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A b s t r a c t .  The availability of freeness and sharing information for logic pro- 
grams has proven useful in a wide variety of applications. However, deriving 
correct freeness and sharing information turns out to be a complex task. In a 
recent paper, Codish et al. introduce a domain of abstract equation systems 
and illustrate the systematic derivation of an abstract unification algorithm 
for sharing and freeness. This paper follows the same approach, and using a 
more detailed abstraction, develops a more powerful transition system. The 
resulting algorithm is more prone to efficient implementation as it computes 
a single abstract solved form which exhibits sharing, freeness, groundness 
and linearity information. 

1 I n t r o d u c t i o n  

The  a im of possible sharing analysis of a logic program P is to identify independent  
variables in a clause of P .  A set of variables is said to be independeng if no compu-  
t a t ion  binds  t hem to terms which contain a common variable.  Groundness ,  l inear i ty  
and  freeness analyses  a im to identify program variables which are respectively bound  
to ground te rms,  linear terms (a term is linear if no variable occurs in it  more than  
once) and  var iable  terms by all computa t ions  of P .  The  avai labi l i ty  of groundness 
and l inear i ty  informat ion  is useful for improving the precision of sharing analyses.  
The  ava i lab i l i ty  of sharing and freeness information has proven useful in a wide range 
of  app l ica t ions  including paral lel isat ion of programs,  compiler  op t imisa t ions  as well 
as  for improv ing  the precision of other analyses. 

We focus here on semant ic  based analyses such as those specified within the 
f ramework of  abs t rac t  in terpre ta t ion  [5]. In this approach a p rogram analysis  is 
viewed as a non-s t andard  semantics  defined over a domain  of data-descr ip t ions .  Anal-  
yses are cons t ruc ted  by replacing the basic operat ions on d a t a  in a sui table  concrete 
semant ics  wi th  corresponding abs t rac t  operat ions defined on data-descr ip t ions .  For- 
real  jus t i f ica t ion  is reduced to proving condit ions on the re la t ion between d a t a  and  
da ta -desc r ip t ions  and on the e lementary  operat ions defined on the data-descr ipt ions .  
This  approach  eases bo th  the development  and the just i f icat ion of p rogram analyses.  
In  the  case of  logic p rogramming  languages, proving the correctness of an abs t rac t  
unif icat ion funct ion is the ma jo r  step in just i fying an analysis .  
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In its short history, the design and formal justification of sharing and freeness 
analyses for logic programs has proven to be a surprisingly difficult task. The first 
formally justified abstract unification algorithm for the Upalr-sharing" domain pro- 
posed by Sendergaard in 1986 [10] w a s  not given until 1991 in [2]. Many of the 
combined sharing and freeness analyses proposed in the literature have since been 
found incorrect in various details. In a recent paper [1], Codish et al. introduce a 
novel domain of abstract equation systems and illustrate the derivation of an abstract 
unification algorithm for sharing and freeness together with its formal justification. 

The basic strategy applied in [1] is to systematically mimic each step in the 
Martelli - Montanari unification algorithm [8]. However, since an abstract equation 
may describe different concrete equations, to which different concrete rules apply, 
the resulting abstract algorithm is non-determinlstic. The abstract equation is re- 
duced by different abstract rules to mimic each of the corresponding concrete rules. 
Consequently different abstract solved forms may be obtained, all of which must 
be considered: a variable is definitely free only if it is free in all solved forms. This 
makes it doubtful whether it can be the basis for a very efficient analysis. Moreover, 
it should be enhanced to consider linearity information to improve its precision. 

In this paper, we take the systematic development of [2] and [1] one step further. 
Choosing a different abstraction of equations, which distinguishes between abstract 
equations and a sharing component, we formalise a transition system which computes 
a single solved form which captures possible sharing and definite freeness informa- 
tion together with groundness and linearity. In addition to concrete terms, abstract 
equations also involve abstract variables which are no more than symbols from a 
designated set. For the sharing component we adopt the domain of :lacobs and Lan- 
gen [6] which captures possible sharing as well as covering information and provides 
a good propagation of groundness information. Abstract variables are annotated to 
capture additional freeness and linearlty information. 

