

Laurent Mertens
Dept. Of Computer Sciences
laurent.mertens@kuleuven.be

Co-authored with Elahe' Yargholi, Jan Van den Stock, Hans Op de Beeck, Joost Vennekens

Color-Dependent Prediction Stability of Popular CNN Image Classification Architectures

Question: do you think this image represents something different than the images to its right?

Hue shift=30, label=mortarboard

If you answered "no", you disagree with AlexNet, which provided the shown labels!

Turns out that when you show color-modified versions of images...

... to popular CNN models ...

...they often alter their predictions!

Table 1. Overview of training and validation data per model. "〈ModelName〉" is a placeholder for a valid architecture, "IN-1k" = ImageNet-1k, "SIN" = Stylized ImageNet, "train" = train data, "val" = validation data.										
Model	Trained on	Validated on								
AlexNet, VGG16, ResNet18/50, DenseNet161	IN-1k train	IN-1k val								
$\langle ModelName \rangle$ -SIN	SIN	IN-1k val								
$\langle ModelName \rangle$ -P365	Places365 train	Places365 val								
EmoNet	IN-1k train + EmoNet	IN-1k val								

How often does the model predict the same label as for the original image, regardless of whether that label was correct?

											_	
	AlexNet	AlexNet SIN	AlexNet P365	EmoNet	VGG16	VGG16 SIN	ResNet18	ResNet18 P365	ResNet50	$rac{ m ResNet50}{ m SIN}$	DenseNet161	DenseNet161 P365
Equal d_{all} Equal $ d \le 30$	$\begin{array}{ c c } .431^{.15} \\ .718^{.10} \end{array}$	$.441^{.14}$ $.709^{.09}$	$.447^{.15}$ $.747^{.09}$	$.489^{.12}$ $.724^{.09}$	$\begin{array}{ c c } .659^{.10} \\ .861^{.05} \end{array}$.581 ^{.12} .803 ^{.06}	$\begin{array}{ c c } .659^{.10} \\ .847^{.05} \end{array}$	$.614^{.11}$ $.830^{.06}$	$\begin{array}{ c c } .800^{.06} \\ .910^{.03} \end{array}$.632 ^{.10} .826 ^{.06}	$\begin{array}{ c c } .759^{.07} \\ .897^{.04} \end{array}$.662 ^{.09} .847 ^{.05}
Equal g_{all} Equal $g \in]0.5, 1.5[\setminus\{1\}]$	$\begin{array}{ c c } .746^{.15} \\ .863^{.07} \end{array}$.786 ^{.13} .883 ^{.06}	$.756^{.15}$ $.872^{.07}$.758 ^{.15} .870 ^{.07}	$\begin{array}{ c c } .883^{.08} \\ .943^{.03} \end{array}$	$.857^{.09}$ $.924^{.04}$	$\begin{array}{ c c } .874^{.09} \\ .937^{.03} \end{array}$	$.842^{.10}$ $.919^{.04}$	$\begin{array}{ c c } .950^{.03} \\ .972^{.01} \end{array}$	$.885^{.08}$ $.940^{.03}$	$\begin{array}{ c c c c c c } .946^{.05} \\ .977^{.01} \end{array}$.863 ^{.09} .929 ^{.04}
$\overline{\text{Top1 } d_0, g_1}$.566	.400	-	-	.716	.522	.697	-	.803	.602	771	-
$ \begin{array}{c} $	$\begin{array}{ c c } .331^{.09} \\ .528^{.15} \\ .305^{.14} \end{array}$.263 ^{.06} .579 ^{.14} .349 ^{.14}	- - -	- - -	$ \begin{array}{ c c } .552^{.07} \\ .732^{.10} \\ .475^{.12} \end{array} $	$.409^{.05}$ $.713^{.10}$ $.437^{.13}$	$\begin{array}{ c c } .548^{.06} \\ .743^{.09} \\ .465^{.12} \end{array}$	- - -	$\begin{array}{ c c } .713^{.04} \\ .857^{.05} \\ .568^{.09} \end{array}$	$.488^{.05}$ $.752^{.09}$ $.451^{.12}$	$\begin{array}{ c c } .661^{.05} \\ .823^{.06} \\ .541^{.10} \end{array}$	- - -
Top1 g_{all} OL+ g_{all} OL- g_{all}	$\begin{array}{ c c } .505^{.06} \\ .855^{.14} \\ .253^{.17} \end{array}$	$.382^{.02}$ $.846^{.14}$ $.345^{.15}$	- - -	- - -	$\begin{array}{ c c } .688^{.04} \\ .917^{.15} \\ .379^{.16} \end{array}$	$.511^{.02}$ $.874^{.14}$ $.361^{.11}$	$\begin{array}{ c c } .668^{.04} \\ .915^{.15} \\ .359^{.14} \end{array}$	- - -	$\begin{array}{ c c } .798^{.01} \\ .938^{.15} \\ .451^{.09} \end{array}$	$.591^{.02}$ $.897^{.15}$ $.362^{.10}$	$\begin{array}{ c c } .762^{.02} \\ .934^{.15} \\ .399^{.10} \end{array}$	- - -
O.P. d_{all} O.P. $ d \le 30$	$\begin{array}{ c c c c c c } 58.5^{122} \\ 10.9^{37} \\ \end{array}$	$40.6^{96} \\ 6.7^{23}$	29.7^{53} 4.9^{13}	3.7^{3} 2.1^{2}	$\begin{array}{ c c c c c } 28.0^{76} \\ 5.2^{18} \end{array}$	$26.5^{73} $ 4.4^{16}	$\begin{array}{ c c c } 25.3^{71} \\ 5.0^{18} \end{array}$	13.0^{29} 2.8^{6}	$\begin{array}{ c c c c c c }\hline 31.6^{119} \\ 6.4^{45} \\ \hline \end{array}$	$24.5^{70} $ 4.2^{14}	$\begin{array}{ c c c }\hline 19.1^{61} \\ 4.0^{15} \\ \hline \end{array}$	9.9^{24} 2.6^{6}
O.P. g_{all} O.P. $g \in]0.5, 1.5[_{\{1\}}]$	$\begin{array}{ c c c c }\hline 11.9^{40} \\ 2.5^5 \end{array}$	$19.8^{55} \\ 18.9^{52}$	$20.0^{44} \\ 19.4^{42}$	$2.3^2 \\ 1.4^1$	$\begin{array}{ c c c c } 5.3^{20} \\ 1.6^2 \end{array}$	4.3^{17} 1.5^{2}	$\begin{vmatrix} 4.9^{18} \\ 1.6^2 \end{vmatrix}$	3.8^{10} 1.5^{1}	$\begin{array}{ c c } 5.5^{23} \\ 5.5^{22} \end{array}$	$11.9^{36} \\ 11.9^{36}$	$\begin{array}{ c c c c } 2.9^{10} \\ 1.2^{1} \end{array}$	2.9^{8} 1.4^{1}

- -Behavior seems independent of training data.
- -Behavior is inherited through transfer learning.
- -Larger architectures appear less sensitive.
- -Effect is more pronounced for images for which the model originally made a wrong prediction.
- -Different label is more than just "flipping second and first place"

(And yes, additional pre-processing during training alleviates the problem...)