometric properties of
these strata, such as their irreducibility and defining equations [7], is a challenging problem.
So, it is natural to consider specific classes of matroids. For instance, the matroid varieties
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of uniform matroids have been extensively studied in commutative algebra, in the context
of determinantal varieties; see e.g., [8–12].

In this work, we focus on matroids of rank three, represented by point-line configu-
rations, and use tools from incidence and projective geometry to study their associated
varieties and define polynomial equations. Specifically, we develop methods to translate
the incidence structure of the underlying configuration into a geometric representation for
their polynomials.

The matroid varieties arising from point-line configurations are a rich and diverse
family. For example, the Mnëv-Sturmfels Universality Theorem [13–15] shows that matroid
varieties satisfy Murphy’s law in algebraic geometry, i.e., given any singularity of a semial-
gebraic set, there is a matroid variety with the same singularity, up to a mild equivalence
on singularities. See also [16]. Here, the matroid varieties associated with a point-line
configuration can achieve all such singularities. Additionally, the extra structure induced
by point-line configurations is mirrored in other contexts such as conditional independence
constraints in algebraic statistics [17–21].

While the relationship between matroids and projective geometry is now well
established [2], the utilization of projective incidence geometry in investigating matroid
varieties is a relatively recent development. For example, the Grassmann–Cayley algebra
can be employed to construct some polynomial equations in the matroid ideal IM; see the
example below from [7,22].

Example 1. The associated ideal of the matroid in Figure 1a contains three degree-3 polynomials
reflecting collinearities, alongside a degree-6 polynomial derived via the Grassmann–Cayley method.

Among the generators of the ideal IM, associated with a given matroid M, some
polynomials are determinantal conditions that can be read from the dependence relations
of M. We store this information in the circuit ideal IC (M), which is generated by the circuits
of the matroid M, and contains all those polynomials that must vanish on a collection of
vectors satisfying the dependencies (but not necessarily the independencies) of M.

Our work centers on the challenging task of describing the generators of IM that do
not lie in IC (M). Given a matroid M, classical tools such as the Grassmann–Cayley algebra
can be employed to construct some polynomial equations in IM that are not determined
by the circuits of the matroid, i.e., they lie in IM\IC (M). However, the description of
all such polynomials remains incomplete because the construction of the ideal involves
a saturation step that encodes the independence relations of the matroid, potentially
introducing additional polynomials not necessarily derived from this method [7,18]. The
current algorithms to compute saturation of ideals have high complexity and, consequently,
provide results only for small matroids. When results are obtained in this way, the outputs
often consist of non-human-parsable long polynomials that give little geometric intuition;
see the following two examples (the first one computed in Macaulay2 [23]).

Example 2. The ideal of the quadrilateral set in Figure 1b is generated by 14 polynomials:

a. Four of degree 3, deduced directly from the collinearities in the point-line configuration.
b. Ten of degree 6, in 18 variables, each consisting of 14 or 16 terms.

Example 3. Consider the matroid of the 3 × 4 grid from Figure 1c. To compute the associated ideal
of this matroid, the standard Gröbner basis computation algorithms do not terminate. Pfister and
Steenpass, in [24], developed and optimized a specific algorithm for this case. Through numerical
analysis, they demonstrated that the corresponding ideal has 44 generators:

c. 16 of degree 3, each deduced from collinearities in the point-line configuration.
d. 28 of degree 12 in 36 variables, each consisting of around 250 terms.

However, there is no geometric description of these polynomials in terms of Grassmann–Cayley algebra.



Mathematics 2024, 12, 3041 3 of 34

(a) 3 concurrent lines (b) Quadrilateral set (c) 3 × 4 Grid

Figure 1. (a) Three concurrent lines; (b) quadrilateral set LQS; (c) 3 × 4 grid LG3
4

Motivated by the above example, we investigate a new process to construct polynomials in
the matroid ideal. Adopting an incidence-geometry viewpoint, we explore the conditions
under which a tuple of collinear points in P2

C can be lifted to a nontrivial realization of a
given point-line configuration C.

Question 1. Let C be a point-line configuration with n points, ℓ a line in P2
C and P a point in

P2
C \ℓ. Under what conditions is any generic n-tuple of distinct points on ℓ the image, under the

projection from P to ℓ, of a nontrivial realization of C?

When this is always the case, we refer to C as liftable; and when this is always the case,
up to removing a line, we then call C quasi-liftable. See Definitions 13 and 14. In Section 3, we
analyze such configurations and their associated matroid and circuit varieties and ideals.

The following theorem summarizes our main results from Section 3. Below, we denote
by VM = V(IM) and VC (M) = V(IC (M) the varieties of the matroid ideal and circuit
ideal, respectively.

Theorem 1. Let M be a rank-3 matroid whose associated point-line configuration CM has no
triplets of concurrent lines. Then, the following hold:

• The matroid variety VM is irreducible. (Theorem 4)

• If CM is liftable, then VC (M) = VM and
√

IC (M) = IM. (Theorem 5)

• If CM is connected quasi-liftable, then VC (M) = V0 ∪VM and
√

IC (M) = I0 ∩ IM (Theorem 1)

where V0 is the matroid variety whose associated configuration is a line with n marked points.
Furthermore, the decompositions are, respectively, irreducible and prime.

Specifically, Theorem 1 offers a geometric approach to generating certain polynomials
in the ideal IM, as demonstrated in Proposition 4. In Sections 4 and 5, we illustrate how
these polynomials suffice to generate the matroid ideal for the quadrilateral set and the
3 × 4 grid. Moreover, we address Question 1 for these two matroids. More precisely, we
provide a characterization of 6-tuples of collinear points that can be lifted to a quadrilateral
set, and of 12-tuples that can be lifted to a 3 × 4 grid. For the quadrilateral set, this provides
a new characterization, equivalent to the one in [25,26].

Additionally, in the context of utilizing incidence geometry to explore realization
spaces of matroids, we demonstrate that a subset of the introduced polynomials generates
the ideal of the matroid varieties for both configurations. Notably, these polynomials rewrite
the numerically obtained high-degree polynomials as sums of determinants involving the
coordinates of the points.

Theorem 2 (Theorems 8 and 11). Let {R1, R2, R3, U} =
{( 1

0
0

)
,
( 0

1
0

)
,
( 0

0
1

)
,
( 1

1
1

)}
be the

canonical frame of reference in P2
C, and let ℓ123 and c1 be as in Figure 1b,c.
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• The 10 generators in Example 2b can be replaced by the following polynomials defined in (3):

QS(ℓ123; Ri, Rj, Rk) for any i ≤ j ≤ k, with i, j, k ∈ {1, 2, 3}.

• The 28 generators in Example 3d can be replaced by the following polynomials from (5):

G3
4(c1; Ri, Rj, Rk, Rl, Rm, Rn) for any i ≤ j ≤ k ≤ l ≤ m ≤ n, with i, j, k, l, m, n ∈ {1, 2, 3}.

To the best of our knowledge, there is currently no established method for com-
puting the equations defining the matroid varieties, aside from the Grassmann–Cayley
method [3,4,27]. Furthermore, current computer algebra programs cannot handle the
computations. The above theorems provide a geometric representation of the generators.
Furthermore, we prove that the generated polynomial forms a minimal generating set for
the corresponding matroid ideals.

We conclude the introduction by giving an outline of the paper. In Section 2, we fix our
notation for matroids, matroid varieties, circuit varieties, and point-line configurations. In
addition, we describe an explicit way of associating a matroid variety and a circuit variety
with a point-line configuration. In Section 3, we present our main results, providing an
irreducible decomposition of the circuit variety associated with point-line configurations
having certain liftability properties. In Sections 4 and 5, we apply and complete the results
of Section 3 for the quadrilateral set and the 3 × 4 grid.

2. Preliminaries

In this section, we provide background on the theory of matroids arising from point-
line configurations and fix our notation. We recall some known results about matroid
varieties and their defining equations. For further details, we refer the reader to [5,18,22],
and specifically for commutative algebra, we refer to [28].

Notation 1. Throughout, we fix natural numbers n, d with 1 ≤ d ≤ n. We write [n] = {1, 2, . . . , n}
and ([n]d ) = {A ⊆ [n] | #A = d} for the collection of d-subsets of [n]. Given a collection of subsets
D ⊆ 2[n], we define min(D) = {D ∈ D | if D′ ∈ D and D′ ⊆ D then D′ = D}.

Let k be a field and let X = (xi,j)
i=1,...,d
j=1,...,n be a d × n matrix of variables. We denote by

R = k[X] the polynomial ring in the variables xi,j. In addition, if A ⊆ [d], B ⊆ [n], and #A = #B,
then we denote by [A|B]X ∈ R the minor of the submatrix of X with rows indexed by A and
columns indexed by B. If #A = #B = d, then denote this minor by [B]X ∈ R.

2.1. Matroids and Matroid Varieties

Definition 1 (Matroid). A matroid M is the datum of a finite ground set E, which will typically be
[n], together with a nonempty collection B(M) ⊆ 2E of bases, satisfying the basis exchange axiom:

if B, B′ ∈ B(M) and β ∈ B \ B′, then there exists β′ ∈ B′ \ B such that
(B \ {β}) ∪ {β′} ∈ B(M).

Remark 1. There are other equivalent definitions of a matroid in terms of other data. The bases of a
matroid determine these other data and we list the ones of relevance to us below:

• I (M) := {I ⊆ E | I ⊆ B for some B ∈ B(M)} the independent sets are subsets of
the bases;

• D(M) := {D ⊆ E | D /∈ I (M)} the dependent sets of M are the nonindependent sets;
• C (M) := min(D(M)) the circuits of M are the minimal dependent sets;
• rkM : 2E → Z defined by rkM(S) = max{#I | I ⊆ S, I ∈ I (M)} is the rank function of

M. By the basis exchange axiom, each basis has the same cardinality, which is equal to rkM(E)
and we call this value the rank of the matroid M denoted rk(M);

• F (M) := {F ⊆ E | rk(F ∪ {x}) = rk(F) + 1 for all x ∈ E\F} the flats of M;
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• The closure operator clM : 2E → F (M) of M is defined as clM(S) = {x ∈ E | rkM(S∪ x) =
rkM(S)}. The closure of a subset of E is the smallest flat containing the subset.

Definition 2 (Realization space of a matroid). Given a matroid M on E and a field k, a
realization of M over k is a collection of vectors {vi}i∈E ⊆ kr such that for any subset I ⊆ E we
have that {vi}i∈I is linearly independent if and only if I ∈ I (M) is an independent set of M.
Typically, E = [n], and we arrange the vectors vi as the columns of a matrix V ∈ kr×n. Note,
for any realization, the value r is at least the rank of M. The realization space of a matroid in kr×n is

ΓM,r = {V ∈ kr×n | V is a realization of M}.

Remark 2. The columns of a matrix always give rise to a matroid, but the converse is not true. If a
matroid has (resp. does not have) a realization over a field k we call it realizable (resp. nonrealizable)
over k. Throughout the paper, we typically work over C so, unless otherwise specified, we will say
that a matroid is realizable if it is realizable over C.

Definition 3 (Matroid variety). Let M be a matroid on [n] and r ≥ rk(M) be a positive integer.
The matroid variety VM,r = ΓM,r is the Zariski closure in kr×n of the realization space. We denote
by IM,r = I(VM,r) ⊆ k[X] the ideal of the matroid variety where X = (xi,j)

i=1,...,r
j=1,...,n is a r × n

matrix of variables. If r is fixed, then we write ΓM, VM and IM for ΓM,r, VM,r and IM,r, respectively.

If a matroid is nonrealizable over k, then its realization space, and its associated variety
is empty.

Definition 4 (Circuit ideal and basis ideal). Let M be a matroid on [n] and fix some positive
integer r ≥ rk(M). Recall that C (M) are the circuits of M. Consider the r × n matrix of variables
X = (xi,j)

i=1,...,r
j=1,...,n. We define the circuit ideal IC (M) and the basis ideal JM in R as follows:

IC (M) =
〈
[A|B]X | B ∈ C (M) and A ⊆ [r] such that #A = #B

〉
and JM = ∏

B∈B(M)

JB,

where JB = ⟨[A|B]X | A ⊆ [r], #A = #B⟩ for each B ∈ B(M). In addition, we define the circuit
variety of M as VC (M) = V(IC (M)) ⊆ kr×n.

Remark 3. For each realization V of M, observe that each generator of IC (M) vanishes on V by the
linear dependence of the circuits. Hence IC (M) ⊆ IM. The points of V(JB) are matrices V = (vi,j)
where the submatrix VB = (vi,j)i∈[r],j∈B are not full rank. We note that V(JM) =

⋃
B∈B(M) V(JB)

is the union of these varieties. Therefore, a point V of VC (M) is a realization of M if and only if
V /∈ V(JB). Note, when r = rk(M) each ideal JB is principal, JM is principal, and its generator is
nowhere vanishing on ΓM.

Notation 2. Given two matroids M and N on the same ground set E, we say that M ≤ N if
D(M) ⊆ D(N), i.e., the dependent sets of M are a subset of the dependent sets of N. This defines a
partial order on the set of matroids with ground set E, which we call the dependency order. We note
that, in the literature, this order is the opposite of the order known as the weak order.

Definition 5 (Combinatorial closure of a matroid variety). Let M be a matroid and fix
r ≥ rk(M), we define the combinatorial closure of the matroid variety as:

Vcomb
M,r =

⋃
M≤N

VN,r.

We denote by Icomb
M,r the ideal I(Vcomb

M,r ). Whenever r is fixed, then we omit it from the notation.
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We recall the following result from ([18] Lemma 3.5, and Proposition 3.9) that the
combinatorial closure is Zariski closed and its defining ideal is the radical of the circuit
ideal

√
IC (M).

