
S KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

MINING SETS OF PATTERNS

Promotor :

Prof. Dr. L. DE RAEDT

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Albrecht ZIMMERMANN

May 2009

S KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

MINING SETS OF PATTERNS

Jury :

Prof. Dr. ir. J. Berlamont, voorzitter

Prof. Dr. L. De Raedt, promotor

Prof. Dr. ir. H. Blockeel

Prof. Dr. B. Berendt

Prof. Dr. B. Goethals (Universiteit Antwerpen, Belgium)

Prof. Dr. A. Siebes (Universiteit Utrecht, Netherlands)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Albrecht ZIMMERMANN

U.D.C. 681.3∗I26

May 2009

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

ISBN 978-94-6018-077-4
D/2009/7515/60

Abstract

Local pattern mining is an integral part of a variety of approaches in data mining
and machine learning. Especially in data mining, a lot of research exists on how
to mine local patterns efficiently from large data bases. As a side-effect, the
resulting pattern collections are far too big to be useful. In machine learning,
on the other hand, local patterns are ingredients to more complex models used
for classification, or clustering, for instance.

In both cases, efficiently and effectively assembling those local patterns into
sets of patterns is an important task. In this thesis, we present a in-depth
discussion of various aspects of pattern set mining.

The thesis has three main contributions. The first one is the introduction of
a formal framework for pattern set mining as a distinct task. To the best of our
knowledge, this is the first time that such a formal definition has been given.
By identifying types of pattern sets, properties of those types, and developing
constraints based on these properties, the framework enables the principled
discussion of existing and future pattern set mining techniques.

As a direct benefit, in a second step, we leverage the framework for the
discussion of existing approaches from data mining and machine learning. We
identify the two main approaches to pattern set mining, post-processing and
iterative mining, and characterize existing heuristic techniques. Following our
discussion, we suggest an exhaustive alternative to existing heuristic data mining
techniques, as well as possibilities for the upgrade of those techniques. Addi-
tionally, we inspect the local pattern mining approaches to which most pattern
set mining techniques from machine learning are coupled and argue that they
can be replaced by different methods.

Finally, to validate our theoretical findings, we perform a number of ex-
perimental evaluations of existing and proposed systems. We show that an
exhaustive post-processing method does indeed allows us to perform constraint-
based pattern set mining. We also evaluate the effect of heuristic parameters,
such as orders and quality measures, for heuristic post-processing. Additionally,
we explore the application of exhaustive local pattern mining in iterative pat-
tern set mining, showing both its applicability. A surprising finding in this last
setting is that exhaustive methods, guided by iterative mining, are not more
computationally expensive than their heuristic counterparts.

1

2

Acknowledgments

Whenever I was thinking about a potential academic career several years ago,
there was one statement that I repeated time and again to friends and family:
“I will not try and get a Ph.D.!”. This was before I enjoyed the research I
had to do for my diploma thesis so much that I wanted more. This smaller
research project did not prepare me for the rougher patches of Ph.D. work
though, and I would not have been able to complete my work and write this
thesis without the support of a lot of people. First and foremost, I would like
to thank my supervisor Luc De Raedt. From waking my interest in machine
learning and data mining in the first place through his lectures, all the way to
putting me in a position to attain my Ph.D. successfully, he has been a source
of inspiration, motivation and insight. He constantly encouraged me to look
outside the immediate area I was working in, to focus on questions rather than
answers, and whenever I felt that I was at a dead end, he showed me that it was
in fact a fork in the road. He also introduced me to other excellent researchers
from around the world, and finally, he exhibited astonishing patience with me.

My colleagues in Freiburg and Leuven had also a significant effect on my
work and my life. Specifically, I would like to thank Björn Bringmann whose
working style and temperament complement mine so well that we managed to
succeed with a number of projects, from papers to presentations to workshop
organizations – usually at the latest hour. My other office mates were also
invaluable: Siegfried Nijssen who seems to know the answer to any question and
if not, will know where to look (prompting Björn to dub him “The Oracle”), and
Anton and Tias who gave me a fresh perspective on the field and continuously
reminded me not to take myself too serious. It would take too much time and
space to comment on every member of the groups in Freiburg and Leuven, even
though they all merit it, so I will only point to a few. Kurt Driessens and
Kristian Kersting taught me that a presentation does not have to be dry to
be informative, Joaquin Vanschoren and Fabrizio Costa always allowed me to
distract them with meta-discussions, Niels Landwehr proved to be “The Oracle
Mk.II” and was very helpful in the final phase of my Ph.D., as was Daan Fierens
– and Elisa Fromont introduced me to Poker and correctly predicted that I would
not be very good at it once real money got involved.

Maybe the most surprising characteristic of our field is its flat hierarchies and
I had the pleasure to meet many accomplished researchers and draw inspiration
from them. I am lucky to have four of them, Bettina Berendt, Hendrik Bloc-

3

4

keel, Bart Goethals, and Arno Siebes, serving on my Ph.D. committee. Their
comments on the initial version of this thesis greatly helped me to put things
into perspective and make the final text far better than it initially was. I would
also like to thank Johannes Fürnkranz for making me understand quite a few
things about pattern mining and rule learning, and, once again, for his patience.
I also thank Prof. Jean Berlamont for chairing my defense.

I gratefully acknowledge the financial support received for the work per-
formed during this thesis from the following organizations: European Union
IST-2000-26469 project ”consortium on discovering knowledge with Inductive
Queries (CINQ)”, European Union FP6-516169 project on ”Inductive Queries
for Mining Patterns and Models”, and the BOF-DOC Grant of the KU Leuven.

Last but not least, I want to thank my family and friends for all the support
they gave me. My parents were always there when I needed to step back and
recharge after stressful times and didn’t mind me working on Christmas morning
too much. My brother never understood that his achievements are far more
impressive than mine and encouraged me whenever its was necessary. Wolfgang
and Veeck (and many others) were a source of strength and gave me examples
to aspire to. Marie, finally, made working weekends downright enjoyable and
always motivated me to work for “the greater good”.

Contents

Introduction 14

I Foundations 29

Overview of Part I 31

1 Patterns, Constraints, Sets of Patterns 33
1.1 Patterns . 34

1.1.1 A priori properties . 36
1.1.2 A posteriori properties . 37
1.1.3 Constraints . 40
1.1.4 Properties of constraints 41

1.2 KDD Tasks . 42
1.2.1 Concept learning . 42
1.2.2 Subgroup discovery . 43
1.2.3 Clustering . 44

1.3 Pattern Sets . 45
1.3.1 Types of pattern sets . 46
1.3.2 A priori properties . 47
1.3.3 A posteriori properties . 50
1.3.4 Constraints . 52
1.3.5 Properties of constraints 54

1.4 Summary . 61

2 Discussing Algorithms 63
2.1 Exhaustive Search . 65

2.1.1 Complete mining . 65
2.1.2 Top-k mining . 76
2.1.3 Exhaustive post-processing for pattern set mining 80

2.2 Heuristic Techniques for Mining 81
2.2.1 Beam search . 82
2.2.2 Order-restricted hill-climbing 83
2.2.3 Upper-bound ordered hill-climbing 85

5

6 CONTENTS

2.2.4 Heuristic post-processing techniques for pattern set mining 85

2.3 Iterative Mining . 88

2.3.1 Sequential mining . 88

2.3.2 Sequential pattern set mining 91

2.3.3 Parallel mining . 92

2.3.4 Parallel pattern set mining 95

2.3.5 Iterative pattern set mining beyond sequential and paral-
lel mining . 95

2.4 Summary . 96

Conclusion of Part I 97

II Pattern Set Mining as Post-processing 101

Overview of Part II 103

3 Mining Unordered Sets 105

3.1 Exhaustive search under constraints 106

3.1.1 Experiment 1: Evaluating conjunctions anti ∧ mono . . . 106

3.1.2 Experiment 2: Classifier construction 110

3.1.3 Conclusions . 111

3.2 Heuristic search . 112

3.2.1 Notions . 112

3.2.2 Order-restricted pattern set mining 113

3.2.3 Quality measures . 114

3.2.4 Ordering relations . 117

3.2.5 Upper-bound ordered pattern set mining 118

3.2.6 Reformulating the quality measures 118

3.2.7 Using bounds to reduce complexity 120

3.2.8 Experimental 1: size and partitions of pattern sets, order-
restricted hill-climbing . 124

3.2.9 Experimental 2: Comparing the prediction quality of se-
lection methods . 130

3.2.10 Experimental 3: Comparison to pattern teams 133

3.2.11 Conclusions . 133

3.3 Summary . 134

4 Evaluating the Effects of Orders 135

4.1 CTC - Order by top-k mining . 136

4.1.1 Experimental evaluation 138

4.2 CBA and CBC . 142

4.2.1 Experimental evaluation 144

4.2.2 Conclusions . 146

4.3 Summary . 147

CONTENTS 7

Conclusion of Part II 147

III Iterative Pattern Set Mining 151

Overview of Part III 153

5 Sequential Mining 155
5.1 Sequential covering . 156

5.1.1 Experimental evaluation 158
5.1.2 Conclusions . 162

5.2 Sequential re-weighting . 163
5.2.1 Experimental evaluation 164
5.2.2 Conclusions . 167

5.3 Summary . 167

6 Parallel Mining 169
6.1 CG-Clus – tree sets for conceptual clustering 171

6.1.1 Experiment 1: Cobweb vs CG-Clus 172
6.1.2 Experiment 2: Conceptual Cluster-mining vs CG-

Clus . 175
6.1.3 Conclusions . 179

6.2 Tree sets of tree patterns for classification 179
6.2.1 Experiment 1: Different techniques on XML data 180
6.2.2 Experiment 2: Mutagenicity Data 183
6.2.3 Conclusions . 185

6.3 Ensemble Trees . 186
6.3.1 New notions of matching 187
6.3.2 Experimental evaluation 189
6.3.3 Related approaches . 195
6.3.4 Conclusions . 197

6.4 Summary and Future Work Directions 198

Conclusion of Part III 199

IV Round-up 203

Summary and Future Work 205

Bibliography 210

Publication List 218

Biography 220

8 CONTENTS

List of Figures

1.1 The tree t is embedded in t′. 36
1.2 A labeled tree representing the tree set from Example 1.3.2 . . . 47

2.1 Complete lattice over the pattern space for items a, b, c, d, e . . . 64
2.2 General coverage space . 67
2.3 Support isometrics in coverage space 68
2.4 Support pruning in coverage space 69
2.5 χ2-isometrics in coverage space 69
2.6 WRAcc-isometrics in coverage space 70
2.7 χ2 pruning in coverage space . 71
2.8 Confidence isometrics in coverage space 72
2.9 Inconsistency of näıve maxima 75
2.10 Itemset enumeration tree annotated with scores/upper bounds . 78
2.11 Changes in target attribute’s distribution during re-weighting . . 90
2.12 Changes in target attribute’s distribution during removing 90
2.13 Original distribution . 94
2.14 Changes in target attribute’s distribution after the first split . . . 94

3.1 Relationship between patterns and the partition 114
3.2 Bitstrings denoting presence (1) and absence (0) of patterns . . . 115
3.3 Partition fraction traded off against pattern set size 126
3.4 Illustrating the clustering criterion 128
3.5 Best cross-validated C4.5 accuracies on Tic-Tac-Toe 131
3.6 A visualisation of S∗ for Tic-Tac-Toe 5 132
3.7 C4.5 cross-validated accuracies for different representations . . . 132

4.1 Error rates for different classification strategies for the CSLOG1-
2 setting . 140

4.2 Error rates for different classification strategies for the CSLOG2-
3 setting . 140

4.3 Error rates for different classification strategies for the CSLOG12-
3 setting . 141

4.4 Error rates for different classification strategies for the CSLOG3-
1 setting . 141

9

10 LIST OF FIGURES

6.1 A tree set as produced by the Tree2 algorithm 180
6.2 Accuracies and size in rules of the different approaches 181
6.3 A molecule with the encoding N−c1ccc(cc1)−O−c2ccc(cc2)−[Cl]

and the corresponding fragment-tree 184
6.4 Splits of the data by . 188
6.5 Split of the data by . 188
6.6 Split of the data by . 189
6.7 Split of the data by three patterns, exploiting their implicit pre-

dictions . 189
6.8 Binary class data and decision surfaces of three discriminatory

rules . 192
6.9 Set of trees created by Bagging 196
6.10 Ordered set of trees created by Boosting 196
6.11 Option tree - a tree set of tree sets 197

List of Algorithms

1 The general level-wise algorithm 66
2 The general level-wise algorithm with pruning 66
3 The general level-wise algorithm with upper-bound pruning . . . 73
4 Multi-target upper bound calculation for σcum(spe(p)) 76
5 The general level-wise algorithm for top-k mining 77
6 The level-wise algorithm for top-k mining using pruning 79
7 Two-phase exhaustive search for pattern set mining 80
8 The general hill-climbing algorithm 82
9 The general beam search algorithm 83
10 The general order-restricted pattern set mining algorithm 84
11 Two-phase exhaustive-heuristic search for pattern set mining . . 85
12 The general sequential pattern set mining algorithm 89
13 The general parallel pattern set mining algorithm 93
14 Iterative pattern set mining . 157

11

12 LIST OF ALGORITHMS

List of Tables

1.1 Contingency table for two patterns p, q 38
1.2 Set constraints and their properties. 57

3.1 Query 3.1.1 evaluated on L = sup(p, Act) ≥ 27 108
3.2 Query 3.1.4 evaluated on L = sup(p, Act) ≥ 27 108
3.3 Query 3.1.3 evaluated on L = sup(p, Act) ≥ 27, unique tid -lists . 109
3.4 Mushroom dataset, maximal sets mined on complete dataset . . 109
3.5 Mushroom dataset, maximal sets mined on subsets 109
3.6 Comparing CBA’s classifier with constrained set mining result . 111
3.7 Pattern set cardinalities for heuristic post-processing 125

4.1 Characteristics of Datasets (taken from original publication) . . . 139
4.2 Size of the induced pattern sets for CtC, XRules 139
4.3 Predictive Accuracy for XRules, different classification strate-

gies for CtC . 142
4.4 Average accuracy and standard deviation for CBA and CBC . . 145
4.5 Cardinality of pattern sets after the pattern set mining step . . . 146
4.6 Number of candidate pattern evaluated by CBA and CBC . . . 147

5.1 Average accuracy and standard deviation for CN2χ2 , CN2CG,
and Ripper . 159

5.2 Average number of patterns mined by the CN2χ2 , and CN2CG,
number of patterns mined and used by Ripper 160

5.3 Cardinality of pattern sets after order-restricted hill-climbing (re-
produced) . 161

5.4 Number of candidate patterns evaluated by CN2χ2 and CN2CG 162
5.5 Number of candidate pattern evaluated by the complete mining

algorithms (reproduced) . 163
5.6 Comparison for induction of a single subgroup per class value . . 165
5.7 Comparison of a complete subgroup discovery run 166

6.1 CU of the CG-Clus clusterings, and CU of Cobweb’s solution,
averaged over 10 runs, Rand-index of the two clusterings 174

6.2 Description complexity of Cobweb 175

13

14 LIST OF TABLES

6.3 Description complexity for Conceptual cluster-mining based
on Autoclass . 177

6.4 Predictive Accuracy for different classification strategies for CtC,
and the Tree2 classifier . 182

6.5 Size of the induced Models for CtC and Tree2 183
6.6 Accuracies and complexity of the models on the mutagenicity

dataset . 185
6.7 Predictive accuracies for decision trees/Ensemble-Trees with min-

imum leaf size of 5 . 191
6.8 Number of nodes per tree for C4.5 and Ensemble-Trees , respec-

tively . 192
6.9 Averaged maximal depths for C4.5 trees and Ensemble-Trees ,

respectively . 193
6.10 Number of nodes per tree for unpruned C4.5/Ensemble-Trees . . 194
6.11 Averaged maximal depths for unpruned C4.5 trees/Ensemble-Trees194
6.12 Number of attribute-value pairs per tree for Ensemble-Trees , ac-

cumulated number of nodes for all trees of the respective ensembles195

The History of every major Galactic Civilization tends to pass

through three distinct and recognizable phases, those of Survival,

Inquiry and Sophistication, otherwise known as the How, Why and

Where phases. For instance, the first phase is characterized by the

question “How can we eat?” the second by the question “Why do

we eat?” and the third by the question “Where shall we have

lunch?”

Douglas Adams

Introduction

The knowledge discovery in databases (KDD) process is described by (Fayyad
et al. 1996) in the following way:

KDD is the nontrivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data.

In discussing data mining, it is important to keep this definition in mind,
since it still underlies the self-perception of most of the KDD (and to the related
to this data mining) community. The five traits which are used to characterize
the process influence both the building blocks of knowledge that are derived –
patterns – and the techniques and criteria that are used to find them. Particu-
larly:

• Nontrivial refers to the fact that simple statistics of the data, such as
modes or means of variable values, for instance, or the strength of corre-
lation between any two variables, is not the goal of KDD. In this regard,
KDD is different from statistics, even though it uses statistical methods.

• Valid, according to Fayyad et al.’s interpretation, means that patterns will
hold in so far unseen data and are not specific to the data used for deriving
them. Statistical methods help in achieving this goal.

• Patterns should be novel to “the system and preferably [also] to the user”,
which implies a certain degree of unexpectedness given current knowledge.

• Usefulness denotes that the user or the task for which KDD is performed
benefit from the found patterns.

• Finally, understandability is what is needed for obtaining actual knowledge
since knowledge implies understanding of phenomena.

The only of those terms that is arguably uncontested is the first one, nontrivial-
ity in the sense in which it is defined by the paper, since the distinction is made
explicit. Validity is already a more vague concept due to the fact that it can
almost by definition only be ascertained by the application of found patterns to
large amounts of unseen data. Similarly, novelty is connected to expectations of
the user, which he might not necessarily be aware of. The concepts of usefulness

15

16 INTRODUCTION

and understandability, finally, depend strongly on the KDD task at hand and
on the users who initiate it.

Nevertheless, Fayyad et al. suggest a notion of interestingness that combines
the four different characteristics of pattern. Data mining is the step in KDD
in which algorithms are applied to the data to enumerate patterns and deter-
mine which of those can be considered interesting, and if they are sufficiently
interesting, knowledge. It is preceded by data collection and preparation, and
the mined patterns are interpreted to obtain knowledge. Interestingness can
in this view be determined by quantifying the validity, novelty, usefulness, and
understandability of patterns and setting thresholds on the resulting values.

While we view data mining in much the same way, that is that it should
be considered as mining interesting patterns, this is not necessarily the view of
the entire community. Data mining is also concerned with efficiently handling
large amounts of low-level data and for parts of the community, the focus is
therefore on database management. Applications as a driving force for certain
approaches to data mining are another angle. The influence of statistics, finally,
can hardly be overstated and there is on-going research into the use and meaning
of statistical measures in data mining (Wu et al. 2007).

We chose the quote (Adams 1979) at the beginning of this chapter as a
way of describing data mining. While it is not a major Galactic Civilization
per se, it is a very significant movement in KDD and it hungers as well – for
knowledge. The “how” question has been solved in the field of data mining and
especially local pattern mining quite a while ago; in fact, it was essentially settled
in 1995 with the publication of the Apriori algorithm (Agrawal and Srikant
1994). Working on itemsets and efficiently enumerating all frequent patterns
and confident association rules, it laid the foundation for local pattern mining
and spawned a rich culture. The choice of measures and sensible thresholds for
interestingness is far from straight-forward, and has been the subject of extensive
research in the data mining community (see (McGarry 2005) and (Silberschatz
and Tuzhilin 1996) for an overview and discussion of interestingness measures).
Combining measures with thresholds leads to the formation of constraints which
have to be satisfied for a pattern to be considered interesting.

The initial constraint, minimum support, and the pruning it enabled to
efficiently traverse lattices and prune away uninteresting pattern subspaces is
based on the anti-monotonicity property, answering the “why” question, albeit
slightly different from Adams’ formulation. The question in the case of pattern
mining was rather “Why does it work?”. Its answer led to the identification
of further constraints and properties that have been used to propose efficient
algorithms for performing the constraining search ((Han et al. 2007) discusses
constraint-classes and algorithmic solutions). It also allowed researchers to ex-
tend the mechanisms towards other pattern languages, such as sequences, trees
and graphs, and produce yet more (and more complex) patterns.

We have used the term “patterns” repeatedly so far without stating explicitly
what they are. According to the work of Fayyad et al.,

[a] pattern is an expression in some language describing a subset

TOWARDS GREATER UNDERSTANDABILITY 17

of the data or a model applicable to the subset.

It is at this point that understandability, comes somewhat into conflict with
the pattern definition. The authors give a neural network, an artificial approx-
imation of the network of synapses which make up the human brain, as an
example of a model that is hard to understand. Yet in the same work, dis-
cussing data mining methods, neural network formation is mentioned as a data
mining technique for non-linear prediction. Further illumination is given by a
note appended to the text, which reads:

Throughout this article, we use the term pattern to designate a
pattern found in data. We also refer to models. One can think of
patterns as components of models, for example, a particular rule in
a classification model or a linear component in a regression model.

It is this view of patterns, as local phenomena, which can be components of
models of the data, that we adopt in this thesis. Examples for such patterns
are, for instance, frequent itemsets that describe supermarket items that are of-
ten bought together, or molecular fragments that occur more often in carnogenic
substances than in harmless ones. This means that we do not discuss the induc-
tion of models of the entire data, such as Bayesian networks, neural networks,
or support vector machines, to name a few. Finally, Fayyad et al. state that
machine learning techniques can be used in the data mining step of the KDD
process. Machine learning is the field of research concerned with making com-
puters learn (cf. (Mitchell 1997)):

A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experi-
ence E.

An important subject of machine learning is model induction, both for predictive
tasks such as classification and regression, and for descriptive ones, such as
clustering. Additionally, when the goal is giving computers the ability to learn,
the (automated) KDD process is arguably an important means for achieving
this goal. So, even though the similarities between data mining and machine
learning are quite tangible, and it is difficult to clearly distinguish the two, the
respective research communities perceive themselves as distinct. As an effect of
this, similar solutions to the same problem have been proposed in each field, but
often failed to stimulate further developments in the other one. It is not the main
goal of our work to bridge this gap. But by pointing out similarities between
the data mining community, concerned with mining patterns, and the machine
learning community, concerned with learning rules and inducing decision trees,
we intend to at least narrow it. When we refer to machine learning and data
mining in the rest of this thesis, we therefore refer to the research communities
and their respective literature on rule learning and pattern mining, and not to
two factually distinct areas.

18 INTRODUCTION

Coming back to Adams, “How?” is no longer a problem; instead, nowadays
it is rather easy to mine very large amounts of patterns satisfying various con-
straints efficiently. Too many, as we will discuss below. The inquiry phase is also
slowing down to a certain degree, most of the underlying mechanisms are well-
understood and have given rise to more sophisticated miners (Bucila et al. 2002)
and concepts (Kifer et al. 2003). Interestingness in terms of validity and nov-
elty of found patterns has been studied extensively in the data mining literature
(see the survey in (McGarry 2005)), but the problems of understandability and
usefulness less so. In the case of individual patterns, understandability can be
expressed as simplicity, for instance by restricting the number of items in an
itemset. Once patterns occur together in the form of a set however, this be-
comes more problematic. So pattern mining enters the sophistication phase:
not blindly accepting large unstructured sets of patterns but instead selecting
which ones to digest.

Data mining in the sense of pattern mining is a means to an end, used in
techniques that address a variety of KDD tasks. Among those are descrip-
tive tasks, for instance association rule mining that can discover associations
between purchase decisions of customers. Especially in the case of a large as-
sortment of items that can be bought, in combination with a large customer
base, for instance in a web-shop, many of those rules will be discovered, po-
tentially millions. To use this discovered knowledge for the optimization of the
organization of the shop, it is necessary to identify which rules are really useful.
Especially in the case of a large number of valid and novel rules, however, it is
not straight-forward to identify which of those to act on.

The main reason for overly large pattern sets lies in the fact that in tradi-
tional data mining patterns are considered individually, without recourse to any
background knowledge or to other patterns present in the set of which they are
a member. This is largely a side effect of the pruning strategies used, which
allow information gained by evaluating constraints on individual patterns to be
turned into pruning decisions on entire pattern subspaces.

The foundations for the selection of relevant subsets of patterns were laid
quite early when the machine learning concept of version spaces (Mitchell 1997)
was adapted towards the solution set of a conjunction of anti-monotone and
monotone constraints. The derived borders can then be used to characterize
the solution set (Mannila and Toivonen 1997). Far less compact but more
informative while at the same time removing trivial redundancies (on the data
they were mined from) are collections of closed, free, and non-derivable patterns
(Taouil et al. 2000, Boulicaut and Jeudy 2001, Calders and Goethals 2002).
The strong advantage of the properties used for constructing those so-called
condensed representations is that all of them can be checked during the mining
process itself. This hints at another characteristic though: all these properties
are still very much properties of individual patterns. Their scope is somewhat
wider in that their presence (and the absence of patterns that are syntactically
related to them) implies information about the characteristics of their syntactic
relatives. Now our claim that the redundancies removed should be considered
trivial becomes clearer as well since only those patterns are affected for which

TOWARDS GREATER UNDERSTANDABILITY 19

syntactical relatedness exists. The resulting sets are an approximation of a
representative subset of the entire pattern set but their large size is still counter-
productive in terms of understandability.

Furthermore, there can still be semantic redundancies between unrelated
patterns and removing or highlighting those redundancies can be expected to
strongly benefit both human end-users and systems processing the mined pat-
terns further, increasing usefulness. This is potentially treacherous ground to
tread since the decision what makes up semantic redundancy is influenced by the
context of the task for which patterns are mined as well as by user assumptions.
Nevertheless, the goal is to do this in a principled way that allows discussing
properties of techniques and giving guarantees regarding the solutions found.
In short, it requires a notion of mining sets of patterns ; (Han et al. 2007) iden-
tifies this as an important future research direction.. Moreover, there can be
additional relationships between the patterns that one wishes to constrain, a
task that becomes far easier if the way to mine a particular set of patterns is
well understood. In a sense, this approach adds an additional layer to the data
mining step in KDD, a view that is also adopted in the formulation of the LeGo
framework (Knobbe et al. 2008).

So while the “Why?” question of local pattern mining has been answered,
the data mining community has given little thought to the “Why?” question of
pattern set mining. The main contribution of these thesis is that we supply a
framework in which this question can be asked in the first place, and that we
discuss some possible solutions to this question. This also leads directly into
the formulation of a generic exhaustive algorithm for constraint-based pattern
set mining, the first of its kind to the best of our knowledge.

State of the Art

In predictive mining, such as concept learning, where the goal is to build a
working model that can predict labels for unseen data, too many patterns can
be a negative phenomenon as well. If patterns are used indirectly, as descriptors
of data, it is very important to identify the relevant patterns that give learning
algorithms a good chance of modeling the underlying concepts. If patterns
are used directly, as is the case in predictive rule mining, redundancies among
rules and statistically weak rules can distort predictions. Furthermore, if the
user attempts to analyze the learned classifier, too much complexity will be
detrimental.

Machine learning focussed early on concept learning from labeled data, lead-
ing to classification, or the assignment of unlabeled data to clusters, aiming at
modeling unknown classes. There exist methods for inducing meaningful rules
in the presence of other rules, basically building a set of predictive patterns.
This is an example for the overlap between machine learning and data mining
since mining those rules is data mining according to Fayyad et al.. The ef-
fect of this is that pattern set mining has been practiced in a variety of ways
for more than a decade by now in the field of machine learning. Since the

20 INTRODUCTION

data used for experimental evaluation often were small, the efficient enumera-
tion of local patterns was not that important, the quality of final pattern sets
was, however. The algorithms developed for pattern set selection were there-
fore heuristic and usually integrated with the local pattern mining step (Clark
and Niblett 1989, Cohen 1995, Quinlan 1993), giving the appearance of a com-
plete system, instead of two decomposable steps. To increase the probability
of learning a high quality classifier, machine learning also employs methods for
feature selection that improve the description of data. This is very much like
selecting a subset of patterns mined for descriptive purposes by what would
typically be considered a data mining process, as (Knobbe and Ho 2006b) and
(Cheng et al. 2007) point out. Since machine learning approaches are mostly
agnostic as to the origins of the features, this connection has not been made
often otherwise.

Additionally to this relative obscurity of the pattern set mining techniques
existing in machine learning, there is another reason that these approaches
have, until recently, found little entry into the field of data mining. The reason
is simply that they come from the field of machine learning. Beginning from
different origins, the two fields have co-existed for quite a while, coming up
with different jargon, claiming different focus and often developing similar ideas
at the same time. Data mining originally focussed mainly on large data bases
and how to efficiently mine local patterns from them even though Fayyad et
al. admit the use of machine learning techniques. A strong focus therefore
lay on integration with data base management systems, efficient algorithms
scaling well when the amount of data increased, and a certain connection to
the business community. Additionally, aiming to use the modeling approaches
of machine learning in the business world involves dealing efficiently with large
data sources. Since machine learning systems seem to be monolithic, there have
been few attempts to decompose them and replace the local pattern mining
module with more efficient solutions developed in data mining. On the other
hand have data mining approaches been used for concept learning purposes, as
in the CBA and CMAR systems (Liu et al. 1998, Li et al. 2001). To build the
final model, slightly different methods for assembling a set of predictive patterns
have been used, without making the pattern set mining aspect explicit.

The result has been a gradual merging of data mining and machine learning,
resulting in works that point out the similarities. What it has not yet led to
is a consistent terminology and especially the application of pattern set mining
techniques from machine learning in data mining. It is precisely this topic
that we investigate in this thesis. As we have explained above, we propose
a framework for studying pattern set mining, analyze algorithms and identify
properties that allow us to design new ones. The second contribution of our work
lies in the combination of heretofore unexplored algorithmic solutions to pattern
set mining, mainly by decomposing and applying machine learning techniques
for pattern set mining. Before we outline the organization of the thesis, we
discuss along which dimensions pattern set mining can be described. Since
we already made the distinction between machine learning and data mining, a
natural starting point are the KDD tasks in which pattern set mining is applied.

TOWARDS GREATER UNDERSTANDABILITY 21

Use of the Mined Patterns

Local pattern mining does not exist as an end in itself. The mining opera-
tion usually serves a purpose and this purpose influences the kind of patterns
mined, the constraints that have to be satisfied and, of course, also the desired
characteristics of pattern sets.

On the one hand, there are those tasks mostly concerned with finding de-
scriptions of the data, that is, patterns that can be interpreted to understand
the composition of certain subsets in the data. An example case would be sub-
group discovery (Wrobel 1997), in which distinct subsets of the data have been
identified and the practitioner seeks a compact way of describing the elements of
each of these subsets. Ideally, not too many of the local descriptions should refer
to the same subset. Additionally, a measure of quality of individual patterns is
desired, and a way of capturing the relation between them. Most importantly,
however, the sets should be easily interpretable, a requirement, which is helped
by the relationship between patterns but also one that very much requires these
sets to be of small cardinality. Thus, usefulness can be approximated by under-
standability in these tasks. Clustering (Perkowitz and Etzioni 1999), subgroup
discovery, and association rule discovery (Agrawal and Srikant 1994) all fit this
template of identifying subsets in the data and finding descriptions for each of
them, and pattern set mining is needed to assemble interpretable sets.

On the other hand, predictive models can be built from patterns, as we
sketched above. The model should, of course, be accurate but it should be
noted that there are ways of achieving this even without very accurate local
patterns, for instance, by trading off individual errors against each other. This
requires, however, that such errors are not amplifying each other, so patterns
should not be too similar semantically. Additionally, it is of interest that certain
areas of the data (for instance, the majority class) are not covered much more
extensively than others.

Even though these applications of pattern set mining serve different pur-
poses, the existing similarities show that a general form of pattern set mining
could be found that captures those similarities. There are also certain desired
characteristics of pattern sets that emerge: small size of the sets, little redun-
dancy, and often a need to somehow relate patterns to each other.

Different Types of Sets

A way of relating patterns to each other lies in moving from unordered sets (the
typical result of local pattern mining in the data mining sense) to ordered or
tree sets of patterns. Unordered sets have the advantage of extreme flexibility
since there is no predefined order in which patterns should be considered. This
means both that algorithmically different techniques can be employed to use
those patterns (for instance, in concept learning), and that humans can pick
and choose which patterns to look at. The potential downside of this is that
relations between patterns are implicit, which means it is not immediately clear
which patterns influence other patterns’ presence with their own. Therefore,

22 INTRODUCTION

one has to consider the full set to get a sense of how patterns relate to each
other, making low cardinality even more important. To achieve this, it is often
necessary to constrain the redundancy among patterns explicitly, giving rise to
potentially arbitrary thresholds, as we will illustrate in Section 3. Additionally,
from a practical point of view, unordered sets often require computationally
more expensive methods during mining.

Ordered sets give up this flexibility by turning the set into a list where each
pattern has to be considered in turn. Therefore, patterns only have meaning
in the context of their predecessor, making it easier to interpret them since the
user has only to refer back to earlier patterns. This leads to approaches that
allow to control redundancy implicitly, decreasing the influence of user intuition
on the mining process. On the other hand, not all techniques for processing
the final pattern set can be used with ordered sets. Also, the relation that
seems to exist according to the order might not be that strong in reality, with
a pattern following another one even though both describe very different areas
in the data. A rather straight-forward example to ordered set mining we will
consider in this work is that of top-k mining, where each pattern is quantified by
a scoring function. Its position in the set is thus influenced by the performance
of preceding patterns.

Tree sets, finally, relate patterns to each other in a more complex manner,
allowing more than one successor to each pattern. This reflects the fact that the
relations between patterns are often not such simple affairs as ordered sets sug-
gest. Instead, different depths in the hierarchy indicate more (or less) involved
descriptions or local modeling of the data. Patterns at the same level (having
potentially the same predecessor) give users additional information about how
they belong together and are influenced by patterns further up in the hierarchy.
Decision trees, for instance, are tree sets in which the patterns in each node are
single attribute-value pairs. As in the case of ordered sets, redundancy can be
controlled more implicitly, making such techniques easier to use. Additionally,
since hierarchies usually trade off width against depth, the amount of patterns
that has to be considered to interpret one particular pattern is smaller than for
ordered sets. Successors are effectively turned into siblings (or even relegated
to entirely differently parts of the hierarchy), making the overall picture clearer.
The further processing of those sets turns out to be even more restricted than
in the case of ordered sets, however.

Algorithmic differences

The final distinction that can be made in pattern set mining is as a difference
on how to perform such mining, as we already mentioned above:

1. Mine local patterns first and then perform a post-processing step to select
the pattern set from it.

2. Mine local patterns, modify/manipulate the data, repeat the mining iter-
atively.

TOWARDS GREATER UNDERSTANDABILITY 23

The greatest strength of the first approach is that the local pattern mining
operation has to be performed just once. Even given the efficiency of state-
of-the-art algorithms, such mining operations take time and a post-processing
technique will therefore deliver results more quickly. This single local mining
run, on the other hand, means that other characteristics are static, such as the
background distribution against which patterns are considered interesting, or
the language used. Patterns found this way are interesting with regard to this
distribution and the post-processing operation will be effective if they describe
different subsets of the data. Examples include the aforementioned CBA and
pattern teams formation techniques (Liu et al. 1998, Knobbe and Ho 2006b).

The second approach will perform several local mining operations and, de-
pending on the type of mining performed, those can become rather costly. Due
to the manipulation of the data, however, further mining runs find patterns that
are interesting with regard to patterns found before. Generally, it would also be
possible to change the type of pattern language from one level of the hierarchy
to the next, for instance increasing the complexity and expressivity. The trade-
off between the post-processing and iterative mining techniques is therefore one
between efficiency (in post-processing), and effectiveness and expressivity (in it-
erative mining). Iterative mining techniques have been described in (Bringmann
and Zimmermann 2005, Rückert and Kramer 2007, Geamsakul et al. 2003), for
instance.

As this short explanation shows, there is a fundamental difference in the kind
of interesting patterns that can be assembled into a set by those two techniques,
which is the reason that we decided to structure the thesis along this distinction.
Both techniques can be used to induce ordered sets. The modification of data
in the second approach, however, means that unordered sets are impossible to
induce due to the influence of earlier mined patterns. In a similar vein, although
it is theoretically possible to design a post-processing technique that leads to
the mining of tree sets, we will see in the discussion that those sets would be of
limited meaning. But those are the only limitations. Both approaches can be
used in terms of the tasks we have outlined above and secondary considerations,
like used pattern languages or constraints that have to be satisfied can also be
addressed nicely.

Contributions and Roadmap

The thesis is organized into three main parts, and a fourth part summarizing
our findings. The first, and largest, part discusses the theoretical foundations
and introduces our framework of constraint-based pattern set mining. It also
describes the algorithmic solutions on whose experimental evaluation we report
in Parts II and III. Part II evaluates post-processing methods for pattern set
mining, comparing existing and novel solutions. Part III evaluates iterative
pattern set mining methods, mainly showing how data mining can benefit from
this approach. Part IV concludes our work.

24 INTRODUCTION

Part I Our main contribution in this work is providing a framework of con-
strained pattern set mining as a distinct data mining task in which sets of
patterns are assembled that satisfy user-defined constraints. Such constraints
can involve both characteristics of the entire pattern set, such as its size, and
of relationships between individual elements of the set (patterns), such as a
limit on allowable redundancy among them. In this way, we add to the inter-
estingness that users can specify in terms of validity and novelty by defining
constraints on local patterns a method for specifying interestingness in terms of
understandability (and usefulness). We also thoroughly discuss the properties if
constrained pattern set mining, particularly its relation to local pattern mining.
This is to the best of our knowledge the first time that such a definition has
been given and we devote Chapter 1 to it.

The basis for pattern set mining is the field of local pattern mining. This
is even more true since we aim to make the language and knowledge of local
pattern mining applicable to this new field. We therefore define patterns, their
properties, and constraints used to allow the user to define which patterns he
would find interesting with regard to validity and novelty in Section 1.1.

We also shortly outline the KDD tasks we will address in this work, and
gives examples in which way patterns and sets of patterns are involved in solving
them.

Following that, we introduce our framework in Section 1.3 and work out the
similarities to the local pattern mining setting in detail. In this way we can show
that much of the knowledge about local pattern mining, such as ways to improve
the efficiency of mining techniques can be applied directly to constrained pattern
set mining as well. This section is an extension on results published in (De Raedt
and Zimmermann 2007).

With that theoretical base established, we can discuss algorithmic solutions
in Chapter 2. We show algorithms from both the fields of machine learning
and data mining, describe them in terms of the introduced framework, and
discuss to what extent they can be used for pattern and pattern set mining.
The main contribution of that chapter lies in the introduction of two methods
for post-processing sets of local patterns. The first, exhaustive, technique has
been published in (De Raedt and Zimmermann 2007). While other exhaustive
techniques for pattern set mining exist, they typically include hard-wired size
constraints to control computational complexity. Our approach, in contrast,
allows the use of arbitrary constraints for pattern set mining. The second,
heuristic, technique has been published in (Bringmann and Zimmermann 2009).
While similar to existing techniques, we analyze it further show alternatives to
existing design choices. Additionally, we systematically distinguish between
the local pattern mining and pattern set mining phase, showing that existing
approach from machine learning can be used more flexibly than they have been
so far.

The question whether such distinction are useful in practice is experimentally
answered in Parts II and III. Part I is based on material that has appeared in
the following publications:

TOWARDS GREATER UNDERSTANDABILITY 25

De Raedt, L. and Zimmermann, A. (2007). Constraint-based pat-
tern set mining. In: Proceedings of the Seventh SIAM International
Conference on Data Mining.

Bringmann, B. and Zimmermann, A. (2009). One in a million:
Picking the right patterns. Knowledge and Information Systems,
18(1):6181.

Part II discusses of post-processing techniques for the purpose of pattern
set mining. First, we will discuss the mining of unordered sets of patterns
in Chapter 3, employing the exhaustive pattern set mining method and the
heuristic post-processing method we propose. Since we adapted exhaustive local
pattern mining for pattern set mining, we first ask

1. Whether our technique can mine constrained pattern sets?

2. Whether the same algorithmic behavior can be observed?

3. Whether the resulting sets are of better quality than ones mined by exist-
ing heuristic methods?

We can answer all three of these questions positively, supporting our discussion.
The results in this section have been published in (De Raedt and Zimmermann
2007).

The second method adapts feature selection methods. We employ two differ-
ent heuristic search strategies, one which has been applied for instance in (Liu
et al. 1998, Siebes et al. 2006), and a newly developed one, and experimentally
evaluate their effects.

In Chapter 4, we mine ordered set of patterns. All methods used in this
chapter are heuristic, depending on orders that are defined on the pattern set
to process it. Starting from the hypothesis that orders imposed during local
pattern mining are more useful than orders imposed afterwards, we evaluate
the composition and quality of derived pattern sets. The results, published in
(Zimmermann and Bringmann 2005) and (Zimmermann and De Raedt 2009),
validate our hypothesis.

Even orders arising during the local pattern mining step can still be some-
what arbitrary, however, since they mostly rely on user-specified constraints.
An order that is imposed by the process, so-to-speak, would seem to have a
better chance to lead to compact, high-quality pattern sets. Part II is based on
material that has appeared in the following publications:

Zimmermann, A. and Bringmann, B. (2005). CtC - Correlating
tree patterns for classification. In: Han, J., Wah, B. W., Raghavan,
V., Wu, X., and Rastogi, R., editors, Proceedings of the Fifth IEEE
International Conference on Data Mining, pages 833836

26 INTRODUCTION

De Raedt, L. and Zimmermann, A. (2007). Constraint-based pat-
tern set mining. In: Proceedings of the Seventh SIAM International
Conference on Data Mining.

Bringmann, B. and Zimmermann, A. (2009). One in a million:
Picking the right patterns. Knowledge and Information Systems,
18(1):6181.

Part III In the third part, we turn our attention towards iterative pattern
mining. As we mentioned above, all iterative mining techniques originate in
machine learning and have rarely been used with more than one approach to
local pattern mining. Our main question in this part is therefore, whether
resulting pattern sets can be improved by replacing the heuristic local pattern
mining step developed in machine learning by exhaustive techniques developed
in data mining.

The first chapter of that part, Chapter 5, considers sequential mining to
assemble ordered sets of patterns. We replace the heuristic techniques devel-
oped in machine learning with exhaustive techniques and ask whether resulting
pattern sets are of better quality. Additionally, we evaluate whether there is
a difference in computational complexity between the heuristic and exhaustive
approaches. As a final result, we test our hypothesis that iterative mining leads
to smaller sets of higher quality when compared to post-processing techniques.

Sequential mining usually assumes that local patterns mined in a single iter-
ation can describe the data satisfactorily. In Chapter 6, we use parallel mining
techniques to mine for tree sets of patterns instead. Since these permit the
re-description of covered data in more detail by patterns that are mined later,
the pressure for highly specific patterns is lessened. We test the hypothesis
that parallel mining gives rise to highly compact sets of high quality (work we
also published in (Bringmann and Zimmermann 2005)) and find it validated.
Our novel contribution to the field in this chapter is the introduction of a new
system, CG-Clus, a top-down conceptual clustering algorithm, published in
(Zimmermann and De Raedt 2009), and a new formalism, Ensemble-Trees , pub-
lished in (Zimmermann 2008). Employing CG-Clus, we tackle the problem of
conceptual clustering by a new method, giving a user greater control over the
number of formed clusters, and producing a small number of understandable
descriptions. Ensemble-Treess, finally, point towards the future by introducing
a type of pattern set that has not been used so far. Part III is based on work
that has appeared in the following publications:

Zimmermann, A. and De Raedt, L. Cluster-Grouping: From sub-
goup discovery to clustering. Machine Learning Journal. Accepted
for publication.

Bringmann, B. and Zimmermann, A. (2005). Tree2 - Decision
trees for tree structured data. In: Jorge, A., Torgo, L., Brazdil, P.,

TOWARDS GREATER UNDERSTANDABILITY 27

Camacho, R., and Gama, J., editors, PKDD 2005, Proceedings of
the 9th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, pages 4658.

Zimmermann, A. (2008). Ensemble-trees: Leveraging ensemble
power inside decision trees. In Boulicaut, J.-F., Berthold, M. R., and
Horvath, T., editors, Discovery Science, 11th International Confer-
ence, DS 2008, Proceedings, pages 7687

Part IV is used to summarize the findings of this thesis. We relate the results
of our various experiments in a more global manner than the conclusions to
individual chapters or parts allowed. Discussing these results, we will draw our
final conclusions and point towards future research directions that spring from
our work.

Finally, some of the work that was performed during the course of my PhD
research has not been included in the text of this thesis and is briefly summa-
rized here. In the context of top-k class-correlated pattern mining, we experi-
mentally evaluated stepwise correlated mining in several molecular domains and
published our results in (Bringmann et al. 2006). We aimed at exploring the
trade-off between expressivity of a pattern language and the quality of mined
patterns, by incrementally increasing the complexity of the pattern language.
The kth-worst score of the preceding language was used as starting threshold
in each local pattern mining operation so that increased complexity had to cor-
respond to higher quality. We showed that stepwise mining is more efficient
than mining the top-k patterns in a complex language directly. Additionally,
we found that patterns of lower complexity (sequences) can be more suitable
as features for concept learning than features of higher complexity (graphs),
if the same number of patterns is used. In a recent work (Zimmermann and
Bringmann 2009), we explored the use of subsampling techniques for the selec-
tion of high-quality features for concept learning. We worked in a molecular do-
main and evaluated several techniques inspired by machine learning approaches
such as bagging, boosting, and decision tree post-pruning. The main result of
our experiments was that using non-verlapping subsets of the data and aggre-
gating the resulting result sets proved to be more effective than using the entire
data set for mining, which could be exploited in parallelized data mining. We
also found that uniformly selecting patterns from the result set lead to good
feature sets.

28 INTRODUCTION

Part I

Foundations

29

Overview of Part I

In the first part of the thesis, we lay out the fundamentals of our work. We
begin by discussing patterns and pattern sets in Chapter 1. Local pattern
mining provides the basis of pattern set mining and, as we will show, pattern set
mining has many similarities with it. Therefore, we discuss local pattern mining
in some detail, touching on pattern languages, the properties of patterns, and
the constraints that can be derived to guide local pattern mining.

Local pattern mining and pattern set mining are subtasks of the data mining
step in the context of different KDD tasks that we introduce in a general way,
giving examples of how mining can be used to address them.

We proceed to introduce our main contribution, a formal framework for
pattern set mining, in Section 1.3. To the best of our knowledge, this is the first
time that such a definition has been given. We identify the three main types of
pattern sets that have been used in data mining and machine learning, namely
unordered, ordered and tree sets, and discuss their properties. Additionally, we
show how local pattern mining constraints can be lifted to the pattern set level
and introduce new constraints for pattern set mining.

This framework allows us to discuss existing algorithms for pattern set min-
ing and identify their properties. As we show in Chapter 2, both exhaustive
and heuristic local pattern mining techniques exist, with the former having
been developed in data mining and the latter in machine learning. In terms
of pattern set mining, the difference is mainly between pattern set mining as
post-processing, as practiced in data mining, and iterative pattern set mining,
which comprises most approaches from machine learning. Post-processing tech-
niques are mostly heuristic because of the large number of patterns that have
to be processed or have explicitly included size constraints to control compu-
tational complexity. Describing the issue in terms of our framework, however,
makes novel general constraint-based exhaustive post-processing methods the-
oretically possible.

The iterative techniques developed in machine learning have usually been
considered together with particular local pattern mining algorithms. The sec-
ond major insight derived from our framework is that such systems can be
decomposed and the local pattern mining step instantiated by different algo-
rithmic solutions, leading to new systems.

31

32

Chapter 1

Patterns, Constraints, and

Sets of Patterns

As this work is about mining sets of patterns, this chapter is concerned with
laying the foundations for understanding this mining process. Following Fayyad
et al., a pattern is an interesting phenomenon in the data. Interestingness of
individual patterns refers mainly to validity and novelty. While novelty is of
course dependent on the background knowledge of a user initiating the data
mining process, statistical measures can be used as so-called objective measures
to identify candidates for novelty.

The means of expressing data are usually influenced by the domain in which
they were collected as well as the task for which they are analyzed. In Sec-
tion 1.1, we therefore define the pattern languages which we will employ and
discuss the relation to the underlying data. The usage of a formal language to
express patterns allows the systematic enumeration of them, which is necessary
for efficient data mining. We discuss how they can be enumerated in Section
1.1.1 and properties of patterns regarding the data in Section 1.1.2. Since the
amounts of data mined are usually rather large and mining should happen in an
automated way, constraints are used to define what are interesting phenomena.
Those constraints are based on a posteriori properties, properties of patterns
that hold with regard to the data, and that can be quantified by different mea-
sures. Constraint properties (Section 1.1.4) are used to guide the mining process
and make it more efficiently.

Once patterns have been successfully mined, they form the ingredients for
further analysis: as features or rules for classifier construction, for instance, or as
descriptions of clusters or subgroups, which are interpreted by human end-users.
In Section 1.2, we will therefore give an overview over three typical KDD tasks
and discuss in general terms how sets of patterns are employed in addressing
them.

Given the typically large number of patterns returned by a mining operation,
the selection of subsets of the full solution set is needed for the patterns to be

33

34 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

useful and understandable. Accordingly, pattern set mining has always been an
important task of KDD approaches, even though it was hardly ever defined as a
separate task. The third section of this chapter, Section 1.3, is therefore devoted
to the foundations of pattern set mining. To the best of our knowledge, this is
the first time that a formal framework for pattern set mining is introduced. This
formal framework is important as it allows us to use it for analyzing existing
mining techniques, improve them, and devise new ones based on the properties
of pattern sets and the measures that can be used to guide the search.

We consider three different types of pattern sets in this work: unordered,
ordered, and tree sets. Similarly to pattern languages, these set types allow
the efficient enumeration of pattern sets during search. To give the user the
opportunity to guide the selection process and obtain interesting pattern sets,
constraints are used again, this time on the pattern set level. Many of the local
pattern constraints as well as their properties transfer to the level of sets but
the different nature of pattern sets also allows for new constraints. We discuss
therefore the same notions we discussed in the context of local patterns for
pattern sets, namely a priori and a posteriori properties, constraints and their
characteristics.

1.1 Patterns

To facilitate efficient search for patterns, they are defined in terms of formal
languages:

Definition 1.1.1. Formal Language A formal language L is defined in terms
of an alphabet Σ and formation rules or a grammar Γ. The grammars spec-
ify how symbols of the alphabet are arranged into words of the language. The
language is therefore a subset of the power set of the alphabet: L ⊆ 2Σ.

Note that all formal languages include the empty word ǫ. In the following, we
will define several languages that are used throughout this work in the context
of local pattern mining. We start with the language of itemsets:

Definition 1.1.2. Itemsets Given a set of items ΣI, the language of itemsets
LI takes the form LI = 2ΣI , the set of all sets of items in ΣI .

More complex in terms of the symbols of the alphabet and of the composition
of words is the language of attribute-value conjunctions:

Definition 1.1.3. Attribute-Value Language Given a set of attributes A =
{A1, . . . , Ad}, having values

dom(Ai) = {vi
1, . . . , v

i
it
},

we define the alphabet

ΣAV =
⋃

1≤i≤d

⋃

1≤j≤it

{Ai = vi
j}.

1.1. PATTERNS 35

We can now define a family of languages via the application of a rule that
describe well-formed words of the language:

LAV = {p ⊂ ΣAV | each attribute occurs at most once in p}

A third pattern language that finds widespread application in data mining
is that of rooted trees:

Definition 1.1.4. Labeled, Ordered, Rooted Trees Given an alphabet of
vertex labels Σv, a rooted k-tree t is a set of k nodes Vt where each v ∈ Vt,
except one called root, has a parent denoted π(v) ∈ Vt. We use λ(v) ∈ Σv to
denote the label of a node and an operator � to denote the order from left to
right among the children of a node. The transitive closure of π will be denoted
π∗. Then Ltree denotes the formal language composed of all labeled, ordered,
rooted trees .

In the rest of this thesis, we will use lower-case letters to denote individual
patterns, such as p, g, or s. Patterns are derived from instances, collected in
a data set D = {e1, . . . , en} with each of those instances member of a data
language LD. Generally speaking, every pattern language is also a language
for describing data instances. There are exceptions, however: by extending the
language introduced in Definition 1.1.3:

LA = {p ⊂ ΣAV | each attribute occurs exactly once in p}, (1.1.1)

we introduce a data language that is distinguished by the other three by the
fact that each instance has the same number of elements. Itemsets, for instance,
can have an arbitrary number of items (limited only by ΣI).

To meaningfully speak about the relationship between patterns and in-
stances, it is necessary to define a matching function

match : Lp × LD 7→ {0, 1}.

Starting again with itemsets, the matching function is the subset relation:

Definition 1.1.5. Itemset Matching Given a pattern p ∈ LI , and an in-
stance e ∈ LI

match(p, e) = 1 if and only if p ⊆ e

In the case of LAV and LA, for each attribute in the pattern, this particular
attribute’s value in an instance is checked:

Definition 1.1.6. Attribute-Value Matching Given p ∈ LAV and an in-
stance e ∈ LA, the matching function is:

match(p, e) = 1 if and only if ∀Ai = vi
il
∈ p : ∃Ai = vi

il
∈ e

Finally, for rooted trees, several notions of tree matching exist. We will use
the one employed by Zaki et al. (2003), tree embedding:

36 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

Figure 1.1: The tree t is embedded in t′.