Here we do not require the abstract unification algorithm to mimic all possible 
steps in the concrete algorithm. Instead, we exploit the confluence of concrete uni- 
fication to mimic a particular strategy on the concrete level which is determined 
by the structure of the equations on the abstract level. Each abstract rewrite rule 
is associated with an equivalence preserving transformation on concrete equations. 
Correctness follows by showing that each abstract transition mimics the correspond- 
ing transformation. The abstract unification algorithm is deterministic in the sense 
that at most one rule applies to a given abstract equation in a system. While not 
confluent, correctness holds for any sequence of selected equations. 

We assume the reader is familiar with the basic concepts of abstract interpreta- 
tion of logic programs and understands that abstract unification is the key step in 
developing a semantic based analysis of logic programs. 

2 P r e l i m i n a r i e s  

Let ~ and Vat denote respectively a fixed set of function symbols and an enumerable 
set of variables. The term algebra over E and Vat is denoted Term. We reserve the 
symbols T and S to denote elements of Term. Variables are typically denoted U, V, 
W, X, Y, Z. The predicates nonvar(T), ~ar(T), ground(T) and linear(T) denote 
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respectively that T is non-variable, variable, ground and linear. Note that a free 
variable and a ground term are always linear. The power set of S is denoted p$.  

A (concrete) equation system is a set of equations of the form Tz -- T2. Given 
an equation system Eqs and an equation e, we let e :: Eqs denote the set {e} U Eqs. 
We fix a partial function mgu which maps an equation system Eqs to a solved form 
mgu(Eqs). A reference to mgu(Eqs) implicitly implies that Eqs is satisfiable. We 
do not distinguish between equations in solved form and idempotent substitutions 
as the correspondence between them is well known (see for example [7]). We often 
view mgu(Eqs) as an idempotent substitution and write eq(0) to denote the set of 
equations corresponding to an idempotent substitution 0. Equation systems Eqs z 
and Eqs 2 are said to be equivalent with respect to a set of ~ariables V,  denoted 
Eqsz ~ v  Eqs2, if there exist most general unifiers Oz and 02 of Eqs z and Eqs 2 such 
that Oz~V : o~rv. 

E x a m p l e  1 Let Eqs: = {X = I(Y)}, Eqs~ = {X = f(Z), Y = Z} and Eq% = {X = 
/ (Y) ,Z  = Y}. Then Eqs z ~ v  Eqs2 where V = { X ,  Y}. Indeed ozr V = o2r V for 0t = 
{ x / / ( Y ) }  and 02 = { X / / ( Y ) ,  Z / Y }  which are most general unifiers of Eqs z and Eqs 2. 
Also Eqs z ~V Eqss because 02 is also a most general unifier of Eqs s. 

In addition to concrete terms and variables, we assume a disjoint and enumer- 
able set AVar of abstract variables. Intuitively an abstract variable represents a term 
from Term. We reserve the symbol A to denote abstract variables. The term algebras 
over ~ and AVar and over ,U and Par U AVar are denoted respectively ATerm (ab- 
stract terms) and MTerm (mixed terms). The sets of variables and abstract variables 
occurring in a syntactic object s are respectively denoted vars(s) and avars(s). 

Def in i t ion  2 ( abs t r ac t  equa t ion  sys tem)  An abstract equation system consists 
of a pair (AEqs, A) where AEqs is a set of abstract equations of the form Tz : T~ 
or of the form T = A and z3 E pp avars(AEqs) is a sharing component with an 
associated annotation mapping anna: a ars(a) { i f ,  t), {t),  }. 

Notice that for the time being we avoid abstract equations of the forms Az = A2, 
A ---- T and abstract equations involving mixed terms. While these extensions can 
easily be given a meaning, they complicate the abstract unification algorithm. 