Proposition 1. Let M be a matroid, let C (M) be the set of its circuits, and fix r ≥ rk(M).
The ideal IM of the matroid variety is the radical of the saturation IC (M) by JM:

IM =

√(
IC (M) : J∞

M

)
,

where
(

IC (M) : J∞
M

)
= { f ∈ R | for all g ∈ JM there exists k ≥ 1 such that f gk ∈ IC (M)}. The

circuit variety of M coincides with the combinatorial closure of the matroid variety:

VC (M) = Vcomb
M and equivalently Icomb

M =
√

IC (M).

2.2. Point-Line Configurations

Throughout this paper, we consider matroids of rank at most three as incidence
structures referred to as point-line configurations. This approach enables us to analyze the
realization space of these matroids using techniques from incidence geometry.

Definition 6 (Abstract and linear point-line configuration). An abstract point-line configura-
tion is a triple (P ,L, I), where the elements of P and L are called points and lines, respectively.
The elements (p, ℓ) ∈ I ⊆ P ×L are the incidences. In this case, we say that p lies on ℓ or,
equivalently, that ℓ is incident to p. An abstract point-line configuration is linear if there is at most
one line incident to a pair of given points, and every line is incident with at least two points.

Typically, we think of linear point-line configurations that arise from the Euclidean
or projective plane. In these cases, the lines are 1-dimensional affine or linear subspaces,
respectively.

Notation 3. For each line ℓ ∈ L, we identify ℓ with {p ∈ P | (p, ℓ) ∈ I} the set of points lying
on the line. So, we write p ∈ ℓ whenever p lies on ℓ and #ℓ for the number of points on ℓ. For each
p ∈ P , we denote by Lp = {ℓ ∈ L | p ∈ ℓ} the set of lines passing through p.

Given a realizable rank-three matroid, we define its induced point-line configuration
as follows.

Definition 7 (Point-line configuration of a matroid). Let M be a matroid of rank 3. We define the
point-line configuration CM := ([n],LM, IM) as follows. The point set of CM is the ground set [n]
of M. The set of lines LM is defined as follows: LM := {F ∈ F (M) | rk(F) = 2, |F| ≥ 3}. Here,
F (M) denotes the collection of all flats of the matroid M. The elements F in LM are specifically the
rank-two flats, meaning that they span a two-dimensional subspace. Furthermore, we require that
the size of each flat F is at least three, ensuring that these lines consist of a sufficient number of points.
The incidences IM are given by inclusion, i.e., (p, ℓ) ∈ IA if and only if p ∈ ℓ. Furthermore, if M
has a realization, then we write CA for the point-line configuration CM.

As examples, we introduce here the point-line configurations that have inspired this
work, namely, quadrilateral sets and 3 × 4 grids.

Example 4 (Quadrilateral set). A quadrilateral set in a projective plane P2
k is the datum of

4 lines and their 6 intersection points. By Definition 6, the linear point-line configuration cor-
responding to a quadrilateral set consists of 6 points and 4 lines (see Figure 1b), denoted by
CQS = {PQS,LQS, IQS}, where PQS = {P1, . . . , P6}, LQS = {ℓ123, ℓ156, ℓ246, ℓ345} and IQS
is the incidence relation shown in the picture.
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The configuration CQS arises, as in Definition 7, from the simple matroid QS over [6] whose

set of circuits are min
(

∆ ∪ ([6]4 )
)

, where ∆ = {123, 156, 246, 345}.

Example 5 (3× 4 grid). An n×m grid configuration is a plane point-line configuration consisting
of the n · m points of intersection of two pencils of n and m parallel lines. When we take realizations
of such a grid, the realizations of two lines of the same pencil will intersect in the projective plane.
However, these intersection points will not be part of the realization itself.

Our main example is the 3× 4 grid G3
4 . Mirroring our construction for the quadrilateral set, we

begin with the linear point-line configuration with 7 lines and 12 points CG3
4
=
(
PG3

4
,LG3

4
, IG3

4

)
,

see Figure 1c. Following the diagram, the lines are referred to as rows and columns in LG3
4
. The un-

derlying simple matroid G3
4 on [12], has circuits min

(
∆ ∪ ([12]

4 )
)

where ∆ = {123, . . . , 10 11 12}.

In general, the point-line configuration of a realizable matroid is not linear. As the
next example shows, this is due to the loops and nontrivial parallel classes of the matroid.

Definition 8 (Loops and parallel classes of a matroid). Let M be a matroid on ground set E.
An element e ∈ E is a loop if, for every basis B of M, we have e /∈ B. Equivalently, an element
e ∈ E is a loop if, for every flat F of M, we have e ∈ F. The parallel classes of M are the rank-one
flats. A parallel class is trivial if it contains one nonloop element. Equivalently, a parallel class is an
inclusion-wise maximal subset of E such that any pair of elements of the subset are dependent.

Example 6. Consider the matroid M on ground set [6], realized by the columns of the matrix:

A =

0 1 2 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1

.

The first column of A is the zero vector, hence it belongs to no bases of M, and so 1 is a loop of
M. The parallel classes of M are {123, 14, 15, 16}. So 123 is a nontrivial parallel class of M.
The point-line configuration CA has lines

LA = {12345, 1236, 146, 156}.

This configuration is not linear, since the lines 12345 and 1236 are incident to 3 common points.

We now recall the notion of simplification of a matroid, leading to linear point-line
configurations.

Definition 9 (Simple matroid and simplification of a matroid). We say that a matroid M is
simple if M has no loops and every parallel class is trivial. The simplification of M is a matroid M′

on ground set E′ = {F ∈ F (M) | rk(F) = 1} of rank-one flats of M. A set {F1, F2, . . . , Fk} ⊆ E′

is a basis of M′ if for each i ∈ [k] there exists fi ∈ Fi such that { f1, f2, . . . , fk} is a basis of M.

It is straightforward to check that the simplification of a matroid is indeed a matroid
and moreover that it is simple. The simplification of a simple matroid M is itself, and so
simplification is a closure operator on the class of matroids. In the language of matroid
deletion, see [5], the simplification of M can be viewed as the matroid obtained by deleting
the loops of M and, for each parallel class of M, deleting all but one nonloop element.

Proposition 2. Let M be a simple matroid over [n]. Then, the point-line configuration CM is linear.
In particular, if M has a realization A ∈ C3n, then the columns of A are distinct points in P2

C and
the lines of CM naturally correspond to 1-dimensional linear subspaces in P2

C.

Proof. We start the proof by pointing out the following:
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• Singletons in [n] are all the rank-one flats of M and correspond to points of P2
C;

• Rank-two flats of M of cardinality at least 3 correspond to lines in P2
C.

Thus, assuming that M is simple, immediately yields that its rank-two flats of cardinality ≥ 3
contain at least three nontrivial parallel classes. Thus, every line of CM is incident with at
least 3 ≥ 2 points. We additionally have to check that any pair of points in CM lies in at most
one line. We prove equivalently that, if {pqrs} ⊆ [n] is such that rkM(pqr) = rkM(pqs) = 2,
then rkM(pqrs) = 2. As M is a simple matroid, all 2-subsets of [n] are elements of I (M).
Thus pqr and pqs are circuits of M and the statement follows by the Circuit Elimination
Axiom (see e.g., ([5] Lemma 1.1.3)).

For the rest of this paper, we fix the following conventions for working with realiz-
able matroids.

Notation 4. Let M be a realizable matroid on ground set E of rank at most three, and M′ its
simplification. The point-line configuration C of M is taken to mean CM′ the point-line configuration
of M′. So the points of C are the subsets of E given by the parallel classes of M. By a slight abuse of
terminology, we say loops of C for the loops of M, and two points coincide in C when two nonloop
elements of E belong to the same parallel class of M.

Suppose that M and N are matroids of rank at most three on the same ground set E.
Recall from Notation 2 the dependency order on matroids. Assume that M ≤ N, i.e., that
every dependent set of M is dependent in N. In general, the point-line configurations CM
and CN are different as they have different numbers of points and lines. We introduce the
following notation for the purpose of comparing the configurations CM and CN .

Notation 5. Assume the above setup. We say that a pair of lines ℓ1 and ℓ2 in CM coincide in CN
if the rank-two flats F1 and F2 of M, which give rise to ℓ1 and ℓ2 respectively, are contained in a
common rank-two flat of N. Suppose that ℓ ∈ CM is a line that arises from a rank-two flat F of M.
The closure clN(F) gives rise to a collection of points of CN . If these points do not lie on a line of
CN , then we say that these points lie on the ghost line of ℓ in CN .

We conclude the section by stating some results that correlate the irreducibility of
certain matroid varieties with properties of the corresponding point-line configuration.

Proposition 3 ([18], Theorem 4.2). If M is a simple matroid of rank 3, whose point-line configu-
ration CM has at most six lines, then VM is irreducible with respect to the Zariski topology.

Notation 6. Let C = (P ,L, I) be a point-line configuration and ℓ a line in L. We denote as C \ℓ
the point-line configuration (P ′,L′, I ′) where:

• P ′ = P \{p ∈ P | (p, ℓ) ∈ I and #Lp = 1},
• L′ = L \{ℓ}, and
• I ′ = I \{(q, ℓ) | q ∈ P}.

Theorem 3 ([18], Theorem 4.5). Let M be a simple rank-3 matroid, and let CM be its point-line
configuration. Suppose that ℓ is a line of CM such that #{p ∈ ℓ | #Lp ≥ 3} ≤ 2. Let Mℓ be the
simple matroid such that CMℓ

= CM \ℓ. If ΓMℓ
is irreducible, then so is ΓM.

3. (Quasi-)Liftable Configurations

In this section, we introduce the notions of liftable and quasi-liftable for point-line
configurations and prove the associated varieties of such configurations are irreducible.
Moreover, we present an irreducible decomposition for their circuit varieties. In particular,
given a point-line configuration C with n points, we explore the property that an n-tuple of
collinear points can be lifted to a nondegenerate realization of C. Typically, this task is highly
nontrivial and requires additional conditions on the coordinates of the collinear points.
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We first introduce the notion of liftability property for point-line configurations, which
plays a central role in the irreducibility of the corresponding circuit variety.

Definition 10 (Strictly liftable configuration). A linear point-line configuration C with n points
is called strictly liftable over a field k if any n-tuple of distinct collinear points in P2

k is the image
under a projection of a nondegenerate realization of C. Here, by nondegenerate realization, we mean
the datum of an n-tuple of points in P2

k, and a bijection with the points of C such that (non-)collinear
points in C correspond to (non)collinear points in P2

k.

For example, the next result shows that forest configurations are strictly liftable over C.
We first recall their definition. Consider a point-line configuration C = (P ,L, I) whose
points P are endowed with a total order p1 < · · · < pn. We associate to C the graph
GC = (P , E), where:

E =
{

pi pj | pi, pj ∈ ℓ for some ℓ ∈ L, pi < pj, and for all pk ∈ ℓ we do not have pi < pk < pj
}

.

We define the connected components of C to be set of subconfigurations corresponding to the
connected components of GC . We write ω for the number of connected components of C.
The configuration C is called a forest if its graph is a forest. This definition is well posed by
([18] Lemma 5.2).

Lemma 1. Forest configurations are strictly liftable over C.

Proof. Let C = (P ,L, I) be a forest configuration with n points. Starting from n collinear
points and a projection center P in P2

C, one can concretely construct a realization of C
projecting from P to the n-tuple of given points. We pick a point P′ ∈ P such that LP′ = 1
(the existence of such a point is ensured by the forest assumption), and lying on a line
ℓ ∈ L. We associate P′ to an arbitrary point in the n-tuple, which is the projection image of
any point in the line joining itself with the center. We fix a point on this line and we take a
line ℓ′ through it. By taking the intersections of ℓ′ with #ℓ fibers of points in the p-tuple, ℓ′

becomes a realization of ℓ.
The points in ℓ′ projecting to points Q, such that LQ ≥ 2, give rise to branches

of the configuration C which do not contain any other point of ℓ, because of the forest
assumption. So, we take arbitrary lines through these points and iterate the argument
until the configuration C is fully chased. Figure 2 shows how this is performed in a
sample configuration.

Figure 2. From left to right the figure shows a forest planar configuration with ten points and how it
is realized starting from ten collinear points, following the proof of Lemma 1.

3.1. Realization Space of Liftable Configurations

The liftability problem involves uniquely realizable configurations. Nevertheless,
the general setting can be formulated for all kind of configurations. Now, for any point-line
configuration C with n points, we introduce an algebraic tool that plays a crucial role in the
liftability problem. In particular, it gives insights about whether C is (quasi-)liftable and the
conditions that n collinear points must satisfy so that they may be lifted to a nondegenerate



Mathematics 2024, 12, 3041 10 of 34

realization of C. For the following construction, we keep in mind the purpose of checking
the liftability of a point-line configuration over C.

Construction 1 (Collinearity matrix). Let C = (P ,L, I) be a point-line configuration with
n = #P points and let k be a field. Consider an n-tuple of collinear points P1, . . . , Pn in the
projective plane P2

k. Let P be a point that is not collinear with P1, . . . , Pn. After a change in
coordinates, we may assume the points lie on the line z = 0 and we may write

P =
( 0

0
1

)
and P1 =

( x1
1
0

)
, . . . , Pn =

( xn
1
0

)
for some xi ∈ k .

The problem is to find z1, . . . , zn ∈ k such that the points
( xi

1
zi

)
form a realization of C.

We denote by [PiPj] the 2 × 2 minor xi − xj. The collinearity matrix Λ of C encodes the
collinearity conditions imposed by the configuration. The columns of Λ are indexed by the points Pj
of C for j ∈ [n], and the rows of Λ are indexed by each triple i = (i1, i2, i3), where Pi1 , Pi2 , Pi3 are
collinear points. The entries of Λ are given by:

(Λ)i,j =


[Pi2 Pi3 ] if j = i1,
−[Pi1 Pi3 ] if j = i2,
[Pi1 Pi2 ] if j = i3,
0 otherwise.