Definition 1.1.7. Tree Embedding Given a pattern and an instance p, e ∈
Ltree, tree p is embedded in a tree e if and only if a mapping ϕ : Vp → Ve exists
such that

∀u, v ∈ Vp : λ(u) = λ(ϕ(u))∧
u � v ⇔ ϕ(u) � ϕ(v)∧
v ∈ π∗(u) ⇔ ϕ(v) ∈ π∗(ϕ(u)).

match(p, e) = 1 if and only if p is embedded in e

An example of an embedded tree is given in Figure 1.1. This notion is more
flexible than simple subtrees and mining for local tree patterns is still efficient.
In general, other matching notions (see (Kilpeläinen 1992)) and even different
representations could be used.

As preceding paragraphs show, the techniques we discuss in this work are
not limited to particular patterns or data. Therefore, the following sections are
applicable for all types of local pattern mining that are known in the literature
so far, abstracting from the more specific discussions that are often found in
papers in the field.

1.1.1 A priori properties

Having defined patterns and the matching operator, properties of individual pat-
terns and relationships between patterns can be defined. The most fundamental
of these relationships is the generality relation:

Definition 1.1.8. Pattern Generality A pattern g is said to be more general
than or equal to pattern s, denoted g � s, if and only if

∀e : match(s, e) = 1 ⇒ match(g, e) = 1.

If g � s ∧ ¬(s � g),

then pattern g is strictly more general than s, denoted g ≺ s.

Since pattern mining/induction is basically search, there is the need to for-
mulate an operator for traversing the pattern space in a principled way. This
refinement operator adheres to the grammar of Lp to ensure that only actual
words in Lp are derived.

1.1. PATTERNS 37

Definition 1.1.9. Refinement Operator A refinement operator is a function
ρ : Lp 7→ 2Lp . It is called a specialization ρs (generalization ρg) operator if and
only if

∀p′ ∈ ρ(p) : p � p′(p′ � p).

A refinement operator can be applied repeatedly, turning it into a piecewise-
defined function. A superscript is then used to denote the level n of the refine-
ment:

ρn(p) =

ρ(p) if n = 1
⋃

p′∈ρn−1(p)

ρ(p′) if n > 1

A specialization (generalization) operator is called complete if and only if for a
most general (most specific) pattern pmg(pms) in the language:

∀p ∈ Lp : p ∈ ρ∞(pmg)(p ∈ ρ∞(pms))

A specialization (generalization) operator is called ideal if and only if

∀p ∈ Lp : ρ(p) = {s ∈ Lp|p ≺ s ∧ ¬∃p′ : (p ≺ p′ ≺ s)}

(∀p ∈ Lp : ρ(p) = {g ∈ Lp|g ≺ p ∧ ¬∃p′ : (g ≺ p′ ≺ p)})

The refinement operator is called optimal, if and only if for any p ∈ Lp there
exists exactly one sequence ǫ = p0, p1, . . . , pn = p such that hi ∈ ρ(hi−1) for
i ∈ {1, . . . , n}.

1.1.2 A posteriori properties

Patterns, supposed to be meaningful on the data they are mined from (or at
least evaluated on), have characteristics that are not a priori known but only
emerge in interaction with the data. Since those properties form the founda-
tion for defining the interestingness of patterns, a thorough definition of these
characteristics, and the measures that can be based on them, is necessary.

Definition 1.1.10. Coverage and Support Given a data set D, the coverage
of a pattern p is defined as

cov(p,D) = {e ∈ D | match(p, e) = 1},

and its support as sup(p,D) = |cov(p,D)|. We assume that each e ∈ db has a
unique identifier tid(e) and the set of all identifiers of covered instances
{tid(e) | e ∈ cov(p,D)} is called tid-set(p,D). For any two patterns p, q,

sup(p ∪ q,D) = |cov(p,D) ∩ cov(q,D)|.

Support is a measure that can be used to assess the validy of a pattern since
patterns that occur often in the data can be expected to occur in unseen data
as well. Two patterns can also be combined via ⇒: p ⇒ q, with the standard
meaning of match(p, e) = 1 ⇒ match(q, e) = 1. This relation, also called a rule,
is not necessarily a tautology (distinguishing it from q � p) and a common way
of expressing the probability that if p matches an instance, q does is well, is
confidence.

38 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

Table 1.1: Contingency table for two patterns p, q
q ¬q

p x+ = sup(p ∪ q,D) x− = sup(p ∪ ¬q,D) sup(p,D)
¬p sup(¬p ∪ q,D) sup(¬p ∪ ¬q,D) |D| − sup(p,D)

m = sup(q,D) |D| − sup(q,D) n = |D|

Definition 1.1.11. Confidence The confidence of a rule r : p ⇒ q is defined as

conf(r,D) =
sup(p ∪ q,D)

sup(p,D)

Confidence is a way of quantifying the co-occurence of two patterns, with
high confidence meaning that the occurrence of p implies occurrence of q reliably.
However, if ∀e ∈ D : match(q, e) = 1, ∀p : conf(p ⇒ q) = 1.0, giving maximum
confidence to a rule that predicts an expected phenomenon. Measures that
quantify this co-occurence, correlation measures, therefore take into account
both patterns’ presence (and absence) in the entire data set. A pattern is said to
correlate with a target pattern, if their co-occurrence deviates from an expected
value. Such a deviation from expectation is a way of objectively assessing the
novelty of a pattern, in contrast to subjective measures that need to account
for a user’s particular expectations (Silberschatz and Tuzhilin 1996). For a
fixed target pattern q, we call a pattern p that correlates with it a correlated
pattern. For this purpose, occurrence counts of two patterns are organized in
a contingency table, such as Table 1.1. We extend the support notation in the
following way:

sup(¬p,D) = |cov(p,D)| = |D \ cov(p,D)| with

sup(¬p ∪ q) = |cov(p,D) ∩ cov(q,D)|, accordingly.

Table 1.1 shows a contingency table using the extended notation. To improve
readability, we will use a shorthand notation for support counts, in the following
way:

x+ = sup(p ∪ q,D), x− = sup(p ∪ ¬q,D), m = sup(q,D), n = |D|.

The superscripts are related to the convention of calling instances in which q
is present (absent) positive (negative) instances. This allows us to identify a
pattern with its stamp point.

Definition 1.1.12. Stamp Point Given D and a fixed target pattern q, n and
m stay fixed for any pattern p, whose stamp point is sp(p,D, q) = 〈x+, x−〉.

Given that m and n are fixed for a given data set, the stamp point includes all
variables needed to describe the behavior of the pattern in the data. Using the
stamp point, we will treat interestingness measures (such as support, confidence
or correlation measures such as information gain) as functions σ : Z2 7→ R. If
the target pattern’s identity is clear from the context, we will drop it from the
stamp point notation.

1.1. PATTERNS 39

Example 1.1.1. Given D, p, fixed q, conf(p) = x+

x++x− . For a more elaborate
measure, information gain (IG), we first have to define the entropy of a pattern
q with regard to D:

ent(q,D) = −
m

n
log

m

n
−

n − m

n
log

n − m

n

with the complete measure taking the form:

IG(p,D) = ent(q,D) −
cov(p,D)

|D|
ent(q, cov(p,D)) −

cov(p,D)

|D|
ent(q, cov(p,D))

⇔IG(p,D) = ent(q,D) −
x+ + x−

n

(

−
x+

x+ + x−
log

x+

x+ + x−
−

x−

x+ + x−
log

x−

x+ + x−

)

−
n − (x+ + x−)

n

(

−
m − x+

n − (x+ + x−)
log

m − x+

n − (x+ + x−)

−
n − m − x−

n − (x+ + x−)
log

n − m − x−

n − (x+ + x−)

)

Entropy takes its maximum value when m = n
2 . Information gain measures

how much entropy is reduced by a certain patterns, that is, how “pure” in
terms of the presence (absence) of q the subsets are which are covered or not
covered by p. A second measure, χ2, quantifies how often p,¬p and q,¬q, occur
together, respectively. To this end, the observed co-occurrence is compared to
the expected co-occurrence:

Example 1.1.2. The observed co-occurrences are given by:

O(p, q) = x+, O(¬p, q) = m− x+, O(p,¬q) = x−, and O(¬p,¬q) = n−m− x−

and the expected co-occurrences by:

E(p, q) =
(x+ + x−) · m

n
, E(p,¬q) =

(x+ + x−) · (n − m)

n
,

E(¬p, q) =
(n − (x+ + x−)) · m

n
, E(¬p,¬q) =

(n − (x+ + x−)) · (n − m)

n

Finally, the full measure takes the form:

χ2(p,D) = (O(p,q)−E(p,q))2

E(p,q) + (O(p,¬q)−E(p,¬q))2

E(p,¬q) +
(O(¬p,q)−E(¬p,q))2

E(¬p,q) + (O(¬p,¬q)−E(¬p,¬q))2

E(¬p,¬q)

We can see that both IG and χ2 are symmetrical correlation measure, that is,
x+ and x− could be interchanged without leading to a different value. Negative
correlation, the co-occurrence of p’s presence with the absence of q is therefore
considered equivalent to positive correlation, the co-occurrence of p’s presence
with q’s presence. If patterns are mined for a discriminative purpose, such as
learning the classification of instances, or assigning instances to certain subsets,

40 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

as in clustering, this is effective. If the goal is to connect patterns to a pre-
defined subset, as in subgroup discovery, for instance, positive correlation is
more interesting. A useful measure in this context is Weighted Relative Accuracy
(WRAcc):

Example 1.1.3.

WRAcc(p,D) =
(x+ + x−)

n

(

x+

x+ + x−
−

m

n

)

Finally, we can define the concepts of freeness and closedness for patterns,
which we will use extensively during the rest of this work:

Definition 1.1.13. Freeness and Closedness Given a pattern language Lp,
an interestingness measure σ, data set D, a pattern p is called free if and only
if ∀g, g ≺ p : cov(g) 6= cov(p). It is called closed iff ∀s, p ≺ s : cov(s) 6= cov(p).

Both pattern types have advantages: Free patterns tend to generalize well
(match unseen instances) which make them useful for concept learning purposes.
Additionally, they are the shortest words in Lp which are needed to describe
certain data; longer words use more elements from Σp without increasing the
information value. They are therefore useful for descriptive purposes like sub-
group discovery and clustering as well. On the other hand, fewer closed than
free patterns occur in the data, which means that sets of closed patterns are
smaller and thus easier understandable.

1.1.3 Constraints

While we have referred to the measures mentioned in the preceding section
as interestingness measures, interestingness in the end lies in the eye of the
beholder, namely the user who is using the pattern mining process. Pattern
mining therefore gives the user a way of specifying which patterns he considers
interesting, in the form of constraints :

Definition 1.1.14. Constraint A constraint c is a predicate on the language
of patterns that evaluates to true or false: c : Lp 7→ {true, false}.

Constraints are usually based on a priori or a posterior properties of patterns.
The set of all patterns that satisfy a constraint c on a given D is the theory
Th(Lp,D, c) = {p ∈ Lp|c(p,D) = true}, see (Mannila and Toivonen 1997).
Constraints, being logical atoms, can be subjected to the usual logical operators
∧,∨,¬ with the usual semantics.

Example 1.1.4. The theory in strong association rule mining, given a set of
items I and database D, takes the form Th(LI×LI ,D, c) = {p ⇒ q|sup(p∪q) ≥
θs ∧ conf(p ⇒ q) ≥ θc}.

1.1. PATTERNS 41

1.1.4 Properties of constraints

The effective mining of interesting patterns is connected to the use of properties
of constraints to prune the search space which can be rather large, depending on
the size of Σp and the grammar used. The most influential of these constraint
properties has been (anti-)monotonicity:

Definition 1.1.15. Anti-Monotonicity A constraint c is called (anti-)monotone
with regard to the generality relation ≺ if and only if

∀g, s ∈ Lp, g ≺ s : c(g) ⇒ c(s)(c(s) ⇒ c(g)).

Example 1.1.5. The best known anti-monotone constraint is arguably the min-
imum support constraint

sup(p,D) ≥ θs

introduced in (Agrawal et al. 1993). The anti-monotonic property was first used
for pruning the pattern space in the Apriori algorithm (Agrawal and Srikant
1994), jump-starting the field of local pattern mining.

A weaker form of anti-monotonicity is that of convertible (anti-)monotone
constraints:

Definition 1.1.16. Convertible Constraint A constraint c is called convert-
ible (anti-)monotone if and only if there exists an order <lex on Σp such that
for all prefix-ordered patterns p = i1 . . . in such that i1 <lex . . . <lex in:

c(i1 . . . in) ⇒ c(i1 . . . in−1)(c(i1 . . . in−1) ⇒ c(i1 . . . in)).

Convertible constraints have so far only been used in the realm of itemset
mining, for example, the minimum average price constraint:

Example 1.1.6. For the identification of each item i ∈ ΣI with a price: price :
ΣI 7→ R+, a function denoting the average price of an itemset
avgprice : LI 7→ R

+ would take the form

avgprice(I) =
1

|I|

∑

i∈I

price(i)

The minimum average price constraint takes the form avgprice(I) ≥ θprice and
if items are ordered descending in price, it becomes a convertible anti-monotone
constraint.

A third property that has been identified in the literature is that of suc-
cinctness. We employ a simpler definition (proposed by Bart Goethals, personal
communication) that is equivalent to the original one in (Ng et al. 1998):

Definition 1.1.17. Succinct Constraint A constraint c is called succinct if
and only if the constraint c(p) = true can be expressed as ∀i ∈ Σ, i ∈ p : r(i) =
true for some predicate r.

42 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

This type of constraints can be understood as a filter that is applied to
patterns from the language:

Example 1.1.7. If we use the language of rooted trees Ltree for the description
of web sessions, we might want to exclude certain parts of a web site from
patterns. Let these parts of the site form a set of labels L. In that case, a
constraint c(p) : ∀v ∈ Vp, λ(v) /∈ L would act as a succinct constraint enforcing
this.

Finally, when the goal of local pattern mining is the mining of correlated
patterns, it is useful to be able to use the correlation measure itself for pruning:

Definition 1.1.18. Boundable Function A function f : Lp 7→ R is said to
be upper-boundable (resp. lower-boundable) with regard to a pattern language
Lp if given f(p) = k, k′ ∈ R can be derived s.t. f(p′) ≤ k′ (resp. f(p′) ≥ k′)
for either all p′ ≺ p or p ≺ p′.

Note that we do not call a function boundable if k′ corresponds to a global
maximum or minimum for all p′. If a function is upper-boundable for p′ ≺ p
(resp. p ≺ p′), it is said to be generalization (resp. specialization) upper-
boundable, and the dual property holds for lower-boundable. It should be noted
that given the nature of matching functions in local pattern mining, functions
are usually not generalization boundable. We will discuss the necessary condi-
tions for a function to be boundable, and the methods for calculating this upper
bound in Section 2.1.1.

1.2 KDD Tasks

Pattern mining and pattern set mining have to be seen in the context of the
data mining step of KDD. Generally, pattern mining is concerned with mining
the local patterns that are used in a variety of ways, depending on the KDD
task at hand. Pattern set mining, on the other hand, selects subsets of local
patterns, or directs the local pattern mining search.

The goal of the KDD process can be either predictive and descriptive. The
classical predictive task is that of concept learning which we characterize in
Section 1.2.1. Descriptive mining can take different forms and in this work we
consider subgroup discovery (Section 1.2.2), and clustering (Section 1.2.3). The
divide between these two fields is not as clear-cut as we make it appear here,
however, since for instance a clustering can be used to predict attribute values
of instances, depending on the cluster they have been assigned to.

1.2.1 Concept learning

Concept learning (or classification) is concerned with instances that are anno-
tated with a (class) label from a set of labels C = {c1, . . . , cc}: 〈ei, ci〉. The
assumption in concept learning is that there is an underlying function that as-
signs a class-label to a member of the data language: f : LD 7→ C. The goal is

1.2. KDD TASKS 43

then to use labeled data to approximate this function and use this approxima-
tion for the prediction of labels of unseen instances.

Patterns can either be used directly for classification, turning the class label
into target patterns of the form C = ci. Multi-class problems can be transformed
into binary problems:

• One-against-one: classifiers are learned for each pair of class labels, with
the final classification an aggregation of individual classifers

• One-against-all: classifiers are learned for each class label, contrasted with
the set of all others

In this way the formulation of binary target patterns that we have given before
(see Section 1.1.2) can be used to describe concept learning. In concept learning,
the term confidence is rebranded training accuracy since it reflects the confidence
of the rule on the training data.

Example 1.2.1. Consider for instance a rule learning system like CN2: in
the local pattern mining step, a predictive rule is mined, and the data is then
manipulated by sequential covering to lay the foundations for further rules to be
added to the set. The goal is to limit redundancy among rules and ensure that
rules stay highly predictive. We will discuss the sequential covering mechanism
in detail in Section 2.3.1, and evaluate pattern sets mined in this way in Section
5.1.

A second option is using patterns as features to describe data in a different
way from the original data language. It has the advantage that more powerful
learning algorithms can be used to approximate the concept function. On the
other hand, such a classifier is often harder to interpret.

Example 1.2.2. A common approach in predicting effects of drugs in silico
depends on mining structured patterns from molecules, for instance sequences
or graphs. The molecules can then be represented in a way that makes them
processable by machine learning techniques. It is desirable to reduce the number
of patterns (and therefore the number of features) to decrease the running time
of classifier learning and evaluation, and avoid over-fitting effects. We discuss
an algorithm for mining a set of good features in Section 3.2

1.2.2 Subgroup discovery

Similarly to concept learning, subgroup discovery is concerned with instances
that are assigned labels, which denote membership in a certain group. In con-
trast to concept learning, however, the goal is not to approximate the concept
function but instead to find a description of different subgroups of interest.

Example 1.2.3. A usual example would be a data set D in which instances are
described in terms of physical symptoms and subgroups are labeled with certain
diseases. Subgroup discovery will be used to find the symptoms characterizing a
disease, to help with recognizing it, for instance.

44 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

While in concept learning the goal is often to mine patterns that are highly
accurate, subgroup discovery is more concerned with finding subgroup descrip-
tions that have high generality, that is, a large cover, and distributional un-
usualness with regard to the target attribute. This difference is reflected in
the choice of interestingness measures which give more weight to generality of
patterns than in concept learning approaches.

Example 1.2.4. It is possible that a subgroup can be described in different
ways, or that there is a description for a subset of a subgroup which has already
been discovered. To prevent that too many redundant subgroup descriptions are
returned, it is necessary to direct the search into unexplored areas of the data.
We will evaluate ways of doing this in Section 5.2.

1.2.3 Clustering

Clustering, finally, is concerned with inducing a partition on D:

Definition 1.2.1. Partition A partition of D is a set P = {D1, . . . ,Dp} of
subsets of D: ∀Di ∈ P : Di ⊂ D. Each element of P is a cell of the partition.
Furthermore, the elements of P are pairwise disjoint: ∀Di,Dj ∈ P,Di 6= Dj :
Di ∩ Dj = ∅, and their union is D:

⋃

Di∈P Di = D.

Members of each cell of P are supposed to be similar according to some
user-defined criterion, and cells are called clusters in the context of clustering.
For inducing a partition, the concept of an equivalence relation is useful:

Definition 1.2.2. Equivalence Relation An equivalence relation ∼ is a bi-
nary relation between two elements of a set which is reflexive, symmetric and
transitive:

∀a ∈ A : a ∼ a

∀a, b ∈ A : a ∼ b ⇒ b ∼ a

∀a, b, c ∈ A : a ∼ b ∧ b ∼ c ⇒ a ∼ c

An existing partition induces an equivalence relation:

∼P≡ ∀ei, ej ∈ D : ei ∼P ej ⇔ (∃Dk ∈ P : ei ∈ Dk ∧ ej ∈ Dk).

An equivalence relation gives rise to the concepts of the equivalence class
and the quotient set :

Definition 1.2.3. Equivalence Class Given an equivalence relation ∼, the
set [a] =: {b ∈ A : b ∼ a} is called an equivalence class. The set of all possible
equivalence classes of A by ∼, denoted A/ ∼=: {[a] : a ∈ A} is called the
quotient set of A by ∼.

This means that an equivalence relation ∼ partitions the data into the equiv-
alence classes, with P = D/ ∼.

1.3. PATTERN SETS 45

The descriptive part of clustering lies in analyzing the induced clusters. Af-
ter partitioning data, each cluster can be analyzed as to can what is typical for
instances assigned to this cluster. Especially in the case of conceptual cluster-
ing, the desired description is expressed in terms of items, nominal features, or
structures in the data.

1.3 Pattern Sets

Local patterns describe local phenomena and in doing so allow to understand
subsets of the data. The final goal of KDD is the description or modeling of the
entire data set, to solve the tasks outlined in Section 1.2. Achieving this goal
is made more difficult by the fact that local pattern mining algorithms easily
return thousands of patterns, maybe even millions. Many of these patterns
are redundant, describing the same subspaces of the data in different ways.
This makes it impossible for human end users to identify relevant patterns and
automated (machine learning) techniques that use the patterns further pay with
increased computational effort or reduced quality of solutions.

As we have stated before, the traditional local pattern mining task that is
addressed in data mining is that of finding a theory

Th(Lp,D, c) = {p ∈ Lp | c(p,D) is true},

where D is a database, Lp a language of patterns, and c(p,D) a selection pred-
icate that states the constraints under which the pattern p is a solution w.r.t.
the database D.

A large amount of primitives and constraints have been developed to be used
on a variety of pattern languages, often used in dedicated algorithms optimized
for those particular constraints and languages. The expressiveness of such ap-
proaches can be further increased by combining primitives logically, such as in
the query Q0:

sup(p, Actives) > 0.05 ∧

sup(p, Inactives) < 0.01 ∧

C − H − N � p (1.3.1)

which combines anti-monotonic and monotonic constraints. This query searches
in a database D of active and inactive molecules for patterns that contain a
C − H − N group (more formally: that are more specific than the pattern
C − H − N), are frequent on the Actives and infrequent on the Inactives.

The approach taken in this section is to integrate this step of data mining,
where local patterns are being queried, with an explicit additional step, in which
pattern sets are being queried. Given a pattern language Lp and a data set,
pattern set mining consists of finding the theory of interesting sets of patterns :

M = Th(2Lp,D, C) = {S ⊆ 2Lp | C(S,D) = true}.

46 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

The resulting set of pattern sets M is obtained by formulating a constraint C
that has to hold for pattern sets, that is, subsets of 2Lp , of interest w.r.t. the
database D.

1.3.1 Types of pattern sets

Similarly to the pattern languages described in Section 1.1, there are different
kinds of pattern sets. The most flexible type of pattern set is the unordered set:

Definition 1.3.1. Unordered Set An unordered pattern set is a set of pat-
terns S = {p1, . . . , pk} ⊆ Lp, using the usual set definition.

The unordered nature of those sets means that they can be enumerated
effectively and also that there is no minimal, maximal or ith element in the set.
All of these characteristics exist in ordered pattern sets however:

Definition 1.3.2. Ordered Set An ordered pattern set (S, E) is a set of
patterns S = {p1, . . . , pk} ⊆ Lp on whose elements a total binary relation E

is defined, that is, this relation satisfies antisymmety, transitivity and totality:

• ∀p1, p2 ∈ S : (p1 E p2 ∧ p2 E p1) ⇒ p1 = p2

• ∀p1, p2, p3 ∈ S : (p1 E p2 ∧ p2 E p3) ⇒ p1 E p3

• ∀p1, p2 ∈ S : p1 E p2 ∨ p2 E p1

Reflexivity is implied by the other properties. This relation is called a total
order.

An example for such an order that we will encounter later on, is the order
used by the CBA algorithm:

Example 1.3.1. Given two patterns p ⇒ q, p′ ⇒ q′, we say that p ⇒ q ECBA

p′ ⇒ q′ if and only if:

• conf(p ⇒ q) > conf(p′ ⇒ q′) or

• conf(p ⇒ q) = conf(p′ ⇒ q′) ∧ sup(p ⇒ q) > sup(p′ ⇒ q′) or

• conf(p ⇒ q) = conf(p′ ⇒ q′) ∧ sup(p ⇒ q) = sup(p′ ⇒ q′) ∧ |p| < |q| or

• conf(p ⇒ q) = conf(p′ ⇒ q′) ∧ sup(p ⇒ q) = sup(p′ ⇒ q′) ∧ |p| = |q|
and p occurs lexicographically before p′

This example is rather typical in that the totality of the order is achieved by
arbitrarily breaking ties (often based on the lexicographical order of Σp). Tree
sets remove the condition of totality on the entire set (and the arbitrariness that
is employed for enforcing it):

Definition 1.3.3. Tree Set A tree pattern set (S, E) is a set of patterns S =
{p1, . . . , pk} ⊆ Lp on whose elements a partial order E is defined, that is, a
binary relation that is reflexive, antisymmetric and transitive:

1.3. PATTERN SETS 47

p3

p2 p4

p1 p5

p6

Figure 1.2: A labeled tree representing the tree set from Example 1.3.2

• ∀p ∈ S : p E p

• ∀p1, p2 ∈ S : (p1 E p2 ∧ p2 E p1) ⇒ p1 = p2

• ∀p1, p2, p3 ∈ S : (p1 E p2 ∧ p2 E p3) ⇒ p1 E p3

such that for each p ∈ S the set {pi | pi E p} is totally ordered. Two patterns
p1, p2 are said to be at the same level of the tree set if and only if

|{pi | pi E p1}| = |{pi | pi E p2}|.

As can be seen from the definitions, a total order is a partial order with the
added condition of totality (since totality implies reflexivity). This means that
ordered sets can be represented by tree sets but not vice versa.

The formal definition given above aims primarily at generality and to make
the relation to ordered sets clear. There is also a less formal way of considering
tree sets, namely, as the name implies, in relation to the language of rooted
labeled trees we introduced in Definition 1.1.4: A tree pattern set (S, E) is a
labeled rooted tree in which the root is labeled with pr = inf S. Additionally,
∀pi, pj ∈ S : pi E pj if and only if pj ∈ π∗(pi). Tree pattern sets have the
property that ∀pi ∈ S : |{p|π(p) = pi}| ≤ 1.

Example 1.3.2. Let us assume a tree set S = {p1, p2, p3, p4, p5, p6} with the
patterns ordered according to

p3 E p2, p3 E p4, p2 E p1, p2 E p5, p5 E p6

Then inf S = p3 and p3 = π(p2), p3 = π(p4), p2 = π(p1), p2 = π(p5), p5 = π(p6),
leading to the tree shown in Figure 1.2.

1.3.2 A priori properties

As is the case for local patterns, pattern sets have certain a priori properties.
It is often useful to interpret a pattern set S = {p1, · · · , pn} as the disjunction

48 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

p1∨· · ·∨pn of the patterns pi it contains. This is reasonable as pattern domains
that are being employed can often be considered conjunctions, which means that
the entire pattern has to appear in an instance for a match to occur. This is
consistent with the three matching notions we defined in Section 1.1. From this
perspective, a pattern set S is a kind of formula in disjunctive normal form:

Definition 1.3.4. Pattern Set Matching A pattern set S matches an in-
stance e only if there exists a pattern p ∈ S that matches e; that is, match(S, e) =
1 only if ∃p ∈ S : match(p, e) = 1.

Example 1.3.3. If the pattern language were reduced to that of individual items,
an unordered pattern set would in appearance equal an itemset. The difference
between the two is then purely semantical: An itemset is a conjunction of items
that define a local boundary between two subsets of the data. A pattern set
of items is a disjunction of items, that collects a number of local boundaries
(defined by the individual items) into a larger-scale, boundary.

Similarly, there is a relation between ordered sets and sequences, or tree sets
and tree-structured patterns.

For local patterns, matching has to be defined for any combination of pattern
and data language. Pattern set matching, on the other hand, refers to the
local pattern definition and therefore holds in this formulation, no matter which
languages are used. Note, however, that the definition only gives the necessary
condition for a pattern set to match, that there must be at least one pattern in
the set that matches the instance. The sufficient condition for a pattern set to
match depends on the type of pattern set.

For unordered sets, the condition is intuitively appealing. Patterns are
checked against instances in arbitrary order and if at least one matches, the
entire set matches. The necessary condition is also sufficient. A side-effect of
this is that it cannot be predicted which of several matching patterns will be
the one deciding on the match of the entire set.

When looking at ordered sets, such as the decision lists assembled by CBA,
it becomes clear that this notion holds there as well. The order is not arbitrary,
however, but patterns are checked in ascending order, with the minimal pattern
among those matching the instance triggering the matching of the entire set.

Finally, tree sets are generated by parallel mining, described in Section 2.3.3.
We will not describe the full algorithm here but state that whenever a pattern p
is added to the set, the data is split into subsets cov(p,D) and cov(p,D). Each of
the two subsets then informs the selection of the next patterns. Hence, of the two
direct successors p1, p2 : p = π(pi), p1 will, for instance, match some instances in
cov(p,D), while p2 will match some instances in cov(p,D). Therefore ∀e ∈ D :
match(p1, e) ⇒ match(p, e). If a p is checked against an instance and matches,
the entire pattern set matches. If it does not, it is unintuitive to check whether
p1 matches, and only p2 and its successors are checked against the instance,
until either a match is found or the set is exhausted.

By adopting this notion of matching, the definitions of cov, tid and sup
directly carry over to the level of pattern sets. While other notions that apply

1.3. PATTERN SETS 49

to local patterns can be easily lifted towards pattern sets, this is not always
trivial. One of those is the notion of generality which deserves some more
attention.

We could directly apply the definition of generality and write that S � S′ if
and only if for all possible instances e it holds that match(S′, e) ⇒ match(S, e).
We will refer to this notion of matching as semantic generality. The problem
with this is, however, that deciding S � S′ may be non-trivial. For instance,
in case of S and S′ being logical formulae (e.g., in disjunctive normal form as
sketched above), this would amount to deciding whether S′ logically entails S,
i.e., whether S

′ |= S.
At the same time, there are settings in which the set of patterns from

which one can assemble pattern sets may be limited, for instance when L =
Th(Lp,D, c) and pattern set mining is done in a post-processing step. Then it
will be much harder to define refinement operators that compute minimal gen-
eralizations or specializations of pattern sets. Therefore, we will adopt an easier
but more operational definition of generality at the pattern set level. More
formally,

Definition 1.3.5. Syntactic Generality Pattern set G is (syntactically) more
general than pattern set S, notation G �s S, if and only if for all patterns qi ∈ S

there exists a pattern pj ∈ G such that pj � qi.

It is easy to see that this definition is sound, but – depending on the pattern
domain – not necessarily complete, i.e., whenever S �s S

′ this implies that for
all instances e, match(S′, e) ⇒ match(S, e), but the reverse direction does not
necessarily hold.

When manipulating pattern sets, it will sometimes be convenient to further
simplify this notion of generality and use the simple subset relation.

Definition 1.3.6. Subset Generality Using the subset relation, S is (subset)
more general than S′, notation S �⊆ S′ if and only if S′ ⊆ S.

It is instructive to observe that S �⊆ S′ implies that S �s S′, i.e., that S is
more general than S′, although the opposite does not always hold. Consider for
instance, in the item set domain: for pattern sets {{a}} � {{a, b}} holds but
{{a}} �⊆ {{a, b}} does not.

We can define refinement operators accordingly:

Definition 1.3.7. Pattern Set Refinement Operator A refinement oper-

ator P at the pattern set level is a function P : 2Lp 7→ 22Lp
. All notations as

introduced in Definition 1.1.9 apply for the pattern set level as well.

Using Definition 1.3.5, we can make the refinement operator explicit:

Definition 1.3.8. Syntactic Refinement Operator A generalization (spe-
cialization) operator in the sense of Definition 1.3.5 takes the form:

Pg(S) = {S∪{p′}\{p} | p′ ∈ ρg(p), p ∈ S}(Ps(S) = {S∪{p′}\{p} | p′ ∈ ρs(p), p ∈ S})

50 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

Analogously, we can define refinement operators related to Definition 1.3.6:

Definition 1.3.9. Subset Refinement Operator A generalization (special-
ization) operator in the sense of Definition 1.3.6 takes the form:

P⊆g
(S) = {S ∪ {p} | p ∈ 2Lp}(P⊆s

(S) = {S \ {p} | p ∈ S})

There is an interesting property that can be exploited to characterize the
relationship between �s and �⊆, based on the notion of a reduced pattern set.

Definition 1.3.10. Reduced Pattern Sets A pattern set S is reduced if and
only if ∀p ∈ S : ¬[(S \ {p}) �s S]. We use the notation reduced(S) to signify
that S has this property.

Reduced pattern sets contain no redundant patterns, that is, no pattern
that does not affect the level of generality. Given a non-reduced pattern set S,
it is easy to obtain a pattern set S′ that is equivalent (w.r.t. �s) by repeatedly
deleting patterns p from S for which (S \ {p}) �s S. The reduced set will be
unique provided that the pattern language does not contain syntactic variants.

At this point, the reader commonly working with item sets may notice that
the direction of generality is reversed here. Indeed, when working at the local
pattern level of item sets, p ⊆ q implies that p � q. To see why this is the
case, it is – again – convenient to recall the view of pattern sets as formulae
in disjunctive normal form. No matter whether one is working with individual
patterns or pattern sets, in this view, G � S if and only if S |= G. Subset
generality will be convenient to generate pattern sets in mining operations since,
when using the subset relation, generalization corresponds to adding a pattern,
and specialization to deleting one.

1.3.3 A posteriori properties

Contrary to constraints defined on individual patterns, which determine the
interestingness of those, pattern sets are evaluating patterns in terms of the
relationships with other patterns in the pattern set. Measures and constraints
on pattern sets thus focus on pairs of patterns or (implicitly or explicitly) on all
patterns collected in the pattern set.

Definition 1.3.11. Pairwise and Set Measures A measure Φ : Lp×Lp 7→ R

is called a pairwise measure and a measure Ψ : 2Lp 7→ R is called a pattern set
measure.

In this section, we introduce some useful primitives for pattern set mining
and discuss their properties. The list is by no means exhaustive; it merely serves
to illustrate the framework and its intuitive appeal.

Definition 1.3.12. Redundancy Given two patterns p1, p2, their overlap in
a data set D is defined as

ovlp(p1, p2,D) = cov(p1,D) ∩ cov(p2,D).

1.3. PATTERN SETS 51

Their redundancy in D is defined as

red(p1, p2,D) = |ovlp(p1, p2,D)|.

Their relative redundancy is

redrel(p1, p2,D) =
red(p1, p2,D)

|D|
.

The redundancy is a measure of the degree to which two patterns overlap.
Like support, it can be defined either absolutely or relatively to the size of the
data set D.

This becomes important in cases in which e.g. a characterization of a dataset
is wanted, consisting of patterns showing little redundancy which thus highlight
characteristic properties of certain subsets. Similarly, when using an unordered
rule set, little redundancy means few instances which might be classified differ-
ently by different rules, reducing the need for conflict solution heuristics.

Similarly to overlap, symmetric difference is a useful primitive relating two
patterns (kindly suggested by Siegfried Nijssen, personal communication):

Definition 1.3.13. Distinctiveness Given two patterns p1, p2, the set

diff(p1, p2,D) = {cov(p1,D) ∪ cov(p2,D)} \ ovlp(p1, p2,D)

is called their symmetric difference. Their distinctiveness is

dist(p2, p2,D) = |diff(p1, p2,D)|.

Dual to redundancy, distinctiveness quantifies how much of the covered data
is exclusively covered by one of the two patterns. Again, one could define the
relative distinctness distrel, as a variant.

Especially for settings such as subgroup discovery, the existing data is often
split into subsets corresponding to interesting groups. For pattern sets mined in
such a setting, predicates that are defined with regard to the different subsets
have to be used for effective mining. This will very likely lead to a situation
in which boolean combinations of predicates have to be used for mining and
pruning, probably with differing properties. In this context, measures such as
the representativeness are useful.

Definition 1.3.14. Representativeness Given a pattern set S and database
D = {D1, ..., Dn}, the representativeness of S with regard to a given Dk is
defined as

rep(S, Dk,D) =
sup(S, Dk)

sup(S,D)
.

The representativeness of a pattern set indicates how characteristic the ex-
amples covered by the pattern set are for the subset Dk. If membership in the
data set Dk would be represented as an item or attribute, the representativeness
would correspond to the confidence of a DNF rule with this item as right-hand
side.

52 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

1.3.4 Constraints

Analogously to the local pattern mining approach, constraints can be defined
that pattern sets of interest have to satisfy.

Definition 1.3.15. Pairwise and Pattern Set Constraint A predicate
C : Lp × Lp 7→ {true, false} is called a pairwise constraint on patterns and
a predicate C : 2Lp 7→ {true, false} a pattern set constraint.

The first type of constraints are direct adaptations of the well-known con-
straints for local pattern mining. In particular, some standard constraints in-
clude

Minimum support sup(S,D) > θs (1.3.2)

Maximum support sup(S,D) < θs (1.3.3)

Minimum size size(S) > θcard, where size(S) = |p| (1.3.4)

Maximum size size(S) < θcard, where size(S) = |p| (1.3.5)

More general than S′ � S, where S is a particular pattern set (1.3.6)

More specific than G � S′, where G is a particular pattern set (1.3.7)

Size, redundancy, distinctiveness and representativeness are primitives of
the constraint language. Typically, these primitives will not be employed in
an isolated fashion, but rather they will be combined with aggregates. These
aggregates range over the whole set of patterns in the set or, in the case of
pairwise primitives, over the set of pairs of patterns in the set. We shall be
using the typical aggregates such as avg, min, sum and max. For instance, the
constraint

max(sup(S, D)) < θs

denotes that the maximum support of any pattern in S should be less than θs.
So, it is actually an abbreviation for

max
p∈S

(sup(p,D)) < θs

Similarly, the constraint

sum(red(S,D)) < θred

denotes that the sum, taken over all pairs of patterns in S, of the redundancies
should be less than θred. More formally, this amounts to

∑

i<j,pi,pj∈S

red(pi, pj ,D) < θred

Similarly but less selective are the use of the universal

all(red(S,D)) ≤ θred ⇔ ∀pi, pj ∈ S : red(pi, pj ,D) ≤ θred

1.3. PATTERN SETS 53

and the existential quantifier

exists(red(S,D)) ≤ θred ⇔ ∃pi, pj ∈ S : red(pi, pj,D) ≤ θred

A special position is reserved for top-k constraints, since this particular
constraint on the one hand has a different mechanism – involving the entire
pattern set as well relationships between patterns, but not in an explicit way –
and on the other hand is almost indispensable for most model building.

Definition 1.3.16. Top-k Theory Given an interestingness measure σ, data
set D, and pattern language Lp, a top-k theory is a set Th(Lp,D, σ) ⊆ Lp,
|Th(Lp,D, σ)| = k such that:

there is no q ∈ Lp : q /∈ Th(Lp,D, σ) and σ(q,D) > min
p∈Th(Lp,D,σ)

σ(p,D)

We denote the corresponding constraint with argk max σ(p,D).

A top-k constraint obviously evaluates any pattern’s satisfactoriness with
regard to the data and all other patterns in the language. So while it is obviously
a pattern set constraint, it is not a pairwise constraint and cannot be defined
in terms of pairwise constraints.

To illustrate the way our framework can be employed, we present some ex-
ample queries here that are meant to illustrate the expressiveness and the use of
constraint-based pattern set mining. All the queries sketched here assume that
a previous query at the local pattern mining level has already been formulated.
As one possible such query, it may be convenient to keep the query Q0 in mind
that was introduced in Query 1.3.1. The pattern set variable S then ranges
over all subsets of Th(Lp, Mol, Q0), where the database Mol of molecules is
composed of two disjoint sets: Act, the actives, and InAct, the inactives.

First, in a summarization or clustering context, the user might pose Q1:

sup(S, Act) ≥ θs ∧ max(red(S, Mol)) ≤ 1 (1.3.8)

It asks for those sets of patterns that together cover at least θ1 active molecules
and in which the conjunction of each pair of patterns covers at most one example.
The minimum support ensures that the pattern collection is really representative
of the dataset while the maximum redundancy, as mentioned above, means that
individual patterns capture characteristics particular to certain distinct subsets.

Second, when focusing on classification or accuracy, one might pose Q2:

all(rep(S, Act, Mol)) ≥ 0.95 ∧

max(red(S, Mol)) ≤ θred ∧

size(S) ≥ 2 (1.3.9)

Q2 generates sets of patterns of size at least two, in which the representa-
tiveness, (i.e., the confidence in predicting an active) is at least 95%, and the
number of examples covered by the intersection of any pair of patterns is at

54 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

most θred. This type of query is related to the process of subgroup discovery,
since a particular target class is specified.

Third, our chemical expert suggested query Q3, which models a form of
chemical interestingness:

S � {p1}∧ sup(S, Act) ≥ θsi
∧

size(S) ≤ 20 ∧ sup(S, InAct) ≤ θsa
(1.3.10)

Here, the expert is looking for pattern sets that are frequent in the actives,
infrequent in the inactives, contain pattern p1 and have size at most 20.

Fourth, one may want to find sets of patterns that cover similar sets of
examples in Act by employing query Q4.

min(red(S, Act)) ≥ 5 ∧ size(S) ≥ 2 (1.3.11)

This requires that the intersection of each pair of patterns covers at least 5
examples and that the size of the pattern set is larger than 2. This could
be used to identify families of patterns that characterize the same instances –
i.e. equivalence classes from each of which one pattern is selected and the rest
discarded.

Finally, an associative classification rule learner such as CBA aims at select-
ing a subset of the mined rules with high accuracy as the final classifier. The
rule set should have high accuracy on a validation set and little redundancy
among the rules. Thus Q5 has the form:

max(red(S, D)) ≤ θred ∧ arg1 max acc(S,Dval) ≥ θacc (1.3.12)

The second term denotes that we are querying for the single most accurate
pattern set among those with accuracy at least θacc.

1.3.5 Properties of constraints

Constraint based data mining system rely heavily on the properties of the em-
ployed constraints in order to ’push’ the constraints into the data mining system
and to develop efficient and effective algorithms. Therefore, since our aim is the
formulation of a framework for constraint-based pattern set mining, we study
in this section the properties of the pattern set constraint primitives introduced
earlier. Many of the properties mirror those of constrained local pattern mining
while some take the different nature of pattern sets into account.

Definition 1.3.17. Monotonicity A constraint C is said to be monotone w.r.t.
a generality relation � if and only if

∀G, S, G � S : C(G) ⇒ C(S).

It is said to be anti-monotone if and only if

∀G, S, G � S : C(S) ⇒ C(G).

1.3. PATTERN SETS 55

This definition is applicable to pattern set mining using the relations �s

or �⊆. When the monotonicity property holds at the pattern level set for �⊆

but not for �s, we say that the constraint is restricted monotone. Restricted
anti-monotone is defined similarly.

To give an intuition of the meaning of this property, monotone formalizes
the notion that a constraint that is satisfied will stay satisfied if the pattern
set becomes more specific. Similarly, anti-monotone makes the same statement
about a pattern set that becomes more general.

Constraints 1.3.2, 1.3.5, and 1.3.6, are give examples of anti-monotone con-
straints, while the remaining three (1.3.3, 1.3.4, 1.3.7) are monotone.

It has been shown for the local pattern mining setting that one can logically
combine monotone and anti-monotone predicates. If the a’s are anti-monotone
and the m’s monotone, then

• ¬a is monotone and ¬m is anti-monotone;

• a1 ∧ a2 and a1 ∨ a2 are anti-monotone; and

• m1 ∧ m2 and m1 ∨ m2 are monotone.

A relaxation of the monotone and anti-monotone properties that is still useful
for local pattern mining assumes that a particular lexicographic order on the
patterns exists. One then often talks about convertible constraints. To define
convertible constraints, we will – for simplicity – assume that the generality
relation corresponds to the subset relation.

Definition 1.3.18. Convertible Monotonicity A constraint C is said to
be convertible anti-monotone (resp. convertible monotone) w.r.t. a pattern
language Lp, if and only if there exists an order E on Lp, such that for all
ordered pattern-sets {p1, . . . , pn}(with p1 E . . . E pn):

C({p1, . . . , pn−1}) ⇒ C({p1, . . . , pn})

(resp. C({p1, . . . , pn}) ⇒ c({p1, . . . , pn−1})).

Example 1.3.4. Two examples of convertible anti-monotone constraints are
the ones used in CBA, discussed in Section 4.2, and in our Bouncer and
Picker algorithms which we describe in Section 3.2. Both of those constraints
make use of the orders imposed on the respective pattern sets:

CCBA(S,D) ≡ ∀p ⇒ q ∈ S, ∃e ∈ D : e /∈
⋃

piECBAp

cov(pi,D) ∧ class(e) = q

The CBA-constraint states that each class-association rule in the pattern set
must cover at least one instance that has not been covered by a predecessor pat-
tern according to ECBA, and that it has to predict the instance’s class correctly.

CBouncer(S,D) ≡ ∀p ∈ S : Φ(
⋃

piEBp

, p) ≥ θ

56 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

The Bouncer-constraint sets a minimum threshold on a measure applied to a
pattern and the union of all predecessor patterns already in the pattern set. If the
respective orders are used in the enumeration process, convertible monotonicity
is ensured.

A third type of constraint that is often used is that of succinctness (Ng
et al. 1998). We again use the simpler definition already employed in the context
of local pattern mining constraints:

Definition 1.3.19. Succinctness A constraint predicate C defined on pattern
sets is succinct if and only if for all sets S: C(S) can be expressed as ∀p ∈ S :
r(p) = true for a predicate r.

Succinct constraints are attractive because they allow one to test whether a
potential solution satisfies a constraint by ensuring that all members satisfy the
constraint. This can be used to restrict the alphabet from which solutions can
be assembled.

Example 1.3.5. In a post-processing setting, where L = Th(Lp,D, c) has al-
ready been mined, a straight-forward succinct pattern set constraint is the mini-
mum support constraint min(sup((S,D)) ≥ θsup. It can be enforced by restricting
the set of patterns from which to assemble sets to ∀p ∈ L : sup(p,D) ≥ θsup.

The boundable definition we used before (Definition 1.1.18) holds for the
domain of pattern sets as well

Definition 1.3.20. Boundable A function f : L 7→ R is said to be upper-
boundable (resp. lower-boundable) with regard to a pattern set language L if
given f(S) = k, k′ ∈ R can be derived s.t. f(S′) ≤ k′ (resp. f(S′) ≥ k′) for all
S′ ≺ S or S ≺ S′.

Contrary to local pattern mining, in pattern set mining both generalization
and specialization bounding is possible, due to the different notion of matching.

Theorem 1.3.1. Each constraint mentioned in Table 1.2 possesses the proper-
ties listed.

Proof argumentation Most of the claims directly follow from the prop-
erties at the level of local patterns, and the duality w.r.t. the generalization
relation. Therefore, we do not provide a formal proof. Nevertheless, some of
the more interesting constraints are marked with a ′⋆′, resp. ′+′, or ′#′.

Constraints marked with a ⋆, min(red(S,D)) ≤ θ and min(red(S,D)) ≤ θ,
are restricted anti-monotone and restricted monotone, respectively. The justifi-
cation is that adding a pattern to a pattern set potentially decreases the minimal
redundancy any two patterns can have, while removing a pattern potentially in-
creases it. We first prove the anti-monotonicity of min(red(S,D)) ≤ θ for subset
generalization:

Theorem 1.3.2. The minimum redundancy constraint min(red(S,D)) ≤ θ is
anti-monotone under subset refinement.

1.3. PATTERN SETS 57

Table 1.2: Set constraints and their properties.
Constraint Property Type
G � S monotone primitive
S � S anti-monotone primitive
size(S) ≥ θ anti-monotone primitive
size(S) ≤ θ monotone primitive
sup(S,D) ≤ θ monotone primitive
sup(S,D) ≥ θ anti-monotone primitive
rep(S, D1,D) ≤ θ generalization boundable# primitive
rep(S, D1,D) ≥ θ generalization boundable# primitive
all(rep(S, D1,D)) ≤ θ succinct aggregate
all(rep(S, D1,D)) ≥ θ succinct aggregate
max(sup(S,D)) ≤ θ succinct aggregate
min(sup(S,D)) ≥ θ succinct aggregate
max(red(S,D)) ≤ θ monotone aggregate
max(red(S,D)) ≥ θ anti-monotone aggregate
min(red(S,D)) ≤ θ restricted anti-monotone⋆ aggregate
min(red(S,D)) ≥ θ restricted monotone⋆ aggregate
avg(sup(S,D)){≥,≤}θ convertible aggregate
max(rep(S, D1,D)) ≤ θ succinct aggregate
min(rep(S, D1,D)) ≥ θ succinct aggregate
sum(red(S,D)) ≤ θ monotone aggregate
sum(red(S,D)) ≥ θ anti-monotone aggregate
χ2(sup(S, D+), sup(S, D−)) ≥ θ specialization upper-boundable primitive
min(dist(S,D)) ≥ θ restricted monotone+ aggregate
min(dist(S,D)) ≤ θ restricted anti-monotone+ aggregate
max(dist(S,D)) ≤ θ restricted monotone+ aggregate
max(dist(S,D)) ≥ θ restricted anti-monotone+ aggregate

58 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

Proof. We want to prove that min(red(S,D)) ≤ θr ⇒ min(red(S∪{pm+1},D)) ≤
θr or, reformulated, that min(red(S ∪ {pm+1},D)) ≤ min(red(S,D). Given
S = {p1, . . . , pm} then

min(red(S,D)) = min
∀pi,pj∈S,pi 6=pj

red(pi, pj,D)

Adding an additional pattern pm+1 to the set leads to case 1:

∀pi ∈ S : red(pi, pm+1,D) ≥ min
pj∈S,pj 6=pi

red(pi, pj,D)

which is equivalent to

min(red(S ∪ {pm+1},D)) = min(red(S,D)) (1.3.13)

case 2:

∃p′i ∈ S : red(p′i, pm+1,D) < min
pj∈S,pj 6=p′

i

red(p′i, pj ,D)∧

red(p′i, pm+1,D) ≥ min(red(S,D))

which is equivalent to

min(red(S ∪ {pm+1},D)) = min(red(S,D)) (1.3.14)

or case 3

∃p′i ∈ S : red(p′i, pm+1,D) < min
pj∈S,pj 6=p′

i

red(p′i, pj ,D)∧

red(p′i, pm+1,D) < min(red(S,D))

equivalent to

min(red(S ∪ {pm+1},D)) < min(red(S,D)) (1.3.15)

The combination of 1.3.13, 1.3.14, and 1.3.15 leads to

min(red(S ∪ {pm+1},D)) ≤ min(red(S,D),

with a analogous argumentation holding for the case of specialization by pattern
removal.

If syntactic generalization or specialization is used, the properties turn into
their dual, as we will prove for syntactic generalization:

Theorem 1.3.3. The minimum redundancy constraint min(red(S,D)) ≤ θ is
monotone under syntactic refinement.

1.3. PATTERN SETS 59

Proof. We want to prove that under syntactic generalization

∀ps ∈ S : min(red(S,D)) ≥ θr ⇒ min(red(S ∪ {pg} \ {ps},D)) ≥ θr

or, reformulated, that

∀ps ∈ S : min(red(S ∪ {pg} \ {ps},D)) ≥ min(red(S,D)).

Given S = {p1, . . . , pm} then

min(red(S,D)) = min
∀pi,pj∈S,pi 6=pj

red(pi, pj ,D)

Let us assume without loss of generality that pi = p1 and pj = p2

red(p1, p2,D) = |cov(p1,D) ∩ cov(p2,D)|

If ps 6∈ {p1, p2} then we have that

min(red(S ∪ {pg} \ {ps},D)) = min(red(S,D)) (1.3.16)

If ps ∈ {p1, p2}, let us say ps = p1 then

cov(pg) ⊇ cov(p1) ⇒ |cov(pg)| ≥ |cov(p1)| ⇒ red(pg, p2,D) ≥ red(p1, p2,D)

Which leads to

min(red(S ∪ {pg} \ {ps},D)) ≥ min(red(S,D)) (1.3.17)

1.3.16 and 1.3.17 lead to

min(red(S ∪ {pg} \ {ps},D)) ≥ min(red(S,D)).

Again, an analogous argumentation holds for the case of generalization.

Since min(red(S,D)) ≤ θ (min(red(S,D)) ≥ θ) is anti-monotone (mono-
tone) for subset refinement (Theorem 1.3.2) and monotone (anti-monotone) for
syntactic refinement (Theorem 1.3.3), it is restricted anti-monotone (restricted
monotone).

For those constraints with a ′+′, max(dist(S,D)) ≥ θ and min(dist(S,D)) ≤
θ are restricted anti-monotone since subset generalization increases the num-
ber of possible pairings. It might increase the largest distinctiveness that two
patterns in this set show and decrease the smallest distinctiveness. Subset spe-
cialization has the opposite effects on the maximal and minimal values of dis-
tinctiveness, making max(dist(S,D)) ≤ θ and min(dist(S,D)) ≥ θ restricted
monotone. We omit the formal proof of these properties since it consists of
arguments similar to the proof for redundancy-properties.