We follow Jacobs and Langen [6] in the representation of the sharing component. 
Each set {Az,... An} indicates that the terms represented by the abstract variables 
Az,..., A,, can share one or more variables. Moreover, the annotations on abstract 
variables enrich the domain with linearity information as captured by the sharing 
domain of Sendergaard [10] and with freeness information. Let AS : (AEqs, A) be 
an abstract equation system. We define the following predicates on the abstract vari- 
ables occurring in AS: 
- gro nda(A) A r a ars(ZX); -  eea(A) ann (A) : {f,t); 
- linearA(A) r anna(A) = {t}; - share,a(Az, A2) r qS e A. {A1, A2} C S. 

Basically, AS describes a concrete equation system Eqs if it is possible to map each 
of the abstract variables in AEqs to a concrete term and obtain Eqs. However, the 
mapping is required to preserve the information specified by z3. We say that a 
mappinga  : avars(AS) --, Term is z3 preserving if: (1) grounda(A) =:~ ground(c~(A)); 
(2) l ineara(A) =~ linear(a(A)); (3) freea(A) ::~ free(a(A)); and (4) for every X E 
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Vat. {A E avars(~) IX E a(A)} E ~.  A mapping a : A V s r  ---, Term is extended into 
a mapping a / :  MTerm --* Term as follows: 

M if M E Far 
a/ (M) = a (M)  if M e AVar 

J(a ' (M1) , . . . ,  a/(M~)) if M = . f ( M ~ , . . . ,  M~). 

Further extending a to apply to abstract equation systems is similar. 

D e f i n i t i o n  3 (de s c r i p t i on )  An abstrac~ equation system AS = (AEqs, z~) describes 
a concrete system Eqs via a, denoted AS oc~ Eqs, if  there is a ZI preserving map- 
ping a : avare(AS) --* Term such that a(AEqs) = Eqs and for  every A E AVar, 
v a r s ( a ( A ) )  n vars(AEqs) = e. We ~ t e  AS oc Eqs to denote that there ezists a 
mapping a such that AS ~..  Eqs. 

Let AS - (AEqs, A) be an abstract equation system with associated annotation 
mapping anna and let A be an abstract variable occurring in A. We annotate the 
occurrences of A in A to indicate the value of artna(A): A 1, A z and A denote 
respectively that annA(A) is {.f,/}, { / }  and 0. We denote A(A) : {S  E A I A  E S}  
a n d / t ( A )  = {S E A J A ~ S}. Likewise A(Ax, A2) : {S E A J AI ~ S, A2 ~ S}. 

E x a m p l e  4. ({X = At, Y = A=, U = ](V)},{{A{,A=}}) describes {X = ZI, Y = 
Z=, U = I ( V ) }  as well as { X  = ZI, Y = Jf(g(Zl, Zl)), U = . f (V) }  but not { X  = V, Y = 
Jr(V, V), U = ] ( V ) } .  Denoting A = { { A { , A , } } ,  armA(A~) = { j r , l }  and anna(A,)  = (~. 
In addition, z~(A,) = Z~(A=) = Zi and Z~(A=) = / i ( A , )  = A(A~,A=)  = $. 

3 A b s t r a c t  un i f i ca t i on  

A call  pattern is a pair  (p(~);AS) where p(~) is an atom and AS = (AEqs, A) is 
an abstract equation system such that AEqs consists of an equation of the form 
X = A for each variable X in p(~). Using abstract equation systems is well suited to 
describe definite freeness and possible sharing information. A variable X is definitely 
free if there is an equation X = A and ~eeA(A). Variables X and Y possibly share 
if X = Y or if X = A1 and Y = A~ and sharea(A1, Ag). Given a call pattern 
(p(~);/AEqs, A)) and a renamed clause of the form p(~) ~ body we wish to reduce 
the abstract equation system (~ = ~ :: AEqs, A) to a solved form which describes the 
result of a corresponding concrete unification. More generally: 