Suppose that ℓ ⊆ P is a set of collinear points with #ℓ > 3. For each 3-subset of ℓ, the above
construction gives a row of Λ. These rows are linearly dependent. Moreover, it is straightforward to
show that the set of such rows has rank #ℓ− 2.

Definition 11 (Space of lifts, trivial and degenerate liftings). Let C be a linear point-line
configuration with n points. We follow the notation from Construction 1 for the collinearity matrix
Λ. The matrix Λ defines the linear system:

Λ

z1
...

zn

 =

0
...
0

. (1)

The solution space of (1), denoted as L C , is the space of lifts for C.

For each z ∈ L C , we obtain a lifted configuration of points Pi with coordinates
( xi

1
zi

)
.

By construction, these points realize all the collinearity conditions of C. We call z trivial if
these lifted points are collinear. We say z is a degenerate lift if these lifted points are not a realization
of C but do not lie on a single line.

Lemma 2. The linear system (1) has nontrivial solutions if and only if dim(L C) ≥ 3.

Proof. Trivial liftings of the n points contribute 2 dimensions to the dimension of L C .
Therefore, a nontrivial lift exists if and only if the solution space has a dimension of at least
three.

This leads to an efficient method to check if an arrangement is not strictly liftable.

Example 7. By applying Lemma 2 to the collinearity matrices of the quadrilateral set and the 3 × 4
grid, in the proofs of Theorems 7 and 10, we observe that they are not strictly liftable.

For the following family of point-line configurations, the fact that System (1) has a
solution space of dimension ≥ 3 · ω completely solves the liftability problem.
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Definition 12 (Maximal matroid). Let M be a simple matroid of rank 3, whose configuration CM
has no triplets of concurrent lines. We say that M is maximal if it is maximal, with respect to the
dependency order (see Notation 2), among the realizable simple matroids of rank 3 whose point-line
configuration has no triplets of concurrent lines.

Example 8. The underlying simple matroids of the quadrilateral set are maximal. This can be
deduced by how the property of being maximal reflects on the point-line configuration associated
to the matroid. In particular, the fact that there are no simple rank-three matroids N > M over
[n], with CN having no triplets of concurrent lines, is equivalent to the fact that there is no linear
point-line configuration C ′ ̸= CM, with n different points, satisfying the following conditions:

• All the collinearities (i.e., triplets of collinear points) of CM are collinearities of C ′;
• The points of C ′ do not lie on a single line.

In other words, the underlying simple matroids of the quadrilateral set is maximal because any
nontrivial lifting of them in P2

C is a realization of the matroid.
Differently, the simple matroid M over [12], whose circuits are C (M) = min

(
∆ ∪ ([12]

4 )
)

,

where ∆ = ([6]3 ) ∪ {178, 289, 379, 4 10 11, 5 10 12, 6 11 12}, is not maximal. Indeed, one can con-

sider, for instance, the simple matroid M1 over [12], whose circuits are C (M1) = min
(

∆1 ∪ ([12]
4 )
)

,

where ∆1 = ([9]3 ) ∪ {4 10 11, 5 10 12, 6 11 12}. As C (M) ⊊ C (M1), we have that M1 > M.
In particular, M is contained in the two maximal matroids M1 and M2, whose configurations are
depicted in Figure 3. Their maximality can be verified by the method mentioned at the beginning
of the Example. In particular, both of them have triplets of non-collinear points but they are not a
realization of M. Adding further dependencies on M1 and M2 would lead to a nonsimple matroid
or to a rank drop (see matroid M3, in Figure 3).

Figure 3. In the notation of Example 8, from left to right there are the linear point-line configurations
of the matroids M, M1, M2, and M3.

Example 9. Similarly, one sees that 3× 3 grids (and m × n grids in general) are not maximal. Let
G3

3 be the simple matroid ([9], C (G3
3)), with C (G3

3) = min
(
{123, 147, 258, 369, 456, 789} ∪ ([9]4 )

)
.

Consider the matroid G = ([9], C (G)), with associated point-line configuration depicted in Figure 4,
with C (G) = min

(
{123, 147, 148, 149, 178, 179, 189, 258, 369, 456, 478, 479, 489, 789} ∪ ([9]4 )

)
.

The matroid G is strictly bigger than G3
3 , depicted in Figure 5a, with respect to the dependency order.

Furthermore, the matroid G is maximal. Indeed, consider the associated point-line configuration
CG, and impose any additional collinearity (avoiding triplets of concurrent lines). This forces the
collinearity of points laying on different lines of a same pencil of a 3 × 3 grid, leading to a rank drop.
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Figure 4. The configuration CG realizes all the dependencies of the 3 × 3 grid matroid, but not
all independencies.

Lemma 3. Let C = (P ,L, I) be a linear point-line configuration with n points, with connected
components C1, . . . , Cω . Assume that C1, . . . , Cω derive from a maximal matroid. Then, the follow-
ing statements are equivalent:

• The configuration C is strictly liftable.
• The linear system Λz = 0, where Λ is the collinearity matrix of C, has solution space of

dimension at least 3 · ω, or equivalently n − 3 · ω ≥ rk Λ.

Proof. Follows from Lemma 2 and Example 8.

Example 10. Let 1, . . . , 9 be collinear points in the projective plane. On the one hand, the collinear-
ity matrix Λ of a 3 × 3 grid configuration imposes a linear system with solution space of dimension
3. On the other hand, the 3 × 3 grid matroid is not maximal, so we cannot use Lemma 3 to conclude
information about its strict liftability.

Λ =



[23] −[13] [12] 0 0 0 0 0 0
[47] 0 0 −[17] 0 0 [14] 0 0

0 [58] 0 0 −[28] 0 0 [25] 0
0 0 [69] 0 0 −[39] 0 0 [36]
0 0 0 [56] −[46] [45] 0 0 0
0 0 0 0 0 0 [89] −[79] [78]


However, the fact that rk(Λ) = 6 ensures the existence of nontrivial liftings of 1, . . . , 9.

Furthermore, up to relabelling the points, the only simple rank-3 matroid over [9] with no triplets of
concurrent lines which is strictly bigger than G3

3 in the dependency order is the maximal matroid G
from Example 9. As a consequence, there are only two options for a nontrivial solution of the linear
system Λ(z1 . . . z9)

t = (0 . . . 0)t. Either it fully realizes G3
3 , or it realizes the matroid G (because of

its maximality).
We conclude the example by pointing out that, an arbitrarily small translation of 2 points in

any realization of G allows to fully realize a 3 × 3 grid.

Notation 7. Let C be a linear point-line configuration with n points that is not strictly liftable over
C, and let ε be a positive real number. We say that C has property ∗ if for any n-tuple of collinear
points in P2

C and any value of ε, there exists a lifting of the n points to a degenerate realization
C ∈ C3n of C and a full realization C′ ∈ C3n of C such that ||C − C′|| < ε.

Example 10 shows that 3 × 3 grids have the property ∗.

Definition 13 (Liftable point-line configuration). A linear point-line configuration C is liftable
over C if:

• C is strictly liftable over C, or
• C has the property ∗ in P2

C.

Remark 4. The liftability property is preserved by certain operations on point-line configurations.
If C is liftable, then C \ℓ (if realizable) is still liftable for any ℓ ∈ L. In addition, adding a point to a
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line (with no extra collinearity requirement) does not affect liftability. In this case, both the number
of points and the rank of the collinearity matrix increase by one.

Lemma 4. Let M be a simple matroid of rank 3 over [n], whose associated point-line configuration
CM is liftable. Then, any realization of the 2-uniform matroid over [n], in C3n, is an element of the
matroid variety VM.

Proof. It is enough to prove the result when CM is strictly liftable. Let C ∈ C3n be a
realization of the 2-uniform matroid over [n]. Then the coordinates C1,1, . . . , C3,n of C can
be seen as the (x, y, z)-coordinates of n collinear points in the projective plane. These can
be represented with the 3 × n matrix below, up to performing a change in coordinates in
P2
C—as in Construction 1—which yields, in turn, a change in coordinates on C3n.

C =

C1,1 C1,2 . . . C1,n
C2,1 C2,2 . . . C2,n
C3,1 C3,2 . . . C3,n

 =

x1 x2 . . . xn
1 1 . . . 1
0 0 . . . 0

.

The liftability of CM ensures the existence of z1, . . . , zn ∈ C, such that the points of coor-
dinates (xi 1 zi)

t, for i = 1, . . . , n, are a nondegenerate realization of M. Now, let ε be an
arbitrary positive real number and set z := maxi=1,...,n |zi|. Let D ∈ C3n be the point of the
following coordinates:

D =

 x1 x2 . . . xn
1 1 . . . 1

ε
nz z1

ε
nz z2 . . . ε

nz zn

.

The point D is still a realization of M because ΓM is a semialgebraic set defined by the
(non-)vanishing of determinants of 3 × 3 matrices whose columns are (x, y, z)-coordinates
of points in the projective plane. In our case, by multilinearity of determinants: xi xj xk

1 1 1
ε

nz zi
ε

nz zj
ε

nz zk

 =
ε

nz

xi xj xk
1 1 1
zi zj zk

, for any 1 ≤ i < j < k ≤ n.

As the left-hand side vanishes if and only if the right-hand side vanishes; this proves that
any Euclidean open subset of C3n containing C intersects ΓM. In turn, this implies that any
Zariski open subset containing C intersects ΓM, thus C ∈ ΓM = VM.

Definition 14 (Quasi-liftable configuration). A linear point-line configuration C = (P ,L, I)
is called quasi-liftable if C is not liftable but C \ℓ is liftable for every ℓ ∈ L.

Example 11. Our configurations of interest, namely the quadrilateral set and the 3 × 4 grid, are
quasi-liftable (see Figure 5b,c). However, when a line is added to a quasi-liftable configuration,
the quasi-liftability property is not preserved.

(a) 3 × 3 Grid (b) Quadrilateral set (c) 3 × 4 Grid

Figure 5. Examples of liftable and quasi-liftable plane arrangements.
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3.2. Irreducible Decomposition of Varieties of (Quasi-)Liftable Configurations

In this section, we prove the irreducibility of the matroid varieties of liftable and
quasi-liftable point-line configurations, assuming there are no triplets of concurrent lines in
the configuration. Specifically, in Theorem 4, we establish the irreducibility of the matroid
variety in both cases. However, for the circuit variety, we demonstrate that while it is
irreducible for the liftable configuration (Theorem 5), the circuit variety of the quasi-liftable
matroid has two irreducible components (Corollary 1).

In this section, unless stated otherwise, we assume that all configurations are
for simple matroids of rank three and preserve their realizability when considering
a subconfiguration.

We first prove the irreducibility of the matroid and circuit varieties of liftable configurations.

Theorem 4. Let M be a matroid, whose associated point-line configuration CM has no triplets of
concurrent lines. Then, the matroid variety VM is irreducible.

Proof. If CM has less than 6 lines, then VM is irreducible by Proposition 3. Assume that
CM has more than 6 lines. Consider a subconfiguration C ′ = CM \{ℓ1, . . . , ℓ#LM −6},
for {ℓ1, . . . , ℓ#LM −6} ⊆ LM. Now, let M′ be the corresponding matroid. Then, ΓM′ is
irreducible with respect to the Zariski topology, as VM′ is irreducible by Proposition 3 and
ΓM′ is Zariski dense in VM′ . Note that #Lp ≤ 2 for any p ∈ PM by assumption. Let us now
consider C ′′ = CM \{ℓ1, . . . , ℓ#LM −7}. Among the intermediate configurations between
C ′ and CM, C ′′ is such that C ′ = C ′′ \ℓ#LM −6 (denote as M′′ the corresponding matroid).
Theorem 3 implies that ΓM′′ is irreducible and so is its Zariski closure VM′′ . If C ′′ = CM, we
are done. If not, we introduce a configuration C ′′′ and we argue analogously. The process
terminates after #LM −6 steps.

Remark 5. In view of Lemma 1, Theorem 4 generalizes Proposition 5.9, and Theorem 5.11 from [18].
Thereby, an analogous result was proved for forest configurations.

Recall that for every matroid M, the circuit variety VC (M) is equal to the combinatorial
closure Vcomb

M , but not necessarily to the matroid variety VM; see and Definition 5 and
Proposition 1. In the following theorem, we demonstrate that for liftable configurations,
all these varieties coincide. We first establish the theorem and subsequently prove the
technical lemma, Lemma 5, used in the proof.

Theorem 5. Let M be a matroid whose associated point-line configuration CM is liftable and has
no triplets of concurrent lines. Then,

VC (M) = VM and equivalently
√

IC (M) = IM.

Proof. We prove the result by induction on the number of lines in CM.
If CM has no lines, then M is the 3-uniform matroid. In this case, the realization space

ΓM is a Zariski open subset, and VM = ΓM = C3n = VC (M).
Assume that the result is true for any matroid fulfilling the hypotheses with ≤ m lines.

Consider a configuration CM with m + 1 lines and let C be a point in VC (M) \ ΓM, which
equals to Vcomb

M \ ΓM, by Proposition 1. We want to prove that C ∈ VM. If M is a matroid
over [n], the point C ∈ C3n realizes a matroid N ≥ M, over [n], which is dependent for M.
In particular, the coordinates of C can be represented as a matrix whose columns are the
(x, y, z)-coordinates of n points in the projective plane. As CM is liftable (Lemma 5), we
restrict it to the case where N is a simple matroid.