Under syntactic refinement, the maximum constraints max(dist(S,D)){≤
,≥}θ and the minimum constraints min(dist(S,D)){≤,≥}θ become boundable.
For these constraints to be boundable, ∀pi, pj ∈ S : dist(pi, pj,D) must be
boundable. We prove this for the case of syntactic specialization:

60 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

Theorem 1.3.4. Given pi, pj, dist(pj , pi,D), dist(pj, ps,D) is boundable under
syntactic specialization, that is, it is possible to calculate a lower and an upper
bound ubl ≤ dist(pj , ps,D) ≤ ubs.

Proof. Given S = {p1, . . . , pm}, if any pi is selected for specialization to ps, we
have that:

cov(pi,D) ⊆ cov(ps,D) ⇒ |cov(pi,D)| ≤ |cov(ps,D)|

In the case cov(pi,D) = cov(ps,D) we have that

∀pj ∈ S, pj 6= pidist(pj , pi,D) = dist(pj , ps,D)) (1.3.18)

Recalling the definition of distinctiveness:

dist(pi, pj,D) = diff(pi, pj ,D) = {cov(p1,D) ∪ cov(p2,D)} \ ovlp(p1, p2,D)

and the definition of overlap:

ovlp(p1, p2,D) = cov(p1,D) ∩ cov(p2,D)

three properties hold :

1)∀pj ∈ S, pj 6= pi : {} ⊆ ovlp(pj , ps,D) ⊆ ovlp(pj , pi,D) (1.3.19)

Which gives us bounds for the overlap ovlp(pj , ps,D)

2)∀e ∈ ovlp(pj , pi,D) ⇒ e ∈ cov(pj ,D) ∧ e ∈ cov(pi,D)

⇔∀e ∈ ovlp(pj , pi,D), e 6∈ ovlp(pj, ps,D)

⇒e ∈ cov(pj ,D), e 6∈ cov(ps,D) ⇒ e ∈ cov(pj ,D) ∪ cov(ps,D) (1.3.20)

which means that for each instance that is removed from the overlap due to
specialization, the union of coverages stays the same

3)∀e ∈ cov(pi,D), e 6∈ ovlp(pi, pj ,D), e 6∈ cov(ps,D) ⇒ e 6∈ cov(pj ,D) ∪ cov(ps,D)
(1.3.21)

which means that for each instance that was not in the overlap, yet is removed
from the coverage of ps due to specialization, the union of coverages shrinks

We can combine the lower bound of 1.3.19 and 1.3.20 to formulate an upper
bound:

dist(pj , ps,D) = |diff(pj, ps,D)| ≤ |cov(pj ,D) ∪ {cov(pi,D) \ ovlp(pj , pi,D)}|
(1.3.22)

1.4. SUMMARY 61

and the upper bound of 1.3.19 and 1.3.21 to formulate a lower bound:

dist(pj, ps,D) = |diff(pj, ps,D)| ≥ |cov(pj ,D) \ ovlp(pj, pi,D)| (1.3.23)

Combining 1.3.22 and 1.3.23 means that max(dist(S,D)) and min(dist(S,D))
become boundable measures and the according constraints boundable constraints.

For the representativeness marked with a ′#′, let us illustrate this using an
example.

Example 1.3.6. Assume that the underlying dataset consists of two subsets of
size 300 each. If a pattern set S covers 200 instances of dataset one and 100
instances of dataset two, rep(S, D1,D) = 2

3 . Generalizing this set to a set S′ will
increase either sup(S′, D1), sup(S′, D2), or both. Thus 0.4 ≤ rep(S′, D1,D) ≤
0.75, representativeness is generalization boundable.

Using this list of properties, we can now investigate the properties of the
conjunctive queries, given earlier as examples:

• Q1 is written as the conjunction of an anti-monotone and an monotone
constraint, i.e., in the form ’anti-monotone ∧ monotone’;

• Q2 is in the form ’succinct ∧ monotone ∧ anti-monotone’;

• Q3 is in the form (anti-monotone ∧ anti-monotone) ∧ (monotone ∧ mono-
tone)’, and hence, ’anti-monotone ∧ monotone’;

• Q4 is in the form ’restricted monotone ∧ anti-monotone; and

• Q5 is monotone ∧ ’generalization upper boundable’.

Observe that it is – of course – also possible to provide further queries and
analyze their properties. For instance, the specific type of query which was
answered by (Shima et al. 2005) corresponds to

|
⋃

i<j,pi,pj∈S

ovlp({pi, pj},D)| ≤ θ. (1.3.24)

It is a monotone constraint.

1.4 Summary

In this chapter of our work we laid out the foundations needed for local pat-
tern mining and pattern set mining. Additionally, we explained the motivation
behind pattern set mining: patterns are usually needed for addressing KDD
tasks and pattern sets define the ways in which those patterns are assembled
for use. This can include the selection of subsets of patterns as features for the
description of data to model formation out of predictive rules.

62 CHAPTER 1. PATTERNS, CONSTRAINTS, SETS OF PATTERNS

There are many similarities among the two tasks which were mirrored in the
layout of the two sections (Section 1.1 and 1.3). In both cases, we started by
discussing how to express the results we aim to mine. From these formulations
follow the ways that they are applicable to any data which in turn spawn several
properties that hold no matter the data considered. Particular data effects the
so-called a posteriori properties. The interestingness of patterns and pattern
sets lies very much in the eye of the beholder, the user in the case of data
mining. To define this interestingness, constraints are used in both cases which
can then be used to make the search for solutions more effective.

These similarities should not obscure the biggest difference between Sections
1.1 and 1.3: While local pattern mining is well-established and a formal frame-
work exists, in which one can reason about properties of languages, measures,
and constraints, such a principled way of talking about pattern set mining has
been absent from the literature so far. Having such a framework is useful in
terms of developing algorithms for finding good solutions efficiently. In contrast
to this, pattern set mining techniques in the literature are mainly tailored to
specific KDD tasks, or focussing on either improving only effectiveness or effi-
ciency. We will describe existing approaches to local pattern mining and pattern
set mining in the next chapter and discuss how one can move from the data and
a general idea of the purpose of a pattern set to formulating a way to approach
the task. Most importantly, we introduce two novel algorithms, inspired by
exhaustive local pattern mining, and feature selection methods from machine
learning.

Chapter 2

Discussing Algorithms

When writing about finding the theories of local patterns Th(Lp,D, c) and of
pattern sets Th(2Lp,D, C) so far, we only have discussed the theoretical foun-
dations but not yet the practical approaches towards finding them. Since there
cannot be an algorithmic solution that is well-suited to all problem settings, we
will discuss several options in this chapter. Data mining is essentially search
and the main trade-off is between completeness and efficiency of an algorithm:

• While an exhaustive technique is usually guaranteed to find the best or
the complete solution, it often pays a high computational cost (extensive
running times and/or high memory consumption).

• A heuristic technique, on the other hand, can be expected to finish quickly
yet does not necessarily return the best solution and will not be able to
return a complete solution without deteriorating to exhaustive search.

Algorithmically, approaches differ in how they traverse the space of potential
solutions. As an illustration, consider the lattice of itemsets shown as Figure
2.1. All of these are potential solutions with regard to constraint satisfaction or
the optimization (maximization/minimization) of an interestingness measure.
Both in the case of exhaustive search (Section 2.1) and heuristic search (Sec-
tion 2.2), a combination of selection of partial solutions and of the refinement
operator used determines which parts of this solution space are traversed. After
explaining both approaches in a general way, we will discuss several concrete
algorithms for local pattern mining and pattern set mining. Common to all
these techniques is that refinement operators work by only adding/removing or
specializing/generalizing patterns.

The third section (Section 2.3) differs from the other two in that moving
from one partial solution to the next involves more elaborate refinement op-
erators that manipulate the underlying data. We will explain three ways for
manipulating data based on the partial local pattern or partial pattern set and
present several concrete techniques. While it is possible in theory to use this

63

64 CHAPTER 2. DISCUSSING ALGORITHMS

{}

{a,b,d} {a,b,e} {a,c,d} {a,c,e} {a,d,e} {b,c,d} {b,c,e} {b,d,e} {c,d,e}

{a,d} {a,e} {b,c}{a,c}{a,b} {b,d} {b,e} {c,d} {c,e} {d,e}

{a} {b} {c} {d} {e}

{b,c,d,e}{a,c,d,e}{a,b,c,e}{a,b,c,d}

{a,b,c,d,e}

{a,b,c}

Figure 2.1: Complete lattice over the pattern space for items a, b, c, d, e

way of iterative mining both exhaustively and heuristically, we will argue why
the exhaustive case is too expensive.

As we have explained earlier, both the data mining and machine learning
community have somewhat of a blind spot when it comes to the employment
of the algorithmic solutions that have been developed in their respective fields.
In data mining this means that general exhaustive techniques that have been
developed for local pattern mining have yet to see application to the problem of
pattern set mining, a first attempt was made in (De Raedt and Zimmermann
2007). Our contribution in this regard is the discussion of mining in general
terms, which together with the framework for pattern set mining, makes it
clear that such techniques can be adapted rather easily. The machine learning
community, on the other hand, has mainly developed systems in which the
local pattern mining and pattern set mining step are integrated and the entire
system is viewed as monolithic. While there has been literature that discussed
certain pattern set mining (or induction) schemes in general terms, for instance
(Fürnkranz and Flach 2005), typically the integration of the pattern set mining
step with a (heuristic) local pattern mining step is taken for granted. We take
care to discuss that those are distinct, although interacting, issues, opening up a
wider range of algorithmic combinations. In our view, pattern set mining can in
general be understood in terms of a “wrapper” approach of which local pattern
mining is one step.

We will present algorithms in general search terms, referring to solutions
instead of patterns or pattern sets. Those solutions are formulated in a language
L. It can be instantiated by a pattern language like the ones defined in Section
1.1, or by pattern set languages, such as defined in Section 1.3.1. In both
types of mining – local pattern mining and pattern set mining – usually only

2.1. EXHAUSTIVE SEARCH 65

one “direction” of refinement is employed, that is, either a generalization or a
specialization operator is used. We will, for illustrative purposes, assume that
refinement starts from the empty set, meaning that a specialization operator
is used for local pattern mining and a generalization operator for pattern set
mining.

2.1 Exhaustive Search

Exhaustive miners needs to traverse the entire space of potential solutions during
the mining operation. This means that it is necessary for the refinement operator
to be complete (Definition 1.1.9), because otherwise solutions will be missed. It
is also often attractive to use a refinement operator which is optimal, to avoid
the enumeration (and evaluation) of duplicates.

Search through the lattice can be performed:

1. Breadth-first: in each step, all potential solutions at a given level in the
lattice are refined

2. Depth-first: starting from the left, in each step the deepest potential solu-
tion in the lattice is refined until refinement is not possible anymore, then
the process is continued with the second-deepest

3. Best-first: in each step, the highest-valued potential solution according to
a heuristic quantifying the future quality is refined

In the first case, it is often desirable for reasons of computational efficiency
to use a refinement operator which is optimal in addition to complete, to avoid
the enumeration of duplicate solutions. If depth-first or best-first search is used
for top-k mining, on the other hand, an optimal refinement operator can lead
to a larger search space, if solutions are enumerated that do not increase the
threshold quickly.

2.1.1 Complete mining

There are two tasks that have to be distinguished. The first one, which we will
discuss in this section, is that of complete mining which means that all patterns
or pattern sets that satisfy particular constraints are returned at the end of the
mining operation. Algorithm 1 is the general level-wise (that is, breadth-first)
algorithm for local pattern and pattern set mining. Adaptation to depth-first
search is straight-forward.

Note that the constraint to be satisfied can have any properties for this algo-
rithm to work, since only satisfaction is tested against. An algorithm performing
search like this will in fact enumerate the entire pattern space, leading to po-
tentially extreme running times and potential exhaustion of working memory.
Complete mining therefore prunes away pattern subspaces that cannot include
solutions.

66 CHAPTER 2. DISCUSSING ALGORITHMS

Algorithm 1 The general level-wise algorithm

Given: language L, ideal refinement operator ρ, constraint c, data base D
Return: set of all solutions s ∈ L satisfying c on D: Th(Lp,D, c) or
Th(2Lp ,D, C)

S = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
S = S ∪ {s | s ∈ C : c(s) = true}
P = C

end while
return S

For local patterns the most widely used type of constraint for pruning of
level-wise search is that of anti-monotone constraints. The definition of anti-
monotonicity (Definition 1.1.15) implies that for two patterns g, s : g ≺ s, c(g) =
false ⇒ c(s) = false. The best-known example is the Apriori algorithm
(Agrawal and Srikant 1994). Similarly, if the enumeration is performed from
specific to general (as in pattern set mining), monotone constraints have the
same pruning effect, as we showed in (De Raedt and Zimmermann 2007). The
set of potential solutions P can therefore be reduced, improving the efficiency
(see Algorithm 2).

Algorithm 2 The general level-wise algorithm with pruning

Given: language L, ideal refinement operator ρ, (anti-)monotone constraint
c, data base D
Return: set of all solutions s ∈ L satisfying c on D: Th(Lp,D, c) or
Th(2Lp ,D, C)

S = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
S = S ∪ {s | s ∈ C : c(s) = true}
P = {s | s ∈ C : c(s) = true}

end while
return S

The goal might be to mine all patterns whose score, as determined by a
correlation measure, exceeds a certain minimum threshold, however. Correla-
tion measures are usually not anti-monotone and therefore do not allow the
type of pruning shown in Algorithm 2. If the correlation measure is boundable
(Definition 1.1.18), upper-bound pruning is possible. In the next section, we
introduce coverage spaces to facilitate the explanation of upper-bound pruning
and contrast it with anti-monotone pruning.

2.1. EXHAUSTIVE SEARCH 67

m,0

〈x+
, x

−〉

0,0

0,n-m m,n-m

Figure 2.2: General coverage space

Coverage spaces, anti-monotone pruning and why correlation mea-
sures can be tricky

A coverage space takes the form shown in Figure 2.2. Connected to the contin-
gency table we introduced in Section 1.1.2, and the definition of a stamp point
(Definition 1.1.12), a coverage space is a diagram spanning all possible stamp
points w.r.t. a target pattern q. Coverage spaces were first introduced and used
in such a way by Flach et al. (2005).

Since a pattern can only be present or absent, i.e. is binary, the coverage
space is a two-dimensional diagram. We adopt the convention that the vertical
axis denotes the number of instances where q is absent, the horizontal one the
number of instances where q is present. The lower left corner corresponds to
the stamp point 〈0, 0〉, the sp of a pattern that does not cover any instance in
the current data set. The upper left corner is 〈0, n − m〉, and the lower right
〈m, 0〉, patterns covering all the instances where q is absent (present). Finally,
the upper right is occupied by all patterns covering everything, with the stamp
point 〈m, n − m〉. The dashed diagonal line connects all the stamp points that
have the same distribution of positive and negative instances as the entire data
set. Every pattern covering between 0 and n instances in the data can be located
in this coverage space, such as the example pattern p shown there.

Let us now take a look at different quality measures of patterns using their
isometrics. As we wrote in Section 1.1.2, any measure can be understood as a
function σ : N2 7→ R. So, although a faithful depiction of the function’s shape
would have to be done in a three-dimensional diagram, it is possible to project
the shape of the function onto its domain, which is two-dimensional – the cover-

68 CHAPTER 2. DISCUSSING ALGORITHMS

m,n-m

〈x+
, x

−〉

0,0

0,n-m

m,0

Figure 2.3: Support isometrics in coverage space

age space. More specifically, an isometric is a line connecting points in coverage
space that evaluate to the same value of σ. Figure 2.3 shows several isometrics
for the support- or frequency-isometric. As can be seen, support connects all
stamp points that correspond to the same number of covered instances, no mat-
ter their distribution of the target pattern. Minimum-support mining selects
all patterns with relatively high support, making the one residing on the upper
right corner, covering all the data, the pattern most likely to be selected.

To visualize pruning with an anti-monotone constraint such as minimum
support, consider Figure 2.4. It shows three stamp points of patterns p1 ≺ p2 ≺
p3, and a support threshold isometric. p1 has a support value that is larger than
the threshold, while p2 falls below the threshold. Due to the anti-monotonicity
of the minimum support constraint, this information is enough to prune the
entire patternsubspace ρ∗(p2) since compared to the threshold, the support of
members of this subspace can only decrease.

Correlation measures take both support of a pattern into account and the
difference from the background or standard distribution (denoted by the middle
diagonal). Large differences in the distribution of the target pattern between the
entire data and the patterns cover are rewarded, as is high support on the entire
data. When visualized in coverage space, the further away from the diagonal,
the more relevant and interesting is a pattern. If the measure is symmetric, e.g.
χ2 (see Example 1.1.2), isometrics are mirrored on the distribution diagonal
(Figure 2.5), with the lower isometric achieving the same score as the upper.

If the measure is asymmetric, e.g. WRAcc (see Example 1.1.3), only pat-
terns that occur more often together with the target pattern than the standard

2.1. EXHAUSTIVE SEARCH 69

m,n-m

0,0 m,0

0,n-m

p3
p2

p1

Figure 2.4: Support pruning in coverage space

m,n-m

0,0 m,0

0,n-m

〈x+
, x

−〉

Figure 2.5: χ2-isometrics in coverage space

70 CHAPTER 2. DISCUSSING ALGORITHMS

m,0

〈x+
, x

−〉

0,0

0,n-m m,n-m

Figure 2.6: WRAcc-isometrics in coverage space

distribution, are given a positive score. Therefore, being above or below the
diagonal leads to different scores and different isometrics as shown in Figure
2.6. To denote this, the isometrics in the figure are in different line styles above
and below the diagonal, in contrast to isometrics for symmetric measures.

Due to the different shape and orientation of the isometrics simply pruning
specializations of patterns that fall below the isometric does not work, as can
be seen in Figure 2.7. We can see the same three stamp points and an isometric
corresponding to a threshold of the χ2 measure. As we noted above, farther
away from the diagonal translates into higher scores and, in addition, χ2 is
symmetric, as can be seen from the shape of the threshold-isometric.

For measures whose isometrics are shaped like this, the anti-monotone prop-
erty does not hold. This becomes clear when we have a look at the three stamp
points - while the second one lies inside the thresholded area, meaning that this
pattern falls below the threshold, p3 exceeds it although it is a refinement of p2.
Obviously, a different pruning strategy is needed.

Convexity-based upper-bound pruning

Because the relationship cov(p1,D) ≥ cov(p2,D) ≥ cov(p3,D) still holds and
since farther away from the diagonal translates into higher scores, the question
that has to be asked for pruning is:

Given the information sp(p2) = 〈x+, x−〉, is there is any potential stamp
point sp(p3) whose value can exceed the threshold?

The question is a clear “yes”; quite a few actually: all those having values

2.1. EXHAUSTIVE SEARCH 71

0, x−

0,0 m,0

0,n-m

p3
p2

p1

m,n-m

x
+
, 0

Figure 2.7: χ2 pruning in coverage space

〈x+′, x−′〉 : 0 ≤ x+′ ≤ x+, 0 ≤ x−′ ≤ x−. Of this set, the two that are trivially
furthest away from the diagonal lie at 〈x+, 0〉 and 〈0, x−〉, of which the latter is
the one scoring higher. Only if neither of those two stamp points can be evalu-
ated to a value exceeding the threshold is it safe to prune a subspace originating
at a pattern. Evaluating σ on those two extreme points gives us thus an upper
bound on future values specializations of p2:

∀p′ ∈ ρ∗(p2) : σ(sp(p′)) ≤ max{σ(x+, 0), σ(0, x−)}

There is, however, a caveat to this technique: it only works if the function
values of all points on the line connecting 〈x+, x−〉 and any of the two extreme
points lie below the line connecting the function values of the two stamp points.
In fact, there must not be any stamp point within the area encompassed by
the threshold isometrics whose function value lies above the line connecting the
function values of two points between which it lies. Formulated, σ has to be
convex:

Definition 2.1.1. Convexity A function σ : D 7→ R is convex if and only
if D ⊆ Rd is a convex set and ∀x1, x2 ∈ D, λ ∈ [0, 1] : f(λx1 + (1 − λ)x2) ≥
λf(x1) + (1 − λ)f(x2).

If this is not the case, evaluating σ on 〈x+, 0〉 and 〈0, x−〉 might underes-
timate the true value a specialization of the current pattern might attain, and
more complex and therefore more time-consuming techniques would be needed
to find the upper bound. Fortunately, a variety of correlation measures such
as χ2, Information Gain, Weighted Relative Accuracy, Category Utility (CU)

72 CHAPTER 2. DISCUSSING ALGORITHMS

m,0

〈x+
, x

−〉

0,0

m,n-m0,n-m

Figure 2.8: Confidence isometrics in coverage space

(which we introduce formally in Example 2.1.1) and others fulfill the second
criterion. As to the first criterion, the convexity of the domain:

Definition 2.1.2. Convex Set A set in Euclidean space Rd is convex set if it
contains all the line segments connecting any pair of its points.

A line between any two points inside or on the sides of a rectangle can never
be outside the rectangle, which means that a rectangle is a convex set of points.
Since the set of all stamp points can be visualized as a rectangular PN-space,
the first condition of convexity is satisfied for the functions we consider in this
work as well.

Theorem 2.1.1. Given a pattern p, target pattern q, stamp point sp(p) =
〈x+, x−〉 and convex correlation measure σ, the upper bound ubσ on σ(sp(p)), p′ ∈
ρ(p), is given by ubσ(p) = max{σ(x+, 0), σ(0, x−)}.

Proof. The theorem can be proved by referring to the well-known fact that a
convex function takes its maximal values on the extreme points of its domain.
Given the domain borders x-axis, y-axis, and the lines connecting sp(p) with
those axes, candidates for those extreme values are the two points mentioned
above, the origin 〈0, 0〉 and sp(p) itself. Given that 〈0, 0〉 is also on the overall
distribution diagonal, it cannot be a maximal value, and sp(p) corresponds to
a more specific pattern with the same performance as p, which means that no
new information is added.

Confidence (or accuracy in the context of machine learning) is also (triv-
ially) convex, showing a different type of isometric (see Figure 2.8). Looking

2.1. EXHAUSTIVE SEARCH 73

at the isometrics, one sees that it radiates outward from the origin 〈0, 0〉. Con-
fidence clearly has a relation with the underlying distribution, as further from
the diagonal is better. Unfortunately, it does not take into account how many
instances are covered at all. The best patterns reside on the horizontal and ver-
tical axes, corresponding to conf(p,D) = 1.0 for predicting q/¬q, respectively.
As can be seen in the figure, any pattern’s upper bound will always lie on those
axes. Therefore, the upper bound is the same for any pattern, 1.0 or perfect
confidence, making pruning impossible for a minimum threshold. This is the
main reason why direct accuracy maximization is either a post-processing step
to frequency-based mining, as in CBA or heuristic, as in CN2.

As stated before, we call functions for which non-trivial upper bounds can
be calculated boundable (Definition 1.1.18). Boundable functions allow us to
define boundable constraints, an example of which would be the local pattern
mining constraint c : χ2(sp(p),D) ≥ θsig . The upper bound allows pruning
of pattern subspaces whose members cannot exceed the threshold. The level-
wise algorithm for a minimum correlation score value takes the form shown as
Algorithm 3.

Algorithm 3 The general level-wise algorithm with upper-bound pruning

Given: language L, refinement operator ρ, boundable constraint σ(sp(s)) ≥
θsig, data base D
Return: set of all solutions s ∈ L satisfying c on D: Th(L,D, c)

S = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
S = S ∪ {s | s ∈ C : σ(sp(s)) ≥ θsig}
P = {s | s ∈ C : sp(s) = 〈x+, x−〉, σ(〈x+, 0〉) ≥ θsig ∨ σ(〈0, x−〉) ≥ θsig}

end while
return S

Extension of upper-bound pruning to several target patterns

Finally, we extend the upper-bound pruning technique for several target pat-
terns. The description we gave above is with regard to a single target pattern, a
useful technique for tasks such as classification and subgroup discovery (Lavrač
et al. 2004). For clustering and the relatively new field of multi-target prediction
(Vens et al. 2008), it is necessary to mine patterns that correlate with several
independent patterns. We consider two target patterns independent if changes
in the distribution of one of the two does not cause a change in the distribution
of the other.

In a sense this is the worst-case scenario since the algorithm needs to consider
the effect of the mined pattern on all target patterns, increasing computational
complexity. If two target patterns really are interdependent then optimizing
the change in distribution for one will have an effect on the other as well.

74 CHAPTER 2. DISCUSSING ALGORITHMS

What this independence allows us to do is to treat the contingency tables
for p and each of the qi separately, keeping the low dimensionality and the
notation of x+

i , x−
i , instead of using a proper multi-dimensional contingency

table, whose dimension would rise with the number of patterns involved. We
define an extended stamp point:

Definition 2.1.3. Extended Stamp Point Given D and a set of fixed target
patterns {q1, . . . , qd}, the extended stamp point of p is

spe(p) = 〈x+
1 , x−

1 , . . . , x+
d , x−

d 〉,

where sp(p, qi) = 〈x+
i , x−

i 〉

It should be noted that each qi induces its own fixed mi, that is for each
qi the number of instances in D in which it is present stays fixed throughout
mining.

Due to the independent nature of target patterns, we can define a cumulative
correlation measure:

Definition 2.1.4. Cumulative Correlation Measure Given D, a correla-
tion measure σ : N2 7→ R, and a set of fixed target patterns {q1, . . . , qd}, the
cumulative correlation measure σcum : N2d 7→ R is defined as:

σcum(spe(p)) =

d
∑

i=1

σ(x+
i , x−

i).

An example of a cumulative correlation measure that has been used in the
Cobweb algorithm (Fisher 1987), is Category Utility:

Example 2.1.1. Given D and a set of fixed target patterns {q1, . . . , qd}, Cate-
gory Utility takes the form:

CU(p,D) = CU(〈x+
1 , x−

1 , . . . , x+
d , x−

d 〉)

= 1
2

∑d
i=1

(

x+

i +x−
i

n

(

(

x+

i

x+

i +x−
i

)2

−
(

mi

n

)2
+

(

x−
i

x+

i +x−
i

)2

−
(

n−mi

n

)2
)

+
n−(x+

i +x−
i)

n

(

(

mi−x+

i

n−(x+

i +x−
i)

)2

−
(

mi

n

)2
+

(

n−mi−x−
i

n−(x+

i +x−
i)

)2

−
(

n−mi

n

)2
))

Recalling our discussion of upper bounds before, this lends itself to a trivial
upper bound ubcum(p) =

∑d
i=1 max{σ(x+

i , 0), σ(0, x−
i)}. Since each of the indi-

vidual summands is an upper bound w.r.t. its target attribute, the entire sum
is as well.

This upper bound is looser than it needs to be, however, as one can see
considering Figure 2.9. It shows the coverage spaces for two different target
patterns, overlaid over each other, with a pattern’s stamp point in each of
them, sharing the same support isometric. It also shows the points 〈x+

i , 0〉, and
〈0, x−

i 〉, and the support isometrics that they induce. Considering those support
isometrics, one recognizes that none of the extreme points lies on the isometric

2.1. EXHAUSTIVE SEARCH 75

(0,0)

Support-isom
etric

max2 = (0, y−

2)

max1 = (0, y−

1)

(x+
2 , 0) (x+

1 , 0)

(y+
2 , y

−

2)

(y+
1 , y

−

1)

(m2, n − m2)

(m1, n − m1)

Size-isom
etric

M
axim

um
-isom

etric

M
axim

um
-isom

etric

Figure 2.9: Inconsistency of näıve maxima

of one of the other extreme points. This in turn means that an upper bound
that is calculated by simply adding up upper bounds for each target attribute
quantifies an impossible future pattern – one that has different support on the
data, depending on which target attribute one considers.

The solution to this is to only consider possible extreme points. Due to the
anti-monotonocity of support, all possible support values of specializations of
the current pattern are known:

p′ ∈ ρ(p) : 0 ≤ sup(p′,D),≤ sup(p,D)

For any possible future support value, it is possible to determine the two ex-
treme points for each attribute, and evaluate those to find the maximal possible
contribution towards the cumulative upper bound under this particular support
constraint. By iterating over all possible support values, and selecting the max-
imal upper bound, one calculates a true upper bound, that is, one does not
underestimate the highest future value. 0 and sup(p,D) do not have to be con-
sidered since the first corresponds to a pattern not covering any instance and
the second one to a pattern having the exact same score as the current one.

Determining the values of the extreme points is straight-forward as well: as
we wrote above, the extreme points for a convex function lie on the border of
the (convex) domain on which it is defined. Even if the support constraint rules
out the corners of these borders, it still holds that the extreme points have to lie
on either the axes or the lines connecting sp(p,D) and those axes. This means
in turn that given a constrained support value xsup, the extreme points take

76 CHAPTER 2. DISCUSSING ALGORITHMS

the form

〈max{x+
i , xsup}, max{0, xsup − x+

i }〉 and

〈max{0, xsup − x−
i }, max{x−

i , xsup}〉.

The algorithm for upper bound calculation for several target patterns is
shown as Algorithm 4.

Algorithm 4 Multi-target upper bound calculation for σcum(spe(p))

Given: number of targets d, extended stamp point spe(p) =
〈x+

1 , x−
1 , . . . , x+

d , x−
d 〉, correlation measure σ

Return: upper bound ubcum on σcum(spe(p))

ubcum = −∞
for 1 ≤ xsup ≤ (x+

1 + x−
1 − 1) do

ub = 0
for 1 ≤ i ≤ d do

ub+ = σ(〈max{x+
i , xsup}, max{0, xsup − x+

i }〉)
ub− = σ(〈max{0, xsup − x−

i }, max{x−
i , xsup}〉)

ub = ub + max{ub+, ub−}
end for
if ub > ubcum then

ubcum = ub
end if

end for
return ubcum

Complete mining can be used to find unordered sets, since satisfaction of a
constraint is a binary decision that does not establish an order on the patterns or
pattern sets. By defining a total order on the unordered set, it can be turned into
an ordered set. This is what the CBA system does: it first performs complete
level-wise mining, using the anti-monotone minimum support constraint, and
then orders the result set according to ≤CBA of Definition 1.3.1. We will explain
in Section 2.3 how to turn an unordered into a tree set.

2.1.2 Top-k mining

The second mining task is not concerned with finding all solutions that satisfy
a certain constraint but is an optimization task. Given a measure σ, the goal is
to find the k highest scoring patterns with regard to this measure on D (note
that this k can be, and often is, 1).

We again choose the level-wise algorithm to illustrate mining. Algorithm 5
performs unpruned top-k search (for instance because the measure used is not
boundable). This is once again an algorithm that would exhaustively enumer-
ate the entire pattern space, testing the top-k constraint against every pattern.
If σ is not boundable but has a known maximum value max (such as 1.0 for

2.1. EXHAUSTIVE SEARCH 77

Algorithm 5 The general level-wise algorithm for top-k mining

Given: language L, refinement operator ρ, measure σ, data base D, result
list size k
Return: set of highest scoring k solutions s ∈ L according to σ on D:
Th(Lp,D, argk maxσ(sp(s))) or Th(2Lp ,D, argk max σ(sp(s)))

S = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
for all s ∈ C do

if |S| < k then
S = S ∪ s

else if σ(sp(s)) > mins′∈S σ(sp(s′)) then
S = S \ s′ ∪ s

end if
end for
P = C

end while
return S

confidence), mining can stop as soon as minp′∈S σ(sp(p′)) = max. Ideally, we
would prefer an algorithm that can prune during mining. If a function is bound-
able (Definition 1.1.18), it is possible to prune using upper bound information,
leading to Algorithm 6.

Taking care to select the right refinement operator

In the context of this algorithm employing upper bound-based pruning, we will
now give a longer explanation of our statement from the introduction that an
optimal refinement operator can be counter-productive in top-k mining. Con-
sider Figure 2.10, where the lattice from Figure 2.1 is transformed into a tree,
corresponding to the use of an optimal refinement operator.

Nodes are annotated with the score and an upper bound on the value of σ
future descendants of this node can achieve, in the form (score, upperbound).
We assume that the tree is pruned during mining. In top-k mining, pruning takes
the form that upper bounds are tested against the k-best score encountered so
far (during the search) and the tree pruned once the upper bound falls below
this score. We assume k = 3.

• When using breadth-first search, the entire first level will be evaluated.
Since no pattern scores have been encountered in this step, {d}, {e}, and {a}
are included in the solution set.

Due to the fact that the upper bounds of all singleton patterns exceed the
third-best score, all patterns consisting of two items are enumerated and
{a, b}, {c, d}, {c, e} replace the three solutions from step one.

7
8

C
H

A
P

T
E

R
2
.

D
IS

C
U

S
S
IN

G
A

L
G

O
R

IT
H

M
S

{}

(7,9) {a,b,d} (7,9) {a,b,e}

(8,9) {a,b,c,d} (6,9) {a,b,c,e} (7,9) {a,b,d,e}

(8,9) {a,c,d} (4,9) {a,c,e} (1,9) {b,c,d} (2,11) {b,c,e}

(13,15) {c,d} (14,15) {c,e}

(6,7) {a,b,c,d,e}

(12,12) {a,b} (12,12) {a,c}

(5,7) {a,c,d,e}

(7,9) {a,d}

(3,7) {a,d,e}

(6,9) {a,e}

(5,12) {a}

(8,9) {b,c,d,e}

(5,11) {b,c} (7,9) {b,d} (3,11) {b,e}

(6,9) {b,d,e}

(5,12) {b}

(12,12) {c,d,e}

(3,15) {c} (8,13) {d}

(11,12) {d,e}

(6,3) {e}

(8,11) {a,b,c}

F
ig

u
re

2
.1

0
:

Item
set

en
u
m

era
tio

n
tree

a
n
n
o
ta

ted
w

ith
sco

res/
u
p
p
er

b
o
u
n
d
s

2.1. EXHAUSTIVE SEARCH 79

Algorithm 6 The level-wise algorithm for top-k mining using pruning

Given: language L, refinement operator ρ, boundable measure σ, data base
D, result list size k
Return: set of highest scoring k solutions s ∈ L according to σ on D:
Th(Lp,D, argk maxσ(sp(p))) or Th(2Lp ,D, argk max σ(sp(s)))

S = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
for all s ∈ C do

if |S| < k then
S = S ∪ s

else if σ(sp(s)) > mins′∈S σ(sp(s′)) then
S = S \ s′ ∪ s

end if
end for
P = {s | s ∈ C ∧ ub(σ(sp(s))) > mins′∈S σ(sp(s′))}

end while
return S

The third-best score is 12, which means that only {c, d} and {c, e} are
candidates for refinement. The optimal refinement operator only admits
{c, d, e}, however, which is not added to the result set. In total, 16 poten-
tial solutions are enumerated.

• When using depth-first search, the enumeration is performed left-to-right,
meaning that over-searching would happen. After the first level is enu-
merated and the singletons {d}, {e}, {a} included in the solution set, only
{a} is refined.

{a, b} and {a, c} are added and the third-best score increases to eight. In
further steps, {a, b} is refined but none of its descendants included, with
the same holding for the rest of the “a”-branch and the entire “b”-branch.
Once {c} is refined, {c, d} and {c, e} are added to the solution set and the
third-best score increases to 12.

Finally, {c, d, e} and {d, e} are enumerated as well but not included in the
solution set. In total, 21 potential solutions are enumerated.

• When using best-first search, the search which refines the most promising
solutions first, that is, the ones with the largest upper bound, the first of
the singleton solutions to be refined is be {c}.

{c, d} and {c, e} are added to the solution set and the third-best score
increases to 12. The next that is refined is {d} since its upper bounds
exceed 12 but the refinement is not added.

Since we are aiming for general (short) solutions, {a} is refined next,

80 CHAPTER 2. DISCUSSING ALGORITHMS

and {a, b} added to the solution set. 12 potential solutions have been
enumerated.

In the case of depth-first search, the ostensibly more efficient optimal refine-
ment operator, due to the avoidance of duplicate enumeration, actually leads
to a larger part of the search space being traversed then in breadth-first search.
In the case of best-first search based on the upper bound, while it is the most
efficient solution in this case, the disregard of areas of the search space can lead
to a slow increase of the upper bound and thus expensive mining operations. To
summarize, in breadth-first mining, an optimal refinement operator is usually
effective, since it avoids the duplicate enumeration that otherwise occurs. In
depth-first and best-first search, different refinement operators are often more
suited.

A final remark to which we will return later: Top-k mining establishes an
inherent order on the patterns mined: the ranking according to the value of
σ(sp(p)). This does not mean that this is the only possible order on the result
set or even that the result set does have to be treated as an ordered set.

2.1.3 Exhaustive post-processing for pattern set mining

Both local pattern mining and pattern set mining can be performed exhaustively,
either in a complete or top-k manner. This leads to an approach consisting of
two phases, as shown in Algorithm 7.

Algorithm 7 Two-phase exhaustive search for pattern set mining

Given: pattern language Lp, data base D, local pattern constraint c, pattern
set constraint C
Return: Th(2Lp,D, C)

Exhaustively mine L = Th(Lp,D, c)
Exhaustively mine M = Th(L,D, C)
return M

There have been works that performed these kinds of mining operations,
most notably those by Shima et al. (2005) and Knobbe et al. (2006a, 2006b).

Shima et al. define a redundancy constraint that does not consider patterns
in a pairwise manner (see Equation (1.3.24)). To deal with the problem of a
too large search space, they limit the patterns used to the maximal frequent
patterns, and a depth-first search strategy. They interpret the resulting pattern
sets as DNF formulae with high coverage and small overlap between the clauses
but do not generalize their setting to more complex constraints or settings. As
our reformulation in Equation (1.3.24) showed, their setting is a special case of
constraint-based pattern set mining.

Knobbe et al. aim to assemble sets of patterns that satisfy various, some-
times mutually exclusive, constraints, chiefly one of small pairwise redundancy.
Their solution to navigating the large search space lies in explicitly limiting the

2.2. HEURISTIC TECHNIQUES FOR MINING 81

cardinality of pattern sets (or pattern teams, as they label them). In (Knobbe
and Ho 2006a), redundancy reduction is achieved by maximizing joint entropy
in a level-wise manner, using upper-bound pruning, effectively enforcing the
constraint:

Definition 2.1.5. Maximally informative k-itemsets constraint

Cmiki(S,D) ≡ arg1 max j-ent(S,D) ∧ size(S) = k

Originally conceived as an itemset mining technique, that is, local pattern
mining, the authors show that it can be used for pattern set mining. Despite
these parallels, Knobbe et al. also focus on a rather restricted setting (which
includes the mandatory size constraint) and do not generalize towards a notion
of constraint-based pattern set mining.

In contrast to these approaches, we introduced a general technique, to the
best of our knowledge the first such system, in (De Raedt and Zimmermann
2007). Our formulation allows the use of arbitrary constraints and uses pruning
based on monotonicity and boundable constraints. We will evaluate it experi-
mentally in Section 3.1.

As we stated at the beginning of this section, exhaustive algorithms have
two advantages:

1. Only exhaustive algorithms are complete, that is return all patterns that
satisfy a given constraint

2. Exhaustive algorithms guarantee that the best solutions are found in an
optimization setting

A complete mining result is not always necessary, though. Especially in the set-
ting of pattern set mining, often a single pattern set is all that is desired by the
end user for the next processing step. Additionally, given the weaker pruning
power of boundable constraints when compared to anti-monotone constraints,
the combinatorial explosion originating in a large number of local patterns be-
comes hard to control. Therefore, optimization mining tends to use significant
running times and resources. The alternative lies in the use of heuristic methods,
which are faster but sacrifice guarantees about the quality of found solutions.

2.2 Heuristic Techniques for Mining

The goal of heuristic search is to limit the size of the search space that has to be
traversed. While exhaustive search uses pruning to achieve this goal, pruning
techniques will not necessarily lead to an effective decrease in size. The heuristic
approach consists of choosing one (or several) potential solutions, refining those
into “neighboring” solutions and selecting one (or several) of these for further
refinement.

Due to the fact that the non-completeness is inherent in heuristic approaches,
it is impossible to perform complete mining using such techniques. The following

82 CHAPTER 2. DISCUSSING ALGORITHMS

Algorithm 8 The general hill-climbing algorithm

Given: an initial solution sin ∈ L, optimization function φ
Return: a locally optimal solution sopt

sold = ∅

sopt = sin

while sopt 6= sold do
sold = sopt

C = {scand | scand ∈ ρ(sopt)}
P = {s | s ∈ C : φ(s) > φ(sopt)}
select one s ∈ P: sopt = s

end while
return sopt

explanations will therefore focus on the optimization setting. It helps if we keep
the itemset lattice in mind for this purpose.

An often employed class of heuristic algorithms performs so-called hill-climbing.
The general hill-climbing algorithm is given as Algorithm 8. A hill-climbing al-
gorithm iteratively makes small changes to a given solution, each time improving
it a bit. It terminates when there is no further improvement possible anymore.
This will lead to the discovery of locally optimal solutions, without any guaran-
tee of the solution being globally optimal, however. An additional aspect that
has to be considered is the selection of the next solution to be refined: this
selection can happen arbitrarily, randomly or by selecting arg maxs∈P φ(s), for
instance. If the last selection criterion is chosen, the heuristic algorithm is called
greedy (Russell and Norvig 2003):

Property. A greedy algorithm is a heuristic algorithm that at each stage makes
the locally optimal choice with the aim of finding a globally optimal solution.

Since exhaustive mining can be rather expensive and for certain settings,
such as when patterns are used as features for classification, a single pattern
set is all that is needed, we developed a greedy algorithm, called Picker, in
(Bringmann and Zimmermann 2009). We present experimental results regarding
it in Chapter 3, Section 3.2.

2.2.1 Beam search

To overcome the limitations of hill-climbing search without incurring the high
computational costs of exhaustive mining, beam search is an often used tech-
nique in heuristic local pattern mining. Beam search is effectively parallel hill-
climbing, that is, several solutions are improved at the same time (Mitchell
1997). The main improvement lies in that several solutions are kept for future
refinement, hopefully avoiding local maxima.

Considering the general formulation of a beam search algorithm (Algorithm
9), one sees that an additional parameter has to be specified, the beam size

2.2. HEURISTIC TECHNIQUES FOR MINING 83

Algorithm 9 The general beam search algorithm

Given: language L, refinement operator ρ, measure φ, data base D, beam
size b
Return: a locally optimal solution sopt

sopt = ∅, P = {ǫ}
while P 6= ∅ do

C = {s | ∃s′ ∈ P : s ∈ ρ(s′)}
if maxs∈C φ(s) > φ(sopt) then

sopt = arg maxs∈C φ(s)
end if
P = {s | s ∈ C, s among the b highest-scoring solutions ∈ C acc. to φ}

end while
return sopt

b. Smaller beam sizes speed up the mining process at the cost of a higher
probability to arrive at a local optimum that is not the global one. Larger
beam sizes on the other hand make the mining behavior approach that of an
exhaustive algorithm, with the computational costs attached. The stopping
criterion we give here depends on a finite language but other criteria could be
applied for inclusion of solutions in P. Local pattern mining algorithms such
as CN2 (Clark and Niblett 1989), or Ripper (Cohen 1995) use non-optimal
refinement operators to ensure that all neighboring solutions can be reached
from a given candidate solution.

Top-k optimization mining is in general possible using beam-search, for in-
stance by setting the beam size to k. But there is no guarantee that different
refinement-paths do not lead to the same solution or that the result set really
is an approximation of the k best patterns.

2.2.2 Order-restricted hill-climbing

Hill-climbing and beam-search (especially for small beam sizes) reduce the com-
putational cost of mining by considering only a few potential solutions for expan-
sion in each iteration, restricting the search space. Depending on the refinement
operator, if is ideal, for instance, such an approach can be problematic, if too
many potential refinements exist.

Consider as an example pattern set mining as a post-processing step of
a local pattern mining operation. Since the result set can easily consist of
several thousands or tens of thousands of patterns, even a beam size of 1 will
be problematic, if all refinements are created and no efficient pruning method
exists. For a result set of 1000 patterns, the potential solution sopt has to
be extended by 1000 − |sopt| in each iteration and each of these refinements
evaluated.

It is therefore fitting that it was in this context (Liu et al. 1998), that a
different kind of search was pioneered, that we will refer to as order-restricted

84 CHAPTER 2. DISCUSSING ALGORITHMS

hill-climbing. The general idea is that an order is defined on the elements which
can be added to a solution, only those can be added that are greater than the
ones already present, according to the order. This can be translated into an
ordered refinement operator.

Definition 2.2.1. Ordered Refinement Operator Given a pattern language
Lp and an order E defined on it, an ordered refinement operator takes the form:

ρE(S) = {S ∪ {p} | p ∈ 2Lp , p D max
E

{p′ | p′ ∈ S}}

It can be seen that this is an optimal refinement operator in that each solu-
tion can be reached by exactly one path through the search tree, giving rise to
an enumeration tree like the one in Figure 2.10. The data base coverage pruning
scheme used in CBA (Section 4.2), and our Bouncer algorithm (Section 3.2)
are instantiations of order-restricted heuristic pattern set mining.

In the unlikely worst case, nothing is gained compared to the unrestricted
case, since it could happen that each pattern is added to the set and therefore
in each iteration 1000 − |sopt| refinements are enumerated.

As soon as a pattern is encountered that improves S, the evaluation of re-
finements is stopped and this pattern added to the set in CBA and Bouncer.
This can be formalized as selection operator of the form:

sopt = {S ∪ {p}} ∈ P such that p minimal under E

While this is rather efficient, it severely limits the optimality of the approach.
By choosing the “first” good solution, the risk of arriving at a local optimum is
rather high.

We show the general order-restricted hill-climbing algorithm as Algorithm
10, and will further discuss the used orders and the choice of φ in the sections
describing the application of those algorithms to pattern set mining.

Algorithm 10 The general order-restricted pattern set mining algorithm

Given: pattern language Lp, order E, optimization function φ
Return: a locally optimal solution Sopt

Sold = ∅
Sopt = {ǫ}
while Sopt 6= Sold do

Sold = Sopt

C = {Scand | Scand ∈ ρE(Sopt)}
P = {S | S ∈ C : φ(S) > φ(Sopt)}
Select sopt = {S ∪ {p}} ∈ P such that p minimal under E

end while
return Sopt

2.2. HEURISTIC TECHNIQUES FOR MINING 85

2.2.3 Upper-bound ordered hill-climbing

We relativized our statement regarding the potential inefficiency of hill-climbing
above by “if no efficient pruning method exists”. If the improvement gained
by adding an element to a solution is upper-boundable, it is possible to sort
elements by decreasing upper bound. In each iteration refinements are then
enumerated and evaluated one after another and enumeration stopped once a
solution has been found that has a value that exceeds the upper bounds of the
remaining elements. The advantage is that this algorithm can select sopt in a
greedy manner, unlike order-restricted approaches.

Definition 2.2.2. Upper-bound Ordered Refinement Operator Given a
pattern language Lp, a quality measure Φ and an order Eub : ∀p1, p2 ∈ Lp, p1⊳ub

p2 ⇔ ubΦ(p1) > ubΦ(p2) defined on it, an upper-bound ordered refinement
operator takes the form:

ρEub
(S) = {S ∪ {p} | p ∈ Lp,¬∃p′ ∈ Lp, p

′
⊳ub p : Φ(S ∪ {p′}) ≥ ubΦ(p)}

One aspect of this refinement that is immediately obvious is that each candi-
date solution has to be evaluated immediately after it is enumerated, to give the
refinement operator the information needed for pruning. Less obvious is that
contrary to order-restricted search the order used in the refinement operator
can be dynamic, if upper bounds are recalculated during the search process.
By using upper-bound ordered hill-climbing, we upgrade the Bouncer algo-
rithm, to Picker* (Section 3.2), returning a better solution. The experimental
evaluation and comparison of these techniques can be found in Section 3.2.

2.2.4 Heuristic post-processing techniques for pattern set

mining

Generally, as in the exhaustive case, heuristic algorithms can be used to mine
both local patterns and pattern sets, reducing computational complexity. Since
all the techniques shown here assume a rather large alphabet with which to
enumerate potential solutions, heuristic search cannot typically be used as the
first phase of pattern set mining, however. A general heuristic pattern set mining
approach would thus look like Algorithm 11.

Algorithm 11 Two-phase exhaustive-heuristic search for pattern set mining

Given: pattern language Lp, data base D, local pattern constraint c, pattern
set constraint C
Return: Th(2Lp ,D, C)

Exhaustively mine L = Th(Lp,D, c)
Heuristically mine M = Th(L,D, C)
return M

86 CHAPTER 2. DISCUSSING ALGORITHMS

This is the basic template for pattern set mining that has been introduced
in the data mining literature so far. CBA and CMAR use heuristic post-
processing steps to assemble sets of predictive rules. Both techniques use order-
restricted hill-climbing, based on ECBA, introduced in Example 1.3.1, and CBA
imposes the constraint introduced as Example 1.3.4. CMAR relaxes this con-
straint by allowing each instance to be covered by several patterns, asking the
user to specify how many, leading to the constraint:

Definition 2.2.3. CMAR constraint

CCMAR(S,D) ≡ ∀p ⇒ q ∈ S, ∃e ∈ D : |
⋃

piECBAp

cov(pi, e)| < θdb−cov∧class(e) = q

Siebes et al. (2006) use the MDL principle to select from a set of frequent
patterns mined in a local pattern mining operation those that have low re-
dundancy and describe the underlying data accurately by compressing it. The
authors mine an ordered pattern set that is used as a code table to encode the
database. The order on this pattern set takes the form:

Definition 2.2.4. Compression Set Order Given two itemsets p1, p2, we
say that p1 Ecoding p2 if and only if:

• |p1| > |p2| or

• |p1| = |p2| ∧ sup(p1) > sup(p2)

Starting from the set of all singleton items, candidate patterns are considered
in the order:

Definition 2.2.5. Krimp mining order Given two itemsets p1, p2, we say
that p1 EKrimp p2 if and only if:

• sup(p1) > sup(p2) or

• sup(p1) = sup(p2) ∧ |p1| > |p2|

as made explicit in (van Leeuwen et al. 2006). It should be noted that this
order is reversed from the one upheld on the pattern set itself. For each can-
didate pattern pcand, it is checked whether the encoding using S ∪ {pcand} is
smaller than the one using S. If so, the pattern is accepted, otherwise accepted.
Noting that this fixed order can lead to suboptimal pattern sets, they develop
their technique towards one that checks in each iteration whether removing an
already included pattern can lower the size of the encoding. This kind of heuris-
tic search, akin to neighborhood search, therefore increases the opportunities for
finding an optimal pattern set.

Reducing a set of patterns to a subset that captures the semantics of the
original set while being compact, is a task that has been addressed in many
different ways over the years. The importance of selecting appropriate features
for machine learning tasks to keep concept learners from being overwhelmed
was addressed ten years ago in (Liu and Motoda 1998). Guyon et al. (2003)

2.2. HEURISTIC TECHNIQUES FOR MINING 87

gives a more recent overview of motivations and techniques for feature selection.
According to the authors, the approaches can be distinguished into embedded,
wrapper, and filter techniques.

This connection is pointed out by Knobbe et al. (2006b). In addition to the
solutions towards finding pattern teams described in Section 2.1.3, the authors
also present heuristic methods optimizing their quality criteria. The technique
proposed in (Cheng et al. 2007) greedily selects the pattern maximizing a gain-
function. This means that no mining order is used but instead all remaining
patterns have to be checked. A pattern added to the set if it satisfies the same
constraint that CMAR uses.

In (Bringmann and Zimmermann 2009), we proposed an order-restricted hill-
climbing algorithm for mining pattern sets called Bouncer, using the second
constraint defined in Example 1.3.4. The main difference to existing techniques
lies in the fact that the order used is not fix but can be decided by the user.
We also proposed a greedy technique using upper-bound ordered hill-climbing to
abstract from the effects of orders used (Picker∗). We evaluate both techniques
in Section 3.2.

The ORIGAMI algorithm proposed in (Hasan et al. 2007) deviates from the
other techniques discussed here in that the local pattern mining step is heuristic.
The authors acknowledge the problems inherent in finding a representative set
of local patterns by sampling but point towards the high complexity of their
domain to motivate their choice. They propose two heuristic techniques. In the
first, patterns that have a maximum similarity to patterns already included in
the set (governed by a similarity threshold) are selected at random and added
to the set. The constraint therefore takes the form:

Definition 2.2.6. ORIGAMI constraint

CORIGAMI(S) ≡ ∀pi, pj ∈ S, pi 6= pj : sim(pi, pj) ≤ θsim

This approach is not greedy since the authors do not adopt a notion of
best pattern with regard to the pattern set in selecting with which pattern to
extend the pattern set. In the second algorithm, pattern set mining starts from a
random pattern set and performs hill-climbing through the space of neighboring
solutions, replacing a pattern satisfying the constraint by another one, until no
improvement is possible.