If the associated point-line configuration CN consists of collinear points, the result
holds by Lemma 4. Otherwise, for any line ℓ ∈ LM, there is a well-defined projection
πℓ : C3n → C3k, for some k ≤ n, which deletes from the matrix C the columns that are
coordinates of points in CM, but not in CM \ℓ. Now, for any line ℓ, let us denote Mℓ for the
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simple matroid whose point-line configuration is CM \ℓ. Then, πℓ(C) ∈ VMℓ
because CM \ℓ

is liftable. Thus, C ∈ ⋂
ℓ∈L π−1

ℓ (VMℓ
). To conclude, we prove that

⋂
ℓ∈L π−1

ℓ (VMℓ
) ⊆ VM.

This is equivalent to the inclusion:(⋂
ℓ∈L

π−1
ℓ (VMℓ

)

)c

⊇ (VM)c =
(
ΓM
)c

= (Γc
M)◦.

Now, as M is not 3-uniform, (Γc
M)◦ is not empty. Let D = (D1,1, . . . , D3,n) be in the

Zariski interior of Γc
M. We show that there exists a line ℓ such that πℓ(D) /∈ VMℓ

. Now,
ΓM is the semialgebraic set defined by pi(x1,1, . . . , x3,n) = 0 and q(x1,1, . . . , x3,n) ̸= 0 for
certain homogeneous polynomials pi and q imposing, respectively, the dependence and
independence relations for the matroid M.

If one of the polynomials pi does not vanish when evaluated at the coordinates of D,
then there is a collinearity of CM, which is not satisfied by D. Let ℓ be any line in LM not
requiring the critical collinearity, then πℓ(D) /∈ VMℓ

. Hence, C ∈ ⋂ℓ∈L π−1
ℓ (VMℓ

) ⊆ VM.
The only excluded case is when, for all i, pi(D1,1, . . . , D3,n) = q(D1,1, . . . , D3,n) = 0.

We show that this cannot happen; specifically, we prove that D is a point of VM. On the one
hand, the vanishing of the pi’s implies that D ∈ VC(M) \ ΓM. On the other hand, as long as
D is in the interior of Γc

M, there exists a Zariski open subset entirely contained in Γc
M and

containing D.
Now, Lemma 5 allows us to restrict to the case where D realizes a simple matroid,

dependent for M, and Lemma 4 excludes the possibility that the n points given by the
realization of D are collinear. In other words, the point-line configuration realized by D
has n distinct points, among which at least three of them are not collinear, and it respects
all the collinearities of M. There are some extra-collinear points which are the projective
image of a subconfiguration of CM. As CM is liftable, all its subconfigurations are liftable as
well. Thus, the unwanted collinearity can be resolved by a small arbitrary lifting.

To conclude, if D satisfies pi(D1,1, . . . , D3,n) = q(D1,1, . . . , D3,n) = 0, then any Eu-
clidean open subset containing D intersects ΓM, contradicting that D is in the Zariski
interior of Γc

M.

We now prove the technical lemma used in the proof of Theorem 5.

Lemma 5. Let M be a matroid whose point-line configuration CM is liftable and has no triplets of
concurrent lines. Let C ∈ C3n be a point in VC (M) \ ΓM, realizing a nonsimple matroid N > M.
Then, for any ε > 0, there exists C′ in the Euclidean open ball B(C, ε) realizing a simple matroid
N′ which is dependent for M, or equivalently, is M ≤ N′. Further, if C′ ∈ VM, then C ∈ VM.

Proof. The coordinates of the point C can be represented by the 3 × n matrix:

C =

C1,1 C1,2 . . . C1,n
C2,1 C2,2 . . . C2,n
C3,1 C3,2 . . . C3,n

 = (c1 c2 . . . cn),

where ci ∈ C3 for each i. Since the matroid N, realized by C, is nonsimple, the matrix above
might contain zero vectors ci = 0 or linearly dependent pairs of columns ci = λ · cj for
some λ ∈ C∗. To prove the result, we proceed by induction on n. Since the base case is
trivial, we may assume that the result holds for any subconfiguration of CM, having less
than n points. We recall that the point-line configuration CN of N is associated with the
simplification of the matroid.

Fixed a positive real number ε, the procedure to obtain the point C′ will consist in
perturbing the columns of C finitely many times by adding to them vectors whose norm
is bounded by ε. For the choice of the base-field C, and the continuity property of the
Euclidean distance over C3n, the value of ||C − C′|| will eventually be bounded by a
continuous function of ε.
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By assumption we have that N > M, so every flat of rank 2 in M is dependent in N.
This means that for every line ℓ of CM, the points cℓ := {ci : i ∈ ℓ} lie in a 2-dimensional
linear subspace ℓ̂ ⊆ C3, which we call the ghost line of ℓ. There are two possibilities for the
points cℓ:

• Either their linear span is 2-dimensional, in which case ℓ̂ is uniquely determined;
• The linear span has dimension strictly less than 2, in which case we choose ℓ̂ generically

such that it contains cℓ.

We construct the point C′ algorithmically by performing the following steps.
Loops: Suppose there is a zero column ci = 0 of C. By assumption, the point i of CM lies on
at most two lines ℓ1 and ℓ2 (if this is not the case, then the same strategy can be performed
with fewer constraints). Let v ∈ ℓ̂1 ∩ ℓ̂2 be a point in the intersection of the two ghost lines.
Without loss of generality, we may assume that |v| = 1. We perturb ci by moving it to the
point ε′v. This results in a configuration N′ with N′ ≥ M.

From now on, we assume that all points ci are nonzero.
Multiple points: Let I = {I1, . . . , IK} be the set of multiple points of CN , i.e., the rank-one
flats of N of cardinality strictly higher than one. For any Ik ∈ I let Ik = {i1, . . . , ink} be
the corresponding set of points in CM such that SpanC{ci1 , . . . , cink

} is one-dimensional. We
introduce a procedure to perturb these points so that they realize the point-line configura-
tion of a simple matroid, dependent on M. We address cases based on the il’s. Initially, we
handle points lying on no lines of CM (step S1) and points lying on one line of CM (step S2).
At this stage, all multiple points can be assumed to consist of points belonging to two lines
of CM. Now, either all (ghost) lines through a multiple point coincide or not. In the former
case, we proceed as in step S3; in the latter case, we apply steps S4 and S5.

S1. For any index k = 1, . . . , K and for any l = 1, . . . , nk, if the point il ∈ Ik does not
belong to any line in CM, then it can be translated along any direction. In other words,
we perturb the column cil by adding to it a vector εv, where v has unitary norm (see
Figure 6 for an example). In turn, we can assume that for any k = 1, . . . , K, all points
in Ik lie at least on a line in CM.

Figure 6. The figure refers to step S1 and illustrates how to solve the double point {a, g}. In view of
the fact that the point g does not lie on any line of CM, it can be translated along the direction v.

S2. For any k = 1, . . . , K and for any l = 1, . . . , nk, we check whether the point il ∈ Ik
belongs to a single line ℓ in CM. If this is the case, the point il can be realized by
translating the corresponding column ci along the ghost line ℓ̂, as in Figure 7. Thus,
we can further assume that for any k = 1, . . . , K, all points in Ik lie at the intersection
of two lines in CM.

Figure 7. The figure illustrates step S2, and how to solve the double point {a, f }. In the starting
configuration CM, the point f lies solely on the line ℓ and can be translated along the direction v.



Mathematics 2024, 12, 3041 17 of 34

S3. For any k, if all the (ghost) lines through Ik coincide on a unique (ghost) line ℓ, then we
perturb all points of Ik along ℓ. Figure 8 illustrates that this operation might not lead
to a full realization of CM, as it does not take the independence relations into account.
However, it generates all required collinearities, leading to a dependent matroid for
M. Any remaining multiple point now lies at the intersection of the realization of at
least two nonoverlapping lines.

Figure 8. The realization of lines ℓ1, . . . , ℓ4 of CM all coincide in CN . Therefore, following step S3,
the triple point {d, e, g} can be split along the line ℓ̂1 ≡ · · · ≡ ℓ̂4 to realize all collinearities of CM.

S4. We now remove all remaining multiple points from the configuration, and we consider
the multiple lines L that are incident to them. We resolve the multiple lines using a
lifting procedure, which can be followed graphically from Figure 9. We consider the
following two steps:

S4.1. In view of the liftability property of CM and the induction hypothesis, we can
perform a lifting of the subconfiguration of N that involves only the remaining
points on L and the (ghost) lines that coincide with L. Here, we pick our projection
point in general position, away from all lines generated by points of CN . It
follows from the proof of Lemma 4 that the distance between C and the lifted
configuration can be bounded by ε.

S4.2. If a lifted point i was the intersection of L with another (ghost) line ℓ̂, prior to the
lifting, then we need to further perturb it. In CM, the point i lies at the intersection
of two lines ℓ and ℓ′. In CN , ℓ̂′ coincides with the line L. After the lifting, we have
that ℓ̂′ is lifted and intersects ℓ̂ at a unique point. We redefine i to be this unique
intersection point, whose distance from the previous lifted point is a continuous
function of ε.

For any lifted (ghost) line resulting from this operation and containing a point in one of
the multiple points through ℓ, we can assume, without loss of generality, that it is still
arbitrarily close to the concerned multiple points. This can be explained considering
that if the multiple points had not been removed from the configuration, the lifting
could still have been performed. In particular, any such lifted line intersects all the
other lines incident to the multiple point in a neighborhood of the multiple point itself.

Figure 9. The figure demonstrates step S4 in action from left to right. Here, we address a triple point
through liftings. Both lines incident to c, e, i in CN realize two rank-two flats of M. Therefore, a lifting
procedure is necessary to resolve the multiple point. In the final square, we illustrate how to intersect
the lifted lines to complete the configuration.
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S5. For any multiple point Ik ∈ I , we consider the lines through Ik excluded from step S4.
Namely, those corresponding to rank-two flats of N that do not contain more than a
rank-two flat of M. Let mk be the number of such lines. If mk ≥ 3, we have to perturb
mk − 2 of them so that they are not all concurrent on the same point in the projective
plane. This can be performed considering that none of these lines is a multiple line,
and for any such line ℓ, we perform the following two steps, depicted in Figure 10:

S5.1. We pick a generic direction v ∈ C3. Our goal is moving all points on ℓ in the
direction of v.

S5.2. We select a basis B for the (ghost) line ℓ. Then, fixing a unitary vector v, we
consider the linear subspace µ = SpanC{b + εv : b ∈ B}. For each point i lying
on ℓ, we perturb i as follows. By assumption, i belongs to exactly one or two lines
of CM. If i belongs to two lines ℓ and ℓ′, then we move i to the closest point in the
intersection of the ghost line ℓ̂′ and µ. Otherwise, if i belongs uniquely to the line
ℓ, we move i to the closest point of µ.

The total distance that points have moved is a continuous function in ε′.

Figure 10. From left to right, the figure shows how a triple point can be solved via the line translation
introduced in step S5. The point {a, b, e} in CN is such that m{a,b,e} = 3. Therefore, it suffices to
perform the translation of one of the three lines incident to it. As in Figure 8, the final configuration
realizes a matroid which is dependent for M.

S6. For any k, after having performed steps 4 and 5, all lines incident to Ik ∈ I now
intersect in points whose coordinates can be obtained by adding a vector εv to the
coordinates of Ik (v is supposed to have unit norm). Therefore, we can finally resolve
all multiple points by taking the intersection of the corresponding lines, as in the
right-most representations of Figures 9 and 10.

By construction, the point C′ and its associated matroid N′ has the desired properties.

Before stating our decomposition theorem for quasi-liftable configurations, we state
the following remark which allows us to restrict to connected point-line configurations.

Remark 6. Let I and J be ideals in polynomial rings C[x1, . . . , xn] and C[y1, . . . , ym], respectively,
with prime decompositions I = I1 ∩ · · · ∩ Ik and J = J1 ∩ · · · ∩ Jh. Then,

I + J = I ⊗C[y1, . . . , ym] +C[x1, . . . , xn]⊗ J =
⋂

i=1,...,k
j=1,...,h

Ii + Jj.

Moreover, [29], Theorem 7.4.i ensures that, in our setting, tensor product and finite intersections
commute, and [30], Proposition 5.17.b, implies that the ideals Ii + Jj are prime.

The above remark applies in particular to disconnected configurations, allowing us
not to lose any generality by adding the connectivity assumption to the statement below.
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Corollary 1 (Decomposition theorem for quasi-liftable configurations). Let M be a matroid,
whose point-line configuration CM is connected, quasi-liftable and has the property that every point
lies on at most two lines. Then,

VC (M) = V0 ∪ VM and equivalently
√

IC (M) = I0 ∩ IM, (2)

where V0 is the matroid variety whose associated configuration is a line with n marked points.
Furthermore, the decompositions in (2) are, respectively, irreducible and prime.

Proof. Let C ∈ VC (M). By Proposition 1, we have that C ∈ Vcomb
M . If C ∈ ΓM, then

C ∈ VM = ΓM. Thus, from now on, we assume that C ∈ Vcomb
M \ ΓM and we prove that

C ∈ V0 ∪ VM. If M is a matroid over [n], the point C ∈ C3n realizes a matroid N ≥ M over
[n], which is dependent for M.

Now, if the point-line configuration CN consists of collinear points, then C ∈ V0.
If CN has more than one line, then CM has at least two lines as well. In particular, if some
subconfigurations of CM are flattened in CN , then these subconfigurations are liftable as
CM is quasi-liftable and CN consists of more than one line. Thus, in view of Lemma 5,
we can assume that N is simple. For any line ℓ ∈ LM, there is a well-defined projection
πℓ : C3n → C3m, for some m ≤ n, which deletes the coordinates of the points which are in
CM, but not in CM \ℓ. Now, for any line ℓ, let us denote Mℓ for the simple matroid whose
point-line configuration is CM \ℓ. Then, πℓ(C) ∈ VMℓ

because CM is quasi-liftable. Thus,
C ∈ ⋂ℓ∈L π−1

ℓ (VMℓ
) which is contained in VM by Theorem 5.

3.3. The Ideal of Quasi-Liftable Configurations

We apply the results to compute the generators of an ideal whose radical contains the
ideal of the matroid variety; see Proposition 4. We first set up our notation.

Let M be a matroid over [n] with point-line configuration CM and the collinearity
matrix Λ. Consider the notation of Construction 1. Then, the nonzero entries of Λ are

xi − xj =

[
xi xj
1 1

]
=

xi xj 0
1 1 0
0 0 1

,

for certain 1 ≤ i < j ≤ n, where all columns are the coordinates of points Pi, Pj, and P, in a
frame of reference {R1, R2, P, U} with R1, R2, U being in general position with P.

Let P(Λi,j) be a polynomial in the entries of Λ, which is the determinant of a square
submatrix of Λ itself. In this case, P is the sum of products of k nonzero entries of Λ.

In Construction 1, the choice of P as a reference point of the projective plane was
intended to simplify the notation. In general, one can fix an arbitrary frame of reference
{R1, R2, R3, U} in P2

C, and use it to take coordinates for P = (xP, yP, zP). Let Λ′ be the
matrix constructed as Λ but considering an arbitrary frame of reference. The nonzero
entries of Λ′ are

[PiPjP] =

xi xj xP
yi yj yP
zi zj zP

.

Let P′(Λ′
i,j) be the polynomial defined as P, but with entries in Λ′. Now, the vanishing

of the polynomial P is a projective invariant property. Since changes in coordinates are
projective transformations, P vanishes if and only if the polynomial P′ vanishes.

By multilinearity of determinants, the polynomial P′ is the linear combination of
3k copies of P′ itself, each of them corresponding to a k-tuple of points of the frame of
reference (with repetitions). Each copy is the sum of products of k 3 × 3 determinants of
matrices whose first two columns are as in P and whose last column is a point of the frame
of reference, determined by the corresponding k-tuple (see Example 12). We call each copy
of P′ an extension of P.
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Example 12. Consider a matroid M over [5] with circuits C(M) = {123, 345}. The configuration
CM consists of two lines incident at a point. Take 5 distinct points of P2

C lying on the same line and
a point P not collinear with them. With the above notation and Construction 1, we have

Λ =

(
[23] −[13] [12] 0 0

0 0 [45] −[35] [34]

)
, and Λ′ =

(
[23P] −[13P] [12P] 0 0

0 0 [45P] −[35P] [34P]

)
.

Take P (resp. P′) to be the minor generated by the second and third column of Λ (resp. Λ′). Then,

P = −[13][45], and

−P′ = [13P][45P]
P=xP R1+yP R2+zP R3= [13 xPR1 + yPR2 + zPR3][45 xPR1 + yPR2 + zPR3]

= x2
P[13R1][45R1] + xPyP[13R1][45R2] + xPzP[13R1][45R3]+

+ xPyP[13R2][45R1] + y2
P[13R2][45R2] + yPzP[13R2][45R3]+

+ xPzP[13R3][45R1] + yPzP[13R3][45R2] + z2
P[13R3][45R3].

Here, each summand of P′ is a copy of P associated with a pair (Ri, Rj), with i, j ∈ {1, 2, 3}, which
is an extension of P.

Proposition 4. Let M be a maximal matroid over [n], whose point-line configuration CM is
quasi-liftable. Then the ideal IM is contained in the radical of the ideal I generated by the following:

• The collinearity conditions of CM;
• The extensions of the n − 2 minors of the collinearity matrix ΛCM .

Proof. From Example 8, we know that an n-tuple of different points in C3n realizes M if
and only if it contains at least 3 non-collinear points. Every point P in V(I) belongs to the
interior of the matroid variety VM since, after a suitable change in coordinates, it satisfies
the equality ΛCM (z1 . . . zn)t = (0 . . . 0)t and has (at least) three non-collinear points in the
projective plane (we are considering n − 2 minors). Thus, V(I) ⊂ VM and so IM ⊂

√
I.

In the following sections, we prove that for the quadrilateral set and the 3 × 4 grid,
the two ideals in Proposition 4 are equal. Furthermore, we see that for both examples,
the ideal I is actually radical, and we provide a minimal generating set for I.

4. The Quadrilateral Set

We now apply the results of Section 3 to the quadrilateral set. Furthermore, we provide
a minimal and geometrically meaningful set of generators for the corresponding ideal.
Finally, we outline the method for interpreting these generators from the arrangement,
highlighting the underlying symmetries.

We recall that, as point-line configurations CQS, quadrilateral sets arise from the simple
matroid QS, introduced in Example 4. The matroid QS is realizable over C, thus CQS can
be embedded in P2

C. We take (x y z)-coordinates for 1, . . . , 6, with respect to a fixed frame
of reference {R1, R2, R3, U}. Without loss of generality, we assume that the points of the
frame are in general position with any couple of points of the embedded configuration,
and we encode the coordinates in the matrix:

X =

x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
z1 z2 z3 z4 z5 z6

.

Our aim is to understand the variety VQS, whose ideal, by Proposition 1 is:

IQS =
√
⟨[123]X , [156]X , [246]X , [345]X⟩ : J∞

QS
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where JQS is the principal ideal ⟨[124]X · [125]X · · · [456]X⟩. We achieve this by identifying a
geometrically meaningful set of generators for the ideal IQS.

Notation 8. Let ℓ be a line in L, whose points are P1
ℓ , P2

ℓ and P3
ℓ . Let P, P1, P2 and P3 be points of

the projective plane, not necessarily distinct. Denote as P1
m, P2

m and P3
m the three points of P which

do not belong to ℓ: two of them will be collinear with P1
ℓ (wlog P1

m and P2
m), two with P2

ℓ (wlog P2
m

and P3
m), and two with P3

ℓ (wlog P1
m and P3

m). We denote the following:

QS(ℓ; P1, P2, P3) = [P1
ℓ P1

mP1][P2
ℓ P2

mP2][P3
ℓ P3

mP3]− [P1
ℓ P2

mP1][P2
ℓ P3

mP2][P3
ℓ P1

mP3]

QS(ℓ; P) = [P1
ℓ P1

mP][P2
ℓ P2

mP][P3
ℓ P3

mP]− [P1
ℓ P2

mP][P2
ℓ P3

mP][P3
ℓ P1

mP].

Note that, once the line ℓ and the points P, P1, P2, P3 are fixed, the polynomials above are
well-defined up to the sign. However, for our purposes, we only concern ourselves with their
(non)vanishing.

Example 13. Let us compute the QS-polynomials for ℓ = ℓ123, P1 = P2 = R1 and P3 = R2.

QS(ℓ123; R1, R1, R2) = [15R1][26R1][34R2]− [16R1][25R1][34R2]

=
[ x1 x5 1

y1 y5 0
z1 z5 0

][ x2 x6 1
y2 y6 0
z2 z6 0

][ x3 x4 0
y3 y4 1
z3 z4 0

]
−
[ x1 x6 1

y1 y6 0
z1 z6 0

][ x2 x4 1
y2 y4 0
z2 z4 0

][ x3 x5 0
y3 y5 1
z3 z5 0

]
= −x5y4y6z1z2z3 + x4y5y6z1z2z3 − x3y5y6z1z2z4 + x5y2y6z1z3z4+

+ x3y4y6z1z2z5 − x4y1y6z2z3z5 − x3y2y6z1z4z5 + x3y1y6z2z4z5+

− x4y2y5z1z3z6 + x5y1y4z2z3z6 + x3y2y5z1z4z6 − x5y1y2z3z4z6+

− x3y1y4z2z5z6 + x4y1y2z3z5z6.

Remark 7. We introduce two different multidegrees on the monomials of the ring R = C[x1, . . . , z6].

• The letter multidegree (dx, dy, dz) ∈ (Z≥0)
3, where dx, dy, and dz are, respectively, the

numbers of x, y, and z variables.
• The point multidegree (d1, . . . , d6) ∈ (Z≥0)

6 where di is the number of variables correspond-
ing to coordinates of the point pi for any i = 1, . . . 6.

Notice that, by construction, the QS-polynomials are homogeneous of point multidegree (1, . . . , 1).

We now provide a family of polynomials that vanish when evaluated on the coordi-
nates of the points of a quadrilateral set.

Theorem 6. Let CQS be a quadrilateral set in P2
C. Then, for any line ℓ ∈ LQS, and any three points

P1, P2, P3 ∈ P2
C:

QS(ℓ; P1, P2, P3) = 0.

Proof. We have to show that QS(ℓ; P1, P2, P3) = 0 for any choice of ℓ and points P1, P2, P3.
As a summand of QS(ℓ; P1, P2, P3) vanishes if and only if the other vanishes too, we can
assume, without loss of generality, that the points P1, P2, P3 do not belong to any of the lines
in L. Due to the multilinearity of determinants, the claim follows if QS(ℓ; Ri, Rj, Rk) = 0,
for any line ℓ and any (i, j, k) ∈ {1, 2, 3}3. (Note that we fixed {R1, R2, R3, R1 + R2 + R3} as
the frame of reference.)

We now show the argument for a particular choice of ℓ. It can be easily adapted for
other possible choices. Let us assume ℓ = ℓ123. We want to show that

QS(ℓ; Ri, Rj, Rk) = [15Ri][26Rj][34Rk]− [16Ri][24Rj][35Rk] = 0. (3)

By construction, 6 ∈ ℓ156. Now, {1, 5, 1 + 5} is a frame of reference for the line ℓ156. This
means that there exists a unique choice of α, β ∈ C such that α1 + β5 = 6. Here, it is
important to remark that 1, . . . , 6 are fixed representatives of the corresponding points
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in P2
C, which makes the choice of α and β unique. If we plug this into QS(ℓ; Ri, Rj, Rk),

we obtain
QS(ℓ; Ri, Rj, Rk) = [15Ri][26Rj][34Rk]− [16Ri][24Rj][35Rk]

= [15Ri][26Rj][34Rk]− [1 α1 + β5α1 + β5α1 + β5 Ri][24Rj][35Rk]

multilin.
= [15Ri][26Rj][34Rk]− α[11Ri][24Rj][35Rk]− β[15Ri][24Rj][35Rk]

= [15Ri][26Rj][34Rk]− β[15Ri][24Rj][35Rk].

In this way, we managed to have the same term as the first factor of both products. Via
the same argument, the structure of the quadrilateral set also yields that 4 = α′2 + β′6 and
5 = α′′3 + β′′4 for a unique choice of α′, α′′, β′, β′′ ∈ C. Finally, we have that

QS(ℓ; Ri, Rj, Rk) = [15Ri][26Rj][34Rk]− ββ′β′′[15Ri][26Rj][34Rk] = (1 − ββ′β′′)[15Ri][26Rj][34Rk].

As a consequence, proving (3) is equivalent to show that ββ′β′′ = 1. On the other hand,

5 = α′′3 + β′′ 4

= α′′3 + α′β′′2 + β′β′′ 6

= α′′3 + α′β′′2 + αβ′β′′1 + ββ′β′′5.

Thus, (1 − ββ′β′′)5 = α′′3 + α′β′′2 + αβ′β′′1. Here, on the l.h.s., there is another representa-
tion of point 5; whereas, on the r.h.s., there is a point in the line ℓ123. As far as 5 /∈ ℓ123 by

construction, the equality above holds if and only if both sides give
( 0

0
0

)
; that is if and only

if ββ′β′′ = 1, as desired.

Furthermore, projective transformations keep track of the vanishing of these polynomials.

Lemma 6. The vanishing of a polynomial QS(ℓ; Ri, Rj, Rk) = 0 is a projective invariant property.

Proof. We prove the lemma for the line ℓ123. We need to show that

QS(ℓ123; Ri, Rj, Rk) = [15Ri][26Rj][34Rj]− [16Ri][24Rj][35Rk] = 0

is a projective invariant property. Therefore, we consider T ∈ GL(C, 3) and D ∈ diag(C, 3),
and we write down QS(Tℓ123D; TPD), as follows:

QS(Tℓ123D; TRiD, TRjD, TRkD) = [T1D T5D TRiD][T2D T6D TRjD][T3D T4D TRkD]+

− [T1D T6D TRiD][T2D T4D TRjD][T3D T5D TRkD]

= det T3 det D3([15Ri][26Rj][34Rk]− [16Ri][24Rj][35Rk]).

At this stage, we can see that

QS(Tℓ123D; TRiD, TRjD, TRkD) = 0 ⇐⇒ QS(ℓ123; Ri, Rj, Rk) = 0

which completes the proof. The same argument applies analogously to other choices
of lines.

In [25,26], the vanishing of the bracket polynomials QS(ℓ; R3) is proved to characterize
the liftability of six points in P1

C to a quadrilateral set. More generally, the whole family of
QS-polynomials just introduced offers a characterization of the liftability of a 6-tuple of
collinear points in P2

C to a quadrilateral set. In particular, we prove the following result.

Theorem 7. Let r be a line in P2
C and 1, . . . , 6 distinct points of r. Consider the collection

L = {ℓ123, ℓ156, ℓ246, ℓ345}, where ℓijk is the combinatorial line consisting of points i, j, and k.
Then, the following statements are equivalent:
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i. The points 1, . . . , 6 are the projective image of a quadrilateral set.
ii. The polynomials QS(ℓ; P1, P2, P3) vanish for any ℓ ∈ L and any P1, P2, P3 ∈ P2

C.
iii. The polynomials QS(ℓ; Ri, Rj, Rk) vanish for any ℓ ∈ L and any (i, j, k) ∈ {1, 2, 3}3.
iv. The polynomials QS(ℓ123; Ri, Rj, Rk) vanish for any (i, j, k) ∈ {1, 2, 3}3.
v. The polynomials QS(ℓ123; Ri, Rj, Rk) vanish for any (i, j, k) ∈ {1, 2, 3}3 with i ≤ j ≤ k.