All of those approaches trade-off the computational complexity against the
quality of solutions. Depending on the context in which mining is used, pat-
terns that are not globally optimal can still be combined into an effective set,
however. As we will see in Chapter 5, there are iterative mining techniques that
correct suboptimal patterns when mining a complete set. In this way, iterative
approaches, which we will describe in the next section, are more powerful than
the post-processing methods of the present and the preceding section.

88 CHAPTER 2. DISCUSSING ALGORITHMS

2.3 Iterative Mining

The exhaustive and heuristic techniques described in the preceding two sections
were formulated in such a way that potential solutions are evaluated on the
whole data during the search. This is well-suited for the case of explicitly
defined constraints that capture exactly what the user wants. An alternative
lies in an implicit formulation that generally takes the form:

Mine patterns that are interesting when considering the patterns that have
so far been mined.

A straight-forward way of doing this consists in manipulating the data ac-
cording to patterns’ effects before mining further patterns. General speaking,
iterative mining consists of:

1. Mining Th(Lp,D, c)

2. Evaluate a pattern set constraint C and if satisfied, add Th(Lp,D, c) to
the pattern set, otherwise stop the mining process

3. Manipulate the data, depending on Th(Lp,D, c)

4. Return to 1.

This is the approach that has been taken to pattern set mining in most
of the machine learning literature so far. In the case of concept learning, two
early paradigms are sequential covering (Clark and Niblett 1989) or separate
and conquer, and parallel covering or divide and conquer (Quinlan 1993). In
the former technique, instances that are covered by Th(Lp,D, c) are removed
before the next iteration, leading to decision lists (ordered sets of predictive
rules). In the latter, data are divided into covered and uncovered data and
mining re-iterated on the subsets, leading to decision trees (tree sets).

In both cases, the local pattern mining step (beam search for sequential
covering and selecting the most discriminative attribute-test in parallel covering)
has been considered largely coupled to the pattern set mining step itself. We
abstract from this view and discuss the two paradigms in the more general
terms sequential mining and parallel mining in this section. This allows us to
incorporate other choices for the local pattern mining and data manipulation
steps.

2.3.1 Sequential mining

The sequential mining approach takes the form shown as Algorithm 12. Initially,
all instances are given the same consideration for local pattern mining. Depend-
ing on the patterns mined and their interpretation, for instance, descriptive or
predictive, the weights of individual instances are then adjusted. This means
that patterns are ordered by when they have been mined, with all patterns:

Definition 2.3.1. Sequential Set Order Given a pattern set (S, Eseq) mined
by sequential mining, ∀p ∈ S : p′Eseqp ⇔ p′ was mined in an earlier iteration than p

2.3. ITERATIVE MINING 89

Algorithm 12 The general sequential pattern set mining algorithm

Given: pattern language Lp, data base D, local pattern constraint c, pattern
set constraint C
Return: Th(2Lp ,D, C)

S = ∅, ∀e ∈ D : weight(e) = 1
while the stopping criterion is not satisfied do

Mine Th(Lp,D, c)
if Th(Lp,D, c) = ∅ then

return S

else if C(S ∪ Th(Lp,D, c)) = true then
S = S ∪ Th(Lp,D, c)

else
return S

end if
∀e ∈ D adjust weight(e)

end while
return S

In this work, we will focus on two main solutions for adjusting the weights
of instances in the data, known in machine learning as weighted covering and
sequential covering:

1. Re-weighting of covered (matched) instances: the weight of an instance is
decreased to a value greater than 0, if it is covered by Th(Lp,D, c)

2. Removal of covered (matched) instances: all instances covered by Th(Lp,D, c)
are removed before new patterns are mined, which corresponds to setting
their weight to 0.

Th(Lp,D, c) can be a single rule, as in CN2 or CN2-SD (Lavrač et al. 2004),
but also a set of rules, as in the ART system (Galiano et al. 2004), or even more
complex patterns. There is an implicit assumption in both of these techniques,
namely, that phenomena can be described by a single theory Th(Lp,D, c). Once
instances have been covered (matched) by a theory, they are diminished or
removed from future consideration, making Th(Lp,D, c) their prime description.

To visualize how the distribution against which interestingness measures are
evaluated changes by re-weighting during mining, consider Figure 2.11. For the
sake of simplicity we assume the constraint arg1 maxσ(sp(p)) during the local
pattern mining step. On the left-hand side the original distribution of the target
attribute in the data is shown, as well as the highest-scoring pattern according
to σ. By re-weighting covered instances, the coverage space contracts, which
means that covered instances have less influence on the score of future patterns.
Sequential re-weighting will direct the local pattern mining to uncovered subsets
of the data, thus adding patterns to Th(2Lp ,D, C) that are different from the
ones already included.

90 CHAPTER 2. DISCUSSING ALGORITHMS

(a) Starting distribution (b) Distribution after the first re-weighting

Figure 2.11: Changes in target attribute’s distribution during re-weighting

(a) Starting distribution (b) Distribution after the first removal

Figure 2.12: Changes in target attribute’s distribution during removing

2.3. ITERATIVE MINING 91

This process can be slow, however, depending on the aggressiveness of the
re-weighting scheme. Also, if the scheme is not aggressive enough, it can lead
to patterns that while different still show high similarity in performance or
structure. If the covered data is removed, it is guaranteed that new patterns are
mined on uncovered data. This will speed up the pattern set mining process,
and ensure that the patterns included are relatively dissimilar. Consider Figure
2.12 to see this effect. The coverage space shrinks repeatedly, which means both
that fewer patterns will be truly interesting and that interesting patterns will
show very different behavior from each other. On the other hand, the influence
of already covered data is completely removed from consideration, which can be
unrealistic with local phenomena that are not necessarily disjunct.

2.3.2 Sequential pattern set mining

Sequential covering has been discussed in the machine learning literature for
quite a long time already, especially in the context of learning rules for classi-
fication purposes. The primary example is of course Clark and Niblett’s CN2
(Clark and Niblett 1989). Adhering to the same principles is the Foil system
(Quinlan 1990), which upgraded sequential covering to first-order logic represen-
tations of rules. The culmination is arguably the Ripper system (Cohen 1995).
Similarly to the way Siebes et al.’s MLD-approach tries to overcome local optima
by revisiting made choices, Ripper performs neighborhood search to improve
a found pattern set. Instead of possibly deleting patterns, the attempt is made
to replace them either by a specialization or by a newly enumerated pattern.

A relatively recent system that uses sequential mining for classification pur-
poses is ART (Galiano et al. 2004). In each iteration a variable number of
minimum-support high-confidence class-association rules is mined, the training
examples covered by the selected rules removed and the mining step reiterated.
Due to the fact that the technique ensures that only mutually exclusive rules
are selected in each iteration, there is no order between those rules, leading to
a set that is not exactly an ordered set in the sense of Definition 1.3.2.

A very recent system in which the mining process does not have to be
restarted every time is the DDPMine algorithm proposed in (Cheng et al. 2008).
Using the FP-Growth (Han et al. 2000) technique, an FP-Tree is constructed
over a database which adheres to some minimum constraints. The best class-
correlating pattern is selected and instances that are covered by it removed. The
updated FP-Tree is then used to select the next-best feature and this process
reiterated. The authors point out the connection to sequential covering them-
selves in their work and their approach has the advantage of essentially using
only one mining operation. They run the risk of exhausting working memory,
however, since the constraint on the FP-Tree needs to be lenient enough not to
rule out interesting features in future iterations.

The idea of sequential re-weigthing was first introduced by Gamberger et
al. (2000), using a similar argumentation to the one we sketched at the begin-
ning of this section. The authors expanded on their work, amongst others in
(Gamberger and Lavrac 2002) and of course the work in which CN2-SD was

92 CHAPTER 2. DISCUSSING ALGORITHMS

developed, (Lavrač et al. 2004). This last work is especially noteworthy since
its comparison to CN2 in the context of concept learning showed similarly good
performance at reduced rule set size. This gives additional support to the ar-
gument that completely removing covered instances places a too heavy burden
on the local pattern mining step.

Another work that used a re-weighting approach is (Yin and Han 2003),
which proposed the CPAR system. The re-weighting idea in this work arises
from the attempt at covering each instance multiple times, mirroring their ap-
proach in the CMAR system, developed by the same group.

Analyzing CN2 and CN2-SD led us to replace the heuristic local pattern
mining steps by exhaustive techniques and we evaluate the resulting systems,
CN2CG and CG-SD, in Sections 5.1 and 5.2, respectively.

Related to yet different from re-weighting is the machine learning technique
known as boosting, which was introduced in the context of classification. The
general approach to boosting takes the form:

1. Mine a predictive pattern.

2. Increase the weight of misclassified instances.

3. Return to 1)

Boosting is different from re-weighting as we have described it here in that
instances that are uncovered by any of the patterns but influenced by their
interpretation (via classification) have their weight adjusted. In the case of
“true” boosting techniques, such as AdaBoost (Freund and Shapire 1996)
or LPBoost (Demiriz et al. 2002), the weight-adjustment can be proven to
converge the classifier to 100% accuracy. The boosting scheme has, as other
machine learning techniques, not found wide-spread application in the data
mining community. One notable exception is the work by Kudo et al. (2004).
The authors show that their algorithm improves on methods using baseline
(constraint-satisfaction) features, supplying more support for the idea that se-
quential mining is a powerful way of iterative pattern mining.

2.3.3 Parallel mining

Re-weighted of data alters the focus of the mining process slowly, assembling
a set of patterns that describe local phenomena which, while different, might
still overlap. Removal of data achieves this shift of focus far more quickly,
ensuring that patterns are more different. As we mentioned before, there is an
implicit assumption in both of these techniques, namely that phenomena can be
described by a single theory. While other theories might overlap (at least in the
case of re-weighting) with this one, the phenomena they describe are supposed
to be different ones.

There is another approach to assembling a set of patterns, however, which
is directly tied to the notion of tree sets. Inspired by decision trees, in this
approach a theory is not generally assumed to describe a phenomenon satis-
factorily. Instead, the covered data is mined again in case that there are more

2.3. ITERATIVE MINING 93

fine-grained phenomena which can be described in more detail. The uncovered
data is of course mined as well. The manipulation of the data therefore takes
the form of a split into covered and uncovered parts.

Algorithm 13 The general parallel pattern set mining algorithm

Parallel-Mine
Given: pattern language Lp, data base D, local pattern constraint c, pattern
set constraint C
Return: Th(2Lp ,D, C)

S = Th(Lp,D, c)
if S = ∅ then

return S

end if
Dcov = cov(Th(Lp,D, c),D)
Duncov = cov(Th(Lp,D, c),D)
if C(S∪Parallel-Mine(Lp ,Dcov, c, C)) = true then

S = S∪Parallel-Mine(Lp ,Dcov, c, C)
end if
if C(S∪Parallel-Mine(Lp ,Duncov, c, C)) = true then

S = S∪Parallel-Mine(Lp ,Duncov, c, C)
end if
return S

The general parallel mining algorithm is given as Algorithm 13. The result-
ing pattern set is a tree pattern set: each pattern is element of a total order
with regard to

• The patterns that gave rise to the subset on which it was mined, those
come before it in the order.

• The patterns that are mined on the subsets it gave rise to, those come
after it.

The algorithm works recursively in that it calls itself on the subsets of the data
which are covered and uncovered by Th(Lp,D, c), respectively. In the case that
such a local pattern theory cannot be mined, it is impossible to split the data into
subsets, leading to the termination of the particular recursive call. Additionally
to the local pattern constraint c, there is also a pattern set constraint C involved,
which might preclude the result of a local pattern mining operation to be added
to the pattern set. The pattern set constraint has to be checked twice, for
Th(Lp,D, c) mined on the covered data Dcov and the uncovered data Duncov,
respectively.

It is of course possible that the found theories at each stage describe the
data perfectly, in which case re-mining on the covered subset will not yield
more patterns. A tree set can therefore degenerate into an ordered set as we

94 CHAPTER 2. DISCUSSING ALGORITHMS

Figure 2.13: Original distribution

explained before. To contrast the manipulation of the data against the choices
made in sequential mining, consider Figures 2.13 and 2.14.

The starting coverage space is the same as in the illustration of sequential
mining but mining of a theory has the effect of multiplying coverage spaces.
In sequential mining only one such space has to be considered at each stage.
The right-hand side of Figure 2.14 shows the same distribution as exists after
the first iteration of the sequential removal. The left-hand side on the other
hand is completely new, not discounted data that remains in the coverage space
as in re-weighting. If there is a phenomenon that can be described in more
detail by an additional theory, this theory will be found, contrary to removal or
re-weighting of the data.

(a) Covered data (b) Uncovered data

Figure 2.14: Changes in target attribute’s distribution after the first split

2.3. ITERATIVE MINING 95

By discarding the strong assumption of sequential mining and keeping data
for re-mining, tree pattern sets become more expressive. This can be seen by
the fact that tree sets can turn into ordered sets as well. This is accompanied
by the usual trade-off however: keeping the covered data and re-mining it can
be expected to lead to more computational effort than will be needed for the
sequential technique.

2.3.4 Parallel pattern set mining

The parallel mining technique originates in decision tree learners, of which C4.5
(Quinlan 1993) is the best-known system. Decision trees can be interpreted in
different ways:

• As tree sets of low-complexity patterns. In each iteration, a single attribute-
value pair is chosen to split the data, corresponding to elements of a subset
of LAV .

• As an unordered sets of conjunctive patterns since each branch can be
interpreted as a conjunctive pattern and all branches are mutually exclu-
sive.

• As a local pattern, for instance when decision trees are boosted.

In terms of the first interpretation, there exists work in the machine learning
literature that aims at increasing the complexity of individual patterns. Combin-
ing tests linearly has been proposed in (Murthy 1997), and Blockeel et al. have
proposed using conjunctions of first-order predicates for clustering (Blockeel
et al. 1998). Using exhaustive techniques, we instead propose the mining of
conjunctive rules for conceptual cluster formation by the CG-Clus system,
evaluated in Section 6.1. Such a technique also allows us to efficiently mine sets
of patterns in each iteration, leading to tree sets that we call Ensemble-Trees .
We study their application to classification in Section 6.3.

The parallel mining paradigm has not seen much use in the data mining com-
munity so far. An exception is DT-GBI technique of Geamsakul et al. (2003).
Staying true to the machine learning origins, the authors use beam-search to
mine a discriminative graph patterns in each iteration. More recently, Fan et al.
adopted parallel mining for deriving patterns used as features in a classification
task (Fan et al. 2008). Independently from those two approaches, we proposed
parallel mining for decision tree induction on tree-structured data (Bringmann
and Zimmermann 2005). The resulting algorithm, Tree2, is experimentally
evaluated in Section 6.2.

2.3.5 Iterative pattern set mining beyond sequential and

parallel mining

In general, iterative mining does not have to proceed in a sequential or parallel
way. An example of an iterative mining technique that is performed differ-
ently was proposed by Rückert et al. (2007). Using a stochastic random walk,

96 CHAPTER 2. DISCUSSING ALGORITHMS

the authors propose mining class-correlating graph patterns, and iterating this
process, maximizing a measure trading off class-correlation and similarity to
patterns mined before. Those patterns are then shown experimentally to be
more suitable for classification tasks, leading to smaller feature sets, better per-
formance or both.

In a slightly different vein are the nFoil and kFoil approaches by Landwehr
et al. (2005, 2006). The goal of these works is the induction of clauses in first-
order logic. The authors consider the task to be dynamic propositionalization
and induce the clauses iteratively. The quality of new candidates is evaluated
by the performance of the candidate pattern (that is clausal) sets in a classifier
(Näıve Bayes and an SVM, respectively). In contrast, in our formulation
of the iterative pattern set mining task, patterns are (explicitly or implicitly)
evaluated in terms of the instances they cover, not by their usefulness. The
main ideas of both approaches are the same, however.

2.4 Summary

After laying out the basics of pattern and pattern set enumeration and the
properties and constraints to mine them, we used the third chapter to describe
various algorithmic solutions to actually deriving the patterns and sets of pat-
terns we aim for. We split the chapter into three section, devoted to exhaustive,
heuristic and iterative mining, respectively.

Exhaustive search is the most reliable in a certain sense since optimal so-
lutions can be guaranteed and that complete mining is possible. It is also the
class of algorithms that is mainly discussed in the DM literature. There are
different ways of searching exhaustively all of which benefit from ways of prun-
ing the search space so that only sub spaces are visited that have the potential
of including solutions. But depending on the size of the search space and the
selectivity of constraints and pruning techniques, the sub spaces to be traversed
might still be too large.

A well-developed alternative is therefore the use of heuristic techniques for
mining. In the second section, we discussed different approaches to heuristic
search and highlighted the advantages and disadvantages of each. Especially in
terms of local pattern mining, these techniques originate in the machine learning
community. Heuristic pattern set mining techniques, on the other hand, have
been introduced in data mining, mainly for the task of assembling predictive
rules into decision lists. Using such techniques add the parameters of the search
algorithm itself (such as selection criterion for the next solution to expand,
beam size, etc) to the parameters that have to set for constraints. In this way
heuristic approaches are much more susceptible to getting stuck in local optima.
Additionally, once the number of solution to be returned increases, for instance
in top-k or complete mining, the quality of each particular solution can be
expected to decrease strongly. Unless all solutions are rather similar, which is
also usually not in the end user’s interest.

The size of the search space becomes less of an issue if there is not a large

2.4. SUMMARY 97

number of elements that have to assembled into a solution, however. An alter-
native to the two afore-mentioned approaches, that would post-process patterns
into pattern sets, lies in iterative mining. Iterative mining has been pioneered in
the machine learning literature, in the form of sequential covering for rule learn-
ing and parallel covering for decision tree induction. In iterative mining each
pattern is enumerates when it is needed, so to speak, keeping the size search
space manageable. Iterative mining is usually a heuristic approach but one that
gives better results since it allows to direct the search in such a way that indi-
vidual patterns’ shortcomings can be corrected. Even though iterative pattern
set mining techniques have been wedded mainly to one particular approach local
pattern mining, they form a general wrapper that allows us to instantiate the
local mining step with different (exhaustive and heuristic) techniques.

98 CHAPTER 2. DISCUSSING ALGORITHMS

Conclusion of Part I

This part of the thesis was used to lay out the foundations of our work. We
began by defining the notions and settings discussed in the thesis in Chapter 1.
Since pattern set mining is intricately linked to pattern mining, we specifically
took care to formally state the problem of local pattern mining in detail in
Section 1.1. By defining pattern languages, the properties of patterns and the
constraints that arise from those properties, we gain the means to reason about
the local pattern mining problem. We also discussed several applications in
which local pattern mining and pattern set mining are used in Section 1.2 and
related them exemplary to the two mining tasks

We then used Section 1.3 to discuss our main contribution in detail: a formal
framework for pattern set mining. Starting with identifying the three types of
sets usually used KDD, unordered, ordered and tree sets, we developed the
vocabulary needed to discuss pattern sets and their properties. This allows
the definition of constraints, and their characteristics, analogously to the well-
developed local pattern mining setting. Using the terms we have introduced,
we can analyze and improve existing approaches, and develop new techniques.

An important implication of our framework lies in the decomposition of local
pattern mining and pattern set mining into separate and well-defined tasks.
We used this insight to discuss algorithmic solutions in Chapter 2. Generally
speaking, existing techniques can be differentiated into exhaustive and heuristic
methods, and both classes have been applied to local pattern mining in data
mining and machine learning. Existing pattern set mining techniques are almost
exclusively heuristic, however. We identified two main paradigms of pattern set
mining: as a post-processing step of a local pattern mining result and in an
iterative fashion. Iterative mining will need to adhere to the heuristic approach,
since the re-mining of patterns in each iteration leads to a too large search
space. Post-processing deals with a limited number of patterns and therefore a
smaller search space, on the other hand, and based on the properties discussed
in Section 1.3, we proposed a novel exhaustive pattern set mining solution.
Regarding the heuristic solutions originating in data mining, we characterized
the general search strategies, and pointed out alternatives to existing solutions.
Finally, with regard to iterative mining approaches, which originate in machine
learning, we indicate that the integration with particular local pattern mining
approaches is not a necessity, creating the possibility for new combinations of
local pattern mining and pattern set mining techniques.

99

100 CONCLUSION OF PART I

Part II

Pattern Set Mining as

Post-processing

101

Overview of Part II

In the preceding section, we discussed a variety of algorithmic solutions to the
pattern set mining, and connected to this, the local pattern mining problem.
The first class of approaches to pattern set mining work as post-processing of
the result set local pattern mining. There is a very clear advantage here in that
local patterns are mined just once (usually in a rather efficient way due to the
existing work in the field), saving computational complexity. The resulting set
of patterns can then be subjected to rich constraints in selecting a subset that
satisfies users’ demands.

In the section on exhausting mining, Section 2.1, we claimed that exhaustive
techniques for mining sets of local patterns that satisfy given constraints can be
adapted to the pattern set mining task. This is a direct result of the framework
we proposed for describing constraint-based pattern set mining and after the
theoretical description, we aim to support those arguments by an experimental
evaluation. The first section of Chapter 3 is therefore given to answering

1. Can an exhaustive mining algorithm be used in this manner, as we argued
earlier?

2. Are constraints are useful in controlling the mining behavior?

3. Does the mining behavior differ from the local pattern mining setting?

Additionally, we propose two novel heuristic approaches to mining sets of un-
ordered patterns in Section 3.2, which are are similar to feature selection tech-
niques known from the machine learning literature. Using order-restriced hill-
climbing and upper-bound ordered hill-climbing, we evaluate the effects that
different choices (such as orders and measures) for these techniques have on the
compactness and quality of the resulting pattern sets.

In Chapter 4, we consider ordered sets. On the one hand there are different
ways of arriving at the order imposed on them, either during the mining process
itself or after the result set has been computed. These orders have an effect on
the quality of the resulting sets, as we will discuss in Section 4.1. Additionally,
when using order-restricted hill-climbing, the used order becomes a relevant
parameter of the pattern set mining step, as we show in detail in Sectioncut-
the-crap. By replacing the order used in the only previously existing approach,
CBA, and evaluating the differences, we gain insight into the effects of this
parameter.

103

104

Chapter 3

Mining Unordered Sets by

Exhaustive and Heuristic

Search

We begin our evaluation of post-processing techniques by focussing on unordered
pattern sets. Unordered pattern sets are attractive in that their composition
and semantics are usually not tied to a particular task at hand. The relationship
between patterns in such sets are often governed by pairwise constraints. As
we have discussed in Section 1.3.5, these constraints have properties which have
been employed in the design of local pattern mining algorithms to prune the
search space and improve efficiency. Hence we claimed in Section 2.1 that those
techniques can be adapted for the mining of pattern sets as well. The guarantees
that these approaches give when it comes to the completeness and optimality
of found solutions are clearly desirable.

In the first section (Section 3.1), we therefore evaluate the applicability of
exhaustive mining to the task of pattern set mining as a second phase after
exhaustive mining of local patterns. We point towards the similarities with the
task of local pattern mining, especially in terms of pruning strategies, and algo-
rithmic formulations. As we can show, constraints can be effectively enforced to
make the mining process feasible. The similarities with local pattern mining un-
fortunately include the limitations of this approach as well, as the experimental
evaluation shows.

The solution to this problem is to trade off completeness against efficiency,
that is, employing a heuristic technique. In the second section (Section 3.2),
we therefore choose a heuristic approach towards mining sets of patterns from
existing local pattern mining output. Our main goal there is the mining of a
representative set in terms of the semantics of the original pattern set. Given the
right order and measures, order-restricted hill-climbing is an effective method
towards this goal. We thus evaluate several choices for each aspect in terms of
the size and usefulness of pattern sets mined in the context of concept learn-

105

106 CHAPTER 3. MINING UNORDERED SETS

ing. Reformulating those measures allows the calculation of upper bounds, and
the abstraction from the order for mining. This leads to one particular solu-
tion (compared to order-specific ones from order-restricted hill-climbing) which
compares well to the ones found by the other approach.

The two techniques evaluated in this chapter have been newly developed
by us for this task, by applying a data mining approach, exhaustive mining
under constraints, and a machine learning-inspired technique, similar to feature
selection, to the problem. This chapter serves to introduce the two techniques
in detail and motivate their use, in addition to showing their actual applicability
to the task we address.

3.1 Exhaustive search under constraints

Upgrading local pattern mining techniques and extending them with pattern
set constraints is a promising direction for the derivation of exhaustive pattern
set mining techniques. It allows for the reuse of highly-developed enumeration
and pruning techniques and leads to guaranteed optimal solutions. On the
other hand, the entire field of pattern set mining stems from the fact that local
pattern mining produces too many solutions. So, it has to be expected that
this problem appears in exhaustive pattern set mining as well, alongside related
problems such as a too large search space. Accordingly, this first section is
concerned with evaluating the effectiveness and efficiency of exhaustive pattern
set mining under constraints. This means that we evaluate whether monotone
constraints can effectively prune the search space, giving the right thresholds.
Additionally, we evaluate the effectiveness of top-k mining in forming sets of
predictive patterns.

The general algorithm used for constrained pattern set mining in this sec-
tion is the general two-phase algorithm which we described in Section 2.1.3
(Algorithm 7). We use two instantiations of this approach. In the first, the ex-
haustive search for local pattern mining satisfying certain support constraints is
complemented by a second phase in which a conjunction of monotone and anti-
monotone constraints is used to control the properties of mined pattern sets.
Due to the reversed generality of pattern sets (large sets being more general),
the monotone constraint is used to prune the pattern space. The anti-monotone
constraint serves to control additional properties which cannot be enforced by
pruning. In the second instantiation, the second phase takes the form of top-1
mining using a boundable function (and a monotone constraint) to return a
single best pattern set, as an example application of the pattern set mining
approach. In this case, both constraints can be leveraged for pruning purposes.

3.1.1 Experiment 1: Evaluating conjunctions anti ∧ mono

For the first part of the experimental evaluation we mined local patterns on two
datasets, and then executed the queries we gave as examples in Section 1.3.4.
We reproduce those queries below for easier comprehension. The first data set is

3.1. EXHAUSTIVE SEARCH UNDER CONSTRAINTS 107

the DTP aids antiviral database. On this data set we mined sequential patterns
using the molecular feature miner MolFea (De Raedt and Kramer 2001), with
a minimum support threshold on the actives of 27 and a maximum threshold
on the inactives of 8. The resulting set of local patterns contains 287 patterns.
This set was once used as is for the evaluation of Query 3.1.1 and Query 3.1.2.

sup(S, Act) ≥ θsup ∧ max(red(S, Mol)) ≤ 1 (3.1.1)

all(rep(S, Act, Mol)) ≥ 0.95 ∧

max(red(S, Mol)) ≤ θred ∧

size(S) ≥ 2 (3.1.2)

For the evaluation of Query 3.1.3, a subset was selected in such a way that
each tid -list occurred only once, leaving 29 patterns. This reduction is related
to closed pattern mining but more selective since sequences might co-occur
together which cannot be combined into a longer supersequence due to language
constraints.

S � {p1}∧ sup(S, Act) ≥ θsi
∧

size(S) ≤ 20 ∧ sup(S, InAct) ≤ θsa
(3.1.3)

The second data set is the well-known UCI mushroom dataset. We mined
maximal patterns both on the entire dataset and on each subset separately, using
minimum support constraint sup(p,D) ≥ 0.25, finding 101 and 131 patterns,
respectively. We then used those sets of local patterns for our experiments.

The two questions to be answered in our first experimental evaluation are:

Q3.1 How effective is the use of constraints in limiting the cardinality of pattern
sets (facilitating further processing)?

Q3.2 How many pattern sets are returned and how efficient is exhaustive pattern
set mining?

For this setting, we evaluated Queries 3.1.1, 3.1.2, and 3.1.3 with different
thresholds on the patterns mined on the DTP aids antiviral database. Results
are shown in Tables 3.1, 3.2, 3.3. All tables report the constraint thresholds,
number of constrained sets returned, minimum and maximum cardinality of
constrained sets, respectively.

In Table 3.1, θsup denotes the constraint placed on the minimum support of
S on Act, in Table 3.2, θred denotes the maximum redundancy allowed. Only
the values 0 and 11 are reported since any value below 11 behaves as in setting
maximum redundancy to 0 and any value above 11 is obviously not practical.
We also added a support constraint to Query 3.1.2, to additionally evaluate its
effect; its threshold is again denoted by θsup:

all(rep(S, Act, Mol)) ≥ 0.95 ∧

max(red(S, Mol)) ≤ θred ∧

size(S) ≥ 2 ∧ sup(S, Mol) ≥ θsup (3.1.4)

108 CHAPTER 3. MINING UNORDERED SETS

Table 3.1: Query 3.1.1 evaluated on L = sup(p, Act) ≥ 27
θsup |Th| min |S| max |S|
50 8525392 2 5
100 8195886 3 5
150 2649152 5 5
160 42688 5 5
162 13920 5 5

Table 3.2: Query 3.1.4 evaluated on L = sup(p, Act) ≥ 27
θred θsup |Th| min |S| max |S|
0 n/a 3690 2 2
0 40 180 2 2
0 50 90 2 2
0 55 32 2 2
0 57 0 n/a n/a
11 n/a 776602 2 4
11 40 741028 2 4
11 50 134650 2 4
11 55 960 2 3
11 58 928 3 3
11 59 0 n/a n/a

Regarding Query 3.1.1, we can see that the returned pattern sets are of low
cardinality, facilitating human understanding and efficient use by a machine
learning technique, without being explicitly constrained. Maximum redundancy
obviously works in reducing the size of pattern sets. On the other hand is the
cardinality of the entire theory Th(L,D, C) far too large, numbering in the tens
and even hundreds of thousands.

In evaluating Query 3.1.4, we see the same small cardinalities, and also how
loosening the maximum redundancy threshold allows for pattern sets of larger
cardinality. Furthermore, it can be observed how the interplay of a minimum
support constraint and the succinct constraint on representativeness work to
quickly reduce the cardinality of Th(L,D, C) if θsup is raised.

Finally, in Table 3.3, θsi
and θsa

denote the maximum support on the inac-
tives and minimum support on the actives, respectively.

Once again, the pattern sets are of low cardinality, lower than the 20 allowed
by the size constraint. So on the one hand, returned set are never very large,
facilitating the understanding of the results. On the other hand, the amount of
pattern sets returned is high, even for restrictive constraint settings.

Additionally, as can be seen, selecting the right thresholds for the constraints
is a non-trivial task. Sometimes, changing support by 1 means that no pattern
set is returned at all. These are well-known phenomena that hold for local
pattern mining as well. The fact that, as we expected, they are mirrored in the

3.1. EXHAUSTIVE SEARCH UNDER CONSTRAINTS 109

Table 3.3: Query 3.1.3 evaluated on L = sup(p, Act) ≥ 27, unique tid -lists
θsi

θsa
|Th| min |S| max |S|

10 30 7678 2 13
10 50 6040 2 13
10 100 2 5 6
20 30 706975 2 17
20 50 703904 2 17
20 100 242377 4 17
20 130 2417 5 13
20 137 541 6 13
20 138 0 n/a n/a

Table 3.4: Mushroom dataset, maximal sets mined on complete dataset
max(red(S, All)) < 1, varying support

|Th| min |S| max |S|
sup(S, All) > 0 923 1 3

sup(S, All) > 3000 823 1 3
sup(S, E) > 3000 245 2 3
sup(S, P) > 3000 171 2 3

task of constrained pattern set mining provides additional support to our claim
that the two tasks are structurally similar.

An interesting result is that using the patterns without ad-hoc removal of
non-unique tid -lists allows for a larger minimum support on Act than if those
patterns are removed. This shows that the task of removing non-unique tid -
lists is itself essentially a constrained pattern set mining task, one that we will
address to a certain degree in the next section.

In the case of patterns mined on the mushroom dataset, we constrained
the maximum redundancy to 0 and evaluated the effect of setting a minimum
support threshold of 3000 on the entire dataset, and each of the subsets. The
results for these experiments are shown in Tables 3.4 and 3.5.

Again, it can be seen that pattern sets are of small cardinality, making it
easy for the user to comprehend the entire set. On the other hand, even setting
relatively strong thresholds (considering that each subset consists of roughly

Table 3.5: Mushroom dataset, maximal sets mined on subsets
max(red(S, All)) < 1, varying support

|Th| min |S| max |S|
sup(S, All) > 0 23647 1 6

sup(S, All) > 3000 21227 2 6
sup(S, E) > 3000 1063 2 6
sup(S, P) > 3000 5046 3 6

110 CHAPTER 3. MINING UNORDERED SETS

4000 instances) still leads to a large number of pattern sets returned.
As we have seen, the answer to Question 3.1 is that using a monotone con-

straint (redundancy) with the right threshold is very effective in limiting the
cardinality of patterns. This is the fact even without an explicit constraint on
their size.

Unfortunately, we have to answer Question 3.2 to the effect that exhaustive
pattern set mining behaves very similar to exhaustive local pattern mining. This
includes the regrettable effect of typically producing a far larger theory than
humans can peruse. On the other hand, the cardinality of returned pattern sets
is relatively small, meaning that every single set can be processed by humans
and algorithms efficiently.

On the positive side this means that applying the lessons learned in local
pattern mining regarding condensed representations, different enumeration (and
ordering) strategies, and techniques for top-k-mining will be applicable to the
pattern set mining task as well.

3.1.2 Experiment 2: Classifier construction

CBA first mines so-called class association rules, rules whose target pattern is
a class label to realize classification. It uses a level-wise exhaustive algorithm
(Apriori) for mining those rules according to certain minimum support and
minimum confidence constraints. In a second phase, it uses order-restricted
hill-climbing to mine a pattern set which is then used as the classifier. The
classification strategy is that of a decision list, meaning that rules are checked
against an unlabeled instance in order and the first one matching used to predict
the class label.

The exhaustive alternative lies in using a constraint like Query 3.1.5. It
allows us to evaluate pattern with regard to the other patterns in the set, giving
up the order-restriction.

max(red(S, Dtrain)) ≤ θred ∧ arg1 max
S∈2L

acc(S,Dtrain) ≥ θacc (3.1.5)

If the order is given up, the overlap between rules should be small in order to
reduce conflicting predictions for unseen data, which leads to the first constraint.
At the same time, maximally accurate rule set on the training data should be
mined.

The questions we consider in this experiment are:

Q3.3 Does the exhaustive strategy lead to smaller and/or more effective classi-
fiers?

Q3.4 How large is the computational effort needed to construct a classifier by
exhaustive means?

To illustrate this, we set up the following small experiment: using CBA, we
mined class association rules on ten folds of the UCI balance-scale dataset. On
average 98.8 rules (±17.38) were found. When randomly permuting the order

3.1. EXHAUSTIVE SEARCH UNDER CONSTRAINTS 111

Table 3.6: Comparing CBA’s classifier with constrained set mining result
Size set Acctrain Acctest

CBA 17.4 ± 5.1 0.8443± 0.019 0.7918± 0.0459
CSM 4.9 ± 1.66 0.8443± 0.019 0.7918± 0.0459

of equal rules and using CBA’s post-processing step on the resulting rule sets,
classifiers of different size and accuracy on the training sets are constructed.

Then we chose one permutation and additionally ran Query 3.1.5 on that
permutation to select a pattern set used as final classifier. Average and stan-
dard deviation for the size of the rule set selected by the post-processing step,
accuracy on the training and the test data are shown in Table 3.6 for CBA and
our constrained pattern set mining (CSM) approach in the first and second row,
respectively. Maximum redundancy was set to 5 and the accuracy threshold to
0.5.

In answering Question 3.3, we find that while both approaches construct
classifiers of the same quality, the one constructed by constrained pattern set
mining is considerably compacter. Visual inspection of the rule sets mined by
our approach shows that often rules are selected that are not included in CBA’s
solution. Specifically, quite often, the highest-ranked rule is ignored by our ap-
proach while CBA’s post-processing will always include this one. Additionally,
on several folds, the constrained pattern set did not include a single rule with
confidence 1 without decreasing the accuracy of the resulting classifier.

While mining for the constrained pattern sets, on average 18.6 levels were
traversed (±2.319), far from the search space that an exhaustive search without
pruning of on average 99 rules would need to consider. This means that the
computational cost of using exhaustive search for constructing such a classifier
is manageable if the right constraints are used, answering Question 3.4.

3.1.3 Conclusions

Extending the work on exhaustive pattern set mining that has existed so far, we
proposed and evaluated a general exhaustive miner that can enforce arbitrary
constraints. This contrasts with existing work which always includes a size-
constraint to control computational complexity. As our experiments show, a
general exhaustive miner can be a useful tool but can be quickly overwhelmed
by the combinatorial explosion arising from a large set of local patterns that
has to be post-processed. Since the subgoal of the KDD process that we aim to
address with our work is understandability, mining a large amount of pattern
sets is questionable. The alternative lies in heuristic techniques that optimize
only one (or few) pattern sets.

112 CHAPTER 3. MINING UNORDERED SETS

3.2 Heuristic search

As we have demonstrated in the preceding section, exhaustive search is an effec-
tive way of mining pattern sets satisfying specified constraints. Unfortunately,
this mining operation also needs a large amount of computational resources and
there are typically too many pattern sets that satisfy the constraints. So in a
sense, exhaustive pattern set mining reintroduces the problem it is supposed
to solve, namely the reduction of a large local pattern mining result set to a
smaller set that is meaningful to humans and usable by algorithms.

Especially when it comes to further algorithmic processing, a single set of
patterns usually suffices. Of course it is possible to perform top-1 mining to
select such a set but depending on the effectiveness of pruning, the computa-
tional effort of the exhaustive search is still high. Since top-1 mining needs a
measure Φ to be optimized for the pattern set, hill-climbing is an alternative
that suggests itself. Two important aspects are once again that the pattern set
is representative of the entire local pattern mining result, and that redundancy
among patterns is small.

The contents of this section, published in (Bringmann and Zimmermann
2007) and (Bringmann and Zimmermann 2009), are the result of joint work
with Björn Bringmann at the Katholieke Universiteit Leuven.

3.2.1 Notions

For exhaustive search, we identified the maximum redundancy constraint as a
powerful pruning constraint in exhaustive pattern set mining. We also saw,
however, that setting effective thresholds is not straight-forward. Additionally,
maximum redundancy fails to prevent a particular type of redundancy that is of
interest for further algorithmic processing when learning concepts for instance:

Example 3.2.1. Consider two patterns p1, p2 with the following relationship:

(match(p1,D) = 1 ⇔ match(p2,D) = 0)∧(match(p1,D) = 0 ⇔ match(p2,D) = 1)

Those patterns will be selected for inclusion in the same pattern set by a max-
imum redundancy constraint. To a concept learning algorithm that uses the
patterns as features either one is equally good and having both does not add any
information. Similarly, while this particular relationship might be interesting to
a human user, the information contained in a pattern set is not increased by
having both patterns.

We therefore use the concept of the equivalence relation which we introduced
in Section 1.2.3:

Definition 3.2.1. Pattern Set-induced Equivalence Relation Given a
pattern set S we define an equivalence relation ∼S on the set D of instances as

∼S = {(e1, e2) ∈ D ×D | ∀p ∈ S match(p, e1) = match(p, e2)}

3.2. HEURISTIC SEARCH 113

Thus, two instances are considered to be equivalent under S if they share
exactly the same patterns. Since every equivalence relation induces a partition,
pattern sets can be compared in terms of the partitions they induce.

To get an intuition why partitions are central to our technique, consider
the following: For a machine learning algorithm, a subset S∗ that induces the
same partition as S will be of the same usefulness as the complete set since the
separability of instances is equally well possible. Taking into account the actual
syntactical composition and support of the patterns in the selection measure
requires measures that are specifically bound to certain types of pattern lan-
guages. Since our approach aims at a more general applicability, namely all
patterns that can be defined as absent or present, further details on syntactical
composition or similar relations are not of interest here.

For a human user with elaborate knowledge about the domain the situation
might be somewhat different. But by defining the total order in which to process
patterns the user can control, to some extent, which patterns are considered for
selection (for the order-restricted hill-climbing search). Furthermore, a domain
expert can also incorporate his knowledge into the process by selecting a set
of patterns and using the algorithm to complete this set with patterns of value
according to the method employed.

3.2.2 Order-restricted pattern set mining

As an illustration of how the addition of patterns can change the equivalence
relation, and, therefore, the partition, consider Figure 3.1. The left-hand side
shows a small snapshot of D. As can be clearly seen on the left-hand side,
p3’s presence depends on the presence of both p1 and p2, and p4’s presence on
the presence of p1 and absence of p2. The right-hand side shows the partition
induced by the first three patterns on D, and shows that p3’s dependency is
mirrored in the way D is split into cells.

This leads to the basic redundancy-decreasing constraint we employ:

C(S,D) ≡ ¬∃p ∈ S : |D/ ∼S | = |D/ ∼S\{p} |

This constraint is used to reject the inclusion of patterns that are redundant
with regard to the rest of the set during the mining operation. Note that this
rejection means that the S∗ created by this selection criterion will induce the
same partition as the whole S.

The maximum size of a pattern set that could be induced by this constraint
is |D| − 1. The minimum number of patterns needed to induce a partition of
size D/ ∼S∗ , however, is log2 |D/ ∼S∗ |. While this number is hardly reachable,
the goal still is to mine small pattern sets, and therefore an additional measure
is needed. Ideally, this measure would trade off size of the pattern set against
the quality of the partition. As there is no straight-forward choice, there are
two ways of decoupling the two properties:

1. One solution lies in restricting the size of S∗ to a small integer and exhaus-
tively enumerate and evaluate all pattern sets of that size, the approach
chosen in (Knobbe and Ho 2006b).

114 CHAPTER 3. MINING UNORDERED SETS

t1
p
1

t2 t3 t4

p
4

p
3

p
2

t5

x

x

x

x

x x

x

x

x p3

t1, t2, t3, t4, t5

t2, t5t1, t3, t4

t1, t4

t1, t4

t1, t4

t3

t3

t3

t5

t5

t5

t2

t2

t2

p2

p1 ¬p1

p2

¬p4 ¬p4

¬p3¬p3

p4

¬p2 ¬p2

¬p3

¬p4

(a) Transactions and pattern occurrence (b) Partition tree

Figure 3.1: Partitions induced by patterns. Four binary patterns can induce at
most 16 cells. This combination of patterns and instances yields only four cells,
however.

2. Alternatively, when using heuristic mining, a measure Φ can be defined:

Φ(D, S∗, p) → [0, 1] ⊂ R

which measures the strength of the contribution an individual pattern
makes to an existing pattern set. If Φ is constructed in such a way that
the patterns’ contribution decreases with increasing pattern set size, it can
be combined with a threshold to produce small pattern sets that create
good partitions.

We will discuss several ways of measuring this contribution in the following
section, and afterwards propose orders to be used in order-restriced hill-climbing.

3.2.3 Quality measures

To give an idea of the form that measures should take that quantify a pattern’s
contribution to the set, we discuss three potential instantiations here. To give
some more motivation for each of them, we will attempt to give some “meaning”
to each selection measure used. Two of them, ΦC and ΦI in fact “outsource”
part of the measure calculation to an outside algorithm. This is enabled by the
reduction of computational complexity due to the order-restriction.

Partition size quotient ΦQ

While rejection of patterns that do not change the partition will effectively cut
down on the number of patterns retained already, there is the possibility that
adding a pattern will affect only a few cells. While this may be acceptable in
early steps of the selection process when not many patterns are used and only

3.2. HEURISTIC SEARCH 115

1 0

11 10 01 00

111 110 100 011 000

node1 node2 node3 node4 node5

Figure 3.2: Bitstrings denoting presence (1) and absence (0) of patterns

few cells formed, in later steps this corresponds to only a small gain in new
information. Let us assume for instance that exactly one of the existing cells
is split into two sub-cells when a new pattern is added. This means that the
total number of cells is increased by one. Depending on the number of already
existing cells, this e.g. corresponds to 33% for two cells, but only 0.9% for 100
cells.

One way of measuring uses

ΦQ(D, S∗, p) = 1 −
|D/ ∼S∗ |

|D/ ∼(S∗∪{p}) |
.

As the example given above shows, this measure decreases with an increasing
number of cells. We can now define a threshold on what we perceive to be
an acceptable increase in the number of cells and use it for additional pattern
selection. The main advantage of this criterion is that it is easy to evaluate.
A possible disadvantage is that focusing solely on the number of cells without
considering which cells are split and which instances are contained in the new
sub-cells might not be sufficient.

Agglomerative clustering ΦC

To alleviate this potential problem, one might use an agglomerative clusterer
that combines some of the new sub-cells until the old number of cells is reached.
Thus, a clustering algorithm can be denoted as a function F(D, k) that returns
a partition P of D consisting of k cells.

Let us assume that, as in the section before, the addition of a new pattern
leads to a split of an existing cell into two sub-cells, as shown in Figure 3.2.

116 CHAPTER 3. MINING UNORDERED SETS

These (node1 and node2) have a dissimilarity of 1 according to the Manhattan
distance since they agree in all patterns except the new one. By the same
argument the parent cell had a distance of at least 1 to the other cells at its
level. Thus the sub-cell in which the new pattern is present will have a distance
of at least 2 to all cells where this pattern is absent (except to its sibling), and
vice versa. In this case node1 has Manhattan distance of ≥ 2 to node3 and
node5. Non-split cells can have a smaller dissimilarity to non-sibling cells than
to siblings, depending on the effect of the new pattern, as is the case for node3
and node5. Similarly, ignoring the sibling relation between node1 and node2,
node1 is more similar to node4 than to any other node, and node2 to node3.

An agglomerative clusterer will combine two cells from the new partition
into one cell since then the old number of cells is reached again. Given the
effects described above, there will very likely be change that can be measured
using the Rand index, affected by the new pattern over the entire partition,
even unchanged cells. For a bigger increase in the number of cells this change
can be expected to be even more pronounced.

The Rand index considers two partitions and considers all pairs of instances.
It measures whether the relationship in those pairs (whether they belong to the
same or different clusters) is retained. The Rand index is defined as follows:
assume two partitions P, P ′. For each pair of instances ei, ej , two decision
variables can be defined - cij which is set to 1 if the two instances end up in the
same cell in both P and P ′, 0 otherwise, and dij = 1 if the two instances are
assigned to different cells in both partitions, 0 otherwise.

The Rand index is then:

Rand(P, P ′) =
2 ·

∑|D|−1
i=1

∑n
j=i+1(cij + dij)

|D| · (|D| − 1)

We define

ΦC(D, S∗, p) = 1 − Rand(D/ ∼S∗ ,F(D/ ∼S∗∪p, |D/ ∼S∗ |))

and set a threshold θ that quantifies what we consider the minimal acceptable
number of changes for a pattern to be chosen. Once again, this is a measure
that decreases with increasing number of cells.

This technique will take longer to evaluate than the one shown before since
the clustering process needs at least quadratic running time and for the Rand -
index 1

2 · n(n − 1) pairwise decisions have to be evaluated. It does have the
advantage of using information about the size and composition of the cells and
not only about their number though.

Please note that ΦC will always yield 0 if S
∗ is empty, since the clustering

would then have to create a partition with one cell. Thus its Rand -index is
zero. To overcome this problem the measure will return 1 for any pattern that
can create two cells if S∗ is empty.

3.2. HEURISTIC SEARCH 117

Inference of patterns ΦI

The first selection measure we showed strictly evaluates whether patterns can
be described by a combination of others while the second one evaluates the
effect of combining instances that differ in only one pattern. A third option
uses a rule-based machine learning technique to evaluate the possibility of pre-
dicting the presence/absence of a pattern based on the presence of previously
chosen patterns. While this will never lead to a perfect model1, a pattern whose
presence or absence is correctly predicted on the majority of instances can be
considered as not adding much information.

Given a pattern set S
∗ = {p1, . . . , pk}, a new candidate pattern p and

the database D, we identify each transaction ei with its binary feature vector
−→
fS∗(ei) = (match(p1, ei), . . . , match(pk, ei)) and label it with c(ei) = match(p, ei).

We use a learner2 to induce a hypothesis h : X 7→ {0, 1} where X = {
−→
fS∗(e) | e ∈

D} and define the measure

ΦI(D, S∗, p) = 1 −
|{ei : h(

−→
fS∗(ei)) = c(ei)}|

|D|
.

Note that in this case all instances are represented as binary vectors includ-
ing duplicates w.r.t. the feature vectors. This means that a feature having only
marginal effect on large parts of the instance space will be predicted with high
accuracy while a feature that for instance splits the largest cell in half will have
far less accuracy, thus having a better chance of being chosen. Again, given that
cells become smaller during the mining process, this measure decreases as the
number of cells increases.

3.2.4 Ordering relations

As we mentioned before, the first technique we present performs order-restriced
hill-climbing and therefore needs orders on the patterns. For the experimental
evaluation (which we performed on patterns from LI), we defined the following
orders:

• Es↑ : p1 ⊳s↑ p2 ⇔ sup(p1,D) < sup(p2,D)

• Es↓ : p1 ⊳s↓ p2 ⇔ sup(p1,D) > sup(p2,D)

• El↑ : p1 ⊳l↑ p2 ⇔ |p1| < |p2|

• El↓ : p1 ⊳l↓ p2 ⇔ |p1| > |p2|

While the two orders referring to the cardinality of the itemsets are tailored to
this particular pattern domain, similar orders can be defined for other languages.
In the same vein, orders can be used to incorporate background knowledge into
the mining process.

1Due to the rejection of patterns that do not effect a change in the partition.
2The J48 implementation of WEKA

118 CHAPTER 3. MINING UNORDERED SETS

By using these orders in an order-restricted hill-climber (cf. Section 2.2.2)
and employing any of the measures described above, the mining of small non-
redundant sets of patterns is possible. We call this heuristic miner Bouncer:
like a doorman at a venue it considers each candidate once, accepting or re-
jecting it and never revisiting its decisions. This makes search space traversal
reasonably fast, allowing for the outsourcing of quality evaluation.

3.2.5 Upper-bound ordered pattern set mining

In the Bouncer algorithm, a pattern that just exceeds the threshold will be
chosen, neglecting the possibility of any other pattern later in the sequence
reaching a much higher score, and thus introducing a more desireable split. To
address this issue, in each selection step each pattern has to be evalulated in
order to select the pattern with the highest score. However, except for ΦQ,
evaluating the score of all patterns in every selection step introduces a much
higher computational complexity.

Much of this complexity arises from the use of a classification/clustering
algorithm in two of the selection measures. The classification algorithm used in
ΦI allows the rejection of patterns that only split off small cells, and usage of a
sophisticated algorithm (such as an SVM) or evaluation schemes such as cross-
validation might correct over-fitting effects. The use of an unpruned classifier
evaluated on training-data – the most efficient method – equates to simple
counting.

Similarly, while we originally chose the clustering technique to introduce
an element of chance to offset the ordering effect, the question is whether this
random effect significantly improves the solution. Furthermore, given the sys-
tematic dissimilarity of cells, a maximally different clustering could be derived
from analysis of the partition-tree.

Therefore, a possible solution to the effects of the sequential processing lies in
foregoing the algorithmic components within our measures. Instead, we propose
new formulations that allow the calculation of upper bounds for patterns, thus
allowing for pruning, and ideally, enough efficiency-gain to compensate for the
repeated evaluation of patterns.

3.2.6 Reformulating the quality measures

In the following sections, we will introduce new, semantically equivalent, for-
mulations of the measures used in Bouncer to allow for upper bounding the
contribution of candidate patterns. We follow this by formulating the respective
upper bounds.

3.2. HEURISTIC SEARCH 119

Reformulating the partition size quotient ΦQ

The first measure, ΦQ, quantifies to what degree a new pattern fulfills its po-
tential to make the existing partition more fine-grained. It is formulated as

ΦQ(D, S∗, p) = 1 −
|D/ ∼S∗ |

|D/ ∼(S∗∪{p}) |

In this formulation, it is measured how large the amount of unchanged cells is.
A reformulation based on the same idea would be

ΦQ+(D, S∗, p) =
|D/ ∼(S∗∪{p}) | − |D/ ∼S∗ |

2 · |D/ ∼S∗ |
.

ΦQ+ returns the fraction of newly introduced cells by the candidate pattern
over the maximal amount of cells that could result from introducing a new
pattern. Thus, if the candidate pattern does not introduce a new split, ΦQ+

equals 0. If a pattern splits every cell, doubling the total number of cells,
|D/ ∼(S∗∪{p}) | = 2 · |D/ ∼S∗ |, and the score therefore 1

2 .

Removing the element of chance from ΦC

The way ΦC is formulated, the cells formed after applying the candidate pattern
are recombined using an agglomerative clusterer and then compared to the old
partition using the Rand -index. Since a trivial approach to this would simply
recover the old partition, care is taken that non-siblings are combined if possible,
thus ensuring the introduction of change. The same could be effected by com-
paring the old and the new partition via the Rand -index. This would remove
the element of chance, and reduce the computational complexity – resulting in
a lower execution time. Analogous to the measures introduced earlier we define
this Rand -based measure as:

ΦC+(D, S∗, p) =
2

|D| · (|D| − 1)
·

∑

[e]∈D/∼S∗

|cov(p, [e])| · |cov(p, [e])|

This new measure is based on the observation that cells can be considered
separately. For each cell [e], the number of pairs that will be split is just the
product of the number of instances that are covered by the candidate pattern
and those which are not. Since splits are never reversed during the selection
process, instances that are in different cells can never be merged into one cell and
hence do not contribute to the Rand -index. The summation of these products
over all cells is normalized by the maximum number of pairs that can split which

is |D|·(|D|−1)
2 , as mentioned before.