Proof. It is immediate to see that (ii) =⇒ (iii) =⇒ (iv) =⇒ (v).
(i) =⇒ (ii) By Lemma 6, the vanishing of the QS polynomials is a projective invariant

property, thus when six collinear points are the projective image of a quadrilateral set,
QS(ℓ; P1, P2, P3) = 0 where ℓ, P1, P2, and P3 satisfy the assumptions of Theorem 6.

(ii) =⇒ (i) Conversely, let 1, . . . , 6 be collinear points that make the polynomials
QS(ℓ; P1, P2; P3) vanish for ℓ ∈ {ℓ123, ℓ156, ℓ246, ℓ345}. We then computationally verify that
the vanishing of the QS polynomials is equivalent to requiring the collinearity matrix ΛQS
not to have maximal rank.

ΛQS =


[23] −[13] [12] 0 0 0
[56] 0 0 0 −[16] [15]

0 [46] 0 −[26] 0 [24]
0 0 [45] −[35] [34] 0


As a consequence, the linear system ΛQS(z1 . . . z6)

t = (0 . . . 0)t has a solution space of
dimension at least 3. In other words, by Construction 1, there exists a nondegenerate
quadrilateral set whose image via the projection through P on the line r consists of exactly
points 1, . . . , 6.

(iii) =⇒ (ii) The implication is followed by the following equalities of ideals in
C[x1, . . . , z6]:

⟨[123], [156], [246], [345], QS(ℓ; P1, P2, P3) for ℓ ∈ L and P1, P2, P3 ∈ P2
C⟩ =

= ⟨[123], [156], [246], [345], QS(ℓ; Ri, Rj, Rk) for ℓ ∈ L and (i, j, k) ∈ {1, 2, 3}3⟩.

However, the equality of the two ideals holds by the multilinearity of determinants.

(iv) =⇒ (iii) Similarly to the previous implication, we check that:

⟨[123], [156], [246], [345], QS(ℓ; Ri, Rj, Rk) for ℓ ∈ L and (i, j, k) ∈ {1, 2, 3}3⟩ =
= ⟨[123], [156], [246], [345], QS(ℓ123; Ri, Rj, Rk) for (i, j, k) ∈ {1, 2, 3}3⟩.

More generally, if we fix a line ℓ, the polynomials QS(ℓ; Ri, Rj, Rk) together with [123]X,
[156]X , [246]X , and [345]X generate the corresponding polynomials for the other lines.

Assuming that QS(ℓ123; Ri, Rj, Rk) = 0 for any (i, j, k) ∈ {1, 2, 3}3 for any line
ℓ ∈ L \{ℓ123}, we construct a projection ϕ that sends ℓ123 to ℓ and keeps the quadri-
lateral set globally fixed (so that the intersection points in P are just permuted by ϕ). We
can define these projections explicitly. The points {1, 2, 5, 4} are a frame of reference for the
projective plane and each permutation of these four points defines uniquely a projection ϕ
that permutes the 3 diagonal points (3, 6, 14 ∧ 25). If we add the requirement that 14 ∧ 25
is fixed (which is necessary for the ϕ-stability of the quadrilateral set), we find the three
desired projections. By Lemma 6 the vanishing of QS(ℓ123; Ri, Rj, Rk) = 0 is a projective
invariant property. Hence, to obtain all the polynomials QS(ℓ; Ri, Rj, Rk), we can choose
the generators among the polynomials QS(ℓ123, Ri, Rj, Rk).

(v) =⇒ (iv) We check the following equality of ideals in C[x1, . . . , z6]:

⟨[123], [156], [246], [345], QS(ℓ123; Ri, Rj, Rk) for (i, j, k) ∈ {1, 2, 3}3⟩ =
= ⟨[123], [156], [246], [345], QS(ℓ123; Ri, Rj, Rk) for (i, j, k) ∈ {1, 2, 3}3 with i ≤ j ≤ k⟩.
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We point out that a choice of (i, j, k) determines the letters appearing in the terms of
QS(ℓ123; Ri, Rj, Rk). For example, QS(ℓ123; R1, R1, R2) is the sum of monomials of degree
6, where each of them are the product of one x coordinate, two y coordinates, and three
z coordinates. The same holds for QS(ℓ123; R1, R2, R1) and QS(ℓ123; R2, R1, R1). In spite
of that,

QS(ℓ123; R1, R1, R2) ̸= QS(ℓ123; R1, R2, R1) ̸= QS(ℓ123; R2, R1, R1).

In other words, the selection of (i, j, k) determines the letter multidegree of the QS polyno-
mial. However, multiple choices of (i, j, k) can yield the same letter multidegree. Specifi-
cally, having a generator per letter multidegree is sufficient to generate all the polynomials.
The remaining QS-polynomials with the same multidegree are obtained by adding the
corresponding generator to a polynomial combination of [123], [156], [246], and [345],
with coefficients stored in Table 1.

Table 1. This table allows one to reconstruct how the polynomials that have been removed from item
(iii) to item (iv) can be written as a polynomial combination of the generators in (iv). Each block
of rows corresponds to a different letter multidegree. In the first column, we select the excluded
choices of Ri, Rj, Rk, and, in the second one, there is the generator of the ideal in (iv) having the same
letter multidegree. Each of the excluded polynomials is the sum of the corresponding generator and
a combination of [123], [156], [246], and [345] whose coefficients are specified in the corresponding
entry of the table.

i, j, k Gener. Coeff. of [123] Coeff. of [156] Coeff. of [246] Coeff. of [345]

1, 2, 1 1, 1, 2 −y6z4z5 + y5z4z6 y3z2z4 − y2z3z4 −y5z1z3 + y1z3z5 −y6z1z2 + y1z2z6
2, 1, 1 1, 1, 2 −y6z4z5 + y4z5z6 y4z2z3 − y2z3z4 −y3z1z5 + y1z3z5 −y6z1z2 + y2z1z6
1, 3, 1 1, 1, 3 y4y6z5 − y4y5z6 −y3y4z2 + y2y4z3 y3y5z1 − y1y3z5 y2y6z1 − y1y2z6
3, 1, 1 1, 1, 3 y5y6z4 − y4y5z6 −y3y4z2 + y2y3z4 y3y5z1 − y1y5z3 y1y6z2 − y1y2z6
2, 1, 2 1, 2, 2 x5z4z6 − x4z5z6 −x4z2z3 + x3z2z4 −x5z1z3 + x3z1z5 −x2z1z6 + x1z2z6
2, 2, 1 1, 2, 2 x6z4z5 − x4z5z6 −x4z2z3 + x2z3z4 x3z1z5 − x1z3z5 x6z1z2 − x2z1z6
1, 3, 2 1, 2, 3 −x4y6z5 + x4y5z6 x4y3z2 − x4y2z3 −x3y5z1 + x3y1z5 −x2y6z1 + x2y1z6
2, 1, 3 1, 2, 3 −x5y4z6 + x4y5z6 x4y3z2 − x3y4z2 x5y3z1 − x3y5z1 x2y1z6 − x1y2z6
2, 3, 1 1, 2, 3 −x6y4z5 + x4y5z6 x4y3z2 − x2y4z3 −x3y5z1 + x1y3z5 −x6y2z1 + x2y1z6
3, 1, 2 1, 2, 3 −x5y6z4 + x4y5z6 x4y3z2 − x3y2z4 −x3y5z1 + x5y1z3 −x1y6z2 + x2y1z6
3, 2, 1 1, 2, 3 −x6y5z4 + x4y5z6 x4y3z2 − x2y3z4 −x3y5z1 + x1y5z3 −x6y1z2 + x2y1z6
3, 1, 3 1, 3, 3 x5y4y6 − x4y5y6 −x4y2y3 + x3y2y4 −x5y1y3 + x3y1y5 −x2y1y6 + x1y2y6
3, 3, 1 1, 3, 3 x6y4y5 − x4y5y6 −x4y2y3 + x2y3y4 x3y1y5 − x1y3y5 x6y1y2 − x2y1y6
2, 3, 3 2, 2, 3 x4x6z5 − x4x5z6 −x3x4z2 + x2x4z3 x3x5z1 − x1x3z5 x2x6z1 − x1x2z6
3, 2, 2 2, 2, 3 x5x6z4 − x4x5z6 −x3x4z2 + x2x3z4 x3x5z1 − x1x5z3 x1x6z2 − x1x2z6
3, 2, 3 2, 3, 3 −x5x6y4 + x4x6y5 x2x4y3 − x2x3y4 x1x5y3 − x1x3y5 x2x6y1 − x1x6y2
3, 3, 2 2, 3, 3 −x5x6y4 + x4x5y6 x3x4y2 − x2x3y4 −x3x5y1 + x1x5y3 −x1x6y2 + x1x2y6

Applying the characterization in Theorem 7, we now compute a minimal generating
set for IQS.

Theorem 8. The associated ideal IQS of the quadrilateral set is minimally generated as:

IQS = ⟨[123]X , [156]X , [246]X , [345]X , QS(ℓ123; Ri, Rj, Rk) ∀ i ≤ j ≤ k, with i, j, k ∈ {1, 2, 3}⟩. (4)

Proof. For the ease of notation, we denote I for the ideal on the right-hand side of (4). By
Theorem 6, we have that I ⊂ IQS. By numerical computations available on GitHub: https:
//github.com/ollieclarke8787/PointAndLineConfigurations (accessed in February 2024).

We verify that the natural GRevLex term order gives a square-free initial ideal for
I. Thus, the ideal I is radical, and verifying that I ⊃ IQS is equivalent to showing that
V(I) ⊂ V(IQS).

https://github.com/ollieclarke8787/PointAndLineConfigurations
https://github.com/ollieclarke8787/PointAndLineConfigurations
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Let A ∈ C18 be a point in V(I). The coordinates A1
1, A2

1, A3
1, . . . , A1

6, A2
6, A3

6 of A can be
seen as the (x, y, z)-coordinates of 6 points in the projective plane, which can be represented
by the 3 × 6 matrix:

A =

A1
1 A1

2 . . . A1
6

A2
1 A2

2 . . . A2
6

A3
1 A3

2 . . . A3
6


The columns of A generate a realizable matroid MA which corresponds to a point-line
configuration CA (as the columns of A are coordinates of points). Since A ∈ V(I), A
satisfies the determinantal collinearity conditions. Hence, A is a point in the combinatorial
closure of the matroid QS. Corollary 1 ensures that after a suitable perturbation, A becomes
either a realization of the matroid corresponding to a 6-pointed line or a realization of QS.

The fact that A ∈ V(I) implies that the coordinates of A satisfy also the QS poly-
nomials, implying that, if the points of A lie on a line, then A is the projective image of
a quadrilateral set and therefore becomes the realization of a quad-set with an arbitrary
small lifting. This holds also if only some of the points in CA are loops. To check this is
enough to consider the case where we have 5 points on a line and a loop. We want to
verify the existence of a sixth point in the line such that 1, . . . , 6 is the projective image of
a quadrilateral set. To this purpose, following Figure 11, we consider the two lines of the
quadrilateral set that are not involved by the loop point and represent them as collinear
points in the fibers of the nonloops. At this stage, the sixth point of the quadrilateral
set is uniquely determined by the intersection of the corresponding ghost lines, and its
projection on ℓ is the point we wanted. Therefore, A is in the Euclidean closure of ΓQS.
Hence, A ∈ V(IQS).

Figure 11. From left to right, this figure justifies the existence of at least a choice of 6 completing
1, . . . , 5 to a projective image of a quadrilateral set.

We now prove the minimality of the generating set. In particular, we show that all
the polynomials we used to generate I are independent. By reasons of degree and point
multidegree, the generators of degree 3 are polynomially independent over R. Hence,
it is enough to check that generators of degree 6 having different letter multidegree are
polynomially independent over C[x1, . . . , z6]. The fact that all the generators have point
multidegree (1, 1, 1, 1, 1, 1) and letter multidegree fixed by the partition of variables plays a
central role in this proof.

First, we note that any choice of (i, j, k) ∈ 1, 2, 33 results in certain variables not
appearing in the polynomial QS(ℓ123; Ri, Rj, Rk). In Table 2 below, each row corresponds
to a choice of (i, j, k) with i ≤ j ≤ k and indicates the variables that do not appear in the
corresponding generator.
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Table 2. For each generator of degree 6, identified by a choice of i, j, and k in the first column, the table
shows which variables do not appear in the polynomial.

(i, j, k) 1 2 3 4 5 6

(1, 1, 1) x1 x2 x3 x4 x5 x6
(2, 2, 2) y1 y2 y3 y4 y5 y6
(3, 3, 3) z1 z2 z3 z4 z5 z6
(1, 1, 2) x1 x2 y3 - - x6
(1, 1, 3) x1 x2 z3 - - x6
(1, 2, 2) x1 y2 y3 y4 - -
(1, 3, 3) x1 z2 z3 z4 - -
(2, 2, 3) y1 y2 z3 - - y6
(2, 3, 3) y1 z2 z3 z4 - -
(1, 2, 3) x1 y2 z3 - - -

Keeping this in mind, we can deduce that the generators of letter multidegree (3, 3, 0),
(3, 0, 3), (0, 3, 3), namely, the ones corresponding to the first three rows in Table 2, are poly-
nomially independent with respect to the others. For ease of computation, let us focus on
the specific case of QS(ℓ123; R1, R1, R1), which has a letter multidegree of (0, 3, 3) and does
not contain any x variables. Since all the other generators are the sum of monomials contain-
ing x variables, any polynomial combination of them would result in the sum of monomials
with a multidegree of (a, b, c) where a > 0. This demonstrates that QS(ℓ123; R1, R1, R1)
is not contained in the ideal generated by the other generators. An analogous argument
applies to the generators with letter multidegrees of (3, 0, 3) and (3, 3, 0).