Please note that the Rand -index usually counts the number of pairs that are
not split, whereas here we count the number of pairs that will be split, thus
inverting the Rand -index.

120 CHAPTER 3. MINING UNORDERED SETS

Formulating ΦI in closed form

Currently, a classifier is employed to find the score a pattern achieves, in the
form of:

ΦI(D, S∗, p) = 1 −
|{ti ∈ D : h(

−→
fS∗(ti)) = c(ti)}|

|D|

which is equivalent to 1 − accuracy of the hypothesis induced by the learning
algorithm. The learner we employed for ΦI uses a decision tree mechanism,
which means that it learns a set of mutually exclusive conjunctive rules. In
addition we used the tree unpruned and evaluated it on the training data such
that actually the (observed) probability P(p | p1, . . . , pk) is measured. This
probably can also be found by counting the number of occurrences of p on each
cell.

More formally:

ΦI+(D, S∗, p) =
1

|D|

∑

[e]∈D/∼S∗

min
{

|cov(p, [e])|, |cov(p, [e])|
}

This definition equals the minimum error a classifier can achieve on the train-
ing set D using all features contained in S∗. Thus ΦI+ = ΦI if the learning
algorithm employed in ΦI builds an optimal model for the supplied dataset D.
This reformulation strongly reduces the complexity and thus can be used in an
algorithm that does not use order-restricted hill-climbing.

This algorithm, which we will refer to as Picker, will make more informed
decisions than Bouncer, since it greedily “picks” the locally best pattern for
inclusion. Depending on the number of patterns to select from, even the more
efficient measure calculations can be too expensive, however.

3.2.7 Using bounds to reduce complexity

The new formulations we introduced, have been chosen in such a way that it
is possible to bound the contribution that each pattern can bring to a pat-
tern set. This allows us to do upper-bound ordered hill-climbing and turn the
simple hill-climber Bouncer into the greedy algorithm Picker∗. As we have
explained before, in upper-bound ordered hill-climbing, patterns are consid-
ered as candidates for extending the pattern set in the order based on their
upper bounds, with highest upper bounds coming first. Every time a pat-
tern’s pi score exceeds the score of the best pattern pj encountered so far
(∀j < i : Φ(D, S∗, pi) > Φ(D, S∗, pj)), this pattern is considered the candi-
date pattern and its upper bound calculated. Once the upper bounds Φ∗ of
further candidate patterns falls below the score the current candidate for exten-
sion pc achieves (Φ(pc) > Φ∗(pi) for a given i), those patterns do not need to
be evaluated in the data base. However, the current bound needs to be updated
since the newly introduced split can change the effect of later patterns. This
update is performed in constant time.

3.2. HEURISTIC SEARCH 121

A bound for ΦQ+

Denoting the number of splits a candidate pattern would introduce in step k as
splitsk(p), the bound for the reformulated quotient can be expressed as

Φ∗
Q+(D, S∗, p) =

2|S
∗|−k · splitsk(p)

2 · |D/ ∼S∗ |

In order to show that this is indeed an upper bound, we need to prove the
following proposition:

Theorem 3.2.1. Given pattern sets S, X, pattern p:

ΦQ+(D, S∗ ∪ X, p) ≤ Φ∗
Q+(D, S∗ ∪ X, p)

Proof. We need to show that for any pattern set X

|D/ ∼S∗∪X∪{p} | − |D/ ∼S∗∪X |

2 · |D/ ∼S∗∪X |
≤

2|S
∗∪X|−k · (|D/ ∼S∗∪{p} | − |D/ ∼S∗ |)

2 · |D/ ∼S∗∪X |

Knowing |S∗| = k and S∗ ∩ X = ∅ we have

|D/ ∼S∗∪X∪{p} | − |D/ ∼S∗∪X | ≤ 2|X| · (|D/ ∼S∗∪{p} | − |D/ ∼S∗ |)

since the maximal number of splits that X could have introduced is 2|X| and any
blocks p splits are among those blocks in the best case.

Given that any block can be split into maximally two new blocks by a single
pattern, we can express the difference between partitions in terms of the effect
of a pattern on individual blocks. This allows us to reformulate the inequality
as:

∑

[e]∈D/∼S∗

∑

[e′]∈[e]/∼X

(|[e′]/ ∼{p} | − 1) ≤ 2|X| ·
∑

[e]∈D/∼S∗

|[e]/ ∼{p} | − 1

Again it is sufficient to show the inequality for each of the summand due to
monotonicity of the sum. Thus ∀[e] ∈ D/ ∼S∗

∑

[e′]∈[e]/∼X

(|[e′]/ ∼{p} | − 1) ≤ 2|X|(|[e]/ ∼{p} | − 1)

We now have to consider two cases:

1. If ∀[e′] ∈ [e]/ ∼X |[e′]/ ∼{p} | = 1 =⇒ |[e]/ ∼{p} | = 1 then

2|X| · (1 − 1) ≥
∑

[e′]∈[e]/∼X

(1 − 1) X

In this case, any block that is introduced by X is not split by p. The
inequality holds in this case.

122 CHAPTER 3. MINING UNORDERED SETS

2. If ∃[e′] ∈ [e]/ ∼X |[e′]/ ∼{p} | = 2 =⇒ |[e]/ ∼{p} | = 2 then

2|X| · (2 − 1) ≥
∑

[e′]∈[e]/∼X

(2 − 1)

2|X| ≥ |[e]/ ∼X | X

In the second case, there exist blocks that are split by p and the inequality
holds as well.

As both equations are true, this means that the upper bound for each single
summand holds and the claim follows.

A bound for ΦC+

The calculated Rand serves as an upper bound.

Φ∗
C+(D, S∗, p) = ΦC+(D, S∗, p)

Even though this looks surprisingly simple, it is a stronger upper bound
than the upper bound for the quotient, which increases in each step whereas
this upper bound does not increase and hence needs no update. It is also superior
in that it will allow actual pruning of patterns whose Rand index does not clear
the threshold anymore.

To show that this is actually an upper bound we need to prove the following
proposition:

Theorem 3.2.2. Given pattern sets S, X, pattern p:

ΦC+(D, S∗ ∪ X, p) ≤ ΦC+(D, S∗, p)

Proof. We will prove the claim using induction by showing that:

∀p, px ∈ X : ΦC+(D, S∗, p) ≥ ΦC+(D, S∗ ∪ {px}, p).

Recall that ΦC+ (and thus Φ∗
C+) is defined as a normalised sum:

ΦC+(D, S∗, p) =
2

|D| · (|D| − 1)
·

∑

[e]∈D/∼S∗

|cov(p, [e])| · |cov(p, [e])|.

Hence it is sufficient to show that each summand is monotonically decreasing
with the introduction of an additional pattern px or in other words, that we can
consider the effect of px per block. That is, ∀p, px ∈ X and ∀[e] ∈ D/ ∼S∗ :

|cov(p, [e])| · |cov(p, [e])| ≥
∑

[e′]∈[e]/∼{px}

|cov(p, [e′])| · |cov(p, [e′])|.

3.2. HEURISTIC SEARCH 123

Note that |[e]/ ∼{px} | ≤ 2. The two patterns p, px can induce at most 22 = 4
blocks from an existing block. Let [e1], [e2], [e3], [e4] ∈ [e]/ ∼{px,p} be these four
pairwise disjunct blocks such that cov(p, [e]) = cov(p, [e1] ∪ [e3]) = |[e1] ∪ [e3]|
and cov(px, [e1] ∪ [e2]) = |[e1]∪ [e2]|. This means that [e1] is the block in which
both p and px occur, [e2] the one in which p does not occur and px does etc.
Therefore we can make the sum explicit and reformulate the inequality above
as

|[e1] ∪ [e3]| · |[e2] ∪ [e4]| ≥ |[e1]| · |[e2]| + |[e3]| · |[e4]|
⇔ (|[e1]| + |[e3]|) · (|[e2]| + |[e4]|) ≥ |[e1]| · |[e2]| + |[e3]| · |[e4]|
⇔ |[e1]| · |[e2]| + |[e1]| · |[e4]| +

|[e3]| · |[e2]| + |[e3]| · |[e4]| ≥ |[e1]| · |[e2]| + |[e3]| · |[e4]|
⇔ |[e1]| · |[e4]| + |[e3]| · |[e2]| ≥ 0

The claim now follows by induction.

A bound for ΦI+

The bound for the inference measure ΦI+ turns out to be similar to the upper
bound for the Rand -based measure:

Φ∗
I+(D, S∗, p) =

1

|D|

∑

[e]∈D/∼S∗

min
{

|cov(p, [e])|, |cov(p, [e])|
}

We need to prove that:

Theorem 3.2.3. Given pattern sets S, X, pattern p:

ΦI+(D, S∗ ∪ X, p) ≤ ΦI+(D, S∗, p).

Proof. Just as before, this claim can be proven using induction: We need to
show that

∀p, px ∈ X : ΦI+(D, S∗, p) ≥ ΦI+(D, S∗ ∪ {px}, p).

Again, the measure ΦI+ is defined as a normalised sum. Thus, as for the Rand
based measure, it is sufficient to show that each summand is monotonically
decreasing. That is, ∀p, px ∈ X and ∀[e] ∈ D/ ∼S∗ :

min
{

|cov(p, [e])|, |cov(p, [e])|
}

≥
∑

[e′]∈[e]/∼{px}

min
{

|cov(p, [e′])|, |cov(p, [e′])|
}

.

As before let [e1], [e2], [e3], [e4] ∈ [e]/ ∼{px,p} be four pairwise disjunct blocks
such that cov(p, [e]) = cov(p, [e1] ∪ [e3]) = |[e1] ∪ [e3]| and cov(px, [e1] ∪ [e2]) =
|[e1] ∪ [e2]|. We can now reformulate the inequality above as:

min(|[e1] ∪ [e3]|, |[e2] ∪ [e4]|) ≥ min(|[e1]|, |[e2]|) + min(|[e3]|, |[e4]|)

Assuming |[e1] ∪ [e3]| ≤ |[e2] ∪ [e4]| we obtain

|[e1]| + |[e3]| ≥ min(|[e1]|, |[e2]|) + min(|[e3]|, |[e4]|)

124 CHAPTER 3. MINING UNORDERED SETS

If |[e1]| ≤ |[e2]| and |[e3]| ≤ |[e4]|

|[e1]| + |[e3]| = |[e1]| + |[e3]|

Otherwise, if |[e1]| > |[e2]|, |[e3]| < |[e4]| (and vice versa) and

|[e1]| + |[e3]| > |[e2]| + |[e3]|

The inequality therefore holds and the claim follows through induction.

3.2.8 Experimental 1: size and partitions of pattern sets,

order-restricted hill-climbing

In a first experiment, we considered order-restricted hill-climbing and ask the
following questions:

Q3.5 Are small pattern sets mined by this approach?

Q3.6 Is the partition induced by S recovered well by S∗?

Q3.7 Which effect have the orders on S∗?

Q3.8 Which effect have the different measures on mining?

To evaluate the presented approach we used pattern sets from five UCI item-
set mining tasks, harvested using an Apriori implementation (Borgelt 2004)
with different minimum support thresholds.

Table 3.7 lists in the first column the support threshold in percent, and in
the second the number of closed patterns mined on the data sets. It is noticeable
that even though we used relatively high thresholds3 and the restriction to closed
patterns that the result sets are still rather large. Particularly in comparison to
the local pattern mining results used in Sections 3.1.1 and 3.1.2, the number of
patterns (and therefore the size of the search space) is much larger.

The next three rows report on the size of smallest pattern set that was
mined with a Φ on a data set, under any order. For comparison, the minimum
for order-independent (upper bound-restricted) search is shown. Underneath,
the number of cells into which the full result set partitioned the data is listed,
as well as the minimum and maximum number of patterns needed to recover
this partition. The minimum number is always the result of Es↓ or El↑ , and the
maximum number the result of Es↑ or El↓ . Using a smaller support threshold
(and therefore mining more patterns) roughly equates to adding patterns to the
end of the order for Es↓(El↑) and to the front of it for Es↑(El↓). Therefore the
minimum number of patterns does not change with the support threshold while
the maximum number does.

As we can see, the size of the pattern sets is rather small in all cases, far
smaller than the, already somewhat reduced, set of closed patterns that was orig-
inally mined. So, in answering Question 3.5, we can state that order-restricted

3Other work often reports values of only 1%

3.2. HEURISTIC SEARCH 125

D
at
as
et

T
ic
Ta

cT
oe

M
us

hr
oo

m

B
re
as
t-
C
an

ce
r

Vo
te

Pr
im

ar
y-
Tu

m
or

Size 958 8124 286 435 339
θsup 10 5 25 5 1 25 10 25 10

c. patterns 191 951 694 1018 6358 2063 15433 4873 17384
ΦQ 5 6 3 3 3 5 2 3 3
ΦI 3 3 3 4 4 3 3 2 6
ΦC 2 2 2 2 2 2 2 2 2
ΦQ+ 5 4 3 2 2 3 2 3 3
ΦI+ 3 3 3 3 3 3 3 4 4
ΦC+ 1 1 1 1 1 1 1 1 1

max cells 958 1180 266 337 342 258 275
min patterns 17 21 23 26 19
max patterns 160 78 71 133 231 161 229 88 141

Table 3.7: Data sets and the size of the according closed pattern sets, the
smallest reduced sets for each measure, and the minimum and maximum number
of patterns for the maximal partition as well as its cardinality.

pattern set mining returns compact pattern sets, if the right order is used. On
the other hand, Es↑ and El↓ lead to larger pattern sets, already giving an indi-
cation as to the answer to Question 3.7. The basic constraint, which forms an
integral part of the algorithm, also ensures that the partition can be recovered
perfectly, yet this is not a satisfying answer to Question 3.6.

To explore this question in more detail, we performed experiments using
the three selection measures and four orders described in Sections 3.2.3 and
3.2.4. The measure ΦC using clustering turned out to be the most expen-
sive computationally. The quotient measure ΦQ was rather fast, leaving the
measure ΦI employing a learning algorithm in the middle. For each of the
three techniques a threshold t has to be supplied which – although indirectly
– determines the size of the resulting pattern set S∗. We used the thresh-
olds {0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4}, obtaining one reduced pattern set per
threshold for each of the itemsets. The intervals between different thresholds
thus become wider the tighter the thresholds are, since we work under the as-
sumption that tightening the thresholds for relaxed values will have a larger
effect.

Figure 3.3 shows
|D∼∗

S
|

|D∼S|
plotted against |S∗| for the three measures ΦQ, ΦI ,

and ΦC , with each curve corresponding to an order. Additionally, a curve 2|S∗|

|D∼S|
,

denoted with max, is shown for comparison. This curve represents the “ideal”
pattern set, the one that uses the minimum numbers to induce the original
partition. Therefore, the closer to max a method’s plot lies, the closer to the
ideal solution it comes.

126 CHAPTER 3. MINING UNORDERED SETS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

fr
ac

tio
n

of
 p

ar
tit

io
n

re
co

ve
re

d

number of patterns

ΦQ sD
ΦQ sA
ΦQ lA
ΦQ lD

max

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

fr
ac

tio
n

of
 p

ar
tit

io
n

re
co

ve
re

d

number of patterns

ΦC sD
ΦC sA
ΦC lA
ΦC lD

max

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

fr
ac

tio
n

of
 p

ar
tit

io
n

re
co

ve
re

d

number of patterns

ΦI sD
ΦI sA
ΦI lA
ΦI lD

max

Figure 3.3: Plots for the three measures on Voting-record 25 showing nicely
the characteristics present in almost all data sets analyzed. The max in each
plot indicates the maximum number of cells that can be induced by the given
number of patterns.

3.2. HEURISTIC SEARCH 127

These particular plots were derived on the voting-record set with a minimum
support threshold of 25%. The x-axis is scaled logarithmically to make the dif-
ferences for the smallest pattern sets more visible since many methods converge
there. As these plots compare the ability to recover a partition of equal infor-
mativeness as the original pattern set traded-off against the size of the reduced
set, points/curves closer to the upper left corner can be considered better.

The first observation to be made is that the reduction in patterns does for
most settings not lead to a linear decrease in the number of cells, leading to
relatively steep curves. This means that our approach does not need to sacrifice
too much in information about the data set to improve comprehensibility by
the user. Or in other words, even for tightened thresholds (leading to smaller
pattern sets), the partition is recovered well, answering Question 3.6.

Second, there are two very distinct differences between ΦC , and ΦI and ΦQ.
On the one hand, in the area where the thresholds are rather loose, leading to
relatively large S∗, ΦI and ΦQ show a smooth curve that corresponds to the
small increases in the threshold setting. ΦC , in contrast, reduces the cardinality
of S∗ rapidly. It also induces a coarser (fewer cells but of higher cardinality)
partition doing so. On the other hand, once the threshold is raised above a
certain value, large changes in the threshold have less effect on ΦC than on the
other two measures. Such changes therefore result in a smooth curve for small
sets for ΦC , which means that although the size of S∗ increases, the number
of cells grows slowly, and more abrupt changes for ΦI and ΦQ. Ultimately, a
threshold of 0.4 for ΦC leads to a reduction of |S∗| to 2, essentially the lowest
reasonable cardinality, while ΦI and ΦQ produce larger sets at that threshold.

Regarding the comparison of ΦI to ΦQ, it should be noted that for the “low-
support” orderings ΦI shows a steeper descent for low thresholds which means
that it is quicker in recovering the size of the partition.

The behavior for ΦQ is not surprising since it measures the ability of patterns
to split existing cells into sub-cells. It is to be expected that raising the threshold
in small steps will exclude only a few patterns compared to the setting before
so that smooth curves are produced. In contrast, large steps will ratchet up the
selectivity quite a bit, leading to larger decrements in cardinality.

As explained before, ΦI would for instance reject a pattern that splits only
one (or few) “impure” cell(s), especially if they are small since then the pattern
could be reliable inferred on the majority of instances. On the other hand,
patterns that split large (but few) impure cells, and are therefore accepted by
ΦI , might still be rejected by ΦQ. This means that especially for relatively
low thresholds fewer patterns are removed from consideration, thus allowing to
quicker find near-optimal patterns regarding partitioning the data.

Finally, the main operational difference between ΦC and the other two mea-
sures lies (as mentioned in Section 3.2.3) in the fact that the effect of rolling
back an “old” decision affects acceptance of a new pattern. This means that two
types of patterns will be accepted: those that split many cells (as it should be)
and those that evaluate the same for similar pattern combinations. To illustrate
this, consider the bit string tree in Figure 3.4: Even though the fourth pattern
splits only two cells, the others evaluate similarly given the presence/absence of

128 CHAPTER 3. MINING UNORDERED SETS

1 0

11 10 01 00

111 110 101 100 011 010 001 000

1111 1101 1100 1011 1000 0111 0101 0100 0011 0000

node1 node2 node3 node4 node5 node6 node7 node8 node9 node10

Figure 3.4: Illustrating the clustering criterion

the second and third patterns. node1 and node6 are therefore good candidates
for merging, as are node4 and node9, or node5 and node10, for instance. Since
two merges have to happen to reach the same number of cells as in the level
before, the pattern might be accepted, even if the two cells it split are relatively
small.

So to summarize:

• ΦQ will very likely accept.

• ΦI will accept if unsplit cells are sufficiently impure.

• ΦC will accept if the pattern is not too diverse over the other cells.

In early steps, both impurity and low diversity with regard to prior pattern
evaluations are easy to accomplish. While impure cells might still exist in later
steps, the bit string formed by prior evaluations quickly takes over so that only
patterns are accepted by ΦC that split many cells. This leads to the rather
rapid reduction in pattern set cardinality that we observe for ΦC for lenient
thresholds.

For stricter thresholds, only patterns that split large or many cells, are ac-
cepted by ΦI while, as we saw, even patterns that effect insubstantial splits can
be accepted by ΦC if the clustering algorithm merges the right cells. This leads
to easier acceptance of patterns at stricter thresholds, leading to the smoother
curves (growth in pattern set cardinality accompanied by slower growth in the
cardinality of the partition) observed for those threshold values. All of these
aspects go into answering Question 3.8.

Third, it can be seen that the “high-support” orderings (Es↓ and El↑) per-
form very similar to each other – as do the “low-support” orderings (Es↑ , El↓).
Additionally, the latter induce larger S∗ for the same number of cells when

3.2. HEURISTIC SEARCH 129

compared to the former. Based on these observations we perform the follow-
ing comparisons to illustrate the relationship between different orders used in
hill-climbing.

Comparison of Es↓ vs El↑

The similarities of these two orders are not that surprising, given that in pattern
mining short (general) patterns usually match relatively many transactions,
which means that they have high support. This, however, does only hold to a
certain degree4.

We are interested in how similar the S∗ induced by those two orders are.
This is evaluated for each method with regard to the orders in question. We
use the Rand index as a similarity measure for any two pattern sets, which
will decrease if there are a different number of cells or instances are partitioned
differently. Since a partition induced by a S∗ constructed using one order will
not necessarily have a corresponding partition of equal cardinality, we compare
to the two closest partitions (one with higher, one with lower cardinality) and
consider the larger Rand index.

The partitions induced using the two orders are very similar for all three
methods, especially for permissive thresholds reaching Rand values in excess of
0.95. The similarity stays high for ΦI and ΦQ while ΦC derives rather different
partitions for tight thresholds. So in partially answering Question 3.7, we can
state that orders encoding similar phenomena lead to similar pattern sets.

Comparison Es↑(El↑) vs Es↓(El↓)

Obviously, the patterns selected from descending and ascending orders will not
be the same. It is, however, possible that patterns selected from one order can
be inferred from the other pattern set. To evaluate this, we compare pattern
sets resulting from descending vs. ascending orderings while keeping all other
variables fixed. Similarly to the inference selection step, we induce a model on
D for each pattern of S∗

1 using the patterns of S∗
2 as features, and vice versa. The

minimum accuracy for each pattern set is a quantifier of how well one pattern
set can be inferred by another one.

Indeed, for S∗ inducing maximal partitions on the data set we observe very
high accuracies regarding inference. When the S∗ induce partitions with fewer
cells, the inference accuracy decreases as well. However, S∗ obtained using a
Es↓ ordering can usually infer larger sets obtained using a Es↑ ordering. This
observation suggests the following: to recover the complete partition with a
compact (understandable) S∗, choose e.g. Es↓ . To discover information not
encoded in Es↓ -sets, tighten the thresholds and use Es↑ , since now Es↑-sets
become manageable.

We also compared partitions against each other, using the Rand index.
While for ΦI , and ΦC , usually strong similarities are shown, the situation

4Some patterns consisting of 2 items might have higher support than some single item
patterns for instance.

130 CHAPTER 3. MINING UNORDERED SETS

changes for ΦQ. In fact, for data sets where one can truly speak about low-
support patterns, such as Breast-Cancer and TicTacToe, Rand values drop as
low as 0.5, showing that very different partitions are induced. While especially
in the first steps, the other measures also choose patterns with low coverage
that only split off small cells, this is corrected later. ΦQ does not include the
size of cells in its score and therefore does not recover.

For the re-formulated measures, very similar behavior regarding the mini-
mum size of pattern sets mined can be observed over all data set. The only
notable difference, also reported in Table 3.7, lies in the fact that ΦC+ selects
only a single pattern for all data sets for the strictest threshold. The chance
effect of the agglomerative approach therefore does change the outcome of the
mining operation. Since different orders do not have an effect on the result set
there are no “maximum” number of patterns for the original partition.

This also means that comparison of the partitions using the Rand index
are only meaningful between different measures used. When those results are
compared against each other, the strong similarity is even more pronounced
than with order-restricted methods. Rand are values usually above or around
0.95, only decreasing for the strictest threshold, 0.4.

3.2.9 Experimental 2: Comparing the prediction quality

of selection methods

As we have seen, the size of reduced pattern sets is small enough to allow a
human to inspect them. We have argued before, however, that small sets also
benefit machine learning techniques that use them as features. Therefore several
questions arise:

Q3.9 Are the subsets S
∗ better suited as classification features than the full

local pattern mining solution S?

Q3.10 Are the smallest S∗ also the best features?

Q3.11 Does upper-bound ordered hill-climbing find better solutions than order-
restricted hill-climbing?

To evaluate this we use C4.5 to induce models on the binary feature rep-
resentation obtained by using the different S∗ and estimate their classification
accuracy, via ten-fold cross-validation. We also learn models on the binary vec-
tor set constructed using S and on the original attribute-value representation.

An example for accuracies attainable with different selection measures and
orderings is shown in Figure 3.5. The orderings from left to right are Es↓ , Es↑ ,
El↓ , El↑ . The column furthest to the right shows the performance of the pattern
set selected by upper-bound ordered hill-climbing, since those are ordering-
independent. It can be seen that the ”high support” orders are performing
better than their respective ”low support”-counterparts. While this does not
hold for all data sets, it is a rather common trend. It is interesting to see
that using a selection method with upper-bound pruning is not an effective

3.2. HEURISTIC SEARCH 131

75

80

85

90

95

100

A
c
c
u
r
a
c
y

Quotient Clustering Inference

Measure

s! l"s" l! P

8

8

12

6

8

3
3

4
7

16

6

4

3

4

16

s! l"s" l! P s! l"s" l! P

Figure 3.5: Best cross-validated C4.5 accuracies (all orderings for each measure,
and the upper-bound approach) on TicTacToe (10%)

strategy for TicTacToe. Selecting the highest-scoring pattern usually means
that rather balanced cells are formed, which is detrimental to classification
performance on a data set where small subgroups are of relevance. The upper-
bound selection performs closest to the order-restricted approach for ΦQ, the one
measure where size of cells (and thus balance) is not considered. The numbers
above the columns denote the size of S

∗. It can be seen that on the one hand
upper-bound ordered search creates larger sets. On the other hand, that the
sets giving rise to the best accuracies are typically smaller than the minimum
number of patterns needed for the original partition.

We use a second figure (Figure 3.7) for comparing the accuracies of C4.5
models on five representations. These are

• the original attribute-value representation of the data, and

• binary vectors which are created using S,

• the best-performing S∗ selected by an order-restricted approach,

• S∗ returned by the upper-bound ordered selection step, and

• Pattern teams returned by the maximum informative itemsets method
(mikis), introduced by Knobbe et al. (2006a), respectively.

At the top of the bar representing the best S∗, a number denotes the size of the
corresponding pattern set. The most relevant result of this comparison is that
usually neither the binary vector representation derived from the whole S, nor
the one based on the S∗ that gives the maximal partition are best-suited for the
machine learning algorithm. Instead, for all data sets, a reduced pattern set
gives the best accuracy after cross-validation and pruning. This supports our
assumption that too many features only lead to an over-fitting effect and do not
benefit the learner. The size of the corresponding pattern sets is so small that
they are easily interpretable by the user. An example for the tic-tac-toe data set
is given in Figure 3.6. What can also be observed is that the weak performance

132 CHAPTER 3. MINING UNORDERED SETS

Figure 3.6: A visualisation of S∗ for Tic-Tac-Toe 5% using Es↓ , ΦC , and a
threshold of 0.4.

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

TicTacToe s10 TicTacToe s5 Mushroom s25 B.Cancer s5 B.Cancer s1 Voting s25 Voting s10 P.Tumor s25 P.Tumor s10

Datasets

a
tt
ri
b
u
te
-v
a
lu
e

c
lo
s
e
d
 p
a
tt
e
rn
s

b
e
s
t
S
*
-
B

b
e
s
t
S
*
-
P

m
ik
i

6 3

6
13

23
7

20

7 13

16 16
17

6 6
7 7

13 13

Figure 3.7: C4.5 cross-validated accuracies for attribute-value representation,
closed-set binary representation, best S∗, best S∗using upper-bound pruning,
and miki (2 patterns)

of the upper-bound heuristic mining on TicTacToe was indeed an exception. On
the other data sets, it achieves the best accuracy of all the pattern sets, while
at the same time still having relatively low cardinality.

The attribute-value representation still proves to be more expressive than the
pattern representations for most cases. Such a straight-forward representation
is not possible for structured data, however, and as we have shown in a different
work (Bringmann et al. 2006), pattern subset selection is very important for
structure-activity prediction, for instance. Furthermore, even though the order-
restricted hill-climbing always performs well, no single order or selection method
does distinguish itself and selection thresholds vary between 0.03 and 0.4. This
is particularly pronounced in the case of TicTacToe. Keep in mind however that
we didn’t aim to maximize predictive accuracy and our illustrative instantiations
are not meant to exhaust the entire issue.

To summarize:

• Answering Question 3.9: A mined subset S∗ is preferable to the full set S.

• Answering Question 3.10: While small sets perform well, the best accura-
cies are not achieved by the smallest sets.

• Answering Question 3.11: Upper-bound ordered mining finds better pat-
terns for classification purposes, due to its more flexible mining scheme.

3.2. HEURISTIC SEARCH 133

3.2.10 Experimental 3: Comparison to pattern teams

An alternative we mentioned before lies in restricting the size of pattern sets
and searching for pattern sets that maximize joint entropy exhaustively. This
technique was introduced by Knobbe et al. (2006b). We aim to explore

Q3.12 How similar are the solutions of the exhaustive and the heuristic methods?

Due to the rather large running times of these techniques only pattern teams
of size k = 2 have been selected. The comparisons in this case focus on the
similarity of the pattern teams to our reduced pattern sets (Rand -index and
inference) and on the effectiveness as features for classification purposes.

We compared the maximally informative k-itemsets (miki) obtained with
algorithms by Knobbe et al. to reduced sets obtained by using ΦC with a
rather strict threshold. We chose ΦC since it mines the smallest pattern sets.
Interestingly the sets compared exhibit very similar behavior with regard to all
comparisons. First, all but one consist of two patterns. Second, their prediction
qualities are the same, and third they can both equally well infer the other
set. High Rand values furthermore show that our approach induces very similar
partitions. This is interesting insofar as mikis are mined using a complete
method maximizing joint entropy, a measure that rewards balanced partitions,
while we employ a heuristic method. All in all, the heuristic and exhaustive
methods lead to very similar solutions, at least for small pattern set cardinality.
The exhaustive technique has the advantage that it can constrain this cardinality
directly, while our approach can be expected to be more efficient.

3.2.11 Conclusions

We discussed the related work that exists in terms of heuristic pattern set post-
processing in Section 2.2.4. Given the results of our experimental evaluation,
two main consequences can be drawn.

First, we showed that upper-bound ordered hill-climbing leads to high-
quality sets that are unaffected by any order used for mining. At the same
time, the upper bound allows to retain mining efficiency, an important char-
acteristic, since the use of fixed orders stems mainly from trying to control
computational complexity. Formulating the right measures to allow us to cal-
culate upper bounds is not trivial. Defining such measures would allow to make
techniques such as CBA, CMAR, Krimp more independent from heuristic pa-
rameters, as Picker∗ is more independent from them than Bouncer. Even if
the formulation of upper-boundable measures is not possible, additional thought
should be given to the use of different orders from the ones usually employed
in order-restricted systems. The orders used in CBA, CMAR, or Krimp are
well-motivated but the authors typically acknowledge that there might be other
ones that could be more useful. Analyzing the desired properties of pattern sets
further could lead to the development of alternative orders.

Second, we compared our technique to an exhaustive method optimizing
joint entropy (Knobbe and Ho 2006a) and showed that the resulting pattern

134 CHAPTER 3. MINING UNORDERED SETS

sets are of very similar quality. This means that the size-restriction that is used
to limit the cost of pattern set mining can be abandoned without losing much
in terms of quality and efficiency.

3.3 Summary

The first type of techniques which we discussed in this work is concerned with
mining unordered pattern sets in a post-processing step. We contrasted two
approaches addressing this task in this chapter:

1. Exhaustive mining which can guarantee optimal results and gives the user
much control over the mining process via constraints.

2. Heuristic mining which will in all likelihood be much faster.

Both of these approaches are newly developed by applying existing techniques
from data mining and machine learning, respectively, to the pattern set mining
task. We have published these techniques and the experimental results before as
(De Raedt and Zimmermann 2007) and (Bringmann and Zimmermann 2009).
Exhaustive mining trades off the optimality of the solution against the problems
that stem from deriving large parts of a search space that spans the power set of a
high amount of local patterns. As we showed, solutions satisfying the constraints
set by a user can be found relatively efficiently – but this depends strongly on
the constraint parameters chosen. In this way the exhaustive technique mirrors
the local pattern mining techniques on which it is based. Additionally, unless
restricting the solution by a top-k constraint, the number of returned pattern
sets can be rather large.

As an alternative, we explored heuristic approaches in the second section,
which do not explicitly reduce redundancy between patterns but instead evalu-
ates a pattern set in terms of the partition it induces. Evaluating both an order-
restricted and an upper-bound ordered hill-climbing technique, we focussed on
gaining an understanding of the effects that orders and different measures have
on the resulting sets. A resulting pattern set can of course not be guaranteed to
be optimal but as the experimental evaluation showed, these techniques mine
useful pattern sets efficiently.

While unordered pattern sets are very attractive due to their flexibility, it
can be more effective in certain contexts to use ordered pattern sets. Especially
in the case of order-restricted pattern set mining, the resulting pattern set intu-
itively can be considered an ordered set. The order on such sets can be imposed
during mining itself or after the fact. We will explore those alternatives and the
effects they have on the quality and composition of the pattern sets in the next
chapter.

Chapter 4

Evaluating the Effects of

Orders in Ordered Sets

The techniques discussed in the preceding chapter are mainly used to mine
unordered sets. Unordered sets have the advantage that they can be employed
rather flexibly, for descriptive purposes as well as as features for classification
tasks. On the other hand, it might be desirable to use patterns directly for
classification or to get a sense of which patterns are more important than others.
For such purposes, ordered sets are more useful.

An order could be imposed on an unordered pattern set afterwards but may
be somewhat arbitrary in this case, and therefore hard to justify. On the other
hand, orders can arise from the local pattern mining mining operation, or from
the pattern set mining operation itself.

In the first section of this chapter, we contrast the effect of imposing an
order by post-processing or having it emerge during mining. Specifically, ex-
haustive search for patterns that satisfy certain constraints produces unordered
sets which can be ordered by defining an order on the existing set. Top-k mining
creates this order during the local pattern mining step itself, as part of enforcing
the top-k constraint. Which of those two approaches is chosen has an effect both
on the size of pattern sets and on their effectiveness when it comes to classifica-
tion. The order imposed by top-k mining also lends itself to a straight-forward
but effective post-processing step which reduces the cardinality of pattern sets
even further while improving accuracy. This pattern set selection step uses a
validation set to remove higher-ordered patterns, that is, patterns with lower
scores.

A more informed post-processing method is order-restricted hill-climbing.
As the name already implies, the order in which patterns are processed is very
important to this technique. The second section therefore addresses the effect
that different orders have on this approach. We again contrast an arbitrary
order imposed after local pattern mining with the order that arises from top-k
mining and show how the orders affect the results of pattern set mining. There

135

136 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

are pronounced differences between the cardinality of pattern sets as well as
with regard to the classification accuracy of classifiers based on these pattern
sets. Additionally, our experiments provide some evidence regarding the effect
on optimality of using heuristic post-processing.

4.1 CTC - Order by top-k mining

The contents of this section, published in (Zimmermann and Bringmann 2005),
are the result of joint work with Björn Bringmann at the Katholieke Universiteit
Leuven.

As we mentioned above, top-k mining induces an intuitive order on the set
of patterns returned:

∀p1, p2 ∈ Lp : (p1 ⊳ p2) ⇔ σ(sp(p1)) > σ(sp(p2)) (4.1.1)

and therefore is a straight-forward way of mining ordered pattern sets (S, E).

The alternative lies in imposing an order on the patterns after they have
been mined, for instance, based on their support and confidence. Especially
when using predictive patterns as a decision list afterwards, the order can have
a pronounced effect on the quality of the resulting classifier. To evaluate the
usefulness of the top-k constraint, we evaluate the performance of such simple or-
dered pattern sets in the context of classification against a classifier constructed
from an unordered result set of local pattern mining. We would expect the more
intuitive order arising from top-k mining to lead to effective classifiers. Ordered
pattern sets also lend themselves to a variety of post-processing strategies, one of
which, order-restricted hill-climbing, we discussed in the preceding chapter. In
this section, we use a simpler technique, which removes higher-ranked patterns
(those with lower score) based on the performance of the classifier on a valida-
tion set. In addition to the evaluation of the effectiveness of classifiers based on
these sets, we evaluate the cardinality of the pattern sets deriving from the two
different mining approaches. Since top-k mining enforces an implicit pattern
set constraint that can be expected to have an effect on how patterns relate to
each other (and their redundancy), we expect to see this reflected in the result
set.

Both the pattern language and the data language are that of rooted trees as
defined in Definition 1.1.4, and the matching function tree embedding as defined
in Definition 1.1.7. We use this particular matching function to compare our
approach (CtC for correlated tree patterns for classification) with Zaki et al.’s
technique XRules (2003). This notion is more flexible than simple subtrees
and the mining process is still efficient.

The local pattern mining operation performed in Zaki et al.’s work is exhaus-
tive constraint-satisfaction mining. Each instance in the data set is annotated
one of two class label C = {c1, c2}. Target patterns therefore take the form
C = ci, and patterns mined by Zaki et al.’s XRules technique have to satisfy

4.1. CTC - ORDER BY TOP-K MINING 137

the constraints:

ThXRules(Ltree,D, c) = {p ∈ Ltree | sup(p) ≥ 0.01 ∧ (∃ci ∈ C : conf(p ⇒ ci) ≥ 0.5)}
(4.1.2)

We contrast this technique with a solution of our own, called CtC (correlating
tree patterns for classification), which performs top-k mining, using σ = χ2 and
an additional minimum significance constraint:

ThCtC(Ltree,D, c) = {p ∈ Ltree | χ2(sp(p)) ≥ θsig ∧ p ∈ argk maxχ2(sp(p))}

We extend the order mentioned in Equation 4.1.1 in the following way:

∀p1, p2 ∈ Lp :(p1 ⊳CtC p2) if and only if σ(sp(p1)) > σ(sp(p2)) or

σ(sp(p1)) = σ(sp(p2)) ∧ |Vp1
| < |Vp2

| (4.1.3)

Vp1
and Vp2

are the node sets of the respective trees p1, p2, as defined in
Definition 1.1.4. This means that in case that two patterns achieve the same
score, we will consider the one that involves fewer nodes to come first. Zaki et
al. also mention an order based defined by Liu et al. (1998): Given two patterns
p1 ⇒ c, p2 ⇒ c, p1 ⇒ c EXRules p2 ⇒ c if and only if:

conf(p1 ⇒ c) > conf(p2 ⇒ c) or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) > sup(p2 ⇒ c) or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) = sup(p2 ⇒ c) ∧ |Vp1
| < |Vp2

| or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) = sup(p2 ⇒ c) ∧ |Vp1
| = |Vp2

|∧

p1 occurs lexicographically before p2 (4.1.4)

The goal in concept learning, as we explained in Section 1.2.1, is to approx-
imate a function Lp 7→ C which accurately predicts the class labels of unseen
instances. In pattern-based classifiers, usually a combination of the mined pat-
terns and a strategy for aggregating each pattern’s prediction is used. Given an
unseen example e?, Zaki et al. define the average strength (AvgStr) strategy,
which takes the form:

fAvgStr(e?) =
argc∈C max 1

|{p∈ThXRules|match(p,e?)=1}|

∑

p|match(p,e?)=1 conf(p ⇒ c)
(4.1.5)

An ordered set allows us to use a different classification strategy, that of a
decision list (DL):

fDL(e?) = argc∈C min
ECtC

{p ∈ ThCtC | match(p, e?) = 1 ∧ conf(p ⇒ c) ≥ 0.5}

(4.1.6)

The work introducing the XRules system reports that the average strength
technique outperforms the decision list method. This is an indication that the
order EXRules imposed on the pattern set after mining is not well-suited to

138 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

classification. An ordered set can of course also be used as an unordered set
and majority voting (MV) used:

fMV (e?) = argc∈C max
∑

p∈ThXRules|conf(p⇒c)≥0.5

match(p, e?) (4.1.7)

It seems somewhat counterintuitive that patterns with different confidence
of their prediction (or statistical significance) should count equally strong in
an actual voting. A solution to this problem are weighted voting strategies,
such as the AvgStr technique described above. An alternative is the weightedχ2

heuristic (WChi), introduced by Han et al. (2001). It discounts the actual χ2

value of a rule against the maximum value it could have achieved to calculate a
voting weight. In this context we first have to define the maxχ2 of a rule p ⇒ c:

maxχ2(p ⇒ c) =

(

min{sup(p), sup(c)} −
sup(p)sup(c)

|D|

)2

|D|e where

e =
1

sup(p)sup(c)
+

1

sup(p)(|D| − sup(c))

+
1

(|D| − sup(p))sup(c)
+

1

(|D| − sup(p))(|D| − sup(c))

The full classification strategy takes the form:

fWChi(e?) = argc∈C max
∑

p∈ThXRules|match(p,e?)=1

χ2(sp(p))χ2(sp(p))

max χ2(p ⇒ c)
(4.1.8)

4.1.1 Experimental evaluation

Compared to exhaustive constraint satisfaction local pattern mining, top-k min-
ing considers relations between patterns. Additionally, it induces an ordered set,
which differs from the unordered set which the XRules mines.

The questions to be addressed thus are:

Q4.1 Does top-k mining lead to the induction of smaller pattern sets than min-
imum support, minimum confidence mining?

Q4.2 Are ordered pattern sets better suited for classification than the unordered
sets of individually constrained patterns?

The XML data used in our experiments are log files from web-site visi-
tors’ sessions. They are separated into three weeks (CSLOG1, CSLOG2, and
CSLOG3) and each session is classified based on whether the visitor came either
from an .edu domain or from any other domain. Characteristics of the datasets
are shown in Table 4.1.

In each setting we used one set of data for training and another one for
testing. Following Zaki’s notation, CSLOGx-y denotes that we trained on set x
and tested on set y.

4.1. CTC - ORDER BY TOP-K MINING 139

Table 4.1: Characteristics of Datasets (taken from original publication)
DB #Sessions edu other %edu %other
CSLOG1 8074 1962 6112 24.3 75.7
CSLOG2 7409 1687 5722 22.8 77.2
CSLOG12 13934 2969 10965 21.3 78.7
CSLOG3 7628 1798 5830 23.6 76.4

Table 4.2: Size of the induced pattern sets for CtC, XRules
Setting CtC XRules CtCV al

CSLOG1-2 592 28911 130
CSLOG2-3 497 19098 150
CSLOG12-3 981 29098 170
CSLOG3-1 546 31661 220

For the experimental evaluation, we compared our approach to XRules on
the XML data used in Zaki et al.’s (2003) publication. We used the thresholds
θsup = 0.3% for CSLOG1-2 and CSLOG2-3, θsup = 0.35% for CSLOG12-3, and
θsup = 0.2% as in the original publication, as well as θconf = 50%. For CtC, we
mined with k = 1000 and θsig = 3.84, the 95% p-value for the χ2 distribution.

Table 4.2 shows the complexity of the resulting pattern sets. The first column
lists the setting for which the corresponding pattern set was induced. The
second column reports the number of rules mined by CtC for the parameter
setting given above, column three shows the number of rules for XRules. It is
interesting to note that for all four settings the dataset supports less than 1000
rules that pass the 90% significance test. As can be seen, XRules produces
rule sets that are two orders of magnitude larger than those induced by CtC.
We can answer Question 4.1 with a clear “yes”: the relation of patterns to each
other as well as the use of a significance measure therefore leads to far smaller
pattern sets.

To explore the effect that varying the number of rules used for classification
has on predictive accuracy, we evaluated subsets of the rule sets induced by
CtC on the whole test sets. For those subsets the l first rules according to
ECtC induced for a particular setting were selected. The smallest subset had
size 10 and we increased l in increments of 10 up to the total number of rules
induced for the respective setting. Figures 4.1-4.4 show the resulting error rates
for the four different settings. In each diagram, MV denotes the majority voting
strategy, DL the decision list approach, AvgStr Zaki et al.’s average strength
heuristic was used, and WChi the use of the weighted χ2 heuristic introduced
by Han et al.. It is noticeable that using less than 100 rules causes relatively
high error rates while significantly enlarging the rule set past 200 rules causes
error rates to increase again. This means that rules that appear later in the
order are very likely the result of overfitting.

By using validation sets one can determine the size of the rule set giving best

140 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0 50 100 150 200 250 300 350 400 450 500 550 600

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 4.1: Error rates for different classification strategies for the CSLOG1-2
setting

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0 50 100 150 200 250 300 350 400 450 500

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 4.2: Error rates for different classification strategies for the CSLOG2-3
setting

4.1. CTC - ORDER BY TOP-K MINING 141

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 4.3: Error rates for different classification strategies for the CSLOG12-3
setting

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

 0 50 100 150 200 250 300 350 400 450 500 550

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 4.4: Error rates for different classification strategies for the CSLOG3-1
setting

142 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

Table 4.3: Predictive Accuracy for XRules, different classification strategies
for CtC

Setting XRules CtCMV CtCDL CtCAvgStr CtCWChi

CSLOG1-2 82.99 83.23 83.31 83.31 83.01
CSLOG2-3 84.61 83.95 83.90 83.92 82.83
CSLOG12-3 85.30 84.27 84.24 84.29 83.53
CSLOG3-1 83.81 83.50 83.77 83.63 83.53

performance. We used half of the corresponding test sets as validation sets. The
resulting (best) number of rules for each setting is reported in the last column of
Table 4.2, denoted by CtCV al. This rather ad-hoc post-processing step proves
to be surprisingly effective, however, strongly reducing the size of the pattern
set and improving its effectiveness. By using the respective number of rules for
each setting and classifying the other half of the test set we arrive at predictive
accuracy estimates that we report in Table 4.3.

As can be seen, CtC performs well in all settings, even though XRules
always exhibits the highest accuracy. For the first setting, CSLOG1-2, the
differences between the different classifiers (XRules, and the four variants of
CtC are not significant at the 5% level, as measured by a paired t-test. For the
settings CSLOG2-3 and CSLOG12-3, XRules and the first three CtC variants
(MV, DL, AvgStr) again show no significant difference. CtC with the weighted
χ2 heuristic performs significantly worse than XRules. Finally for the last
setting, CSLOG3-1, the situation is the same as for the CSLOG1-2 setting.

This means that the ordered rule set with an ad-hoc pattern selection step
based on the order over the patterns easily captures the same amount of infor-
mation as the full result of a local pattern mining operation, answering Question
4.2. Additionally, the ordered set allows the use of a simpler classification strat-
egy (the decision list) without losing predictive accuracy.

4.2 CBA and CBC - Order-restricted pattern

set mining

As the preceding section showed, ordered sets can be rather effective for clas-
sification, allowing to replace sophisticated classification schemes with simpler
ones. We also saw that orders arising from the mining process itself can be
better suited to this task than orders that are imposed retroactively. Addition-
ally, we augmented the top-k mining with an order-based post-processing step
that simply kept the first patterns in the order, evaluating the accuracy on a
validation set.

A similar order, which we introduce below, can be used for more elaborate
pattern set mining algorithms, however, such as order-restricted hill-climbing.
We already encountered this technique when mining unordered pattern set in
Section 3.2. In this section, we therefore combine exhaustive constraint satis-

4.2. CBA AND CBC 143

faction and exhaustive top-k mining with order-restricted hill-climbing.

Given the effectiveness of the implicit pattern set constraint in top-k mining,
the question is whether this effectiveness in reducing the size of pattern sets is
retained when the post-processing step becomes more elaborate. Related to
this is the question of whether enforcing the pattern set constraint during local
pattern mining will make the entire mining process (local pattern and pattern set
mining combined) computationally more expensive. Finally, there is of course
the question whether the choice of the local pattern mining step has an effect on
the suitability of pattern sets for classification. As an aside, we will investigate
whether the heuristic post-processing step is effective in avoiding local minima
to construct a well-performing classifier.

Once again, we perform experiments in the context of concept learning. We
use itemsets both as the pattern and the data language, once again, with each
instance labeled with one of two class labels C = {c1, c2}.

An existing technique that performs exhaustive constraint satisfaction search
as a first phase, and order-restricted hill-climbing for pattern set mining, is CBA
(Liu et al. 1998). The local pattern mining constraint is the same as for the
XRules system of the preceding section:

ThCBA(LI ,D, c) = {p ∈ LI | sup(p) ≥ 0.01 ∧ (∃ci ∈ C : conf(p ⇒ ci) ≥ 0.5)}
(4.2.1)

On the initially unordered set ThCBA(LI ,D, c), the order ECBA, as defined
in Definition 1.3.1 is imposed, which we repeat here: Given two patterns p1 ⇒
c, p2 ⇒ c, p1 ⇒ c ECBA p2 ⇒ c if and only if:

conf(p1 ⇒ c) > conf(p2 ⇒ c) or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) > sup(p2 ⇒ c) or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) = sup(p2 ⇒ c) ∧ |p1| < |p2| or

conf(p1 ⇒ c) = conf(p2 ⇒ c) ∧ sup(p1 ⇒ c) = sup(p2 ⇒ c) ∧ |p1| = |p2|∧

p1 occurs lexicographically before p2 (4.2.2)

This order is then used in order-restricted hill-climbing, using the pattern set
constraint CCBA, defined in Example 1.3.4:

CCBA(S,D) ≡ ∀p ⇒ q ∈ S, ∃e ∈ D : e /∈
⋃

piECBAp

cov(pi,D) ∧ class(e) = q

Our own system, which combines top-k (using σ = χ2) mining with order-
restricted hill-climbing, is denoted by CBC. The order on the pattern set, ECBC

144 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

takes the form: Given two patterns p1, p2, p1 ⊳CBC p2 if and only if:

max
c∈C

conf(p1 ⇒ c) > max
c′∈C

conf(p2 ⇒ c′) or

max
c∈C

conf(p1 ⇒ c) = max
c′∈C

conf(p2 ⇒ c′) ∧ σ(sp(p1)) > σ(sp(p2)) or

max
c∈C

conf(p1 ⇒ c) = max
c′∈C

conf(p2 ⇒ c′) ∧ σ(sp(p1)) = σ(sp(p2)) ∧ |p1| < |p2|

max
c∈C

conf(p1 ⇒ c) = max
c′∈C

conf(p2 ⇒ c′) ∧ σ(sp(p1)) = σ(sp(p2)) ∧ |p1| = |p2|∧

p1 occurs lexicographically before p2 (4.2.3)

4.2.1 Experimental evaluation

After we already established in the comparison between XRules and CtC that
the top-k constraint can be leveraged for mining smaller and more effective
pattern sets, the questions for this evaluation are:

Q4.3 Does the order inherent to top-k mining, ECBC lead to a better pattern
set for classification selected than the subsequently imposed ECBA?

Q4.4 Have the different orders on pattern sets an effect on which patterns are
selected for patterns sets and on their size?

Q4.5 Does using the pattern set constraint in top-k mining lead to a more
efficient mining operation than minimum support, minimum confidence
mining?

We used the WEKA-implementation of Apriori, with θs = 0.01 and θconf =
0.5 for CBA’s first phase. For CBC, θsig = 3.84. In both cases, the number of
rules mined was set to k = 50000.1 As before, CBC only mines free patterns.
Both classifiers use the decision list strategy for classification, using the final
pattern sets.

We chose 13 data sets from the UCI Machine Learning repository (Blake and
Merz 1998), and discretized numerical values, using Irani & Fayyad’s MDL-
based discretization (Fayyad and Irani 1993). Data is represented in LI for
CBA, an algorithm that is based on itemset mining and therefore also uses
this pattern language. For CBC, data stays in its original LA format and we
use LAV to represent patterns. To evaluate the quality of built classifiers, a
stratified ten-fold cross-validation was performed, and we report on the average
classification accuracy and its standard deviation per data set. So as to not
have differences of the implementation influence the efficiency estimates, we do
not report on running times but instead on the number of candidate patterns
evaluated, as a measure for the effectiveness of pruning performed.

Results The accuracy comparison of CBC with CBA (Table 4.4) shows that
a certain advantage of the pattern set constraint inherent in top-k mining (and

1An exception is the Kr-vs-KP data set where 90, 000 rules are needed for CBA to find
rules with confidence of at least 90%

4.2. CBA AND CBC 145

Table 4.4: Average accuracy and standard deviation for CBA and CBC.
The left-most column lists data sets, columns 2 and 3 accuracy estimates based
on a stratified ten-fold cross-validation

Dataset CBA CBC
Balance (2 Class) 79.18 ± 4.59 79.18 ± 4.59
Breast-Cancer 68.19 ± 8.48 66.77 ± 9.28
Breast-W 94.71± 1.9 95.71 ± 1.34
Colic 81.27 ± 8.07 76.91 ± 6.51
Credit-A 85.65 ± 4.35 84.06 ± 4.48
Credit-G 71.4 ± 2.63 69.8 ± 4.89
Diabetes 75.92 ± 4.14 75.78 ± 4.23
Heart-H 83.33 ± 6.69 82.66 ± 5.82
Kr-vs-Kp 80.72 ± 1.75 95.63± 1.29◦
Mushroom 99.53 ± 0.19 100◦
Spambase 86.39 ± 1.62 86.09 ± 1.61
Tic-Tac-Toe 100 100
Voting Record 94.25± 3.1 93.1 ± 3.58

◦ denotes statistical wins at the 99% level according to paired t-test

the order it induces) still exists. CBC never performs significantly worse than
CBA and in two cases is significantly better, as measured by a paired t-test.
Order-restricted hill-climbing does not seem to lead to relevant qualitative dif-
ferences between the two techniques. In the Kr-vs-Kp scenario, limiting the
mining process to the 90, 000 most significant rules in CBA excludes many
high-confidence rules. Even at 200, 000, the highest confidence is at just 0.92,
while for CBC rules with confidence 1.0 are found within the 50, 000 most sig-
nificant rules according to χ2. We therefore answer Question 4.3 to the effect
that while the top-k constraint somewhat improves the quality of the classifier,
the difference is not very pronounced. This is an indicator that the pattern set
mining technique recovers potential weaknesses of the choice for local pattern
mining.

In the case of the Mushroom data set, the ordering of the rule set before
pruning is decidedly different between the two approaches and thus different
rules are selected for the final classifier. To give an impression of the effect of
the different orders used in the pattern set mining step (which arise from the
different local pattern mining approaches), consider Table 4.5. It demonstrates
nicely what a big impact the order can have in the case of order-restricted
hill-climbing. Particularly when one considers that the differences in accuracy
(derived using the same classification scheme in both cases) are mostly not
significant. We can therefore state with regard to Question 4.4, that the different
orders have a noticeable effect on the results of order-restricted hill-climbing as
a pattern set mining technique, similarly to the results of Section 3.2.

Notice especially that the small number of patterns that can be achieved by

146 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

Table 4.5: Cardinality of pattern sets after the pattern set mining step
Data set CBA CBC
balance 17.40 ± 5.10 8.00 ± 0.00
breast cancer 98.50 ± 4.74 10.60 ± 1.35
breast 51.40 ± 3.59 12.90 ± 0.57
colic 88.30 ± 7.79 3.00 ± 0.00
credit a 125.00± 12.05 2.60 ± 0.69
credit g 57.10 ± 10.71 18.80 ± 3.74
diabetes 59.10 ± 17.82 6.80 ± 1.03
heart 43.20 ± 2.25 8.30 ± 1.42
kr vs kp 32.9 ± 1.45 2.20 ± 0.42
mushroom 26.00 ± 0.00 8.00 ± 0.00
spambase 2.50 ± 0.97 18.90 ± 1.19
tic tac toe 8.00 ± 0.00 10.00 ± 0.00
vote 38.40 ± 2.95 8.00 ± 0.82

exhaustive mining on the Balance data set, as shown in Section 3.1.2, 4.9±1.66
patterns, is not reached by either ordering. The classification accuracy, on the
other hand, is the same for all three solutions.

The third question to be answered is whether exhaustive constraint satisfac-
tion mining is more efficient than top-k mining. Table 4.6 shows no clear-cut
advantage for either technique. On average CBA mines slightly fewer patterns
than CBC, however. This means that the top-k constraint does not lead to a
reduction in computational complexity, answering Question 4.5 negatively.

Large data sets on which accurate rules have small coverage, and data sets
with minority classes make upper-bound pruning less effective. More specifically,
top-k mining compares worst on Kr-vs-Kp, Spambase, and Tic-Tac-Toe. We
have seen, however, that Kr-vs-Kp gives also CBA trouble and subsequent
experiments in which the number of mined patterns is set to 1.8 million still does
not result in classifiers comparing well with CBC while exceeding its number
of evaluated candidate patterns significantly.

4.2.2 Conclusions

Order-restricted hill-climbing is a highly efficient method for post-processing a
large set of patterns. Due to the fact that each pattern is considered exactly
once, the complexity of the approach is linear in the number of patterns. On
the other hand, this method is highly susceptible to the order that is used to
process the patterns, as we already explored in Section 3.2.

As the results of the preceding two sections showed, can orders arising during
local pattern mining be used to support the pattern set mining step in data
mining. Especially if they are informed by the KDD task that is being addressed,
some of the negative influences that arbitrary orders can have are reduced. This
opens the door for designing local pattern mining algorithms that impose task-

4.3. SUMMARY 147

Table 4.6: Number of candidate pattern evaluated by CBA and CBC
The last column lists the number of patterns for CBC, equating 100%, column
two shows the corresponding percentage value for CBA

Dataset CBA CBC
Balance (2 Class) 156.01% 99.80 (100%)
Breast-Cancer 127.44% 8179.20 (100%)
Breast-W 52.58% 12913.80 (100%)
Colic 136.29% 73682.90 (100%)
Credit-A 98.49% 65226.50 (100%)
Credit-G 39.14% 155020.90 (100%)
Diabetes 126.52% 3875.80 (100%)
Heart-H 172.57% 14680.00 (100%)
Kr-vs-Kp 15.92% 687715.50 (100%)
Mushroom 95.86% 53615.80 (100%)
Spambase 15.13% 445856.30 (100%)
Tic-Tac-Toe 38.14% 24511.10 (100%)
Voting Record 65.41% 88996.10 (100%)
Average 87.65%

specific orders during mining.

4.3 Summary

Chapter 4 was concerned with the mining and post-processing of ordered sets
of patterns. Similarly to our experiments regarding the effect of different orders
on the mining of unordered sets via order-restricted hill-climbing, we explored
two different orders in a limited setting in Section 4.1. The difference between
the two orders it that one is imposed after mining the set, while the other ones
arises from local pattern mining itself, in the form of a top-k. The evaluation
shows that the mining-inherent order allows a more efficient use of the resulting
pattern sets, enabling the use of a decision list classification strategy instead
of a more elaborate weighted voting mechanism. It additionally supports an
intuitive post-processing step, in which higher-ordered (lower-scoring) patterns
are removed.

Pursuing this topic further, we evaluated both of these orders in order-
restricted hill-climbing in Section 4.2. Order-restricted hill-climbing is a more
sophisticated post-processing method in the way it relates pattern to each other
but also vulnerable to the effects of the order used. The retroactively imposed
order has been developed for the CBA system (Liu et al. 1998) and is so far
the standard in order-restricted pattern set mining in data mining. The order
arising from mining shows itself to be better suited for the mining of effective
sets, leading to better accuracies of the resulting classifiers. Pattern sets mined
in this way are usually also smaller, verifying the phenomena we have observed
so far.

148 CHAPTER 4. EVALUATING THE EFFECTS OF ORDERS

Conclusion of Part II

In this part, we discussed a variety of techniques for the post-processing of sets
of local patterns into pattern sets that are small, show little redundancy and
are effective regarding the tasks in which they are employed.

We split the part into two chapters, considering the mining of unordered and
ordered pattern sets, respectively. Unordered pattern sets are very flexible, not
relying on attributes such as class labels for the mining process. This makes
them well-suited to both predictive and descriptive data mining. The downside
is, however, that certain methods of mining for pattern sets cannot be used to
process, or produce, unordered pattern sets.

In the first chapter, we introduced two new approaches to post-processing of
local pattern mining solutions. Existing methods to post-processing of a local
pattern mining were developed in the field of data mining and typically proceed
heuristically due to the large number of local patterns that have to be pro-
cessed. Since the number of patterns is fixed, however, the issue is structurally
not different from the one addressed in frequent itemset mining. We there-
fore suggested an exhaustive algorithm for constraint-based pattern set mining.
Given the right constraints, and well-selected thresholds, such a technique is
feasible. It allows one to control the properties of derived pattern sets and it
guarantees optimality but pays for this with higher computational complexity.
The mining operation itself shows all the characteristics of local pattern mining,
including the fact that it is not clear how to best choose constraint parameters
and a large search space to traverse.

The second technique, which we called Bouncer, performs mining heuris-
tically and is influenced by techniques for feature selection in machine learning.
Heuristic techniques can perform efficiently even for large search spaces, and
still be effective, mining good patterns to be used, for instance, as features in
concept learning. The number of patterns that our proposed algorithms can
process lie up to two orders of magnitude above those that exhaustive mining
can handle. On the other hand, it cannot be guaranteed that mined pattern
sets are optimal in any sense. The only guarantee that can be given when using
our techniques is that the resulting pattern set will induce the same partition
as the full set. But even this guarantee has to be given up when threshold
values are set to find a more compact representation (which often also per-
forms better for classification). In addition to reporting on a technique using
order-restricted hill-climbing, we developed Picker∗, using upper-bound or-

149

150 CONCLUSION OF PART II

dered hill-climbing to control the computational complexity. As the evaluation
showed, order-restricted hill-climbing is affected by the underlying order, lead-
ing to sometimes very different pattern sets that carry similar information. It
gives the user more options to control the properties of the solution, however,
lying between the full control of the exhaustive search and the upper-bounded
search, where only constraint thresholds can be adjusted.

Moving forward with the issue of orders on pattern sets, we considered or-
dered pattern sets in the context of concept learning in Chapter 4. The advan-
tage is that the order can arise naturally from the mining operation, such as in
the case of top-k mining. In Section 4.1, this order was shown to lead to much
smaller pattern sets that could be easily post-processed into the basis for an
effective classifier. The alternative, an order that is imposed retroactively, can
be exploited less effectively.

Both of these orders can, of course, be used as the basis of order-restricted
hill-climbing. The retroactively imposed order, in particular, has already been
used in some systems for this purpose. Therefore, we evaluated the two orders
against each other in Section 4.2 in this context. The results show that as in
the case of unordered set mining, the choice of order is very important to the
mining result. In both cases, however, effective classifiers were formed, although
of rather different size. This is an indication that the heuristic technique is
capable of steering the pattern set mining operation to similar optima, even if
the underlying pattern sets show different characteristics. The size of the final
pattern sets also exceeded that of the result of the exhaustive mining operation
on the example data set, illustrating the involved trade-off.

The techniques we have evaluated so far mainly originate from the field of
data mining, even if they had not been applied for pattern set mining before, or
at least not with those parameters. This is partially a result of the fact that data
mining started out as the mining of large sets of patterns and post-processing
them is still the most obvious choice for mining sets of patterns. Machine learn-
ing, on the other hand, has developed several methods for iteratively mining
patterns. The data on which local patterns are mined already reflects the ef-
fects of patterns that have been mined in earlier iterations, distinguishing these
approaches from post-processing techniques. In the third part of our work, we
will therefore evaluate the use of iterative mining techniques for pattern set
mining. We will discuss two different paradigms (sequential and parallel min-
ing) and how they reduce redundancy, and evaluate the effectiveness of found
pattern sets.

Part III

Iterative Pattern Set

Mining

151

Overview of Part III

In the preceding part of this thesis, we discussed how different post-processing
techniques can be used to mine unordered and ordered sets of patterns. Those
approaches are decomposed into two distinct phases: 1) mining local patterns
and 2) mining a set of patterns from the result of the local pattern mining
operation.

A different paradigm, embodied by iterative pattern set mining approaches,
is the topic of this third part of our work. As the name already says, pattern sets
are mined iteratively in these approaches. More specifically, this means that one
or several local patterns are mined, the context of the pattern set mining process
modified, and the local pattern mining step repeated. The techniques that
we will discuss in this part achieve the modification of the pattern set mining
process by manipulating the underlying data, depending on the patterns that
have already been mined. A different approach could be to modify the measure
that is used for evaluating the merit of a local pattern in combination with other
patterns in the set. We will discuss an example for such a technique in greater
detail in the concluding remarks of this part.

The first chapter of this part, Chapter 5, is concerned with sequential mining
techniques. The underlying assumption in sequential mining is that data that
has been described by a pattern (or patterns) is of less importance to later
mining iterations. Sequential pattern set mining thus takes the form: 1) mining
local patterns, 2) decreasing the importance of covered data, 3) iterating the
local pattern mining process. The way in which the decrease in importance is
achieved has a strong impact on the resulting patterns, and how they relate to
one another.

The strong assumption in sequential mining is that covered data is unim-
portant. In this case instances are removed from further consideration, leading
to the sequential covering paradigm. By not explicitly contributing anything to
future patterns (implicitly informing them through their absence, however), it
becomes almost impossible to find patterns that describe overlapping phenom-
ena. Sequential covering was developed in the context of concept learning and
the existing systems use a heuristic local pattern mining step. By replacing this
step by an exhaustive approach, we create a new system that we can use to
test the effectiveness of sequential covering in directing the pattern set mining
process. As we will show in our experimental evaluation, sequential covering as
a pattern set mining approach mines effective pattern sets. It can overcome the

153

154

pitfalls of local optima that can be reached by heuristic local pattern mining
techniques. Additionally, the mined pattern sets are smaller or more accurate
(or both) when compared to pattern sets mined by post-processing.

If one makes the weaker assumption that data becomes becomes less impor-
tant and therefore should be discounted, one arrives at sequential re-weighting
techniques. Each instance is given a uniform weight in the beginning and pattern
coverage of an instance translates into a smaller weight for future iterations. We
will discuss sequential re-weighting in the context of subgroup discovery. The
system we describe is an adaption of a predictive rule learner, using the same
heuristic local pattern mining technique. Subgroup discovery aims at at finding
descriptions of the data that are as accurate as possible, however, making subop-
timal patterns already undesirable. Once the effects of sequential re-weighting
are added to this, a suboptimal pattern will throw future iterations off as well.
We therefore replace the heuristic component by an exhaustive approach to
evaluate to which degree heuristic techniques lead to non-optimal subgroup de-
scriptions. Additionally, we evaluate the efficiency of both systems to assess
whether the use of exhaustive local pattern mining is feasible.

The second chapter of this part, Chapter 6, discusses parallel mining, which
leads to tree sets of patterns. The assumption is less strict than in the case of
sequential mining: data that has been described is not supposed to be unim-
portant but instead supposed to be described at a general level, with more
specific descriptions of subsets still possible. Parallel mining has been used ex-
tensively in concept learning on attribute-value data, in the form of decision tree
induction. As we can show, replacing the selection of a single discriminating
attribute-value test by an exhaustive local pattern mining allows to directly clas-
sify tree-structured data, without recourse to re-encoding of the data. The tree
set is also much more compact than classifiers based on unordered or ordered
sets of tree patterns. This is yet another setting in which the decomposition of
existing pattern set mining techniques allows us to propose an effective system
in a principled way. Furthermore, we apply parallel mining in the context of
conceptual clustering to mine complex descriptions of clusters in a top-down,
divisive manner. This direct induction of conjunctive descriptions has not been
performed before due to the limitations of the local pattern mining step in ex-
isting systems. Finally, exhaustive top-k mining allows us mine more than one
pattern per iteration, leading to a completely new type classifier which is related
to decision trees and sets of trees.

Chapter 5

Sequential Mining

Techniques – evaluating the

effects of local pattern

mining solutions

In chapters 3 and 4 we discussed several pattern set mining approaches that
post-process the result of a local pattern mining operation in a second phase.
As we pointed out before, this means that the patterns which are assembled into
a set are interesting with regard to the background distribution on the entire
data set. Pattern set mining as post-processing then evaluates whether patterns
are still interesting after the effects of other patterns are considered. If there
patterns that only emerge after these effects are evaluated, those patterns will
not be included in the pattern set, simply because the local pattern mining step
could not mine them.

An alternative for the formation of ordered pattern sets, which we outlined
in Section 2.3, lies in sequentially mining pattern sets. First, local patterns are
mined that are interesting with regard to a background distribution. But instead
of assembling a very large set of such patterns and then removing redundancies
among them, data that has been described by those patterns is now discounted.
This leads to a new background distribution against which the interestingness
of local patterns is checked. This has two beneficial effects: on the one hand,
non-redundancy between patterns from different iterations is ensured in this
way. On the other hand, a natural order is created in the pattern set, with
patterns from earlier iterations coming earlier in the order. This is different
from orders that are imposed subsequently or that arise from the local pattern
mining process.

We therefore aim at exploring the advantages (and drawbacks) of sequential
mining in this chapter. From the argumentation above we expect pattern sets

155

156 CHAPTER 5. SEQUENTIAL MINING

mined sequentially to model phenomena more accurately, leading to better per-
formance (and smaller pattern sets). This will likely come at the cost of higher
computational complexity, however, since several local pattern mining steps
have to be performed, as compared to just one in the case of post-processing
techniques.

The first section of this chapter (Section 5.1) is concerned with evaluating
sequential covering for the task of mining a pattern set for classification. In
sequential covering, data is removed after it has been covered by local patterns.
Implicitly, this also means that the patterns found should describe the data as
well as possible since no correction in later iterations is possible. Since sequential
covering has been developed in the machine learning community, this technique
is mostly coupled to the heuristic local pattern mining step with which it was
first proposed. As our earlier discussion showed, however, the technique can
be decomposed and sequential mining will accept any technique that mines
local patterns. As we will show in the experimental comparison of a heuristic
and an exhaustive approach to the local pattern mining step, the sets resulting
from heuristic and exhaustive local pattern mining perform rather similarly.
The composition of the sets is different, indicating that the pattern set mining
technique is adept at steering the quality of the entire pattern set towards an
optimum with regard to classification acuracy, even if the local patterns are
only locally optimal. Additionally, we show that the resulting sets are better
suited to the classification task than those created by post-processing. Also,
the increase in computational complexity by having to run several local pattern
mining processes is not that severe.

In the second section (Section 5.2), the re-weighting mechanism for dis-
counting instances is used to mine a pattern set describing interesting sub-
groups. In subgroup discovery one cannot simply assume that subgroups are
non-overlapping, making soft discounting in the form of re-weighting a better
choice than sequential covering. Suboptimal patterns are once again corrected
in the context of the entire pattern set. The problem is, however, that while the
entire set has merit and subgroups are ordered by their quality according to a
measure, every single pattern should be as accurate as possible. As the evalua-
tion shows, however, heuristic methods tend to induce suboptimal groups that
will influence the sequential process and leads to more errors. Replacing the
heuristic method by an exhaustive step allows to mine accurate results without
increasing computational cost.

5.1 Sequential covering

The underlying motivation for sequential mining as a pattern set mining tech-
nique is to avoid mining patterns that describe subsets that have been described
before. A way to guarantee this is to remove the data that has been covered
before, which is the approach chosen in sequential covering. A rough outline
of sequential covering is given in Algorithm 14, which is an instantiation of
Algorithm 12.

5.1. SEQUENTIAL COVERING 157

Algorithm 14 Iterative pattern set mining

Given: pattern language Lp, data base D, local pattern constraint c, pattern
set constraint C
Return: Th1(2

Lp ,D, C)

S = ∅
while D 6= ∅ do

Mine Th(Lp,D, c)
if C(S ∪ Th(Lp,D, c)) = true then

S = S ∪ Th(Lp,D, c)
else

return S

end if
D = D \ cov(Th(Lp,D, c))

end while
return S

As we discussed in Section 2.3, the high computational effort that comes with
iterative pattern set mining practically enforces that the pattern set mining step
is greedy at best. Greedy solutions do not necessarily reach the global optimum
and if the local pattern mining step is also performed in a heuristic manner, it
is to be expected that the final solution is a very localized solution.

To test this assumption, we will therefore compare in this section the effi-
ciency and performance of two approaches towards ordered pattern set mining
using sequential covering:

• CN2χ2 , with a heuristic (beam search) local pattern mining component,
inspired by CN2 (Clark and Niblett 1989), the classical sequential covering
concept learner.

• CN2CG, a newly developed system, in which the local pattern mining
component takes the form of top-1 mining

The comparison will be with regard to efficiency and accuracy in the clas-
sification setting. The use of heuristic techniques is mainly motivated by an
expected reduction of the computational complexity of the entire approach. As
we wrote above, however, there is the danger that the combination of a heuristic
local pattern mining step with a heuristic pattern set mining technique leads to
suboptimal solutions. The experimental evaluation which we perform is there-
fore designed to shed light on how severe the trade-off between efficiency and
effectiveness is. Additionally, we contrast the performance of both algorithms
with that of Ripper (Cohen 1995), the arguably most effective sequential cov-
ering concept learner to date.

Ripper performs the local pattern mining step as greedy hill-climbing search
and the pattern set mining as sequential covering. Aware of the dangers of local

158 CHAPTER 5. SEQUENTIAL MINING

optima, however, sophisticated mechanisms have been added to optimize the
pattern set further:

1. Each rule, after mining, is pruned by evaluation on a validation set. This
is a way of overcoming local optima of the local pattern mining that are
due to over-fitting.

2. After the entire set is mined, each rule in turn is potentially replaced.
Their replacements are greedily mined from the empty rule and from the
current rule by refining it further. The rules are evaluated in the context
of the entire rule set. In this way local optima of the pattern set mining
step can be overcome.

3. If there are instances of the target (positive) class left uncovered, the rule
set is extended by a repetition of steps 2 and 3.

Ripper is therefore a more sophisticated pattern set mining system: not
only does it use sequential mining but it also heuristically improves a found
pattern set further.

5.1.1 Experimental evaluation

The three main questions to be answered are:

Q5.1 Does the replacement of the heuristic local pattern mining step with an
exhaustive version improve the effectiveness (accuracy) of classifiers?

Q5.2 Is the heuristic technique computationally less complex than the exhaus-
tive one?

Q5.3 Does the more sophisticated pattern set mining scheme of Ripper give it
better effectiveness with regard to classification?

The experimental setting for the sequential covering approach are as follows:

• Beam sizes for CN2χ2 are 5, 10, 20.

• Minimum significance threshold for CN2χ2 and CN2CG is 3.84.

• Ripper is run as WEKA’s (Frank and Witten 1999) JRip implementation
with default parameters and pruned classifiers evaluated.

• CN2χ2 - and CN2CG-classifiers are unpruned.

The data sets and discretization method chosen are the same as in the ex-
perimental evaluation in Section 4.2. The classification accuracy is evaluated
by ten-fold cross-validation once again.

5.1. SEQUENTIAL COVERING 159

Table 5.1: Average accuracy and standard deviation for CN2χ2 , CN2CG,
and Ripper. The left-most column lists data sets, columns 2-4 accuracy es-
timates for the different techniques (columns 2 & 3 annotated with statistical
t-test comparison to Ripper), CN2χ2 results are also annotated with the width
of the narrowest beam giving rise to the result.

Dataset CN2χ2 CN2CG Ripper
Balance (2 Class) 86.8 ± 3.9 (5) ◦ 86.8 ± 3.9◦ 80 ± 3.4
Breast-Cancer 81.5 ± 8.4 (10) 80.4 ± 0.77 71.7 ± 0.72
Breast-W 96.4 ± 2.4 (5) 96.4 ± 2.4 95.7 ± 2.1
Colic 82.9 ± 5.5 (5) 88.9 ± 5.9 83.9 ± 7.7
Credit-A 86.5 ± 2.5 (20) 85.8 ± 2.1 85.4 ± 2.5
Credit-G 79.4 ± 6 (10) ◦ 79.4 ± 6◦ 69.4 ± 5.4
Diabetes 77.4 ± 5.4 (10) 75.1 ± 6.2 76 ± 3.9
Heart-H 83.3 ± 7.5 (5) 81.6 ± 6.3 79.2 ± 7.4
Kr-vs-Kp 94.3 ± 1.4 (5) • 94.3 ± 1.4• 99.3 ± 0.4
Mushroom 98.5 ± 0.3 (5) • 98.5 ± 0.3• 100 ± 0.0
Spambase 91.4 ± 1.4 (10) 89 ± 1.4• 92.7 ± 1.1
Tic-Tac-Toe 84.6 ± 2.2 (5) • 83.1 ± 2.2• 97.1 ± 1.2
Voting Record 95.3 ± 3.2 (5) 96.2 ± 3 95.6 ± 2.8

◦ denotes statistical wins at the 99% level, base-line being Ripper,
respectively
• denotes statistical losses at the 99% level, base-line being Ripper,
respectively

160 CHAPTER 5. SEQUENTIAL MINING

Table 5.2: Average number of patterns mined by the CN2χ2 , and
CN2CG, number of patterns mined and used by Ripper

CN2χ2 CN2CG Ripper
Dataset # mined # mined # mined # used
Balance (2 Class) 6 ± 1 5.4 ± 2.12 8.7 ± 2.35 5.2 ± 1.22
Breast-Cancer 27.1 ± 6.3 24.6 ± 6.1 11.2 ± 3.97 3.1 ± 0.74
Breast-W 12.8 ± 1.3 11.4 ± 0.8 19.8 ± 2.04 6.6 ± 0.97
Colic 16.5 ± 2.9 8 ± 0.9 12.9 ± 2.23 3.6 ± 0.7
Credit-A 16.2 ± 2.4 14.6 ± 1.84 25.5 ± 2.42 5.8 ± 1.81
Credit-G 31.1 ± 6.1 30 ± 3.37 15.3 ± 2.79 5.5 ± 2.12
Diabetes 10 ± 2.3 11.6 ± 3.37 20.1 ± 3.14 5.2 ± 0.91
Heart-H 9 ± 2 8.8 ± 1.75 10.8 ± 1.39 3.5 ± 0.85
Kr-vs-Kp 3 2 19.2 ± 1.13 15.4 ± 1.27
Mushroom 4.3 ± 0.5 3 8.8 ± 0.79 8.7 ± 0.68
Spambase 10.6 ± 1 5.8 ± 0.92 53.9 ± 3.28 27.3 ± 3.23
Tic-Tac-Toe 6.3 ± 1.3 8.8 ± 0.4 12.1 ± 2.02 10.6 ± 1.27
Voting Record 4.8 ± 0.6 3.2 ± 0.42 8.8 ± 0.63 2.9 ± 1.2

Results CN2χ2 , CN2CG, and Ripper give rise to solutions of similar quality,
as can be seen in Table 5.1. Ripper is significantly better than CN2χ2 three
times (four times vs CN2CG), χ2-based optimization being significantly better
twice. With CN2χ2 outperforming CN2CG once, one can conclude that the
quality of the heuristically derived classifiers is at least equal to the ones found
using CN2CG. It should be noted, however, that selecting the right beam size is
non-trivial, as the best classification results stem from different sizes for different
data sets. The answer to Question 5.1 is, therefore, that the pattern set mining
technique corrects the local optimality of the heuristic local pattern mining step
to create an effective pattern set.

Two of the cases in which Ripper finds the better solution are large data
sets with rules that have high accuracy on only small subsets (Kr-vs-Kp, Tic-
Tac-Toe). The reason for this lies in the fact that the penalty that significance
measures apply for low frequency at some point outweighs the deviation from the
background distribution. The final result is a rather general pattern (relatively
high support with good but not great accuracy). By removing the data after
covering (and the use of the decision list), no more fine-grained predictor pattern
can be found. Ripper, on the other hand, using additional optimization steps
after the first round of sequential covering has been performed, can model such
phenomena more accurately. The more sophisticated pattern set mining method
gives Ripper an advantage, compared to the simpler sequential approach the
other two algorithms use, which answers Question 5.2.

Since the quality of found rules for the heuristic (CN2χ2) and complete
(CN2CG) χ2 maximization is very similar, the second question focusses on
which of the two techniques is more efficient. Table 5.2 shows that CN2CG

often (although not always) mines fewer patterns than CN2χ2 . The heuristic

5.1. SEQUENTIAL COVERING 161

Table 5.3: Cardinality of pattern sets after order-restricted hill-
climbing

Data set CBA CBC
Balance (2 Class) 17.40± 5.10 8.00 ± 0.00
Breast-Cancer 98.50± 4.74 10.60 ± 1.35
Breast-W 51.40± 3.59 12.90 ± 0.57
Colic 88.30± 7.79 3.00 ± 0.00
Credit-A 125.00± 12.05 2.60 ± 0.69
Credit-G 57.10± 10.71 18.80 ± 3.74
Diabetes 59.10± 17.82 6.80 ± 1.03
Heart 43.20± 2.25 8.30 ± 1.42
Kr-vs-Kp 32.9 ± 1.45 2.20 ± 0.42
Mushroom 26.00± 0.00 8.00 ± 0.00
Spambase 2.50 ± 0.97 18.90 ± 1.19
Tic-Tac-Toe 8.00 ± 0.00 10.00 ± 0.00
Voting Record 38.40± 2.95 8.00 ± 0.82

and exhaustive mining solutions to local pattern mining therefore mine different
patterns, with the pattern set mining technique guiding the search for comple-
mentary patterns. The final results are classifiers composed of different patterns,
and applied using the decision list strategy, that still perform remarkably simi-
lar. This phenomenon is consistent with what we could see in the experimental
evaluation of order-restricted hill-climbing (Section 4.2.1).

In the context of comparing iterative pattern set mining against post-processing,
we reproduce the tables from this experimental evaluation here (Table 5.3). In
the first of those two we see varying behavior with regard to pattern set sizes
when comparing the two approaches to pattern set mining. When combined
with the accuracy results (not reproduced from 4.2.1), iterative mining gives in
most cases rise to pattern sets that are smaller, more accurate, or even both.
Note again that all classifiers use the same classification strategy. This supports
our conjecture that iterative mining leads to more meaningful patterns in the
presence of others than post-processing of patterns that have been mined on
one and the same distribution.

Ripper, finally, mines far more patterns in the local pattern mining step but
its more refined pattern set mining assembles relatively compact pattern sets.
The exception are the three (four) data sets on which it significantly outperforms
the simpler sequential covering techniques.

While the size of final pattern sets are an indication of the computational
complexity of either approach, a clearer picture should emerge when the number
of candidate patterns is considered. Table 5.4 shows, however, that there is no
clear winner in this regard. Depending on the beam size and the data set in
question, the heuristic approach can be much more or far less efficient than
the exhaustive technique. This also indicates that the way of manipulating the
underlying data that sequential covering represents is suited to both approaches

162 CHAPTER 5. SEQUENTIAL MINING

Table 5.4: Number of candidate patterns evaluated by CN2χ2 (for beam
size giving the best solution) and CN2CG. Column three lists number of
pattern evaluated by CN2CG, equating 100%, column two the corresponding
percentage value for CN2χ2

Dataset CN2χ2 CN2CG

Balance (2 Class) 139.83% 261.60 (100%)
Breast-Cancer 108.00% 46153.30 (100%)
Breast-W 101.69% 6817.00 (100%)
Colic 2277.10% 2288.70 (100%)
Credit-A 10.76% 1003999.50 (100%)
Credit-G 1.35% 17061266.50 (100%)
Diabetes 40.60% 13030.90 (100%)
Heart-H 36.27% 17809.40 (100%)
Kr-vs-Kp 5.46% 240431.00 (100%)
Mushroom 90.66% 28758.60 (100%)
Spambase 16.14% 2828763.30 (100%)
Tic-Tac-Toe 102.56% 2975.40 (100%)
Voting Record 39.17% 11726.50 (100%)
Average 228.43%

for the local pattern mining phase. This means that, answering Question 5.3, the
exhaustive local pattern mining technique does not need more computational
effort to mine the pattern set.

Again, to give some perspective on the mining behavior of iterative and
post-processing pattern set mining, we reproduce a second table from the ex-
perimental evaluation of order-restricted hill-climbing (Table 5.5). When com-
paring the computational effort of CBC and CN2CG, which are most closely
related, one sees that there are six cases where the iterative technique evaluates
more candidates than then post-processing one. This is due to the additional
mining runs iterative pattern set mining has to perform. However, in another
six cases, the outcome is reversed, testament to the easier local pattern mining
on smaller data sets whose distributions is more skewed. The numbers for CBA
and CN2χ2 show similar trends.

5.1.2 Conclusions

As our experiments show, sequential covering typically leads to the formation of
smaller, more accurate pattern sets for classification than post-processing meth-
ods. At the same time, there is no advantage in computational complexity for
the post-processing methods. These two characteristics taken together suggest
that, given the right KDD task, sequential mining is more attractive in terms
of validity (and therefore usefulness) and understandability (due to the smaller
pattern sets) than post-processing.

Considering that replacing heuristic local pattern mining methods by ex-

5.2. SEQUENTIAL RE-WEIGHTING 163

Table 5.5: Number of candidate pattern evaluated by the complete
mining algorithms The last column lists number of patterns for CBC, equat-
ing 100%, column two shows the corresponding percentage value for CBA

Dataset CBA CBC
Balance (2 Class) 156.01% 99.80 (100%)
Breast-Cancer 127.44% 8179.20 (100%)
Breast-W 52.58% 12913.80 (100%)
Colic 136.29% 73682.90 (100%)
Credit-A 98.49% 65226.50 (100%)
Credit-G 39.14% 155020.90 (100%)
Diabetes 126.52% 3875.80 (100%)
Heart-H 172.57% 14680.00 (100%)
Kr-vs-Kp 15.92% 687715.50 (100%)
Mushroom 95.86% 53615.80 (100%)
Spambase 15.13% 445856.30 (100%)
Tic-Tac-Toe 38.14% 24511.10 (100%)
Voting Record 65.41% 88996.10 (100%)
Average 87.65%

haustive ones does not lead to higher computational cost, the use of exhaustive
local pattern mining methods seems to be advisable in sequential covering. Our
experiments show as well, however, that sequential mining is adept at steering
the entire pattern set towards an optimal solution, correcting the suboptimality
of local patterns. Especially if usefulness is the dominating criterion, heuristic
local pattern mining can therefore be acceptable.

This correction of local optima is a lot easier when it comes to pattern
sets that need to have good performance (predictive mining) while descriptive
patterns should ideally be optimal. We will explore the differences in this regard
in the next section.

5.2 Sequential re-weighting

The solution that sequential covering finds for mining ordered pattern sets is
radical in that data that has contributed to the mining of local patterns once is
disregarded in later iterations. In settings such as classification, especially when
the final pattern set is used as a decision list, this can be justified. Indeed, as
we have seen in the experimental evaluation of the preceding section, different
pattern sets can have the same performance. In general, however, it is not
clear that local phenomena describe clearly separated subsets of the data. By
discounting instances instead of removing them, patterns can be found that
partially overlap with regard to the data. This is a sensible solution in terms of
subgroup discovery for instance, where the descriptions of subsets of known data
are of interest, and not only the correct assignment of class labels to unknown
instances.

164 CHAPTER 5. SEQUENTIAL MINING

The goal in subgroup discovery is two-fold:

1. To find the best descriptions of subgroups according to some measure.

2. Not to miss a new subgroup.

The second concern is addressed by the use of sequential re-weighting instead
of sequential covering which allows data to contribute that might belong to
more than one subgroup. This can already be enough to make sure that the
use of a heuristic solution does not lead to very different pattern sets as in
the case of sequential covering, when compared to an exhaustive approach.
Considering the results we saw in the section on sequential covering, the main
question is therefore whether, as is the case in a classification setting, a heuristic
solution can be used for the local pattern mining step. Should that not be the
case, a heuristic solution might still be admissible for explorative search if it
significantly reduced computational complexity. Since data is not removed but
only discounted, mining can be expected to be take more effort than in the case
of sequential covering so that the computational savings can be larger.

The two algorithms evaluated against each other both use sequential re-
weighting for the pattern set mining operation, with the first performing beam
search for mining the local patterns combined into the set. This technique was
originally introduced as CN2-SD by Lavrač et al. (2004). In the second one,
the heuristic step is replaced by exhaustive mining for subgroup descriptions, in
the form of top-1 mining, creating the novel CG-SD system. Both use WRAcc
as the interestingness measure.

5.2.1 Experimental evaluation

The evaluation is designed to answer two questions:

Q5.4 Does the heuristic approach (CN2-SD) miss optimal subgroup descrip-
tions?

Q5.5 Is the exhaustive technique (CG-SD) less efficient?

To answer these questions, we perform experiments on a number of UCI
data sets, which were selected such that a large range of data cardinality and
dimensionality were covered. Numerical attributes have been discretized for the
experiments, and we only chose data with discrete classes. Two unsupervised
discretization approaches were chosen. In the näıve version, the mean value
of an attribute is computed and taken as threshold, leading to two nominal
values. For some data sets this leads to very unbalanced value distributions.
For these sets, we also chose the threshold in such a way that two roughly
equally distributed nominal values result. These data sets are denoted by a
trailing “-equal” in the name.

All data is attribute-value data, with the pattern language LA. We use the
class labels as target patterns. While this may seem to be the same task as in
the case of concept learning, there are two differences:

5.2. SEQUENTIAL RE-WEIGHTING 165

Table 5.6: Comparison for induction of a single subgroup per class
value The first column lists the data set, the last columns the number of can-
didate pattern evaluated by CG-SD, corresponding to 100%, columns 2–4 the
corresponding percentage-values for different settings of CN2-SD.
Dataset CN2-SD20 CN2-SD10 CN2-SD5 CG-SD
Balance-2-Class 644.00% 436.00% 278.00% 50 (100%)
Breast-W 3443.04% 1791.14% 948.10% 79 (100%)
Breast-W-equal 3061.36% 1609.09% 856.82% 88 (100%)
Car 1722.22% 898.08% 481.61% 261 (100%)
Colic 10569.26% 5336.49% 2723.65% 296 (100%)
Colic-equal 10699.64% 5394.31% 2772.95% 281 (100%)
Credit-G 2106.84% 1062.73% 541.76% 1492 (100%)
Credit-G-equal 2036.56% 1028.06% 523.89% 1436 (100%)
Diabetes 2445.24% 1329.76% 705.95% 84 (100%)
Diabetes-equal 1014.78% 550.25% 291.63% 203 (100%)
Heart-H 3682.01% 1876.19% 976.72% 189 (100%)
Heart-Statlog 2639.30% 1342.36% 696.07% 229 (100%)
Heart-Statlog-equal 2416.27% 1227.38% 637.70% 252 (100%)
Krkopt 1463.92% 765.52% 413.20% 2697 (100%)
Mfeat-Morpho 2090.53% 1244.44% 672.43% 243 (100%)
Mfeat-Morpho-equal 2086.42% 1249.38% 676.95% 243 (100%)
Nursery 3283.92% 1692.60% 888.75% 311 (100%)
Segment 7784.20% 3949.24% 2015.46% 595 (100%)
Tic-Tac-Toe 1717.58% 879.69% 461.33% 256 (100%)
Voting Record 7201.55% 3655.04% 1883.72% 129 (100%)
Zoo 13206.91% 6714.63% 3400.96% 1982 (100%)
Pendigits 5523.76% 2800.83% 1313.24% 846 (100%)
Mushroom 11928.74% 5997.13% 3074.71% 522 (100%)
Average 4155.07% 2119.10% 1090.17%

• The goal is not the mining of well-classifying rules but instead the mining
of good descriptions for the classes.

• Since WRAcc is asymmetrical, each class has to be considered in turn to
find good descriptions.

For CN2-SD, beam sizes 5, 10, and 20 were evaluated.1

The first table, Table 5.6, shows the number of candidate patterns evaluated
by the two techniques for the induction of the single highest-scoring subgroup
description. Although the heuristic approach to local pattern mining always
finds the globally optimal pattern, the computational complexity is also consis-
tently higher than that of the exhaustive top-1 search.

120 was suggested by a reviewer, 5 and 10 evaluated as well as to not bias the efficiency
estimation against CN2-SD

166 CHAPTER 5. SEQUENTIAL MINING

Table 5.7: Comparison of a complete subgroup discovery run First col-
umn lists the data set, last columns the number of candidate pattern evaluated
by CG-SD, corresponding to 100%, columns 2–4 the corresponding percentage-
values for different settings of CN2-SD.
Dataset CN2-SD20 CN2-SD10 CN2-SD5 CG-SD
Balance-2-Class 537.37% 356.48% 214.86% 471 (100%)
Breast-W 1588.41% • 865.23% • 442.74% • 179625 (100%)
Breast-W-equal 1475.91% • 800.42% • 504.28% • 117251 (100%)
Car 689.71% 350.11% 184.15% 61609 (100%)
Colic 1109.36% • 563.09% • 285.68% • 395291 (100%)
Colic-equal 892.98% • 458.43% • 218.20% • 476363 (100%)
Credit-G 231.50% • 113.24% • 55.72% • 543376 (100%)
Credit-G-equal 152.01% • 66.88% • 32.22% • 684859 (100%)
Diabetes 1948.31% • 1061.99% • 486.26% • 8030 (100%)
Diabetes-equal 316.79% • 169.46% • 88.00% • 13836 (100%)
Heart-H 1223.74% • 617.57% • 391.68% • 22415 (100%)
Heart-Statlog 1263.71% 911.69% • 479.43% • 5509 (100%)
Heart-Statlog-equal 1178.30% 595.25% 304.50% 6692 (100%)
Krkopt 655.85% • 337.64% • 182.00% • 394671 (100%)
Mfeat-Morpho 1724.76% 1017.61% 530.07% 11775 (100%)
Mfeat-Morpho-equal 1465.44% 864.24% 450.13% 12052 (100%)
Nursery 2082.05% 1066.15% 552.82% 975 (100%)
Segment 5610.12% 2835.89% 1410.76% 19293 (100%)
Tic-Tac-Toe 771.75% 391.34% 201.31% 2818 (100%)
Voting Record 1500.65% • 2454.68% • 2540.43% • 3643096 (100%)
Zoo 13206.91% 6714.63% 3400.96% 1982 (100%)
Pendigits 2705.73% • 1443.45% • 733.19% • 279217 (100%)
Mushroom 10002.78% 4870.87% • 2377.40% • 8900 (100%)
Average 2210.15% 1150.94% 588.10%
• denotes that a non-optimal subgroup description, that is a description
having a lower score than the highest possible, has been found

5.3. SUMMARY 167

The second table, Table 5.7, reports the number of candidate patterns that
were evaluated during a complete run, that is a run that ends only when all in-
stances have been covered by at least one pattern. Once additional local pattern
mining phases are part of the set mining operation, smaller beam sizes lead to
better computational efficiency. However, at the same time, for all settings in
which CN2-SD has lower computational complexity, in at least one iteration,
a non-optimal subgroup description is mined. That means that the heuristic
returns a pattern with a lower score than maximally possible in that iteration.
This tendency holds even for a beam size of 20 on many data sets. Given the
process of iterative set mining, mining a non-optimal subgroup description af-
fects the subsequent data manipulation and therefore the appropriateness of
patterns that are mined later. Additionally, even though on several data sets
smaller beam sizes lead to fewer candidate patterns that are evaluated by CN2-
SD, on average the exhaustive search has lower complexity.

The answer to Question 5.4 is therefore that the heuristic technique does
miss optimal subgroups, distorting the final pattern set. Additionally, exhaus-
tive mining is not more expensive, answering Question 5.5. These findings also
mean that when it comes to pure performance of a mined pattern set, as in the
classification setting discussed before, using heuristic local pattern mining in
combination with the greedy approach to ordered pattern set mining is feasible.
When the goal is descriptive, however, heuristic techniques run the risk of min-
ing incorrect descriptions and propagating this effect by the data manipulation
employed.

5.2.2 Conclusions

Considering that sequential re-weighting was introduced in the context of sub-
group discovery, we evaluated the impact of using heuristic techniques in the
local pattern mining step. In classification, good performance is the main char-
acteristic of a “good” pattern set, which allows the iteration technique to smooth
out non-optimal individual patterns by inducing complementary patterns in
later iterations. In descriptive mining, however, the aim is to find accurate and
interpretable descriptions; usefulness has therefore more to do with validity and
understandability. This makes non-optimal patterns less attractive, especially
given the distorting effect they have on later iterations, suggesting that for se-
quential re-weighting for descriptive tasks the use of exhaustive local pattern
mining is advisable.

5.3 Summary

In this chapter, we considered sequential mining techniques in the context of
classification and subgroup discovery. Sequential covering can correct locally
suboptimal patterns to allow us to mine a pattern set approaching optimality.
Additionally, these pattern sets are of smaller cardinality than ones mined by
post-processing methods, making the full pattern set more understandable. This

168 CHAPTER 5. SEQUENTIAL MINING

kind of correction is not always possible in descriptive tasks, however. The result
that exhaustive local pattern mining techniques do not lead to a more expensive
pattern set mining process than the use of heuristic ones is therefore promising.

Both techniques discussed in this section, sequential covering and sequential
re-weighting, make an explicit assumption that patterns describe a complete
subset of data rather well. While this assumption is weakened in sequential
re-weighting, its main focus is still on patterns that do not describe a subset of
already covered data in more detail. It can be argued however, that this is still
too strong an assumption since data might have different characteristics depend-
ing on the granularity at which it is considered. An alternative to sequential
mining, and the ordered pattern sets it produces, is therefore parallel mining
which leads to the formation of tree-sets. Tree-sets allow coarse descriptions of
data that are iteratively refined so each subset is not described by one but by
several patterns in the set. We will discuss tree sets, parallel mining, and the
tasks for which they can be mined in the next chapter.

Chapter 6

Exploring the Power of

Parallel Mining Techniques

The main difference between tree and ordered sets lies in the greater flexibility
of the former. Since the order defined on tree sets is only a partial order, they
can be restricted further to totally ordered sets but, if the data suggests, also
model less stringent dependencies between patterns in the set. In contrast to
ordered set mining, not only data uncovered by a pattern should be considered
in further iterations but also the data that has been covered already.

In terms of iterative mining, a good technique for doing this lies in splitting
the data: since the matching function is binary, two subsets are formed. New
patterns are then mined on each subset, which are split in turn after the mining.
This leads to a total order of patterns regarding predecessor and successor pat-
terns while the order regarding patterns that are mined on the other subset is
only partial. Originating in decision trees, in which only single attribute-value
tests are used to split the data, this technique has been shown to induce effective
and often relatively compact classifiers.

There are two main effects that stem from these characteristics: tree sets
evolve into ordered sets if an ordered set (as created by sequential covering) is
the accurate way to describe the data. Furthermore, since patterns do not have
to model data in a single step, they need to be less specific, possibly leading to
smaller pattern sets. In this chapter, we therefore compare tree sets to other
types of pattern sets to see whether these advantages materialize.

Parallel mining was originally introduced in the context of decision tree
induction and is, similarly to sequential mining, usually discussed together with
a particular local pattern mining method. As shown in Section 2.3.3, however, it
can be described in general terms and the local component can be instantiated
in a variety of ways. We use this chapter, therefore, to explore ways to leverage
the parallel mining paradigm for the mining of compact and effective sets for
different tasks.

In the first section of this chapter, Section 6.1, we illustrate tree pattern

169

170 CHAPTER 6. PARALLEL MINING

set mining in the context of conceptual clustering. This is a rather natural
formulation since clusters are sets of instances that are similar to each other. As
a quick check in the real world will show, however, similarity is largely a product
of contrast with other groups. Men are more similar to each other on a superficial
level than to women but once one considers only men, that similarity is far less
obvious. Successively more fine-grained descriptions capture clusters therefore
better than one-shot descriptions. Clustering trees have been induced before,
the patterns were of low complexity, however, to keep local pattern mining
efficient. By replacing the local component by an efficient exhaustive miner,
our system can induce more complex patterns. The experimental evaluation
shows that the resulting pattern set gives a compact description of the formed
clusters in the pattern language while maximizing intra-cluster similarity in a
heuristic manner overall. When compared to clusters that are formed first and
then described, the description given by the tree sets is far less complex and
more accurate.

In the second section, Section 6.2, we use tree set mining on tree-structured
data for concept learning. Tree structured data is harder to mine than con-
junctive patterns or unstructured patterns like itemsets. The usual approaches
to classification either rely on large sets of predictive patterns like the ones we
evaluated in Section 4.1, or on the re-encoding of data in terms of patterns and,
for instance, decision tree induction. Especially if there is a need to understand
which properties of trees the classifier uses to make a prediction, however, a
small sets of patterns with a clear relationship is desirable. By mining for tree
patterns directly in each iteration, such a set can be assembled. As the evalua-
tion shows, are the resulting pattern sets are smaller than ordered pattern sets
or tree sets which are formed in a post-processing step. At the same time they
give comparable results in terms of predictive accuracy.

Finally, in Section 6.3, we increase the number of patterns mined in each
iteration. What we are aiming to achieve in this way is to make the one-shot
mining per iteration more flexible. Similarly to how sequential re-weighting
allowed data to contribute to more than one pattern compared to sequential
covering, several patterns per iteration allow data to contribute to more than one
pattern per generality level. This is a new approach in that existing approaches
to decision tree formation, even the ones we discuss in the other two sections,
rely on a single pattern for splitting the data. Extending tree sets in such a way
comes at a price, however. On the one hand, this necessitates the formulation
of a more complex matching function. On the other hand has the predecessor-
successor-relation to be augmented by an order relation among the patterns of
each iteration. This last section is therefore more extensive than the other two.
As we show in its experimental part, however, extending tree sets in such a way
pays off in terms of complexity and accuracy.

6.1. CG-CLUS – TREE SETS FOR CONCEPTUAL CLUSTERING 171

6.1 CG-Clus – tree sets for conceptual cluster-

ing

We have already characterized clustering as the task of partitioning the data (cf.
Section 1.2.3). The guiding principle for this partition is that ideally instances
in a cell are highly similar to each other (intra-cluster similarity). Additionally,
instances assigned to different cells should show little similarity (inter-cluster
dissimilarity). For the numerical case clusters can be represented for instance
by centroids or medoids and the similarity quantified by a vector norm such as
the L1 or L2 norm.

Performing the clustering task for instances described by nominal attributes
is more difficult since a similarity measure is often harder to define. In general,
instances are considered similar if they agree on the values of many attributes.
One measure for judging the quality of a set of clusters is Category Utility (Gluck
and Corter 1985) but others have been defined in the literature as well. The
goal of conceptual clustering, is to produce a description of the found clusters
in terms of the conceptual language used to describe the instances.

According to Hoepner (Höppner 2004) clusters can be considered as devia-
tions in distribution from a default (or background) distribution w.r.t. certain
attributes. Therefore, top-1 mining can be used to find a pattern that sepa-
rates subsets with regard to those distributions, the data split and more refined
patterns mined in subsequent iterations.

Since the goal, as mentioned above, is similarity in as many attributes as
possible, all attributes are considered targets, with the symmetric measure CU
leading to the induction of patterns in whose coverage space either the occur-
rence of true or false values will be higher than expected. The multi-dimensional
extension to the top-k mining technique we described in Section 2.1.1 will be
used for local pattern mining phase within the general parallel mining algorithm.
We term this algorithm CG-Clus. This is to the best of our knowledge the
first time that complex correlation based patterns are used in divisive clustering
approach. Another approach that uses parallel mining to form clustering trees,
that we are aware of, exists in (Blockeel et al. 1998). The patterns used in this
approach are of relatively low complexity, however, staying close to the original
decision tree paradigm.

To evaluate CG-Clus, we shall compare it to Cobweb (Fisher 1987), the
arguably best-known conceptual clustering technique, which also produces den-
drograms. Cobweb iteratively and directly processes instances, using four op-
erators: assigning an instance to an existing dendrogram node, creating a new
node, splitting an existing node, or merging two existing nodes. Cobweb’s
dendrograms are tree sets of conditional probability vectors which refer to at-
tributes’ values. The further removed from the top-node one is, the more skewed
those distributions become, culminating in nodes describing single instances (or
a set of identical instances). The dendrogram constructed in this way essentially
includes further and further refined patterns.

A different approach to finding clusters described by conjunctive descriptions

172 CHAPTER 6. PARALLEL MINING

is conceptual cluster-mining (Perkowitz and Etzioni 1999), where a clustering
algorithm is used to find a clustering. Each cluster is then treated as a sin-
gle class, and conjunctive concepts learned on them in a post-processing step.
Afterwards, all instances matching a concept are considered to be in one clus-
ter, possibly producing overlapping clusters. While the language describing the
clusters is L∧ (Definition 1.1.3), the patterns expressed in this language are not
mined directly under consideration of their partitioning effect. Since Cobweb
does not produce conjunctive descriptions, we additionally compare against a
cluster mining technique using Autoclass (Cheeseman et al. 1988) and Rip-
per.

6.1.1 Experiment 1: Cobweb vs CG-Clus

Cobweb’s direct assignment, and the fact that it uses a rather flexible pattern
language, gives it great flexibility in assembling clusters. On the other hand
does its iterative nature (processing instances one after another without back-
tracking) expose it to potential ordering effects. This leads directly to the first
question,

Q6.1 Do Cobweb’s clusterings differ strongly from CG-Clus’ in terms of CU,
and in actual composition of the clusters?

If Cobweb produces higher CU -scores, which means better intra-cluster simi-
larity and inter-cluster dissimilarity, the next question is whether this effect is
connected to the more flexible description:

Q6.2 Are conjunctive descriptions of Cobweb clusters more complex than the
ones mined directly by CG-Clus?

To clarify this question – it is of course possible to find a conjunctive descrip-
tion for just about any group of attribute-valued data, especially if that data
is relatively homogeneous with regard to the attribute values, which would be
measured by the CU value. However, the minimal amount of conjuncts needed
to distinguish such a group from others can vary, again depending on the het-
erogeneity, and the accuracy with which the description matches the instances
of the group as well. Long descriptions of weak accuracy are not useful to a
user.

Experimental setup To compare the agreement of two clusterings, we use
the Rand index, as defined in Section 3.2.2. If the number of clusters in a clus-
tering is different, the Rand index will obviously show a dissimilarity. Therefore
we attempted to form a number of clusters corresponding to the number of class
values in each data set in our experiments.