Now, let us consider the other generators of degree 6. We show preliminarily the
following claim.

Claim 1. In the notation above, none of the generators having a permutation of (1, 2, 3) as letter
multidegree, i.e., rows 4 to 9 in Table 2, is contained in ⟨[123]X , [156]X , [246]X , [345]X⟩.

Proof of the Claim. If QS(ℓ123; R1, R1, R2) were in the ideal ⟨[123]X , [156]X , [246]X , [345]X⟩,
it would be a polynomial combination of the four generators with at least one nonzero
coefficient of letter multidegree (0, 1, 2). Three x variables never appear, namely x1, x2,
and x6; these appear in [123]X , [156]X , [246]X . If any of these variables appear in a monomial
of the combination, this monomial must be canceled out using the other degree 3 generators
containing the same variable.

Now, assume by contradiction that [123]X is multiplied by a nonzero coefficient ylzmzn
of point multidegree (0, 0, 0, 1, 1, 1). Here l ̸= 4, 5, for reasons of point multidegree. So
the only possibility is y6z4z5. Then, two x1 monomials must be cancelled: x1y2y6z3z4z5 −
x1y3y6z2z4z5. For this purpose, we have to multiply [156]X by y2z3z4 + y3z2z4. The second
term gives rise to an x6 monomial that cannot be canceled for reasons of point multide-
gree. A symmetric argument works starting from [156]X , [246]X . Thus, the coefficients of
[123]X , [156]X , [246]X have to be zero. The only possibility left is that QS(ℓ123; R1, R1, R2) is
the product of [345]X by a homogeneous polynomial of degree 3, letter multidegree (0, 1, 2)
and point multidegree (1, 1, 0, 0, 0, 1). But this can be excluded because such a multiplication
cannot give rise to any of the monomials xaybycz4z5zd appearing in QS(ℓ123; R1, R1, R2).

By symmetry, an equivalent strategy can be performed with the generators of letter
multidegree (1, 1, 3), (1, 2, 2), (1, 3, 3), (2, 2, 3) and (2, 3, 3).

Now, on the contrary, assume that a 6-degree generator is a polynomial combination
of the others, i.e.,

g =
4

∑
i=1

pig3,i +
9

∑
i=1

kig6,i
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where pi ∈ R, ki ∈ k, the g3,i’s are the generators of degree 3 and the g6,i’s are the
generators of degree 6. By reason of the letter multidegree, none of the monomials of g
can arise from the generators of 6-th degree. In addition, the product of a monomial for
a degree 3 generator either gives rise to monomials of the same letter multidegree of g or
to monomials of the same letter multidegree of one of the other generators. This implies,
in turn, that both g and ∑9

i=1 kig6,i are in ⟨[123]X , [156]X , [246]X , [345]X⟩.
If g has a letter multidegree of (1, 2, 3) (possibly permuted), the statement follows because

it leads to a contradiction with the claim. If g is the generator with a letter multidegree of
(2, 2, 2), then we can conclude due to the fact that ∑9

i=1 kig6,i ∈ ⟨[123]X, [156]X, [246]X, [345]X⟩.
Indeed, since the g6,i’s all have different letter multidegrees, this implies that at least one of
the g6,i’s is contained in ⟨[123]X , [156]X , [246]X , [345]X⟩, contradicting Claim 1.

As an immediate consequence of Corollary 2 and Theorem 8, we have the following:

Corollary 2. The circuit variety VC (QS) decomposes irreducibly as

VC (QS) = V0 ∪ VQS = V(⟨[ijk] | {i, j, k} ⊆ {1, . . . , 6}⟩) ∪ V(IQS).

5. The 3 × 4 Grid Matroid

In this section, we focus on the 3 × 4 grid matroid and its defining equations. This
example is chosen based on the work of [24], where a generating set for the matroid ideal is
computed using a specialized algorithm tailored for this configuration. Here, we give a
geometric description of the generators.

In Example 5, we introduced the simple matroid G3
4 , whose point-line configuration

is a 3 × 4 grid. Such matroid is realizable over C and any realization is represented as a
3 × 12 matrix whose columns are coordinates of points in P2

C, with respect to a reference
{R1, R2, R3, U}. In view of Proposition 1, we study the ideal IG3

4
=
√

IC (G3
4)

: J∞
G3

4
of the

algebraic variety VG3
4
.

Notation 9.

• Let ci be a column in LG3
4
, whose points are P1

i , P2
i and P3

i , where the upper index labels the

row. Then, the points in G3
4 \ ci are in natural bijection with a 3 × 3 matrix.

• Let Σ be the set of permutation matrices σ over three elements. For j = 1, 2, 3, we denote as σj

the nonzero entry of the j−th row and as Pj
σ the corresponding point in G3

4 \ ci.
• For k ∈ {1, 2, 3, 4} \ {i} = {k1, k2, k3}, each column ck has a single point paired with a

nonzero entry of σ. We label Qσ,1
k and Qσ,2

k the points in PG3
4

which belong to ck \ {Pj
σ}.

In particular, Qσ,1
k is the point with the lowest index.

• Let P1, . . . , P6 be six points in P2
C, not necessarily distinct. We introduce the polynomials:

G3
4(ci; P1, . . . , P6) = ∑

σ∈Σ
sgn(σ)[P1

i P1
σ P1][P2

i P2
σ P2][P3

i P3
σ P3][Qσ,1

k1
Qσ,2

k1
P4][Qσ,1

k2
Qσ,2

k2
P5][Qσ,1

k3
Qσ,2

k3
P6],

G3
4(ci; P) = ∑

σ∈Σ
sgn(σ)[P1

i P1
σ P][P2

i P2
σ P][P3

i P3
σ P][Qσ,1

k1
Qσ,2

k1
P][Qσ,1

k2
Qσ,2

k2
P][Qσ,1

k3
Qσ,2

k3
P].

The G3
4 polynomials are defined by a sum over all permutation matrices, making

them independent of the bijection between the points of G3
4 \ ci and the entries of a 3 × 3

matrix. This choice only affects the sign of the polynomials. We focus on configurations
that cause the G3

4 polynomials to vanish.

Theorem 9. Let C be a 3× 4 grid configuration in P2
C. Then, for any column ci and any six points

P1, . . . ,P6 in general position with respect to any couple of points of the configuration, G3
4(ci; P1, . . . , P6)

= 0.
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Proof. Due to the multilinearity of determinants, the statement follows if G3
4(ci; Ri1, . . . , Ri6) = 0,

for any i = 1, . . . 4 and any (i1, . . . , i6) ∈ {1, 2, 3}6, where we have fixed {R1, R2, R3, R1 +
R2 + R3} as the frame of reference on P2

C. We now prove the statement for a particular
choice of i. It can be easily repeated for other possible choices. Let us assume i = 1. We
want to show that

G3
4(c1; Ri1 , . . . , Ri6) = [1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+ (5)

+ [1 7 Ri1 ][2 11 Ri2 ][3 6 Ri3 ][4 5 Ri4 ][8 9 Ri5 ][10 12 Ri6 ]+

+ [1 10 Ri1 ][2 5 Ri2 ][3 9 Ri3 ][4 6 Ri4 ][7 8 Ri5 ][11 12 Ri6 ]+

− [1 4 Ri1 ][2 11 Ri2 ][3 9 Ri3 ][5 6 Ri4 ][7 8 Ri5 ][10 12 Ri6 ]+

− [1 7 Ri1 ][2 5 Ri2 ][3 12 Ri3 ][4 6 Ri4 ][8 9 Ri5 ][10 11 Ri6 ]+

− [1 10 Ri1 ][2 8 Ri2 ][3 6 Ri3 ][4 5 Ri4 ][7 9 Ri5 ][11 12 Ri6 ]

= 0.

We rewrite all terms of the polynomial as multiples of the first one. So, we consider
the following:

• {1, 4, 1 + 4} is a basis for the projective line r1. Thus, there exists a unique choice of
a, a′, b, b′ ∈ C such that: (i) 7 = a0 + b4 and (ii) 10 = a′0 + b′4.

• {2, 8, 2 + 8} is a basis for the projective line r2. Thus, there exists a unique choice of
c, c′, d, d′ ∈ C such that: (iii) 5 = c2 + d8 and (iv) 11 = c′2 + d′8.

• {3, 12, 3 + 12} is a basis for the projective line r3. Thus, there exists a unique choice of
e, e′, f , f ′ ∈ C such that: (v) 6 = e3 + f 12 and (vi) 9 = e′3 + f ′12.

• {5, 6, 5 + 6} is a basis for the projective line c2. Thus, there exists a unique choice of
α, β ∈ C such that: (vii) 4 = α5 + β6.

• {7, 9, 7 + 9} is a basis for the projective line c3. Thus, there exists a unique choice of
γ, δ ∈ C such that: (viii) 8 = γ7 + δ9.

• {10, 11, 10 + 11} is a basis for the projective line c4. Thus, there exists a unique choice
of ε, ζ ∈ C such that: (ix) 12 = ε10 + ζ11.

Here, it is important to remark that 0, . . . , 12 are fixed representatives of the corresponding
points in P2

C, which makes the choice of the coefficients in (i)–(ix) unique. Now, we exploit
(i)–(ix) to modify the columns of the matrices showing up in the second, third, fourth, fifth
and sixth summands of G3

4(c1; Ri1 , . . . , Ri6). By multi-linearity, we obtain:

G3
4(c1; Ri1 , . . . , Ri6) = 1 · [1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+

− bd′ f βγζ[1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+

− b′d f ′αδε[1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+

− d′ f ′δζ[1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+

− bdαγ[1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]+

− b′ f βε[1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]

= (1 − bd′ f βγζ − b′d f ′αδε − d′ f ′δζ − bdαγ − b′ f βε)·
· [1 4 Ri1 ][2 8 Ri2 ][3 12 Ri3 ][5 6 Ri4 ][7 9 Ri5 ][10 11 Ri6 ]

As a consequence, the claim is equivalent to bd′ f βγζ + b′d f ′αδε + d′ f ′δζ + bdαγ + b′ f βε = 1.
However,



Mathematics 2024, 12, 3041 29 of 34

4
(vii)
= α5 + β6

(iii,v)
= cα2 + eβ3 + dα8 + f β12

(viii,ix)
= cα2 + eβ3 + dαγ7 + dαδ9 + e f β10 + f βζ11

(i,ii,iv,vi)
= ∗11 + ∗22 + ∗33 + (bdαγ + b′ f βε)4 + d′ f βζ8 + d f ′αδ12

(viii,ix)
= ∗11 + ∗22 + ∗33 + (bdαγ + b′ f βε)4 + d′ f βγζ7 + d′ f βδζ9 + d f ′αδε10 + d f ′αδζ11

(i,ii,iv,vi)
= ∗11 + ∗22 + ∗33 + (bd′ f βγζ + b′d f ′αδε + bdαγ + b′ f βε)4 + dd′ f ′αδζ8 + d′ f f ′βγζ12

(iii,v)
= ∗11 + ∗22 + ∗33 + (bd′ f βγζ + b′d f ′αδε + bdαγ + b′ f βε)4 + d′ f ′αδζ5 + d′ f ′βδζ6

(viii)
= ∗11 + ∗22 + ∗33 + (bd′ f βγζ + b′d f ′αδε + d′ f ′δζ + bdαγ + b′ f βε)4,

which implies that:

(1 − bd′ f βγζ − b′d f ′αδε − d′ f ′δζ − bdαγ − b′ f βε)4 = ∗11 + ∗22 + ∗33.

Here, on the l.h.s., there is another representation of point 6; conversely, on the r.h.s., there is
a point in the line c1. Since by construction 4 /∈ c1, the equality above may hold if and only

if both sides give
( 0

0
0

)
, that is if and only if bd′ f βγζ + b′d f ′αδε+ d′ f ′δζ + bdαγ+ b′ f βε = 1.

The thesis follows.

Furthermore, projections keep track of the vanishing of these polynomials.

Lemma 7. The vanishing of the polynomial G3
4(cr; Ri1 , . . . , Ri6) is a projective invariant property.

Proof. We prove the lemma for the column c1. We need to show that

G3
4(c1; P1, . . . , P6) = ∑

σ∈Σ
sgn(σ)[1P1

σ P1][2P2
σ P2][3P3

σ P3][Qσ,1
k1

Qσ,2
k1

P4][Qσ,1
k2

Qσ,2
k2

P5][Qσ,1
k3

Qσ,2
k3

P6] = 0

is a projective invariant property. We consider T ∈ GL(C, 3) and D ∈ diag(C, 3) and we
write down

G3
4(Tc1D; TP1D, . . . , TP6D) = ∑

σ∈Σ
sgn(σ)[T1D TP1

σ D TP1D][T2D TP2
σ D TP2D]·

· [T3D TP3
σ D TP3D][TQσ,1

k1
D TQσ,2

k1
D TP4D]·

· [TQσ,1
k2

D TQσ,2
k2

D TP5D][TQσ,1
k3

D TQσ,2
k3

D TP6D]

= det T3 det D3
(

∑
σ∈Σ

sgn(σ)[1P1
σ P1][2P2

σ P2][3P3
σ P3]·

· [Qσ,1
k1

Qσ,2
k1

P4][Qσ,1
k2

Qσ,2
k2

P5][Qσ,1
k3

Qσ,2
k3

P6]

)
.

We observe that

G3
4(Tc1D; TP1D, . . . , TP6D) = 0 ⇐⇒ G3

4(c1; P1, . . . , P6) = 0,

which completes the proof for c1. The analogous proof works for other choices of ci.