To obtain a given number of clusters from a Cobweb dendrogram, there
are two possibilities – the user selects certain nodes in the tree, disregarding the
structure underneath them, or the growth of the dendrogram is limited.

In the first case, the fact that Cobweb often constructs dendrograms in
which every instance is sorted into its own cluster, makes this a non-trivial

6.1. CG-CLUS – TREE SETS FOR CONCEPTUAL CLUSTERING 173

procedure. Also, selecting all nodes from the same level of the tree does not
guarantee a good solution CU -wise. In the case of an agglomerative or divisive
clustering algorithm, one can stop the merging (or splitting) of clusters once
their distance exceeds (falls below) a certain threshold or once a given number
of clusters is reached.

This is not as simple for Cobweb’s iterative instance processing. Instead, in
the WEKA implementation, a minimum CU -gain can be set which determines
whether new nodes in the dendrogram are introduced, or existing nodes split.
By starting out with a lenient threshold, systematically tightening it when more
than the desired number of clusters is formed and relaxing it when the tightening
proved to be too strict, it is possible to approximate the desired number of
clusters.

Unfortunately, this method does not always guarantee obtaining the target
number of clusters, since Cobweb sometimes forms just one cluster or tens, or
even hundreds, depending on a 0.0001 difference in the threshold value. Instead
of arbitrarily merging clusters, we used the Cobweb-solution whose number
of clusters is closest to the actual number of classes, unless this number is 1,
i.e. all instances were sorted into the same cluster. After determining the
Cobweb-clustering, we attempted to construct the same number of clusters
using CG-Clus.

As for our technique, CG-Clus, to obtain the desired number k of clusters,
the k− 1 best splits are used. In this sense, it is very much a divisive clustering
algorithm in the classical sense. Since a good CU score on a small subset is
easier to achieve than on a larger one, patterns’ scores are weighted with the
proportion of instances of the complete set that they were derived on. The
resulting dendrogram is decision tree-like in the way data is split on patterns
and their impact discounted on the population size.

This means that the pattern set mining is performed as top-k mining, with
the measure taking the form:

CU(sp(p,Dsub)) ·
|Dsub|

|D|

Dsub denotes for the subset on which p has been mined. The mining process is
stopped once no pattern can be mined on any current subset that is included in
the top-k.

Owing to the need for binary attributes, discretization was performed as
in the subgroup discovery experiments. Nominal attributes were binarized by
turning each attribute A with values v1, . . . , vn into n binary (values {t, f})
attributes A = vi, i ∈ [1, . . . , n]. Due to aforementioned ordering effects, we
performed 10 restarts of Cobweb on randomly permuted data sets, and aver-
aged CU and Rand index values.

Results To answer the first question asked above, we report CU -values and
the Rand-index for CG-Clus- and Cobweb-clusterings for a variety of data
sets in Table 6.1. For the data sets for which hundreds or even thousands of

174 CHAPTER 6. PARALLEL MINING

Table 6.1: CU of the CG-Clus clusterings, and CU of Cobweb’s solution,
averaged over 10 runs, Rand-index of the two clusterings

Dataset CUCG CUCW Rand
Credit-G 0.4408 0.0239 ± 0.002 N/A
Credit-G-Equal 0.4753 0.1161± 0.0293 N/A
Kr-vs-Kp 0.5343± 0.0040 0.5782± 0.0012 0.7817± 0.0029
KrkOpt 0.1536± 0.0072 0.1369 ± 0.002 0.7396± 0.028
Letter 0.1742± 0.0075 0.1342± 0.0151 0.7629± 0.0275
Letter-Equal 0.1677± 0.0053 0.1439± 0.0063 0.8759± 0.0001
Mfeat-Fourier 0.4743 0.4487± 0.1334 N/A
Mfeat-Fourier-Equal 0.7183 0.1855± 0.0289 N/A
Mfeat-Karhunen 0.457 0.0203 N/A
Nursery 0.3555 0.0846± 0.0273 N/A
Optdigits 0.4609± 0.0029 0.5234± 0.0229 0.7865± 0.0148
Optdigits-Equal 0.6865± 0.0203 0.7936± 0.0565 0.8509± 0.0069
Pendigits 0.4336± 0.0091 0.4015± 0.0074 0.8519± 0.0004
Segment 0.5878± 0.0122 0.5438± 0.0505 0.7994± 0.1029
Segment-Equal 0.7925± 0.0083 0.7916± 0.0063 0.8984± 0.0039
Waveform 0.9791 1.1624± 0.0229 0.7822± 0.0192

clusters were formed by Cobweb we did not attempt to form the same number
of clusters using CG-Clus. Instead we report on the Category Utility of the
“correct” solution of CG-Clus (i.e. the clustering having as many clusters as
classes in the data), the average CU for Cobweb and no value for the Rand -
index.

The resulting Category Utilities show that far from always giving rise to su-
perior scores by using the more flexible clustering scheme, the quality of Cob-
web’s solution is clearly affected by ordering effects in the data. If the right
ordering of instances is used, Cobweb constructs very good solutions, if not,
CU values are rather low or the dendrogram is huge. When threshold differ-
ences of 0.0001 make the difference between a single cluster and a dendrogram
having hundreds of leaves, it is difficult for the user to make an informed deci-
sion on which clusters to merge. For data sets where a reasonable number of
clusters was constructed, Cobweb’s average CU is greater than that of CG-
Clus four times, less six times, while at the same time exhibiting similarities
of the clusterings in excess of 0.7. This means that Question 6.1 has to be an-
swered negatively, Cobweb does not always translate the greater flexibility of
its assignment mechanism into better CU values. Also, the solutions are rather
similar.

Table 6.2 is used to give insight into the second question. It lists the number
of classes in the data, and the average number of leaves in Cobweb’s dendro-
gram over ten runs. Each of these leaves is then considered a class and rules
learned for each class, using Ripper (unpruned). The average number of rules
and their recovery rate, that is to say their accuracy on the training date they

6.1. CG-CLUS – TREE SETS FOR CONCEPTUAL CLUSTERING 175

Table 6.2: Classes per data set, average number of clusters formed by Cobweb,
number of conjunctive rules learned on the clustering using Ripper, recovery
rate (that is training set accuracy of learned rules)

Data sets # of Classes # of Clusters # of Rules Recovery rate
Credit-G 2 349.5± 180.96 38.9 ± 8.86 65.44%± 17.61
Credit-G-Equal 2 202.5± 191.02 42.7 ± 8.3 78.34%± 18.8
Kr-vs-Kp 2 2.5 ± 0.7 15.7 ± 14.47 99.74%± 0.3
KrkOpt 18 13.8 ± 5.2 14.5 ± 5.98 99.99%± 0.003
Letter 26 18.7 ± 13.01 139.6± 40.65 98.71%± 0.64
Letter-Equal 26 24.5 ± 5.23 211.2± 24.04 97.41%± 0.61
Mfeat-Fourier 10 54.9 ± 60.58 51.9 ± 24.82 95.13%± 3.84
Mfeat-Fourier-Equal 10 58 ± 24.35 24.6 ± 2.87 96.99%± 1.2
Mfeat-Karhunen 10 663.7± 173.25 86.3 ± 19.59 64.28%± 8.75
Nursery 5 1480.8± 958.07 1102.3± 710.23 97.22%± 0.92
Opdigits 10 8.5 ± 1.65 103.4± 16.59 93.33%± 1.81
Optdigits-Equal 10 8.6 ± 1.17 111.2± 17.21 93.47%± 1
Pendigits 10 7.2 ± 0.63 60.5 ± 7.01 99.73%± 0.08
Segment 7 4.5 ± 0.7 6.6 ± 1.17 99.99%± 0.01
Segment-Equal 7 6.2 ± 0.42 38.9 ± 3.24 99.42%± 0.13
Waveform 3 3 52.4 ± 2.75 97.31%± 1.04

were derived on, is also reported. It should once again be noted that CG-Clus
builds a tree set of conjunctive descriptions for clusters – which have 100% re-
covery rate. Furthermore, it can easily be constrained to form as many leaves
as classes, and therefore desired clusters, exist in the data.

The experiments show that Cobweb rarely forms a number of clusters that
corresponds to the number of underlying classes. In addition, most of the time
far more rules than classes are learned on the data. The recovery rate is close to
one hundred percent in all but three cases. Note also that in Cobweb’s original
cluster representation each dendrogram node (whose number exceeds that of the
leaves) will have its own vector of conditional probabilities. This means that in
most cases the description of clusters (the main goal of conceptual clustering)
will be rather complex; more complex and harder to constrain than if clustering
is performed as iterative pattern set mining. We can therefore answer Question
6.2 positively, since Cobweb’s descriptions are more complex.

6.1.2 Experiment 2: Conceptual Cluster-mining vs CG-
Clus

As we outlined in the introduction to this section, cluster-mining, the approach
proposed in (Perkowitz and Etzioni 1999), forms clusters and their conceptual
descriptions in separate steps. In the first step, a clustering algorithm is used
to partition the data. In a second step, each cluster is considered a separate
class, and conjunctive descriptions of the clusters learned. Finally, instances
are redistributed in such a way that they match the descriptions. While instan-
tiating their framework with particular selections for the clustering algorithm
(PageGather), and concept learner (Ripper gives the best results), it allows

176 CHAPTER 6. PARALLEL MINING

different choices as well. PageGather has been explicitly developed to cluster
web pages. We therefore replace it with Autoclass, an effective clustering
algorithm that is capable of dealing with nominal data.

Autoclass is based on Bayesian principles and thus not directly optimiz-
ing CU. On the other hand, it has once again greater flexibility than CG-Clus
in assigning instances directly to clusters – not indirectly via the found de-
scription. In addition, decoupling the processes of forming clusters and finding
a description gives the actual concept formation greater flexibility than CG-
Clus possesses. Since a cluster-mining approach has greater flexibility (and
make conjunctive concept formation a non-integral part of the mining process),
similarly to the first setting, the questions are:

Q6.3 How similar are CG-Clus’ and Autoclass’ clusterings?

Q6.4 How complex are conjunctive descriptions of Autoclass’ clusters, com-
pared to CG-Clus’ ones, and how much information about the underlying
instances is recovered?

Experimental Setup Autoclass can be supplied with the number of clus-
ters it should create. For each data set, Autoclass performed 250 restarts
with 200 iterations each. The assumed model was single multinomial for all
attributes. We used the best clustering found for comparison with the pattern
set mining approach.

Regarding the cluster mining solution using Autoclass and Ripper, Table
6.3 lists the number of classes per data set (both CG-Clus and Autoclass
form the same number of clusters), the number of rules learned by Ripper and
their recovery rate on Autoclass’ solution, as well as the Rand -index of the
two clusterings.

The similarity of the clusterings produced by the two methods is generally
very high, with three exceptions, answering Question 6.3. Of particular interest
is that the Rand-index is generally considerably higher than when we compared
CG-Clus and Cobweb. Autoclass’ solutions give rise to smaller descriptions
than Cobweb’s do, and Autoclass’ rules achieve a very high recovery rate on
all clusters. On the other hand they still exceed the number of clusters (and
thus patterns in CG-Clus’ tree) by far. This means that while being rather
close in actual composition, the description of Autoclass’ solution is far more
complex. The answer to Question 6.4. is therefore that the Cluster-mining
technique produces more complex description that are very accurate.

To summarize, while being less flexible in forming clusters, the novel system
CG-Clus finds clusterings that are highly similar to the solutions of two more
flexible schemes that are well-established in the literature. The mining process
itself guarantees high intra-cluster similarity in a single run of the algorithm and
in addition, the formulation of conjunctive cluster descriptions of low complexity.

6.1. CG-CLUS – TREE SETS FOR CONCEPTUAL CLUSTERING 177

Table 6.3: Classes per data set, number of descriptive rules found by Ripper on
the Autoclass-solution and their accuracy, and similarity of found clusterings

Data sets # of Classes # of Rules Recovery rate Rand
Credit-G 2 7 100% 0.5012
Credit-G-Equal 2 25 99.1% 0.558
Kr-vs-Kp 2 2 100% 0.9185
KrkOpt 18 31 100% 0.9663
Letter 26 268 98.86% 0.9016
Letter-Equal 26 277 97.16% 0.9402
Mfeat-Fourier 10 92 99.15% 0.8673
Mfeat-Fourier-Equal 10 64 99.4% 0.8481
Mfeat-Karhunen 10 89 99% 0.8729
Nursery 5 5 100% 0.6543
Optdigits 10 117 95.53% 0.8656
Optdigits-Equal 10 115 96.89% 0.8887
Pendigits 10 73 99.66% 0.9019
Segment 7 9 99.91% 0.8345
Segment-Equal 7 10 99.65% 0.9002
Waveform 3 50 98.2% 0.7877

Related work

Our description of related work differs in this chapter from the ones preceding
it for the simple reason that iterative pattern set mining has, to our knowledge,
not been used for conceptual clustering before.

One of the earliest approaches to inducing conjunctive descriptions of con-
ceptual clusters is the Cluster/2 system (Michalski and Stepp 1983). While
Cluster/2 works bottom-up in a heuristic manner by generalizing pairs of seed
instances, our technique induces concepts top-down and gives guarantees with
regard to the quality of found solutions. The conceptual cluster mining task,
introduced by Perkowitz et al. (1999), is similar to CG-Clus in terms of the
final description. Their goal is to induce clusters that are cohesive but also
describable by a simple concept. To this end, they use their PageGather sys-
tem for clustering webpages and Ripper to learn the concept separating each
cluster from all others. The final solution consists of all subsets of instances
that correspond to the learned concepts. Since both the clustering and the rule
learning algorithm could be instantiated differently, the conceptual cluster min-
ing framework is rather general. The approach does have potential drawbacks
as discussed in the experimental evaluation.

In (Nevins 1995), an incremental branch-and-bound clusterer for the forma-
tion of hierarchies was introduced. Since addition of new observations can have
a severe effect on the existing hierarchy, re-insertion of instances and clusters is
performed during the formation process. The algorithm is language independent
and the information about the relationship between instances expressed only via
a similarity measure. To restrict the number of evaluation steps needed, the set

178 CHAPTER 6. PARALLEL MINING

of nodes that could act as parents in the hierarchy to the instance or cluster
to be inserted is limited. To this end, an upper bound on the amounts of in-
formation which can and cannot be accounted for by potential parent nodes
is calculated. This best value is based on the evaluation of picking this node’s
parents as parents of the new instance or cluster.

The measure we used for the quality of cluster descriptions in this work
is Category Utility, with the probably best-known clusterer using this measure
being Cobweb. Due to its incremental instance processing, the ordering of
instances has an effect on the solution. To address this effect, Fisher (Fisher
1996) explores several re-distribution and re-clustering techniques for greedily
improving an existing clustering. We find the optimally discriminating patterns
in the first run instead. A second issue addressed in Fisher’s work is related
to the effect we observed in the experimental evaluation, namely that Cobweb
on certain data sets tends to create a large amount of clusters, gaining only
a small increase in Category Utility. The solution discussed in (Fisher 1996)
is similar to post-pruning in decision tree learning in that certain branches of
the clustering hierarchy are removed during validation on a separate data set.
Third, Fisher discusses possible shortcomings of Category Utility as a quality
measure for clusterings. Assuming that a clustering is used for classification
afterwards, he suggests properties such as number of leaves, maximum path
length, branching factor and classification cost, e.g. number of attributes to
be evaluated, for measuring the quality of a clustering tree. The formulation of
conceptual clustering as an iterative pattern mining task allows for easy inclusion
of such criteria for pre-pruning. Finally, possible alternatives to Category Utility
mentioned in this work could be used in top-1 mining if they are convex.

Potentially the main difference between existing conceptual clustering tech-
niques and our approach lies in that the two main aspects are reversed. Those
two main aspects are data manipulation (assignment to different clusters) and
derivation of the cluster descriptions. Other approaches first form clusters and
derive the descriptions implicitly (or as a post-processing phase). In contrast,
CG-Clus first enumerates descriptions (patterns) while evaluating their effects
on cluster coherence, and then forms subclusters for the next mining iteration.
A different view of this would be that improving cluster coherence and finding
descriptions are coupled, different from other approaches.

A conscious approach towards using decision tree techniques for clustering
is the TIC system (Top-down Induction of C lustering trees) (Blockeel et al.
1998). In this work, each node in the tree consists of the test that minimizes
a distance measure for instances sorted into each of the two subsets. The final
result is a dendrogram whose leaves can be described by the conjunction of all
decision nodes on the path to the leaf. Although the authors do not refer to
their work as conceptual clustering, they locate it firmly in the field by drawing
connections to for instance the Cobweb system. While the language they use
is more expressive (first-order logic), there is no induction of complex tests in
each note, as in our approach.

The authors on whose work our formulation of the top-k mining problem is
based, Morishita et al., developed their ideas into an abridged version of our so-

6.2. TREE SETS OF TREE PATTERNS FOR CLASSIFICATION 179

lution in (Sese and Morishita 2004). Using the property that interclass-variance
is a convex function as well, they derive clusters that show high similarity in gene
expression levels and are described by conjunctions of nominal attributes. They
omit the iteration step, however, content with listing a top-k list of partitioning-
options based on a single split. This could however be extended to an algorithm
resembling ours, as could their top-k clusters solution form the basis for some-
thing resembling beam search for the best partitions.

6.1.3 Conclusions

The new system, CG-Clus, allows the direct mining of conjunctive descriptions
for conceptual clusters, inducing a dendrogram along the way. This is in our
opinion the preferable option to a post-processing approach like cluster-mining
in which patterns are formed after the cluster formation. Depending on the
task, conjunctive patterns may not be the best choice, but even in those cases, a
pattern set mining approach gives a certain control over the number and quality
of clusters. Thus, CG-Clus is a system than can be used as an alternative to
or augment existing techniques.

6.2 Tree2 – tree sets of tree patterns for classi-

fication

After discussing iterative pattern set mining in a context in which it had not
been used before, and showing its effectiveness, we return to concept learning.
We use tree-structured data to compare pattern set mining using exhaustive
search in each iteration to build tree sets of tree-structured patterns, leading
to the name Tree2 for our technique. Usually, classifiers for tree-structured
data take the form of predictive tree patterns, as in XRules and CtC (cf.
Section 4.1), or patterns are mined, the data re-encoded and machine learning
techniques trained on the new representation. Tree-structured patterns are more
expensive to mine, both in terms of enumeration and in terms of matching
them against instances, than unstructured languages like conjunctive patterns
or itemsets. One goal is therefore the induction of small pattern sets, which
should be possible with parallel mining. This has a positive side-effect in that
tree-structured data is often not easily understood by human observers. Having
a classifier that can be analyzed in terms of which characteristics of trees lead
to its predictions is therefore a desirable result.

The contents of this section, published in (Bringmann and Zimmermann
2005), are the result of joint work with Björn Bringmann at the Katholieke
Universiteit Leuven.

The pattern language is again that of labeled rooted trees Ltree, and we
perform top-1 mining for class-correlating patterns. The stopping criterion takes
the form σ(p,D) ≥ θsig , which means that the score of the pattern mined has
to match or exceed a significance threshold. A resulting tree set could look like
the example given in Figure 6.1. Unlabeled instances are sorted down the tree

180 CHAPTER 6. PARALLEL MINING

Figure 6.1: A tree set as produced by the Tree2 algorithm

set according to which patterns they match until they arrive in a leaf and are
then labeled with the majority class of training instances in that leaf.

We will explore how effective parallel mining is in mining compact sets of pat-
tern that are still effective in modeling the underlying data. For the experimen-
tal evaluation, we therefore compared our approach to XRules, and CtC on
the XML data used in Zaki et al.’s publication (Zaki and Aggarwal 2003). The
aim of this comparison lies in evaluating the effect that the iterative approach
has when compared to post-processing techniques. Additionally, by treating
patterns as binary features and learning decision trees, it’s possible to build
tree sets from a set of previously mined local patterns in a post-processing step.
We compare Tree2 to such an approach as well to test the assumption that
manipulating the data before iterating local pattern mining leads to more useful
patterns.

Furthermore we compare Tree2 to techniques using different pattern lan-
guages and mining approaches on the regression-friendly subset of the Mutage-
nesis dataset, one of the most-used structured data sets in machine learning.

6.2.1 Experiment 1: Different techniques on XML data

In the first experimental evaluation, we test the assumption that parallel pattern
mining leads to more compact pattern sets while retaining good accuracies.
More concretely:

Q6.5 Does iterative tree mining lead to smaller pattern sets than exhaustive
constraint satisfaction mining?

Q6.6 Does iterative tree mining lead to smaller pattern sets than post-processing
exhaustive constraint satisfaction mining?

Q6.7 Do Tree2’s models well in terms of predictive accuracy?

In each setting we used one set of data for training and another one for
testing. Following Zaki’s notation, CSLOGx-y means that we trained on set x
and tested on set y. XRules and CtC are used with the same parameters as
in Section 4.1. We evaluate different parameter settings for Tree2:

6.2. TREE SETS OF TREE PATTERNS FOR CLASSIFICATION 181

Figure 6.2: Accuracies and size in rules of the different approaches

• σ is information gain (IG), and χ2, respectively

• θsig is set to 0.001 and 0.01 for IG

• θsig is set to the p-value for 90%, 95% and 99%

For the post-processing approach we mined we mined Th50(Ltree,D, χ2) and
Th100(Ltree,D, χ2), used the respective pattern sets to transform the data into
bitstring instances according to the found patterns. Decision tree are induced
using C4.5 (Quinlan 1993) in the form of WEKA’s J48 implementation (Frank
and Witten 1999) with default parameters, referring to the two top-k settings
as C4.5 - 100 and C4.5 - 50, respectively. We compare the accuracies of the
resulting classifiers against each other. We also report on the complexity of the
model which we measure by the number of rules used by XRules, and CtC and
by the number of leaves in the decision trees. This corresponds to the number
of disjunctive rules that a tree can be transformed into, respectively.

Experimental results

Results are summarized in Figure 6.2. As can be seen, the accuracies of the
induced classifiers do not vary much. The only approach that significantly
outperforms (by 2-3%) the different decision tree techniques is XRules. At the
same time, the size of XRules’ models is also significantly larger. While the
Tree2 trees induced with Information Gain have several hundred leaves, and
Tree2 trees induced with χ2 and C4.5 trees between 35 and 103 leaves, the
smallest XRules model consists of more than 19000 rules. We can therefore
state clearly that parallel mining leads to smaller pattern sets than exhaustive
constraint satisfaction mining, answering Question 6.5.

Patterns tested in the inner nodes of trees built by Tree2 consist of 2-
6 edges only. Since this is similar to the size of patterns used in XRules’
rules, complexity is really reduced and not just pushed inside the classifier.
In comparing the other approaches, several things are noticeable. Raising the
threshold from the 90% to the 95% significance level for χ2-induced Tree2 trees
does not decrease accuracy (even improving it slightly in 3 cases). The tree size
decreases, though, on average by 7.5 leaves from the 90% to the 95% setting.

182 CHAPTER 6. PARALLEL MINING

Setting CtCMV CtCDL CtCAvgStr CtCWChi Tree2

CSLOG1-2 83.23 83.31 83.31 83.01 82.47
CSLOG2-3 83.95 83.90 83.92 82.83 81.91
CSLOG12-3 84.27 84.24 84.29 83.53 82.58
CSLOG3-1 83.50 83.77 83.63 83.53 81.31

Table 6.4: Predictive Accuracy for different classification strategies for CtC,
and the Tree2 classifier

Raising it further to the 99% level has no clear effect on predictive accuracy.
Tree size is reduced further, however, decreasing by 18 leaves on average.

For the post-processing approach we mined patterns already correlating
strongly with the classes and trained a classifier on them. This approach achieves
competitive results regarding the accuracy. The clear drawback is that deciding
on the number of features to use is not straightforward. Using only 50 instead of
100 features produces different outcomes. In some cases the accuracy does not
change, in other cases the classifier using 50 features outperforms the one using
100 or vice versa. Also, the base-line approach using 100 patterns tends to use
most of these, even if Tree2 trees of similar quality are much smaller. This is
an indicator that the features that are interesting with regard to the class dis-
tribution quickly degrade when they are evaluated on the changed distributions
of subsets.

Additionally, using Information Gain as quality criterion shows mainly that
it is difficult to make an informed decision on cut-off values. The accuracies and
sizes shown refer to decision trees induced with θsig = 0.001. For one thing, the
resulting trees grow far bigger than the χ2-trees. Additionally, the accuracies in
comparison with the χ2 approach vary, giving rise to one worse tree, one of equal
quality and two better ones. None of the differences in accuracy is significant
though. Inducing decision trees with θsig = 0.01 lowers accuracy by 1.5 to 3
percentage points, with the induced trees still being larger than the χ2 trees.

Finally, we are comparing Tree2 trees to classifiers induced by CtC, a
classifier that, as shown before, performs similarly to XRules while already
reducing the size of the classifier significantly. We reproduce the results for
different classification methods from 4.1 in Table 6.4. We used the 90% p-value
for χ2 as θsig for both CtC and Tree2.

As can be seen, CtC’s larger, ordered sets generally perform slightly better
than Tree2. For the first setting, CSLOG1-2, the differences between the four
variants of CtC, and Tree2 are not significant at the 5% level. For the settings
CSLOG2-3 and CSLOG12-3, the first three CtC variants (MV, DL, AvgStr)
are significantly better than Tree2 while CtC with the weighted χ2 heuristic is
not significantly better than Tree2. Finally for the last setting, CSLOG3-1, all
rule-based classifiers outperform Tree2. Combined with accuracy comparison
to XRules, Question 6.3 has to be answered to the end that parallel mining
trades off accuracy for cardinality of the pattern sets.

To put those results into perspective, the sizes of the different classifiers are

6.2. TREE SETS OF TREE PATTERNS FOR CLASSIFICATION 183

Setting CtC Tree2 CtCV al

CSLOG1-2 592 66 130
CSLOG2-3 497 57 150
CSLOG12-3 981 103 170
CSLOG3-1 546 60 220

Table 6.5: Size of the induced Models for CtC and Tree2

compared with each other in Table 6.5. As can be seen, the size of the validation
set-pruned CtC classifiers is still between 1.7 and 3.5 times that of Tree2

trees, with the unpruned classifiers approaching roughly 9 times, answering
Question 6.2. So even for the ordered sets we see a certain trade-off between size
and classification accuracy, increasing model size to slightly increase accuracy,
although to a lesser degree than what we observed for the comparison between
Tree2 and XRules.

6.2.2 Experiment 2: Mutagenicity Data

For this setting, we chose the regression-friendly subset of the well known Mu-
tagenicity dataset used in (Srinivasan et al. 1994). We compare with the results
of the ILP system Progol reported in (Srinivasan et al. 1994, King et al. 1995)
and the results of the base-line approach ((Bringmann and Karwath 2004)). In
the base-line approach, instead of χ2-significant patterns, a minimum frequency
in one class (and maximum frequency in the other) is used and an unordered set
mined. The patterns are then used as binary attributes and an SVM classifier
trained on the resulting data representation.

The mutagenicity data set is represented as graph-structured data. Progol
encodes patterns in first order logic while Tree2 and the base-line work with
tree-structured fragments. A transformation from the SMILES representation
for molecules into so-called fragment-trees is used that is explained below.

First order languages can encode graph-structured patterns directly, and in
the case of the Frequent SMILES approach, a powerful concept learner is ap-
plied in a post-processing step to tree patterns mined in a constraint satisfaction
setting. Hence, the first question:

Q6.8 Does Tree2 achieve comparable accuracy to the more sophisticated con-
cept learners?

Progol additionally performs iterative pattern mining as well, using sequential
covering. Therefore, the experimental evaluation is used to give evidence on:

Q6.9 How complex are the different models?

The Smiles Encoding

The Smiles language (Weininger 1988) is used by computational chemists as
a compact encoding of molecular structure. Contrary to graph-formats which

184 CHAPTER 6. PARALLEL MINING

Figure 6.3: A molecule with the encoding N − c1ccc(cc1)−O− c2ccc(cc2)− [Cl]
and the corresponding fragment-tree

ask for explicit encoding of edges, it uses only ASCII characters to describe the
molecule. Atoms are represented by their chemical symbols, parentheses are
used to indicate branching points and numeric labels designate ring connection
points. Hydrogen atoms are often omitted for the sake of compactness.

Many tools such as OpenBabel (The OpenBabel Software Community 2003)
or Daylight (Daylight Chemical Information Systems,Inc. 2004) support Smiles.
Using a decomposition-algorithm by (Karwath and De Raedt 2004), a Smiles-
String can, after some reformatting, be decomposed into a so-called fragment
tree. Since there is no unique Smiles-string for a molecule, the fragment tree is
not unique either.

The decomposition-algorithm recursively splits the string into cycles {xT }x

and branches A(B)C. In the resulting fragment-tree the leaves contain pure
cycles or linear fragments without further branches. The inner nodes of such a
tree contain fragments still containing branches while the root node is the whole
molecule. The edge labels denote the type of decomposition (i.e. the part of the
branch or the number of the cycle). Thus, the leaves of a fragment-tree contain
a lot of information decomposed into very small fragments. As in (Bringmann
and Karwath 2004), we drop the edge labels and labeled all but the leaf nodes
with a new, unique label. Hence, the tree-structure represents the abstract
structure of the molecule with the chemical information in the leaves.

Figure 6.3 shows a molecule on the left-hand side which could be encoded
by the Smiles-string

N − c1ccc(cc1) − O − c2ccc(cc2)− [Cl].

This string represents the same as

N{0cccc(cc}0)O{1cccc(cc}1)[Cl].

The corresponding fragment-tree is shown on the right-hand side of Figure 6.3.

Experimental results

We used ten-fold cross-validation to evaluate predictive accuracy for each ap-
proach. Reported are average accuracies and standard deviation (if known).

6.2. TREE SETS OF TREE PATTERNS FOR CLASSIFICATION 185

Table 6.6: Accuracies and complexity of the models on the mutagenicity dataset

Approach Predictive Accuracy Avg. Size of Model
Tree2 χ2 80.26±7.14 2.3 Nodes
Tree2 IG 81.76±9 11.8 Nodes
Progol ’94 80±3 9 Clauses
Progol ’95 84 4 Clauses
Frequent SMILES 86.70 214 Patterns

For Tree2, trees were induced at the 95% significance level for χ2 and with
a minimum significance constraint θsig = 0.01 for Information Gain. The re-
sults reported in (Srinivasan et al. 1994) were achieved using Progol; in (King
et al. 1995), numerical values suggested by experts were used as well. This work
reports only an average accuracy. The resulting accuracies and the size of the
corresponding theories are shown in Table 6.6.

As can be seen, for both measures Tree2 gives similar results to the purely
structural Progol approach, with the differences not significant. At the same
time, the χ2 induced model is far smaller than the other two. Again, the patterns
tested against in the inner nodes are not overly complex (4-10 edges). When
Progol uses the expert-identified attributes as well, its accuracy increases.
Since we do not have access to the standard deviation of these experiments, we
cannot make a significance statement. Finally, the base-line approach, which
mined all patterns frequent in one class and not exceeding a given frequency in
the other class, and built a model using these features in an SVM, significantly
outperforms the Tree2 classifiers. On the other hand, this is less of a statement
about the quality of the pattern set and more about the capabilities of the SVM.
Additionally, the amount of patterns used is larger than in the Tree2 models
by two orders of magnitude. Regarding Question 6.8, we can therefore state
that Tree2 induces classifiers of comparable accuracy. Additionally, Tree2

when used led to small models, as did the first-order techniques. Frequent
SMILES, on the other hand, uses a large set of patterns. This answers Question
6.9.

6.2.3 Conclusions

As our experiments show, parallel mining leads to the formation of compact yet
accurate classifiers on structured data. The comparison to approaches in which
large number of local patterns are mined, shows that the quality stays high but
the understandability of the pattern set gets better, making such tree sets the
arguably better pattern sets. We evaluated the mined patterns directly in the
form of a decision tree but the use of more sophisticated classification strategies
is possible. Parallel mining should also lead to smaller sets of good features for
classification, as the results reported in (Fan et al. 2008) show.

186 CHAPTER 6. PARALLEL MINING

All of these arguments suggest that parallel mining is a promising method
for pattern set mining. Given our results from Section 6.1, the development
of measures for unsupervised pattern mining, that is, without recourse to a
class-label or target attribute, will make parallel mining even more useful.

6.3 Ensemble Trees – more complex local pat-

tern formulations

So far in this chapter, we have discussed tree sets in which a single pattern
is mined in each iteration, thus assembling a tree set. This pattern, however,
governs how the data is manipulated for future iterations. An important in-
sight in moving from top-1 mining towards sets of patterns in each iteration,
therefore, lies in the inherent instability w.r.t. changes in the data that top-
1 patterns display. We will illustrate this instability on the data below, as-
suming a classical binary decision tree, i.e. a decision tree where the pattern
language takes the form LAV −pair = ΣAV . This is a very restricted subset
of the language LAV we introduced in Definition 1.1.3. In classical decision
trees, only a single test is included in each node, which corresponds to mining
Th1(LAV −pair,D, information gain).

index A1 A2 . . . class
1 v2 v1 . . . +
2 v1 v2 . . . −
3 v2 v1 . . . +
4 v1 v1 . . . +
5 v1 v2 . . . −
6 v1 v2 . . . −
7 v1 v1 . . . −
8 v2 v1 . . . +

.

Obviously, a change in either the value of A1 in instance 4, or the value
of A2 in instance 7 would improve the strength of these attributes as a test,
respectively. Similarly, removal of one of those two instances, for instance, as
part of a cross-validation, changes which attribute is chosen. Since the choice
of test affects how the data is split, this effect ripples down through the rest of
the mining process. Assuming that A1 and A2 perform equally well on the rest
of the data, the decision between them comes down to an arbitrary tie-breaker,
giving the tree set a potentially rather different composition and performance.

There have been attempts to alleviate the problem in the context of deci-
sion tree induction, for instance, by using linear combinations of tests in nodes
(Murthy 1997). The goal with using such more elaborate tests lies in stabilizing
the trees and shrinking them. We suggest a simpler pattern language, LAV , and
a different approach towards finding stable patterns, statistical quantification
and small sets in each node.

6.3. ENSEMBLE TREES 187

We use the general parallel mining algorithm (Algorithm 13), introduced in
Section 2.3.3, and perform top-k mining in each iteration, with k supplied by the
user. Ideally this k should be small to facilitate a better understanding of the
resulting tree set. Each node contains the entire (small) pattern set, which will
be treated as an unordered set combined by majority voting, as we will explain
below. Since a tree set is mined, however, the totality of patterns within a given
branch has to be observed.

Within a node the order induced by top-k mining ensures totality, while
between successive nodes this is guaranteed by the iterative process. Therefore,
the resulting tree set satisfies this requirement. As a stopping criterion, we stop
when it is either not possible to mine k statistically significant patterns, or when
the patterns do not split off a large enough subset of the data anymore.

The aim of this is, of course, to reduce spuriousness. If not enough statis-
tically significant patterns can be mined on the subset, statements about this
subset start to become unreliable. In the same vein, when one of the subsets split
off becomes too small, reliability issues start to appear and the mining should
be stopped. A question to address here is how exactly this split is performed.
We discuss this issue in the following section.

6.3.1 New notions of matching

Once a set of several patterns is used in a node to split the data, the question
naturally arises as to how to perform this split. We will illustrate both the
potential pitfalls and the solutions we chose on the following set of instances:

index A1 A2 A3 A4 A5 class
1 v1 v1 v2 v1 v1 +
2 v1 v1 v1 v1 v1 +
3 v1 v2 v1 v1 v2 −
4 v1 v1 v1 v2 v2 −
5 v2 v1 v2 v1 v1 +

Let us assume a single conjunctive pattern that is used to split the data, of
the form: A1 = v1 ∧ A2 = v1. As usual, the splitting decision is simply based
on the match of the pattern on the instances and we adopt the convention that
matching instances are sorted down the left path, non-matching ones down the
right. As we can see, instances 1, 2, and 4 will now be sorted to the left, with
3 and 5 going right (cf. Figure 6.4 (a)). This also hints at a side-effect of
maximizing the information gain value of patterns: since IG rewards patterns
that reduce entropy in the subsets, they usually also “predict” one of the two
classes. This is, however, an implicit effect: A1 = v1 ∧ A2 = v1⇒ +

A second pattern A1 = v1∧A5 = v2⇒ − would sort instances 3 and 4 to the
left, the others to the right (cf. Figure 6.4 (b)). If we combine the two patterns
into a set and use the usual notion of pattern set matching (that at least one
individual pattern has to match), the only instance that gets sorted to the right
is instance 5, as seen in Figure 6.5 (a). This is somewhat unsatisfactory: each

188 CHAPTER 6. PARALLEL MINING

Figure 6.4: Splits of the data by

1,2,3

p1

match

3,5

 nonmatch

3,4

p2

match

1,2,5

 nonmatch

(a) A pattern predicting positive class (b) A pattern predicting negative class

Figure 6.5: Split of the data by

p1 OR p2

1,2,3,4

match

5

 nonmatch

p1 AND p2

4

match

1,2,3,5

 nonmatch

(a) Two patterns combined by logical OR (b) Two patterns combined by logical AND

individual pattern separated the classes better than the set does, it does not
really leverage the relation between patterns. An alternative lies in treating
pattern sets like local patterns: each element has to match an instance.

If we use this notion, we have the dual problem that only one instance is split
from the others, instance 4 (cf. Figure 6.5 (b)). While this is not a bad split,
we can expect in each iteration only small subsets to be split off. The reasons is
that this notion is rather restrictive in requiring all patterns to match. Instead,
one can take inspiration from classification using unordered pattern sets and
use a majority vote. In this particular case, as illustrated in Figure 6.6 (a), this
does not improve things much because while there is agreement on instances 4
and 5, instances 1, 2, and 3 would be sorted in neither or an arbitrary direction.

To solve this final obstacle, on the one hand we enforce that there will always
be an odd number of patterns in a node. Additionally, given a pattern p⇒ +
(p⇒ −), we assume an implicit prediction ¬p⇒ − (¬p⇒ +). In other words,
whenever a pattern does not match an instance, we treat this as a vote for the
class this pattern does not predict.

Already for two patterns the situation is improved, with instances one, two
predicted positive (and sorted left), and instance three predicted negative. If

6.3. ENSEMBLE TREES 189

Figure 6.6: Split of the data by

Majority Vote

4

match

1,2,3

 ?

5

 nonmatch

Implicit Prediction

1,2

+

4,5

 ?

3

 -

(a) Two patterns combined by Majority Voting (b) Two patterns, exploiting their implicit predictions as well

Figure 6.7: Split of the data by three patterns, exploiting their implicit predic-
tions

Implicit Prediction

1,2,5

+

3,4

 -

we add a third pattern to break the tie regarding instances four and five, such
as A1 = v1 ∧ A5 = v2⇒ −, we have a flexible matching scheme which takes the
semantics of patterns into account as shown in Figure 6.7. This should lead to
relatively balanced splits that separate classes well, just what IG rewards.

We call such a tree set an ensemble tree, since the set of (implicitly) predictive
patterns that is resides at each node, and is combined via majority voting, have
similarities with ensembles of rules. Ensemble-Trees are different from the type
of tree sets we discussed so far in that both the usual notion of matching for
local patterns and for entire pattern sets have been modified.

6.3.2 Experimental evaluation

Ensemble-Trees are tree sets consisting of conjunctive patterns. In this partic-
ular setting, concept learning, however, different solutions involving tree sets
of one kind or the other already exist. First of all, there are classical decision
trees, as embodied by C4.5, which use single patterns expressed in LAV in the
set. Obviously, Ensemble-Trees are more complex than decision trees, so there
are two questions that arise from this:

Q6.10 Does this increased complexity translate into better classification perfor-
mance, especially in the absence of post-pruning?

Q6.11 Are the resulting Ensemble-Trees more stable with regard to changes in
the data (a prime motivation we gave above)?

190 CHAPTER 6. PARALLEL MINING

Q6.12 Does the higher complexity of patterns in the nodes of Ensemble-Trees
translate to fewer nodes per tree, compared to decision trees?

Decision trees can also be understood as local patterns themselves, and there
have been attempts to build sets of decision trees to reduce the volatility of
predictions stemming from the instability of decision trees. Two of the best-
known techniques in this regard are Boosting, for instance, exemplified by the
AdaBoost algorithm, and Bagging (which was developed specifically with de-
cision trees in mind). Bagging builds unordered sets of trees, as we will discuss
in more detail in Section 6.3.3. AdaBoost (and Boosting in general) builds
ordered sets of trees in a manner very much like sequential re-weighting. Those
techniques are usually referred to as ensemble methods since in addition to the
sets themselves, there are classification methods inherent in them. Similarly to
the use of other local pattern sets we have seen before, Bagging uses majority
voting, and Bagging a weighted voting strategy.

The two questions arising in this context are

Q6.13 Do tree sets perform better than sets of trees when it comes to classification
accuracy?

Q6.14 Have tree sets lower complexity than sets of trees?

Experimental setup

We use several UCI data sets to compare Ensemble-Trees to C4.5, Bagging, and
AdaBoost, each in their WEKA (Frank and Witten 1999) implementations
with C4.5 as the weak classifier.

Since we limit ourselves to nominal attribute values in this work, numerical
attributes were discretized, using ten bins of equal width. With the branch-and-
bound technique used for inducing the rule ensembles being limited to binary
classes, we used only data sets with binary class labels. However, given that
every classification problem can be translated into a number of one-against-one,
or one-against-all problems, this is not a significant drawback of our approach.

We performed experiments with the minimum leaf size parameter m set to
2, 3, 4, 5, 10 and in case of large data sets, 10% of the training data. As the
interestingness measure σ, information gain was used. Bagging and AdaBoost
were set to 10 iterations of inducing decision trees, and we built Ensemble-
Trees with k = 3, and k = 5, respectively. AdaBoost was used both in
the resampling and the re-weighting mode. Decision tree and ensemble method
results are reported on pruned trees while Ensemble-Trees are always unpruned.

Experiment 1: Predictive accuracy

Predictive accuracy was evaluated using a stratified 10-fold cross-validation.
Table 6.7 reports mean and standard deviation for a minimum leaf size m = 5,
except for the Trains data set, where m = 2. While details vary, the main trends
can be observed for all minimum leaf sizes evaluated in the experiments.

6.3. ENSEMBLE TREES 191

Table 6.7: Predictive accuracies for decision trees/Ensemble-Trees with mini-
mum leaf size of 5

Data set C4.5 ETk=3 ETk=5 Bagging AdaBoostRS AdaBoostRW

Breast-Cancer 73.42 ± 5.44• 78.69 ± 4.34 80.14± 6.16 73.77 ± 6.98 67.09± 10.10• 66.77 ± 6.81•
Breast-Wisconsin 94.56 ± 2.93 95.28 ± 1.35 95.14± 1.80 95.42 ± 2.76 96.28 ± 1.81 95.99 ± 1.14
Credit-A 84.20 ± 2.93 85.51 ± 2.56 85.51± 2.56 85.22 ± 2.35 82.75 ± 3.45 82.03 ± 4.44•
Credit-G 71.90 ± 3.96• 80.33 ± 2.00 79.10± 5.09 74.40 ± 4.06• 72.60 ± 3.24• 70.30 ± 4.00•
Heart-Statlog 82.96 ± 8.04 81.85 ± 5.08 79.63± 6.82 80.74 ± 8.52 80.37 ± 7.82 78.52 ± 7.57
Hepatitis 84.50 ± 6.22 89.58 ± 5.61 90.92± 5.54 83.25 ± 5.35• 83.17 ± 7.07• 82.71 ± 8.27•
Ionosphere 88.60 ± 5.88 91.44 ± 3.82 88.92± 5.80 91.15 ± 4.37 90.87 ± 5.69 91.15 ± 6.25
Molec. Biol. Prom. 78.09 ± 14.57 83.73 ± 9.28 83.64± 11.36 88.00 ± 13.00 85.73 ± 10.96 88.64 ± 5.94
Mushroom 100 ± 0◦ 99.95 ± 0.06 99.95± 0.06 96.31 ± 5.94 100 ± 0◦ 100 ± 0◦
Tic-Tac-Toe 91.76 ± 3.81◦ 76.20 ± 1.47 72.86± 4.59 96.87 ± 1.55◦ 98.02 ± 1.59◦ 96.97 ± 2.62◦
Trains 60.00 ± 51.64 50.00± 52.70 50.00± 52.70 40.00 ± 51.64 80.00 ± 42.16 50.00 ± 52.70
Voting-Record 95.85 ± 2.83• 98.39 ± 1.11 98.62± 1.19 95.62 ± 2.29• 94.94 ± 3.04• 96.08 ± 3.09•

The table shows that Ensemble-Trees perform mostly well w.r.t. classifica-
tion. In several cases, Ensemble-Trees are significantly better than ensemble
methods (• denotes a significant loss of a technique at the 5%-level), while be-
ing outperformed only on Mushroom (barely), and Tic-Tac-Toe (◦ denotes a
significant win at the 5%-level). This points once again to the phenomena we
have experienced before: Tree sets that allow the refinement of descriptions for
subsets have a better chance of catching phenomena than sets whose members
aim to accurately describe a subset of the data on their own. Ensemble-Trees
also perform worse than decision trees only once (on Tic-Tac-Toe again), indi-
cating that the increased complexity pays off. Question 6.10 and 6.13 can be
answered positively: increasing the complexity of the local pattern mining step
leads to tree sets that are better suited to classification.

Inspection of the standard deviations, however, gives a first indication that
Ensemble-Trees do not turn out to be more stable performance-wise than de-
cision trees when the data composition changes. In fact, Ensemble-Trees using
only three rules per node show a smaller standard deviation, corresponding to
a smaller variance, with regard to accuracy accuracy than Ensemble-Trees with
sets of patterns in each node. We will investigate this issue further in the next
section

Experiment 2: Size and stability of Ensemble-Trees in comparison to
decision trees

The second question we evaluated was concerned with stability of induced trees
with regard to changes in the data. We used the 10-fold cross-validation mech-
anism already employed in the accuracy estimation to simulate changes in the
underlying data, and report on size characteristics of the trees in Tables 6.8 and
6.9. For both C4.5 decision trees and Ensemble-Trees , we report the mean and
standard deviation of sizes (number of nodes) and maximal depths, i. e. length
of the longest branch, of the different trees.

Ensemble-Trees typically have somewhat fewer nodes than classical C4.5
decision trees, due to the more expressive tests in the nodes. The cases where
this trend does not hold (the Hepatitis, and Voting-Record data sets) or is ex-

192 CHAPTER 6. PARALLEL MINING

Table 6.8: Number of nodes per tree for C4.5 and Ensemble-Trees , respectively
Data set C4.5 ETk=3 ETk=5

Breast-Cancer 13.6 ± 6.4 7.6 ± 3.5 9.4 ± 5.1
Breast-Wisconsin 14.8 ± 1.5 13.4 ± 2.8 9.0 ± 2.1
Credit-A 19.2 ± 4.2 16.4 ± 6.2 10.6 ± 6.1
Credit-G 86.4 ± 9.2 22.8 ± 6.1 18.8 ± 8.9
Heart-Statlog 14.4 ± 2.3 11.2 ± 2.2 10.8 ± 3.9
Hepatitis 6.2 ± 3.0 10.6 ± 4.1 9.2 ± 3.0
Ionosphere 17.2 ± 3.7 12.2 ± 6.0 10.4 ± 4.0
Molec. Biol. Prom. 11.6 ± 1.0 5.4 ± 0.8 6.4 ± 1.3
Mushroom 17 17 21
Tic-Tac-Toe 53.4 ± 2.8 3 2.8 ± 0.6
Trains 3 3 3
Voting-Record 8.2 ± 1.0 13.0 ± 3.4 13.2 ± 4.0

Figure 6.8: Binary class data and decision surfaces of three discriminatory rules

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

��
��
��

��
��
��

+ +

+ +
+ + +

+ +

+ + + +
+ + +

+
+ +

++
+

+

− − − −

−

−
−

−
−

−
−

−−
−

− −−
− −

−

−

− −

−
−

−

−
−

−

−

+ +
+ + +

r1 r3

r2

aggerated (the Breast-Cancer, and Credit-G data sets) are also the ones where
Ensemble-Trees perform best compared to the other approaches. However, in
the case of the Tic-Tac-Toe data set, the small number of nodes is actually a
symptom of an underlying characteristic, with another being the severe under-
performance of Ensemble-Trees , compared to the other methods.

To explain the mechanism at work here, Figure 6.8 shows binary class data
points in two-dimensional space, and the decision surfaces of three rules r1, r2, r3.
The subsets of the data covered by each rule are shown shaded. As can be seen,
each of these rules predicts the positive class, advocating that the instances
they cover be sorted to the left. Additionally, however, all of them advocate
the sorting of the instances covered by the other two rules to the right. The
result of the majority vote on this is that all instances are sorted to the right,
the left subset is empty and thus its size less than m, leading to the formation
of a leaf. The rather aggressive pre-pruning effected by this stopping criterion
becomes problematic on data sets with small, non-overlapping sub-regions in the
data. Tic-Tac-Toe is such a data set, as indicated by the rather large number of

6.3. ENSEMBLE TREES 193

Table 6.9: Averaged maximal depths for C4.5 trees and Ensemble-Trees , re-
spectively

Data set C4.5 ETk=3 ETk=5

Breast-Cancer 4.1 ± 1.5 2.90 ± 1.2 3.5 ± 2.2
Breast-Wisconsin 4.4 ± 0.5 4.2 ± 0.9 3.9 ± 0.9
Credit-A 6.7 ± 1.3 5.8 ± 2.7 4.0 ± 2.7
Credit-G 23.9 ± 2.3 7.9 ± 2.1 18.8 ± 8.9
Heart-Statlog 3.2 ± 0.8 3.8 ± 0.8 3.6 ± 1.0
Hepatitis 1.1 ± 1.5 4.7 ± 2.0 4.0 ± 1.3
Ionosphere 6.9 ± 1.6 5.6 ± 3.0 4.6 ± 1.8
Molec. Biol. Prom. 2.8 ± 1.0 2.2 ± 0.4 2.7 ± 0.7
Mushroom 4 5 5
Tic-Tac-Toe 6.0 1 0.9 ± 0.3
Trains 1 1 1
Voting-Record 2.6 ± 0.5 4.2 ± 0.8 4.4 ± 1.1

nodes (and therefore leaves) in – pruned – C4.5 decision trees. So in answering
Question 6.11, we can state that there is a certain decrease in the number of
nodes per tree set, due to the increased complexity of patterns, but not in all
cases.

The expected stabilization of trees regarding changes in the data, however,
cannot be observed. Neither in the number of nodes, nor in the maximal depths
of trees do Ensemble-Trees markedly decrease the standard deviation over folds,
compared to C4.5 pruned trees. Quite contrary, while the trees are shallower,
and mostly smaller, Ensemble-Trees often show greater variance in both char-
acteristics than classical decision trees do.

Since the size measurements were extracted after post-pruning, we finally
compare unpruned C4.5 trees to Ensemble-Trees in an attempt to understand
how much of a stabilization effect post-pruning provides to the decision trees.
The relevant numbers are shown in Tables 6.10 and 6.11, with the characteristics
of Ensemble-Trees duplicated from Tables 6.8 and 6.9.

While Table 6.10 suggests that the reduction in variance for the size of a deci-
sion tree is a result of the post-pruning operation, and Table 6.11 shows similar
effects regarding maximal depths of the tree, this still means that Ensemble-
Trees are structurally not more stable regarding changes in the data than clas-
sical decision trees. While the use of sets of conjunctive patterns as tests could
bring more stability to the final tree, this promise remains unfulfilled, answering
Question 6.12. A potential improvement could lie in a better solution for the
combination strategy.

Experimen 3: Comparison of the size of tree sets, ordered, and un-
ordered sets of trees

The final question to be addressed is concerned with whether tree sets of con-
junctive patterns are smaller than ordered and unordered sets of trees. Since

194 CHAPTER 6. PARALLEL MINING

Table 6.10: Number of nodes per tree for unpruned C4.5/Ensemble-Trees
Data set C4.5 ETk=3 ETk=5

Breast-Cancer 41.0 ± 8.7 7.6 ± 3.5 9.4 ± 5.1
Breast-Wisconsin 19.4 ± 4.9 13.4 ± 2.8 9.0 ± 2.1
Credit-A 35.8 ± 11.2 16.4 ± 6.2 10.6 ± 6.1
Credit-G 147.0± 10.1 22.8 ± 6.1 18.8 ± 8.9
Heart-Statlog 26.8 ± 3.3 11.2 ± 2.2 10.8 ± 3.9
Hepatitis 24.8 ± 2.6 10.6 ± 4.1 9.2 ± 3.0
Ionosphere 17.2 ± 3.7 12.2 ± 6.0 10.4 ± 4.0
Molec. Biol. Prom. 11.6 ± 1.0 5.4 ± 0.8 6.4 ± 1.3
Mushroom 21 17 21
Tic-Tac-Toe 68.2 ± 7.3 3 2.8 ± 0.6
Trains 3 3 3
Voting-Record 8.8 ± 1.1 13.0 ± 3.4 13.2 ± 4.0

Table 6.11: Averaged maximal depths for unpruned C4.5 trees/Ensemble-Trees
Data set C4.5 ETk=3 ETk=5

Breast-Cancer 9.5 ± 2.4 2.9 ± 1.2 3.5 ± 2.2
Breast-Wisconsin 5.7 ± 1.1 4.2 ± 0.9 3.9 ± 0.9
Credit-A 11.3 ± 2.3 5.9 ± 2.7 4.0 ± 2.7
Credit-G 26.1 ± 2.3 7.9 ± 2.1 18.8 ± 8.9
Heart-Statlog 5.2 ± 1.0 3.8 ± 0.8 3.6 ± 1.0
Hepatitis 4.1 ± 0.9 4.7 ± 2.0 4.0 ± 1.3
Ionosphere 10.4 ± 1.2 5.6 ± 3.0 4.6 ± 1.8
Molec. Biol. Prom. 2.8 ± 1.0 2.2 ± 0.4 2.7 ± 0.7
Mushroom 6 5 5
Tic-Tac-Toe 6.6 ± 0.7 1 0.9 ± 0.3
Trains 1 1 1
Voting-Record 2.9 ± 0.6 4.2 ± 0.8 4.4 ± 1.1

6.3. ENSEMBLE TREES 195

Table 6.12: Number of attribute-value pairs per tree for Ensemble-Trees , accu-
mulated number of nodes for all trees of the respective ensembles

Data set ETk=3 ETk=5 Bagging AdaBoostRS AdaBoostRW

Breast-Cancer 23.7 ± 14.4 55.4 ± 38.3 425.4± 19.4 485.2 ± 18.2 509.4 ± 14.7
Breast-Wisconsin 29.7 ± 6.1 36.6 ± 8.2 154.2± 12.2 334.4 ± 12.2 331.8 ± 15.4
Credit-A 58.2 ± 19.7 60.5 ± 48.2 226.6± 8.5 698.6 ± 17.0 725.2 ± 30.4
Credit-G 112.4 ± 26.6 171.2 ± 85.7 896.0± 23.7 1212.2± 25.7 1239.2 ± 27.9
Heart-Statlog 34.3 ± 9.4 57.7 ± 24.4 193.2± 14.5 302.6 ± 14.3 310.0 ± 14.5
Hepatitis 44.9 ± 18.5 67.8 ± 27.5 86.6 ± 10.4 153.6 ± 7.9 165.4 ± 7.9
Ionosphere 27.1 ± 17.9 37.6 ± 18.4 165.6± 7.6 243.4 ± 8.9 253.0 ± 9.2
Molec. Biol. Prom. 13.8 ± 3.0 30.0 ± 8.8 98.2 ± 8.3 83.4 ± 3.9 85.8 ± 6.0
Mushroom 51.0 ± 0.0 107.7± 1.2 153.8± 5.6 17 169.4 ± 15.0
Tic-Tac-Toe 7.0 ± 0.0 10.1 ± 3.6 573.4± 9.2 700.8 ± 31.4 736.6 ± 23.7
Trains 5.4 ± 1.6 10.8 ± 2.3 30.2 ± 0.6 23.5 ± 7.5 28.4 ± 0.8
Voting-Record 36.7 ± 11.3 70.0 ± 27.4 75.6 ± 6.7 184.2 ± 18.0 181.6 ± 15.7

the ensemble methods induce a different tree in each iteration, averaging over
the iterations and the folds becomes a difficult endeavor, and we report on the
accumulated number of nodes (among all trees per fold). As we wrote above, we
set the number of iterations to 10 for the ensemble methods. Bagging will always
use all 10 iterations while Boosting might stop earlier if the performance of the
induced trees suffices (again similar to re-weighting). To make the comparison
of complexities explicit, we do not list the number of nodes for Ensemble-Trees
but instead the number of conjuncts (attribute-value pairs) involved in patterns
in test nodes, averaged over the 10 folds.

Inspection of Table 6.12 shows that Ensemble-Trees always have far fewer
tests than ensembles of trees have nodes (and therefore tests), answering Ques-
tion 6.14 positively. The only exception is AdaBoost with resampling on the
Mushroom data set. This is once again consistent with the results we have seen
in Sections 6.1 and 6.2, with tree sets typically being of smaller cardinality than
(un)ordered sets. Given that the ensemble methods do not improve markedly on
the accuracy of Ensemble-Trees in most cases, quite a few more bags/iterations
would be needed for better performance (except for the Mushroom data set), in
turn leading to far larger sets of trees. Ensemble-Trees therefore reduce com-
plexity in comparison to sets of trees.

6.3.3 Related approaches

As we stated above, Bagging and Boosting can be considered techniques for
inducing ordered and unordered sets of trees, respectively. Specifically Boosting
shares characteristics with the sequential re-weighting technique we discussed
earlier in this part, in Section 5.2. In both approaches, voting strategies are
used to combine decision tree predictions.

One of the best known ensemble techniques, Bagging (Breiman 1996), was
proposed specifically with decision trees as weak learners (local patterns) in
mind. Each tree is induced on a boot-strapped sample (created via sampling
with replacement) of the data, forming an unordered set of trees, shown in

196 CHAPTER 6. PARALLEL MINING

Majority Vote

. . .

Figure 6.9: Set of trees created by Bagging

Weighted Voting

Performance

Performance

Performance

Performance
. . .

Figure 6.10: Ordered set of trees created by Boosting

Figure 6.9. When unseen data is encountered, majority voting of the trees’
predictions is performed to form the final prediction. The random resampling
of the data ensures that each tree will truly describe only local phenomena and
have no feedback from other patterns’ performance apart from the voting phase.
The aim is that each pattern’s peculiarities are cancelled out by the influence of
other patterns during that phase. In a refinement of his technique, Breiman et
al. proposed Random Forests (Breiman 2001), in which not only the training
data but also the tests from which to choose for a node are randomly selected,
creating very powerful classifiers. They also highlight the main problem with
this kind of approach: each local pattern becomes almost meaningless in a global
context and the full set is hard if not impossible to interpret.

A more principled way of changing distributions in the data for the pur-
pose of inducing patterns that reflect other patterns’ effect is embodied by
the Boosting approach, as in the well known AdaBoost system (Freund and
Schapire 1997). Again, decision trees act as local patterns but are induced incre-
mentally with each tree being evaluated on the data and misclassified instances
being given more importance by resampling or re-weighting. This is a similar
approach to the weighted covering technique we discussed in 5.2, and the tech-
nique results in an ordered set in the sense that each pattern is influenced by its
predecessor’s performance (for which the same holds), as shown in Figure 6.10.
A significant difference to ordered sets of rules for classification lies in that a
weighted voting mechanism is used for the final classification (since re-weighting
is not based on matching but on performance). Different Boosting algorithms

6.3. ENSEMBLE TREES 197

Majority Vote

Figure 6.11: Option tree - a tree set of tree sets

use different ways of weighting data and hypotheses, based on results from com-
putation learning theory. Based on these results, they can be proved to allow
a set of weak learners to approach a strong learner’s performance to arbitrary
degree but for that a considerable (and a priori unknown) number of iterations
has to be performed. This aspect is also the main difference to the re-weighting
techniques we have discussed so far (Lavrač et al. 2004, Yin and Han 2003) since
the metrics for re-weighting are chosen somewhat arbitrarily in those settings.

An early approach towards tree sets of complex patterns are the so-called
option-trees (Kohavi and Kunz 1997). In option nodes (whose number and level
in which they may appear can be controlled by the user), all tests are kept,whose
quality are within a certain range of each other. The data on which they were
evaluated is copied to each of them and further parallel covering performed
below them. What this in effect leads to, even though the authors did not
frame it in this way, is a tree set which in non-option nodes has a top-1 LAV

pattern. In option nodes, however, a set of tree sets is assembled, whose inner
nodes might be option nodes themselves. The (extremely simplified) structure
of such a set is shown in Figure 6.11, a “true” Tree2 (or Treen actually since
the number of internal trees is unknown). Unseen data is copied in the same
way as training data was, with the predictions of each option node combined
via majority voting.

6.3.4 Conclusions

Extending tree set mining further by not only increasing the complexity of
individual patterns but also the number of patterns mined in each iteration has
its benefits and its drawbacks. The first benefit lies in reduced complexity, in
terms of number of iterations and number of attribute-value pairs, compared to
sets of trees. The second benefit lies in improvements in classification accuracy
in several cases, compared to sets of trees and regular decision trees.

That this improvement in classification accuracy does not occur in all cases,
and that it is connected to the way the patterns of each iteration are combined,
indicates the drawback of this model. Contrary to tree sets using individual
patterns, Ensemble-Trees need to employ a more sophisticated matching oper-
ator, whose design has effects on the usefulness of the full pattern set. There is
therefore a need to improve the matching and strategies, and in that way the
mining, of Ensemble-Trees to make tree sets more flexible and more useful for

198 CHAPTER 6. PARALLEL MINING

KDD.

6.4 Summary and Future Work Directions

The second chapter on iterative mining was concerned with tree sets and how
to mine them using parallel mining processes. Similarly to sequential mining,
the data is manipulated after the local pattern mining step of each iteration.
The main difference, however, lies in the fact that while sequential mining im-
plicitly assumed that an iteration gave a relatively complete description of the
data covered, this assumption is absent in parallel mining. The assumption is
rather that such a description is coarse or general or high-level and that more
fine-grained, specific or lower-level phenomena can occur. Therefore, instead
of discounting or even removing data for the purpose of deriving future pat-
terns, data is split into subsets that correspond to the (non)coverage of mined
patterns. Should the description actually be as complete as sequential min-
ing assumes, this will automatically stop the pattern set mining process (given
suitable stopping criteria).

Removing the burden of complete description has the side-effect that parallel
mining often leads to smaller pattern sets since weaknesses of a description can
be corrected easily by the more fine-grained patterns mined later. Additionally,
the strict order that links patterns in ordered sets together can be relaxed:
patterns can actually occur in the set without having a particular relation.

As in the chapter on sequential mining, we explored the opportunities that
are created the decomposition of parallel mining into its local pattern mining and
pattern set mining components. We demonstrated the usefulness and properties
of parallel pattern set mining in three experiments:

In Section 6.1, we discussed how to use parallel mining to induce a dendro-
gram composed of conjunctive descriptions of clusters. While parallel mining for
cluster formation has been discussed before, this is the first time that conceptual
clustering descriptions that go beyond single tests are induced. In the compar-
ison with existing clustering solutions, we showed that this method induces
high-quality clusters that are described concisely by the induced descriptions.
Additionally, clustering by pattern set mining gives the user much control over
the process, leading the interpretable solutions.

In Section 6.2, parallel mining was performed on tree-structured data in the
context of concept learning. Pattern set mining on structured data via parallel
mining is another topic that has been given little attention so far, even though
the approach is effective. The introduced algorithm, called Tree2 gives rise to
far smaller sets of patterns than post-processing methods or sequential mining,
even if the pattern language of the latter is more expressive. Particularly in
the case of parallel set mining as a post-processing technique for a set of local
patterns that has been mined before, iterative mining produces smaller sets
since it implicitly takes preceding patterns into account during mining.

Finally, in Section 6.3, we upgraded the parallel pattern set mining setting by
mining more than one pattern in each iteration, moving further away from the

6.4. SUMMARY AND FUTURE WORK DIRECTIONS 199

classical decision tree induction setting. The context was again that of concept
learning and we illustrated some of the issues that arise from mining several
patterns per iteration and suggested ways of treating them. In the comparison
to sets of trees and to classical decision trees, we could show improvements in
performance. Additionally, especially in comparison with the sets of trees (in
which decision trees form the local patterns), the overall size of the set (and
therefore interpretability) was reduced strongly.

As those evaluations show, parallel pattern set mining is a strong mechanism
for inducing relatively small, effective tree sets of patterns for a variety of tasks.
Given the greater flexibility of tree sets compared to ordered sets (which they
can represent but not vice versa), the approach is potentially better-suited to
iterative mining. The trade-off is very likely to have a higher computational
cost, however, since data are not necessarily removed from further consideration.
The multi-target top-k local pattern mining technique employed in Section 6.1
can be used to mine for an arbitrary number of target attributes. Therefore,
it is possible to induce tree sets consisting of complex patterns in the context
of, for instance, multi-target predictive trees as the ones introduced in (Vens
et al. 2008) as well.

200 CHAPTER 6. PARALLEL MINING

Conclusion of Part III

This part was concerned with pattern set mining techniques that originate from
machine learning and proceed in an iterative fashion. In contrast to the ap-
proaches discussed in Part II, pattern set mining is not a single step that fol-
lows local pattern mining but instead data is manipulated based on the local
patterns mined, and mining re-iterated on the modified data.

The two paradigms existing in machine learning are sequential and parallel
mining. Chapter 2.3.1 considers sequential mining, in which data that is covered
(matched) by the local pattern or patterns mined is discounted in later itera-
tions. Sequential covering achieves this discounting by removing covered data
from further consideration while sequential re-weighting decreases the weight of
covered instances.

While both of those techniques are usually discussed in combination with
specific heuristic local pattern mining components in the machine learning liter-
ature, they can be discussed in connection with different, exhaustive techniques.
We evaluated the difference between the use of a heuristic and an exhaustive
local pattern mining step in Section 5.1. Each of the two choices has a potential
disadvantage: heuristic local pattern mining conceivably leads to suboptimal
solutions since the patterns set mining component also proceeds heuristically.
Exhaustive mining, on the other hand, is potentially much more computation-
ally expensive. Both disadvantages do not materialize, however, as our experi-
ments show. Sequential mining directs heuristic mining in such a way that the
resulting classifiers perform equally well. Heuristic local pattern mining, on the
other hand, is not more efficient than exhaustive mining due to the fact that
the latter typically assembles smaller pattern sets. This is a major new insight
of our work.

Parallel mining does not decrease the importance of covered data for future
iterations but instead divides the data into covered and uncovered subsets. Since
there is less pressure on patterns to describe data accurately, we expected this
technique to lead to pattern sets of lower cardinality. This technique, which
originates in decision tree induction, is mainly applied in concept learning, on
attribute-value data, and with pattern languages of relatively low complexity.
In Chapter 2.3.3, we evaluated the effects of changing these characteristics. In
Section 6.1, we increased the complexity of the language, mining conjunctive
patterns in each iteration, which becomes possible by using exhaustive mining
with upper-bound pruning. By applying the new system, CG-Clus, in the

201

202 CONCLUSION OF PART III

context of conceptual clustering, we showed that it induces high-quality clusters
that have compact descriptions. We used the second section of Chapter 2.3.3
to explore the direct mining of tree-structured patterns for decision trees. This
is a deviation from the usual methods in which either large sets of predictive
patterns are mined or data re-encoded and decision trees induced on the new
presentation. The resulting classifiers were once again very compact but paid
for this with a slight decrease in accuracy compared to a large unordered set
of patterns that uses a weighted voting scheme. Finally, in Section 6.3, we
increased the number of patterns mined in each iteration, in addition to mining
conjunctive patterns. We discussed issues arising from this decision, such as
the interpretation of the “match” of a pattern set, and evaluated the resulting
classifiers empirically. The experiments showed increased accuracy and lower
complexity than sets of trees used for classification.

The techniques we discussed in this part were limited to the sequential and
parallel mining paradigm and we explored how the abstraction from monolithic
system allows to use different approaches to the local pattern mining step. In
general, however, iterative mining does not have to proceed in this way. An
example of an iterative mining technique that is performed differently, was pro-
posed by Rückert et al. in (Rückert and Kramer 2007). Using a stochastic
random walk, the authors propose mining class-correlating graph patterns, and
iterating this process, maximizing a measure trading off class-correlation and
similarity to patterns mined before. Those patterns are then shown experimen-
tally to be more suitable for classification tasks, leading to smaller feature sets,
better performance or both.

In a slightly different vein are the nFoil and kFoil approaches by Landwehr
et al. (Landwehr et al. 2005, Landwehr et al. 2006). The goal of these works is
the induction of clauses in first-order logic. The authors consider the task to be
dynamic propositionalization and induce the clauses iteratively. The quality of
new candidates is evaluated by the performance of the candidate pattern (that
is clausal) sets in a classifier (Näıve Bayes and an SVM, respectively). In
contrast, in our formulation of the iterative pattern set mining task, patterns
are (explicitly or implicitly) evaluated in terms of the instances they cover, not
by their usefulness. The main ideas of both approaches are the same, however.
Specifically, the approaches by Landwehr et al. use a heuristic method (beam
search) for local pattern mining, possibly a direction for future research.

As we have argued before, iterative pattern set mining is inherently greedy
since in the pattern set step not all possible extensions to the pattern set are
explored. As we have hinted already in Section 6.1.2, however, this greedy
technique could be extended to, for instance, a beam-search at the pattern set
level as well – at the cost of increased computational complexity.

Part IV

Round-up

203

Summary and Future Work

In the introduction to this thesis, we sketched the KDD process and the role
data mining plays in it. The goal of of KDD is finding “valid, novel, potentially
useful and ultimately useful” patterns. While finding valid and novel patterns
is topic that has been given extensive attention during the last two decades, the
question of understandability has been less well researched.

To solve the problem of finding understandable pattern sets, we propose an
additional data mining task, supplementing that of local pattern mining, the
task of pattern set mining. This thesis is the first to explore the problem of
pattern set mining in a principled and systematic way. Pattern set mining is
becoming more important due to the efficient pattern mining techniques that
exist in data mining and the need to organize the large result sets of local pattern
mining operations. Depending on the tasks addressed, different characteristics
of pattern sets are desired but a common theme is that such sets should be as
small as possible, while still useful and interpretable.

Nevertheless, pattern set mining has been addressed before. Especially in
the machine learning literature, but also in data mining systems that have been
applied to tasks such as concept learning/classification, a variety of pattern
set mining approaches has been proposed. Accordingly, there exist systems
for concept learning, subgroup discovery, association rule summarization, and
clustering that all perform pattern set mining, some as a post-processing step to
local pattern mining, some integrated with local pattern mining. In most cases,
however, pattern set mining has been presented as part of the overall system,
that is, coupled to a specific local pattern mining technique. This integration has
made it hard to identify pattern set mining as a separate task and to actively
develop fitting solutions to the problem. Our work aimed at alleviating this
situation.

Arguably the biggest obstacle to the development of dedicated pattern set
mining techniques was that pattern set mining did not exist as a well-defined
task, making it difficult to analyze and improve existing techniques, to see the
relationships between such techniques, and to develop new ones. That is why we
contributed a framework for pattern set mining in Chapter 1, to overcome this
issue. To the best of our knowledge, this is the first time that such a framework
has been proposed. Formulating pattern set mining as a distinct data mining
task has provided us with a framework to reason about existing approaches and
suggest directions of future research.

205

206 SUMMARY AND FUTURE WORK

Different types of pattern sets

One of the key points of the framework is the realization that pattern sets can
be grouped into three general groups, cf. Section 1.3.1:

• Unordered sets, which can be employed very flexibly since apart from
the fact that they are somehow related to each other, due to being in
the same pattern set, no restrictions on their interpretation exist. An
unordered pattern set can, for instance, be a set of mined features that
is used to represent data, or a set of unordered predictive rules that are
combined via a voting strategy. This flexibility is traded off against the
fact that unordered pattern sets cannot be mined by all pattern set mining
techniques, while ordered and tree sets can be derived from unordered sets,
given the right (partial) order.

• Ordered sets, in which each pattern’s membership in the pattern set, and
therefore their interpretation, is explicitly or implicitly influenced by the
patterns that occur earlier it in the order. To a certain degree can this
order can be helpful in interpreting patterns since it provides a context.
On the other hand, this means that only the first pattern can be considered
on its own. A common example for ordered sets are decision lists in which
the first predictive rules that matches an instance predicts its class. The
order that is imposed on the set can arise during the local pattern mining
or pattern set mining step or be imposed afterwards, which also means
that unordered sets can be turned into ordered ones.

• Tree sets, in which each pattern is influenced by its direct successor and
this pattern’s successors but in which patterns can be included that have
no clear relation to each other. A decision tree is an example for a tree set,
as are clustering trees. Tree sets can be ordered sets but not vice versa.

Each of these pattern set types lends itself to different interpretations and
therefore different tasks. Additionally, not all of the existing pattern set mining
approaches allows the mining of all types of pattern sets. We proposed a novel
general exhaustive post-processing algorithm for mining unordered sets, the
type of pattern set that has been considered least in the literature so far. This
technique extends existing exhaustive approaches, making it possible to enforce
a wider selection of constraints. It can therefore be used as an alternative to
current solutions.

Certain heuristic techniques are well suited to mining ordered sets by post-
processing, as we discussed in our work. Many of these techniques use an order
on the result set of a local pattern mining operation to make pattern set mining
computationally feasible. These orders are usually fixed, however, and while
they are typically well-motivated, different choices remain possible. We pro-
posed and evaluated the effects of different orders in several cases. Interpreting
the results allowed us to suggest possible alternatives to existing choices in
terms of used orders. Additionally, the use of orders can be forgone completely
if, for instance, upper-bound calculations support the greedy mining process.

SUMMARY 207

We showed how to modify ordered pattern set mining in this way and that the
results abstract from the effects of heuristic parameters.

Exhaustive versus heuristic mining

In the case of post-processing of a local pattern mining operation, which is the
currently typical data mining method of pattern set mining, heuristic mining
leads to pattern sets of high quality, trading this quality off against efficiency, of
course. This trade-off is necessary since the problem of combinatorial explosion,
already pronounced in local pattern mining, becomes even worse for pattern sets.

The question of whether to use exhaustive or heuristic search is not only of
interest in post-processing but also has to be considered when iterative pattern
set mining is performed. In iterative pattern set mining, local pattern mining
is performed repeatedly and the results combined into a pattern set. This leads
to two questions whose interplay has an effect on the efficiency and effectiveness
of iterative pattern set mining:

1. Does exhaustive local pattern mining lead to a more computationally
costly pattern set mining operation?

2. Does heuristic local pattern mining lead to pattern sets approaching an
optimal solution for the task at hand?

Iterative mining techniques originate in the machine learning community and
have been proposed together with heuristic local pattern mining steps, which
means that information about the effect of using exhaustive local pattern mining
is rare. We added to the knowledge about this issue by comparing heuristic and
exhaustive local pattern mining in several settings.

Two main insights can be derived from our experimental results. The first,
new and surprising finding that arose is that exhaustive techniques are not at
a disadvantage computationally. Instead, exhaustive mining often had lower
computational complexity, and, additionally, give guarantees about the quality
of mined patterns. This is connected to our second finding, that sequential
covering is effective in mining a pattern set that is well-suited to the task at
hand. Even though this advantage is less pronounced for descriptive tasks, for
instance subgroup discovery, this strongly implies the applicability of sequential
mining for pattern set mining purposes.

Post-processing versus iterative mining

This insight brings us to the final experimental aspect of our thesis. As we
showed in our experimental evaluations, iterative mining allows us to assemble
pattern sets that are very useful for the tasks for which they have been mined,
be they predictive or descriptive. Iterative mining leads to smaller pattern sets,
aiding understandability, that still have good accuracy if used as a classifier, or
give a good description of the data.

208 SUMMARY AND FUTURE WORK

Especially when combined with the exhaustive approaches to local pattern
mining we discussed in this work, iterative mining shows a lot of potential and
promises to be a very useful approach towards mining understandable, useful
pattern sets from data.

Main contributions

So in summarizing the main contributions of our work:

1. We proposed a framework supplying the vocabulary needed for discussing
pattern set mining and used it to characterize existing pattern set mining
approaches and propose new ones.

2. Based on this analysis, we proposed improvements to pattern set mining
techniques. These improvements range from upgrades, as in proposing
a general exhaustive pattern set mining algorithm, to modifications, for
instance to heuristic parameters used or the type of local pattern mining
operation involved.

3. By experimentally evaluating these improvements, we gained understand-
ing about the issues facing such modifications and collected evidence point-
ing towards the applicability of exhaustive local pattern mining and, more
general, the use of iterative techniques for pattern set mining.

A smaller contribution lies in that the insights gained by our application and
modification of sequential and parallel covering to pattern set mining can be
applied to the areas in which these paradigms originate. They can be employed
to gain a deeper understanding of the relation between local pattern mining
and model formation, and issues regarding the effectiveness of these learning
techniques.

Future Work

The framework we introduced allowed us to analyze pattern set mining tech-
niques and particularly to decompose numerous existing techniques into their
local pattern mining and pattern set mining components. While we used the
experimental part of our work to explore different aspects of pattern set algo-
rithms, the issues we highlighted do not exhaust the topic by far.

The main research direction for pattern set mining techniques concerns an
approach that we have only encountered in a few, successful systems. Krimp,
Ripper, ORIGAMI, and the technique proposed in (Rückert and Kramer 2007)
all perform neighborhood search to a certain degree. This is a way of controlling
computational complexity that differs from both heuristic post-processing and
iterative mining. Since the interactions among patterns are often more complex
than among components of a single pattern, this might very well be a better
approach to traversing the search space than the uni-directional enumeration
used in most existing pattern set mining techniques. To develop effective local

FUTURE WORK 209

search methods for pattern set mining, it will be necessary to draw inspiration
from the field of constrained local search, a research area that so far has had
little impact on data mining.

The techniques we have described in our work should not be abandoned,
however. In the conclusions to our experimental evaluations, we identified di-
rections of improvement of current approaches that could be pursued in the
future. The main directions could be, in no particular order:

• The improvement of iterative mining techniques for pattern set mining.
This includes in particular the adaptation of iterative mining for unsu-
pervised mining tasks and an increase in the complexity of the patterns
that can be mined in each iteration. Such an approach could, after each
iteration, split the data into equivalence classes, for instance, and iterate
mining on each of them.

• The development of techniques that are situated between exhaustive and
pure hill-climbing for pattern set mining. Exhaustive mining adopts a
strategy of enumerating all pattern sets satisfying certain constraints and
selecting the best one according to a quality measure. Hill-climbing, on the
other hand, extends only a single pattern set and has therefore few mecha-
nisms of escaping local optima. Adapting known heuristic techniques such
as beam search will allow to efficiently mine pattern sets while at the same
time improving the chance for reaching global optima.

• The improvement of the algorithmic details of existing exhaustive and
heuristic techniques. In the exhaustive case this would, for instance, take
the form of more effective constraints and specialized data structures. In
heuristic mining this could, for instance, lead to developing upper-bound
ordered alternatives to order-restricted hill-climbing.

Additionally, there are other techniques from the machine learning field for
mining meaningful sets of patterns, chief among them different ways to exploit
the data, such as in the Boosting and Bagging frameworks. The standard data
mining setting, which we adhered to throughout the entire thesis, is to use the
entire data available for mining and to perform the mining operation just once.
In work that we did not report in detail here (Zimmermann and Bringmann
2009), we did some preliminary explorations in this direction. The insights we
derived, that random selection can outperform aggregated quality measures, and
that Bagging-like resampling is less useful than having independent subsets for
mining, were somewhat surprising. They also indicate that a straight-forward
application of machine learning techniques that use only parts of the data to
pattern set mining is not always possible and different methods have to be
developed.

The work we reported in this thesis has been largely experimental and while
it resulted in several new insights, a theoretical analysis of these issues is cer-
tainly of interest. That exhaustive techniques are viable alternatives for mining
operations that have only been approached heuristically so far, for instance, also

210 SUMMARY AND FUTURE WORK

means that benchmarks regarding the quality of solutions can be established.
In machine learning, principled usage of data allows one to give guarantees
about the quality of resulting models. In data mining, on the other hand, a
theory of the quality of found solutions that could be similar to computational
learning theory, is almost completely absent so far. Notable exceptions include
(Toivonen 1996) and (Scheffer and Wrobel 2002), which explored the use of
sampling from databases for local pattern mining and derived bounds on the
quality of resulting patterns. To this end, they modified the usual formulation
of the PAC (probably approximately correct) framework to accommodate de-
scriptive mining. A direct application of the framework can be found in (Kudo
et al. 2004), where the theoretical foundations of LPBoost are used to mine
predictive graph patterns. An integration of such results and the derivation
of additional theoretical relationships is still missing however, and would im-
prove the understanding of pattern and pattern set mining the development of
effective techniques.

A main problem for the post-processing approaches we discussed is hat all
patterns mined in the local pattern mining step refer to a single background dis-
tribution, without recourse to other patterns. In iterative mining this problem
is addressed but the solution constrains iterative mining to greedy approaches.
The non-greedy alternative would ask for the extension of a pattern set with all
possible patterns in each iteration, quickly leading to an combinatorial explo-
sion due to the implicit enforcement of pattern set constraints. In both cases,
however, a re-formulation of pattern set constraints as constraints for local pat-
terns could be the solution to this problem, an approach that would be aided
by theoretical results of the kind described in the preceding paragraph. The
final goal of research in this direction would be direct mining of pattern sets in
a single pass, using neither post-processing nor iterative mining.

There is no clear-cut answer to where to eat, since there is “no free lunch”
after all (Wolpert et al. 1995). But we can make informed decisions about
our choices and we hope that this thesis has given a general idea of how to
make them. We are sophisticated now and we should act like it – mining sets of
patterns is indispensable when it comes to discovering knowledge from databases
and the better we are at doing it, the more valuable the results will be.

Bibliography

Adams, D.: 1979, The Hitchhiker’s Guide to the Galaxy, Pan Books.

Agrawal, R., Imielinski, T. and Swami, A. N.: 1993, Mining association rules
between sets of items in large databases, in P. Buneman and S. Jajodia
(eds), Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, ACM Press, pp. 207–216.

Agrawal, R. and Srikant, R.: 1994, Fast algorithms for mining association
rules in large databases, Proceedings of the 20th International Conference
on Very Large Databases, Morgan Kaufmann, Santiago de Chile, Chile,
pp. 487–499.

Blake, C. and Merz, C.: 1998, UCI repository of machine learning databases.
URL: http://www.ics.uci.edu/∼mlearn/MLRepository.html

Blockeel, H., Raedt, L. D. and Ramon, J.: 1998, Top-down induction of cluster-
ing trees, in J. W. Shavlik (ed.), Proceedings of the Fifteenth International
Conference on Machine Learning, Morgan Kaufmann, pp. 55–63.

Borgelt, C.: 2004, Recursion pruning for the apriori algorithm., in R. J. B. Jr.,
B. Goethals and M. J. Zaki (eds), Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations.

Boulicaut, J.-F. and Jeudy, B.: 2001, Mining free itemsets under constraints.,
in M. E. Adiba, C. Collet and B. C. Desai (eds), International Database
Engineering & Applications Symposium, IDEAS ’01, pp. 322–329.

Breiman, L.: 1996, Bagging predictors, Machine Learning 24(2), 123–140.

Breiman, L.: 2001, Random forests, Machine Learning 45(1), 5–32.

Bringmann, B. and Karwath, A.: 2004, Frequent SMILES, Ler-
nen,Wissensentdeckung und Adaptivität,Workshop GI Fachgruppe
Maschinelles Lernen, LWA.

Bringmann, B. and Zimmermann, A.: 2005, Tree2 - Decision trees for tree struc-
tured data., in A. Jorge, L. Torgo, P. Brazdil, R. Camacho and J. Gama
(eds), 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases, Springer, pp. 46–58.

211

212 BIBLIOGRAPHY

Bringmann, B. and Zimmermann, A.: 2007, The chosen few: On identifying
valuable patterns, in Ramakrishnan and Zaiane (2007), pp. 63–72.

Bringmann, B. and Zimmermann, A.: 2009, One in a million: picking the right
patterns, Knowledge and Information Systems 18(1), 61–81.

Bringmann, B., Zimmermann, A., De Raedt, L. and Nijssen, S.: 2006, Don’t be
afraid of simpler patterns, in Fürnkranz et al. (2006), pp. 55–66.

Bucila, C., Gehrke, J., Kifer, D. and White, W.: 2002, DualMiner: A dual-
pruning algorithm for itemsets with constraints, Proceedings of The Eight
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Edmonton,Alberta,Canada.

Calders, T. and Goethals, B.: 2002, Mining all non-derivable frequent itemsets.,
in T. Elomaa, H. Mannila and H. Toivonen (eds), Principles of Data Mining
and Knowledge Discovery, 6th European Conference, Springer, pp. 74–85.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W. and Freeman, D.:
1988, Autoclass: A Bayesian classification system, in J. E. Laird (ed.),
Proceedings of the Fifth International Conference on Machine Learning,
Morgan Kaufmann, Ann Arbor, Michigan, USA, pp. 54–64.

Cheng, H., Yan, X., Han, J. and Hsu, C.-W.: 2007, Discriminative frequent
pattern analysis for effective classification, Proceedings of the 23rd Inter-
national Conference on Data Engineering, IEEE, pp. 716–725.

Cheng, H., Yan, X., Han, J. and Yu, P. S.: 2008, Direct discriminative pat-
tern mining for effective classification, Proceedings of the 24th International
Conference on Data Engineering, IEEE, pp. 169–178.

Clark, P. and Niblett, T.: 1989, The CN2 induction algorithm, Machine Learn-
ing 3, 261–283.

Cohen, W. W.: 1995, Fast effective rule induction, in A. Prieditis and S. J. Rus-
sell (eds), Proceedings of the Twelfth International Conference on Machine
Learning, Morgan Kaufmann, Tahoe City, California,USA, pp. 115–123.

Daylight Chemical Information Systems,Inc.: 2004, http://www.daylight.com/.

De Raedt, L. and Kramer, S.: 2001, The level wise version space algorithm and
its application to molecular fragment finding, in B. Nebel (ed.), Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, pp. 853–862.

De Raedt, L. and Zimmermann, A.: 2007, Constraint-based pattern set min-
ing, Proceedings of the Seventh SIAM International Conference on Data
Mining, SIAM.

Demiriz, A., Bennett, K. P. and Shawe-Taylor, J.: 2002, Linear programming
boosting via column generation, Machine Learning 46(1-3), 225–254.

BIBLIOGRAPHY 213

Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P. S. and
Verscheure, O.: 2008, Direct mining of discriminative and essential frequent
patterns via model-based search tree, in Y. Li, B. Liu and S. Sarawagi
(eds), Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, pp. 230–238.

Fayyad, U. M. and Irani, K. B.: 1993, Multi-interval discretization of
continuous-valued attributes for classification learning, Proceedings of the
13th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, Chambéry,France, pp. 1022–1029.

Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P.: 1996, From data mining
to knowledge discovery in databases, AI Magazine 17(3), 37–54.

Fisher, D. H.: 1987, Knowledge acquisition via incremental conceptual cluster-
ing, Machine Learning 2(2), 139–172.

Fisher, D. H.: 1996, Iterative optimization and simplification of hierarchical
clusterings., Journal of Artificial Intelligence Research (JAIR) 4, 147–178.

Frank, E. and Witten, I. H.: 1999, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, Morgan Kaufmann.

Freund, Y. and Schapire, R. E.: 1997, A decision-theoretic generalization of
on-line learning and an application to boosting, Journal of Computer and
System Sciences 55(1), 119–139.

Freund, Y. and Shapire, R.: 1996, Experiments with a new boosting algorithm,
in L. Saitta (ed.), Proceedings of the 13th International Conference on
Machine Learning, Morgan Kaufmann, pp. 148–156.

Fürnkranz, J. and Flach, P. A.: 2005, ROC ’n’ rule learning-towards a better
understanding of covering algorithms., Machine Learning 58(1), 39–77.

Fürnkranz, J., Scheffer, T. and Spiliopoulou, M. (eds): 2006, Knowledge Dis-
covery in Databases: PKDD 2006,10th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases, Berlin, Germany,
September 18-22, 2006, Proceedings, Springer.

Galiano, F. B., Cubero, J. C., Sánchez, D. and Serrano, J.-M.: 2004, ART: A
hybrid classification model, Machine Learning 54(1), 67–92.

Gamberger, D. and Lavrač, N.: 2000, Confirmation rule sets, in D. A. Zighed,
H. Komorowski and J. M. Zytkow (eds), Proceedings of the 4th Euro-
pean Conference on Principles of Data Mining and Knowledge Discovery,
Springer, Lyon, France, pp. 34–43.

Gamberger, D. and Lavrac, N.: 2002, Expert-guided subgroup discovery:
Methodology and application, Journal of Artificial Intelligence Research
(JAIR) 17, 501–527.

214 BIBLIOGRAPHY

Geamsakul, W., Matsuda, T., Yoshida, T., Motoda, H. and Washio, T.:
2003, Performance evaluation of decision tree graph-based induction., in
G. Grieser, Y. Tanaka and A. Yamamoto (eds), Discovery Science, 6th
International Conference, Springer, Sapporo, Japan, pp. 128–140.

Gluck, M. A. and Corter, J. E.: 1985, Information, uncertainty, and the util-
ity of categories, Proceedings of the 7th Annual Conference of the Cogni-
tive Science Society, Lawrence Erlbaum Associate, Irvine, California, USA,
pp. 283–287.

Guyon, I. and Elisseeff, A.: 2003, An introduction to variable and feature selec-
tion, Journal of Machine Learning Research 3, 1157–1182.

Han, J., Cheng, H., Xin, D. and Yan, X.: 2007, Frequent pattern mining: current
status and future directions, Data Min. Knowl. Discov. 15(1), 55–86.

Han, J., Pei, J. and Yin, Y.: 2000, Mining frequent patterns without candidate
generation, Proceedings of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, ACM, Dallas,Texas,USA, pp. 1–12.

Hasan, M. A., Chaoji, V., Salem, S., Besson, J. and Zaki, M. J.: 2007, Origami:
Mining representative orthogonal graph patterns, in Ramakrishnan and
Zaiane (2007), pp. 153–162.

Höppner, F.: 2004, Local pattern detection and clustering, in K. Morik, J.-F.
Boulicaut and A. Siebes (eds), Proceedings of the Dagstuhl Workshop on
Detecting Local Patterns, Springer, Dagstuhl Castle, Germany, pp. 53–70.

Karwath, A. and De Raedt, L.: 2004, Predictive graph mining, in E. Suzuki
and S. Arikawa (eds), Proceedings of the 7th International Conference on
Discovery Science, Springer, Padova, Italy, pp. 1–15.

Kifer, D., Gehrke, J., Bucila, C. and White, W. M.: 2003, How to quickly find
a witness., Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM, pp. 272–
283.

Kilpeläinen, P.: 1992, Tree Matching Problems with Applications to Structured
Text Databases, PhD thesis, University of Helsinki.

King, R. D., Sternberg, M. J. E. and Srinivasan, A.: 1995, Relating chemical
activity to structure: An examination of ILP successes., New Generation
Comput. 13(3&4), 411–433.

Knobbe, A., Crémilleux, B., Fürnkranz, J. and Scholz, M.: 2008, From local pat-
terns to global models: The lego approach to data mining, in J. Fürnkranz
and A. Knobbe (eds), From Local Patterns to Global Models: Proceedings
of the ECML/PKDD-08 Workshop, pp. 1–16.

BIBLIOGRAPHY 215

Knobbe, A. J. and Ho, E. K. Y.: 2006a, Maximally informative k-itemsets and
their efficient discovery., in T. Eliassi-Rad, L. H. Ungar, M. Craven and
D. Gunopulos (eds), KProceedings of the Twelfth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data MiningDD, ACM,
pp. 237–244.

Knobbe, A. J. and Ho, E. K. Y.: 2006b, Pattern teams, in Fürnkranz et al.
(2006), pp. 577–584.

Kohavi, R. and Kunz, C.: 1997, Option decision trees with majority votes, in
D. H. Fisher (ed.), Proceedings of the Fourteenth International Conference
on Machine Learning, Morgan Kaufmann, pp. 161–169.

Kudo, T., Maeda, E. and Matsumoto, Y.: 2004, An application of boosting to
graph classification, Advances in Neural Information Processing Systems
17.

Landwehr, N., Kersting, K. and De Raedt, L.: 2005, nFOIL: Integrating Näıve
Bayes and FOIL, in M. M. Veloso and S. Kambhampati (eds), The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, AAAI Press
/ The MIT Press, pp. 795–800.

Landwehr, N., Passerini, A., De Raedt, L. and Frasconi, P.: 2006, kFOIL:
Learning simple relational kernels, Proceedings of The Twenty-First Na-
tional Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, AAAI Press.

Lavrač, N., Kavsek, B., Flach, P. A. and Todorovski, L.: 2004, Subgroup dis-
covery with CN2-SD., Journal of Machine Learning Research 5, 153–188.

Li, W., Han, J. and Pei, J.: 2001, CMAR: Accurate and efficient classification
based on multiple class-association rules, in N. Cercone, T. Y. Lin and
X. Wu (eds), Proceedings of the 2001 IEEE International Conference on
Data Mining, IEEE Computer Society, San José, California, USA, pp. 369–
376.

Liu, B., Hsu, W. and Ma, Y.: 1998, Integrating classification and association
rule mining, in R. Agrawal, P. E. Stolorz and G. Piatetsky-Shapiro (eds),
Proceedings of the Fourth International Conference on Knowledge Discov-
ery and Data Mining, AAAI Press, New York City, New York, USA, pp. 80–
86.

Liu, H. and Motoda, H.: 1998, Feature Selection for Knowledge Discovery and
Data Mining, Kluwer Academic Publishers, Norwell,MA,USA.

Mannila, H. and Toivonen, H.: 1997, Levelwise search and borders of theories in
knowledge discovery, Data Mining and Knowledge Discovery 1(3), 241–258.

216 BIBLIOGRAPHY

McGarry, K.: 2005, A survey of interestingness measures for knowledge discov-
ery, The Knowledge Engineering Review 20(1), 39–61.

Michalski, R. S. and Stepp, R. E.: 1983, Learning from observation: Conceptual
clustering, Machine Learning, An Artificial Intelligence Approach 1, 331–
363.

Mitchell, T.: 1997, Machine Learning, McGraw-Hill.

Murthy, S. K.: 1997, On Growing Better Decision Trees from Data, PhD thesis,
John Hopkins University, Baltimore,Maryland,USA.

Nevins, A. J.: 1995, A branch and bound incremental conceptual clusterer.,
Machine Learning 18(1), 5–22.

Ng, R. T., Lakshmanan, L. V. S., Han, J. and Pang, A.: 1998, Exploratory min-
ing and pruning optimizations of constrained associations rules, Proceedings
of the ACM-SIGMOD Conference on Management of Data, pp. 13–24.

Perkowitz, M. and Etzioni, O.: 1999, Adaptive web sites: Conceptual cluster
mining., in T. Dean (ed.), Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, Stockholm, Swe-
den, pp. 264–269.

Quinlan, J. R.: 1990, Learning logical definitions from relations., Machine
Learning 5, 239–266.

Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning, Morgan Kauf-
mann.

Ramakrishnan, N. and Zaiane, O. (eds): 2007, Proceedings of the 7th IEEE
International Conference on Data Mining (ICDM 2007), October 28-31,
2007, Omaha, Nebraska, USA, IEEE Computer Society.

Rückert, U. and Kramer, S.: 2007, Optimizing feature sets for structured data,
in J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic
and A. Skowron (eds), 18th European Conference on Machine Learning,
Vol. 4701 of Lecture Notes in Computer Science, Springer, pp. 716–723.

Russell, S. J. and Norvig: 2003, Artificial Intelligence: A Modern Approach
(Second Edition), Prentice Hall.

Scheffer, T. and Wrobel, S.: 2002, Finding the most interesting patterns in a
database quickly by using sequential sampling, Journal of Machine Learn-
ing Research 3, 833–862.

Sese, J. and Morishita, S.: 2004, Itemset classified clustering, in J.-F. Boulicaut,
F. Esposito, F. Giannotti and D. Pedreschi (eds), Proceedings of the 8th
European Conference on Principles of Data Mining and Knowledge Dis-
covery, Springer, Pisa,Italy, pp. 398–409.

BIBLIOGRAPHY 217

Shima, Y., Hirata, K. and Harao, M.: 2005, Extraction of frequent few-
overlapped monotone dnf formulas with depth-first pruning., in T. B. Ho,
D. Cheung and H. Liu (eds), Advances in Knowledge Discovery and Data
Mining, 9th Pacific-Asia Conference, Vol. 3518 of Lecture Notes in Com-
puter Science, Springer, pp. 50–60.

Siebes, A., Vreeken, J. and van Leeuwen, M.: 2006, Item sets that compress., in
J. Ghosh, D. Lambert, D. B. Skillicorn and J. Srivastava (eds), Proceedings
of the Sixth SIAM International Conference on Data Mining, SIAM.

Silberschatz, A. and Tuzhilin, A.: 1996, What makes patterns interesting in
knowledge discovery systems, IEEE Transactions on Knowledge and Data
Engineering 8(6), 970–974.

Srinivasan, A., Muggleton, S., King, R. and Sternberg, M.: 1994, Mutagene-
sis: ILP experiments in a non-determinate biological domain, in S. Wro-
bel (ed.), Proceedings of the 4th International Workshop on Inductive
Logic Programming, Vol. 237, Gesellschaft für Mathematik und Datenver-
arbeitung MBH, pp. 217–232.

Taouil, R., Pasquier, N., Bastide, Y. and Lakhal, L.: 2000, Mining bases for
association rules using closed sets., Proceedings of the 16th International
Conference on Data Engineering, IEEE Computer Society, p. 307.

The OpenBabel Software Community: 2003, Open Babel,
http://openbabel.sourceforge.net/.

Toivonen, H.: 1996, Sampling large databases for association rules, in T. M.
Vijayaraman, A. P. Buchmann, C. Mohan and N. L. Sarda (eds), Proceed-
ings of 22th International Conference on Very Large Data Bases, Morgan
Kaufmann, pp. 134–145.

van Leeuwen, M., Vreeken, J. and Siebes, A.: 2006, Compression picks item sets
that matter, in Fürnkranz et al. (2006), pp. 585–592.

Vens, C., Struyf, J., Schietgat, L., Dzeroski, S. and Blockeel, H.: 2008, De-
cision trees for hierarchical multi-label classification, Machine Learning
73(2), 185–214.

Weininger, D.: 1988, SMILES,a chemical language and information system 1. In-
troduction and encoding rules, Journal of Chemical Information and Com-
puter Science 28, 31–36.

Wolpert, D. H., Macready, W. G., H, D. and G, W.: 1995, No free lunch
theorems for search.

Wrobel, S.: 1997, An algorithm for multi-relational discovery of subgroups,
in J. Komorowski and J. Zytkow (eds), Proceedings of the First Euro-
pean Symposium on Principles of Data Mining and Knowledge Discovery
(PKDD ’97), Springer-Verlag, Trondheim, Norway, pp. 78 – 87.

218 BIBLIOGRAPHY

Wu, T., Chen, Y. and Han, J.: 2007, Association mining in large databases:
A re-examination of its measures, in J. N. Kok, J. Koronacki, R. L.
de Mántaras, S. Matwin, D. Mladenic and A. Skowron (eds), Proceedings
of the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, Vol. 4702 of Lecture Notes in Computer Science,
Springer, pp. 621–628.

Yin, X. and Han, J.: 2003, Cpar: Classification based on predictive association
rules, in D. Barbará and C. Kamath (eds), Proceedings of the Third SIAM
International Conference on Data Mining, SIAM.

Zaki, M. J. and Aggarwal, C. C.: 2003, XRules: an effective structural classifier
for XML data., in L. Getoor, T. E. Senator, P. Domingos and C. Faloutsos
(eds), Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, Washington, DC, USA,
pp. 316–325.

Zimmermann, A.: 2008, Ensemble-trees: Leveraging ensemble power inside de-
cision trees, in J.-F. Boulicaut, M. R. Berthold and T. Horváth (eds), Dis-
covery Science, 11th International Conference, Vol. 5255 of Lecture Notes
in Computer Science, Springer, pp. 76–87.

Zimmermann, A. and Bringmann, B.: 2005, Ctc - correlating tree patterns for
classification, in J. Han, B. W. Wah, V. Raghavan, X. Wu and R. Rastogi
(eds), Proceedings of the Fifth IEEE International Conference on Data
Mining, IEEE, Houston, Texas, USA, pp. 833–836.

Zimmermann, A. and Bringmann, B.: 2009, Aggregated subset mining, in
T. Theeramunkong, B. Kijsirikul, N. Cercone and T. B. Ho (eds), Advances
in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference,
Vol. 5476 of Lecture Notes in Computer Science, Springer, pp. 664–672.

Zimmermann, A. and De Raedt, L.: 2009, Cluster-Grouping: From subgoup
discovery to clustering, Machine Learning Journal . Accepted for publica-
tion.

Publication List

Journal Articles

• Albrecht Zimmermann and Luc De Raedt. Cluster-Grouping: From Sub-
goup Discovery to Clustering. Machine Learning Journal, 2009. Accepted
for publication

• Björn Bringmann and Albrecht Zimmermann. One in a Million: Picking
the Right Patterns. Knowledge and Information Systems 18 (1), pp. 61–
81, 2009.

Conferences and Workshops, Published in Pro-

ceedings

• Albrecht Zimmermann and Björn Bringmann. Aggregated Subset Min-
ing (Short Paper). In Proceedings of the 13th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining (PAKDD 2009),
Bangkok, Thailand, 2009, volume 5476 of Lecture Notes in Computer Sci-
ence, pp. 664–672, Springer.

• Albrecht Zimmermann. Ensemble-Trees: Leveraging Ensemble Power In-
side Decision Trees. In Proceedings of the 11th International Conference
on Discovery Science (DS 2008), Budapest, Hungary, 2008, volume 5255
of Lecture Notes in Computer Science, pp. 76–87, Springer.

• Björn Bringmann and Albrecht Zimmermann. The Chosen Few: On Iden-
tifying Valuable Patterns. In Proceedings of the 7th IEEE International
Conference on Data Mining (ICDM 2007), Omaha, Nebraska, USA, 2007,
pp. 63–72, IEEE Computer Society.

• Luc De Raedt and Albrecht Zimmermann. Constraint-Based Pattern Set
Mining. In Proceedings of the Seventh SIAM International Conference on
Data Mining (SDM 2007), Minneapolis, Minnesota, USA, 2007, SIAM.

• Björn Bringmann and Albrecht Zimmermann and Luc De Raedt and
Siegfried Nijssen. Don’t Be Afraid of Simpler Patterns. In Proceedings of

219

220 PUBLICATION LIST

the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2006), Berlin, Germany, 2006, pp. 55–66,
volume 4213 of Lecture Notes in Computer Science, Springer.

• Albrecht Zimmermann and Björn Bringmann. CTC - Correlating Tree
Patterns for Classification(Short Paper). In Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM 2005), Houston, Texas,
USA, 2005, pp. 833–836, IEEE Computer Society.

• Björn Bringmann and Albrecht Zimmermann. Tree2 - Decision Trees for
Tree Structured Data. In Lernen, Wissensentdeckung und Adaptivität
(LWA) 2005, GI Workshops, Saarbrücken, Germany, 2005, pp. 139–144,
DFKI.

• Björn Bringmann and Albrecht Zimmermann. Tree2 - Decision Trees for
Tree Structured Data. In Proceedings of the 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD
2005), Porto, Portugal, 2005, pp. 46–58, volume 3721 of Lecture Notes in
Computer Science, Springer.

• Albrecht Zimmermann and Luc De Raedt. CorClass: Correlated Associ-
ation Rule Mining for Classification. In Proceedings of the 7th Interna-
tional Conference on Discovery Science (DS 2004), Padova, Italy, 2004,
pp. 60–72, volume 3245 of Lecture Notes in Computer Science, Springer.

• Albrecht Zimmermann and Luc De Raedt. Cluster-Grouping: From Sub-
group Discovery to Clustering (Extended Abstract). In Proceedings of the
15th European Conference on Machine Learning (ECML 2004), Pisa, Italy,
2004, pp. 575–577, volume 3201 in Lecture Notes in Computer Science,
Springer.

Book Chapters

• Albrecht Zimmermann and Luc De Raedt. Inductive Querying for Dis-
covering Subgroups and Clusters. In Jean-François Boulicaut and Luc De
Raedt and Heikki Mannila (Eds.): Constraint-Based Mining and Inductive
Databases, volume 3848 of Lecture Notes in Computer Science, Springer.

Biography

Albrecht Zimmermann was born on March 24, 1976, in Leipzig, Germany. He
attended the Ernst-Thälmann-Schule and the mathematically-natural-science
specialized Wilhelm-Ostwald-Gymnasium in Leipzig. After moving to Bremen
in 1993, he graduated with “Abitur” from the Schulzentrum Sekundarstufe II
”Lange Reihe” in June 1995. Following compulsory civil service, he began
studying computer science at the Philipps-Universität in Marburg, Germany,
in October 1996. After obtaining the “Vordiplom” in August 1998, he spent
two semesters at the University of Tennessee in Knoxville, TN, USA, and after
returning, resumed his studies at the Albert-Ludwigs-Universität in Freiburg,
Germany. He received his “Diplom” in computer science in July 2003, and
joined the machine learning group in Freiburg to begin Ph.D. work in the area
of pattern mining, supervised by Prof. Luc De Raedt. In January 2007, he relo-
cated with the group of Prof. Luc De Raedt to the DTAI (Declarative Talen en
Artificiëele Intelligetie) group at the Katholieke Universiteit Leuven, Belgium.
In May 2009, he will defend his Ph.D. thesis on “Mining Sets of Patterns” at
the Katholieke Universiteit Leuven.

221