The family of G3
4 polynomials introduced in Theorem 9 characterizes the liftability of

12-tuples of collinear points to a 3 × 4 grid. Specifically, the following holds.
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Theorem 10. Let r be a line in P2
C and 1, . . . , 12 distinct points of r. Consider the collection

L = {c1 = {1, 2, 3}, c2 = {4, 5, 6}, c3 = {7, 8, 9}, c4 = {10, 11, 12}, r1 = {1, 4, 7, 10},
r2 = {2, 5, 8, 11}, r3 = {3, 6, 9, 12}}, where each of the tuples is the combinatorial line consisting
of the points thereby contained. Then, the following statements are equivalent:

i. The points 1, . . . , 12 are projective image of a 3 × 4 grid.
ii. The polynomials G3

4(ci; P1, . . . , P6) = 0 vanish for any ci ∈ L and any P1, . . . , P6 ∈ P2
C.

iii. The polynomials G3
4(ci; Ri, . . . , Rn) vanish for any ci ∈ L and any (i, j, k, l, m, n) ∈ {1, 2, 3}6.

iv. The polynomials G3
4(c1; Ri, . . . , Rn) vanish for any (i, j, k, l, m, n) ∈ {1, 2, 3}6.

v. The polynomials G3
4(c1; Ri, . . . , Rn) vanish for any (i, j, k, l, m, n) ∈ {1, 2, 3}6 with

i ≤ j ≤ k ≤ l ≤ m ≤ n.

Proof. It is immediate to see that (ii) =⇒ (iii) =⇒ (iv) =⇒ (v).
(i) =⇒ (ii) By Lemma 7, the vanishing of the G3

4 polynomials is a projective invariant
property, and so, if twelve collinear points are the projective image of a 3 × 4 grid, then
G3

4(ci; P1, . . . , P6) = 0 where ci, P1, . . . , P6 satisfy the assumptions of Theorem 9.
(ii) =⇒ (i) We now consider twelve collinear points 1, . . . , 12 which satisfy the van-

ishing of the polynomials G3
4(ci; P1, . . . , P6), for any choice of ci ∈ L, and any choice of

P1, . . . , P6 ∈ P2
C. Let P be a point which does not lie on the line of points 1, . . . , 12.

Claim 2. The condition that the polynomials G3
4(ci; P1, . . . , P6) vanish for any choice of ci ∈ L

and any choice of P1, . . . , P6 ∈ P2
C implies that the collinearity matrix ΛG3

4
has rank ≤ 9.

ΛG3
4
=



[2 3] −[1 3] [1 2] 0 0 0 0 0 0 0 0 0
0 0 0 [5 6] −[4 6] [4 5] 0 0 0 0 0 0
0 0 0 0 0 0 [8 9] −[7 9] [7 8] 0 0 0
0 0 0 0 0 0 0 0 0 [11 12] −[10 12] [10 11]

[4 7] 0 0 −[1 7] 0 0 [1 4] 0 0 0 0 0
[4 10] 0 0 −[1 10] 0 0 0 0 0 [1 4] 0 0
[7 10] 0 0 0 0 0 −[1 10] 0 0 [1 7] 0 0

0 0 0 [7 10] 0 0 −[4 10] 0 0 [4 7] 0 0
0 [5 8] 0 0 −[2 8] 0 0 [2 5] 0 0 0 0
0 [5 11] 0 0 −[2 11] 0 0 0 0 0 [2 5] 0
0 [8 11] 0 0 0 0 0 −[2 11] 0 0 [2 8] 0
0 0 0 0 [8 11] 0 0 −[5 11] 0 0 [5 8] 0
0 0 [6 9] 0 0 −[3 9] 0 0 [3 6] 0 0 0
0 0 [6 12] 0 0 −[3 12] 0 0 0 0 0 [3 6]
0 0 [9 12] 0 0 0 0 0 −[3 12] 0 0 [3 9]
0 0 0 0 0 [9 12] 0 0 −[6 12] 0 0 [6 9]


Proof of the Claim. We aim to prove that all 10 minors of the matrix ΛG3

4
vanish when

evaluated at the coordinates of points 1 through 12. In considering the 10 minors of
the matrix ΛG3

4
, we note that each line contains the variables of three collinear points.

Specifically, we can introduce the following partition of the rows of the matrix ΛG3
4
:

• Rows C = {I, I I, I I I, IV} correspond to the columns of the grid.
• Rows R1 = {V, VI, VII, VII I} correspond to the first row of the grid.
• Rows R2 = {IX, X, XI, XII} correspond to the second row of the grid.
• Rows R3 = {XII I, XIV, XV, XVI} correspond to the third row of the grid.

The submatrices of ΛG3
4

formed by the rows in one of the Ri’s and the corresponding

nonzero columns have rank 2. Thus, whenever a 10 × 10 submatrix of ΛG3
4 contains

three rows of one of the Ri’s, the corresponding minor is automatically 0. Consequently,
the only minors that can possibly be nonzero are those generated by a selection of rows
including the four rows from C and two rows from each Ri. Furthermore, the choice of
two rows in each of the Ris does not affect the final computation of the 10 minors. This
is because the determinant of a matrix remains unchanged if one replaces two rows with
linear combinations of them.
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To sum up, after having chosen a 10 × 10 submatrix of ΛG3
4

there are only three
possible patterns for its nonzero entries, up to switching its columns and rows.

◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦
◦ ◦




◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦




◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦


In each of the matrices among the patterns above, there are three clear blocks of columns.
Each of these blocks corresponds to one of the rows of the grid. Since the rows of the grid
play a symmetric role, up to relabeling the points, we can associate the leftmost block with
r1, the central block with r2, and the rightmost block with r3. This reduces the study cases
to 6 minors having the first pattern, 4 minors having the second pattern, and 12 minors
having the third pattern.

These 10 minors are all contained in the ideal generated by the polynomials G3
4(ci; (0, 0, 1)t),

as shown in the computations available on GitHub (accessed in 10 February 2024).

It follows from the claim that the linear system ΛG3
4
(z1 . . . z12)

t = (0 . . . 0)t has a
solution space of dimension at least 3. In other words, it is possible to choose z1, . . . , z12
such that

[2 3]·z1−[1 3]·z2+[1 2]·z3=[5 6]·z4−[4 6]·z5+[4 5]·z6=[8 9]·z7−[7 9]·z8+[7 8]·z9=[11 12]·z10−[10 12]·z11+[10 11]·z12=0

[4 7]·z1−[1 7]·z4+[1 4]·z7=[4 10]·z1−[1 10]·z4+[1 4]·z10=[7 10]·z1−[1 10]·z7+[1 7]·z10=[7 10]·z4−[4 10]·z7+[4 7]·z10=0

[5 8]·z2−[2 8]·z5+[2 5]·z8=[5 11]·z2−[2 11]·z5+[2 5]·z11=[8 11]·z2−[2 11]·z8+[2 8]·z11=[8 11]·z5−[5 11]·z8+[5 8]·z11=0

[6 9]·z3−[3 9]·z6+[3 6]·z9=[6 12]·z3−[3 12]·z6+[3 6]·z12=[9 12]·z3−[3 12]·z9+[3 9]·z12=[9 12]·z6−[6 12]·z9+[6 9]·z12=0

and such that the points
( xi

1
zi

)
for i = 1, . . . , 12 span the whole projective plane. This ensures

the existence of a nondegenerate 3 × 4 grid whose image via the projection through P on
the line r consists exactly of points 1, . . . , 12.

(iii) =⇒ (ii) The implication follows because the polynomials in (ii) and (iii) generate
the same ideal by the multilinearity of determinants.

(v) =⇒ (iii) The implication follows from direct computation. For each polynomial
g = G3

4(ci; Ri, . . . , Rn), we verify that g belongs to the ideal generated by 3 minors arising
from the collinearity constraints and the polynomials in (v). The code is available on
GitHub (accessed in 10 February 2024).

This characterization is crucial to provide a minimal generating set for the ideal IG3
4
.

Theorem 11. Let G3
4 be the simple matroid underlying the grid configuration with 3 rows and 4

columns, and let IG3
4

denote the ideal of the matroid variety. Then,

IG3
4
= ⟨[1 2 3], . . . , [10 11 12], G3

4(c1; Ri, Rj, Rk, Rl , Rm, Rn) ∀ i ≤ j ≤ k ≤ l ≤ m ≤ n,

with i, j, k, l, m, n ∈ {1, 2, 3}⟩,

where [1 2 3], . . . , [10 11 12] are the collinearities given by the grid.

Proof. For ease of notation, we denote I for the ideal on the right-hand side of the above
equation. By Theorem 9, we have that I ⊂ IG3

4
. We prove the converse inclusion in the

following 3 steps.
V(I) = V(IG3

4
)V(I) = V(IG3

4
)V(I) = V(IG3

4
). We prove this equality by double inclusion. Since I ⊂ IG3

4
, we have that

VG3
4
⊆ V(I). We prove V(I) ⊂ V(G3

4). Let A ∈ C36 be a point in V(I). The coordinates

https://github.com/ollieclarke8787/PointAndLineConfigurations
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A1
1, A2

1, A3
1, . . . , A1

12, A2
12, A3

12 of A can be seen as the (x, y, z)-coordinates of 12 points in the
projective plane. These can be represented with the following 3 × 12 matrix:

A =

A1
1 A1

2 . . . A1
12

A2
1 A2

2 . . . A2
12

A3
1 A3

2 . . . A3
12

.

The columns of A generate a realizable matroid MA which corresponds to a point-line
configuration CA (as the columns of A are coordinates of points). Since A ∈ V(I), A
satisfies the determinantal collinearity conditions. Hence, A is a point in the combinatorial
closure of the matroid associated with the grid configuration G3

4 . Corollary 1 ensures that A
is close either to a realization of the matroid corresponding to a line with 12 marked points
or to a realization of G3

4 .
The fact that A ∈ V(I) implies that the coordinates of A satisfy also the G3

4 polynomials,
implying that, if the points of A lie on a line, then they can be lifted to a 3 × 4 grid. This is
true also in the case of having 11 points on a line and a loop, indeed we can always find a
12th point on the line such that 1, . . . , 12 are the projective image of a 3 × 4 grid. Among the
11 points there is a 3 × 3 subgrid which can always be lifted by Remark 10. The two other
points are determined by the intersection of this grid with the fibres and the last one comes
consequently (see Figure 12). Now, via the perturbation procedure, we conclude that A is
in the Euclidean closure of ΓG3

4
. Hence, A ∈ V(IG3

4
).

Figure 12. From left to right, this figure justifies the existence of at least a choice of 12 completing
1, . . . , 11 to a projective image of a 3 × 4 grid.

The ideal IG3
4

IG3
4

IG3
4

is radical. The circuit ideal of the 3 × 4 grid is radical by the explicit
computation in [24], where the authors show that the circuit ideal is the intersection of two
prime ideals, hence it is radical. We also have that IG3

4
=

√
I. In addition, in the proof of

Theorem 10, we have computed in Macaulay2 that I is equal to one of the prime ideals in
their decomposition, by reducing their generators modulo the G3

4 polynomials, which all
reduce to zero. Thus, as I is a radical ideal, IG3

4
= I.

Minimal generating set. To prove the minimality of the generating set, we show that none
of the generators belong to the ideal generated by the others. This is verified numerically,
and the code is available on GitHub (accessed in 10 February 2024).

As a direct consequence of Corollary 1 and Theorem 11, we have

Corollary 3. The circuit variety VC (G3
4)

decomposes irreducibly as

VC (G3
4)

= V0 ∪ VG3
4
= V(⟨[ijk] | {i, j, k} ⊆ {1, . . . , 12}⟩) ∪ V(IG3

4
).

6. Conclusions

We conclude this paper by outlining several potential extensions of our work. Our
main focus has been the challenging task of identifying the generators of the matroid
ideal IM. Classical tools like the Grassmann–Cayley algebra can be used to construct such
polynomials. However, a complete characterization of these polynomials remains elusive,

https://github.com/ollieclarke8787/PointAndLineConfigurations
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primarily due to the saturation step involved in constructing IM, which encodes matroid
independence relations and may introduce additional polynomials beyond those generated
by circuit relations [7,18].

In this paper, we introduced a new geometric notion, “liftability”, which we used
to study the varieties associated with matroids and their defining equations. We showed
that when a matroid is liftable, the circuit variety and matroid variety coincide. In cases
where M is quasi-liftable, the circuit variety can be expressed as the union of the matroid
variety and the variety of a line. Finding an irreducible decomposition of matroid varieties
in general, however, remains a difficult problem, and proving irreducibility is known only
for specific cases. For instance, the matroid varieties of positroids are irreducible [31],
possessing unique combinatorial structures [32–34]. Other families of matroids for which
irreducibility has been studied include forest-type point-line configurations, as well as
nilpotent, solvable [35], and paving matroids [36]. An interesting problem is to identify
additional families of matroids for which this property can be characterized.

In this paper, we presented two explicit examples of matroids—namely, the 3 × 4 grid
and the quadrilateral set—where we computed all their defining equations and determined
their irreducible decompositions. However, Theorem 1 applies to a broader class of ma-
troids beyond these examples. A key question for future investigation is to identify other
matroids that are liftable (Definition 13) or quasi-liftable (Definition 14). One important
open problem is to establish a combinatorial criterion that guarantees the applicability
of our theorem. Another promising direction is to develop sufficient conditions for the
liftability of higher-rank matroids, as suggested by our results in Section 3.

Notably, the grid matroids naturally arise in the study of conditional independence
models in statistics While our results are specifically demonstrated for the 3 × 4 grid, they
may offer insights into more general cases of s × t grids. It would be valuable to explore the
existence of nontrivial polynomials for higher-dimensional grids, as well as the irreducible
decompositions of their varieties.
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