D e f i n i t i o n  5 ( p r o b l e m  spec i f ica t ion)  Given an abstract equation system AS, de- 
rive an abstract equation system AS ~ in solved form such that AS oc Eqs :~ AS / oc 
Eqs / and Eqs I ~=r,(AS) mgu(Eqs)" 

An algorithm which satisfies the above problem specification is called an abstract 
unification algorithm. We present an abstract unification algorithm consisting of 
two parts. The first part  is a transition system which is applied to rewrite a given 
abstract  system into a pseudo solved form of the form ({Xi = As}i= 1 :: Eqs, A) 
where { X I , . . . ,  X,,,} and { A I , . . . ,  Am} are sets of variables and abstract varlables 
respectively, Eqs is a set of concrete equations in solved form, and the left side of 
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an equation in Eqs is not equal to a variable Xi (1 < i < m). The difference with a 
standard solved form is that  the Xi can occur in the right side of an equation in Eqs. 
The second part  of the algorithm derives from the pseudo solved form a solved form 
which expresses definite freeness, linearity and groundness information together with 
possible sharing information. 

In the following we introduce a set of rewrite rules which are applied to reduce 
an abstract equation system to a solved form. Correctness follows because each tran- 
sition AS ---, AS I is shown to mimic a corresponding equivalence preserving trans- 
formation on concrete equation systems. Namely, if AS oc Eqs and Eqs is satisfiable, 
then there is a corresponding sequence of concrete transformations Eqs ---,* Eqs ~ 
such that Eqs "~var,(AS) Eq sl and AS I oc Eqs'. We illustrate the intuition of each rule 

AS --4 AS I by examples of the form 

AS oc Eqs 

AS' oc Eqs' 

indicating that  AS oc Eqs and that there is a transformation (sequence) of the form 
Eqs --,* Eqs' such that AS' oc Eqs ~ and Eqs ~ar , (AS)  Eqsl" As a convention, the equa- 
tions chosen for reduction are underlined. Figure 1 illustrates the concrete transfor- 
mations needed to justify our abstract algorithm. A transformation from Eqs to Eqs' 
is denoted Eqs --4v Eqs ~ where the V indicates that  the transformation preserves 
equivalence with respect to the variables in V C Vat. Clearly, if Eqs --, v Eqs ~ then 
also Eqs --~ v, Eqs I for any V I C_ V. When V = ~ars(Eqs) the subscript V is omitted. 
Rules 1-4 consist of the rules of the Martelli - Montanari algorithm. Rule 5 takes an 
equation, solres it and applies the result to the rest of the equations. Rule 6 8huff/e~ 

the terms in two equations with a common right side. Rule 7 removes an equation 
of the form X : T if X does not occur in Eqs. This rule preserves equivalence with 
respect to the variables in Eqs. Rule 8 gives a fresh name Z to a variable X in an 
equation e and introduces a new equation X -- Z. 

R e d u c i n g  e q u a t i o n s  of  t he  f o r m  T1 = T~ 

These rules are basically the same as for concrete unification [8]. 

I. (X  = X :: AEqs, A) re~__?,e (AEqs, z~). 

2. (X  = T :: AEqs, z~) ,ubsti.__tute (X = T :: AEqs[X/T] ,  z~) i f  X ~ vats(T). 

3. I f ( T 1 , . . . ,  T , )  = X :: AEqs, z~) ,wi_~tch IX = f ( T 1 , . . . ,  T~) :: AEqs, z~). 

4. ( f ( T 1 , . . . ,  T,,) = f ( S 1 , . . . ,  S , )  :: AEqs, z~) p_~l ({T~ i}~=1 :: = S ~ AEqs, z~). 

R e d u c i n g  e q u a t i o n s  o f  t he  f o r m  T = A such  t h a t  n o n v a ~ ( T )  

Let T be a non-variable term such that vats(T)  = {X1, . . . ,  X,~} (if n --- 0 then T 
is ground). The following set of transitions are applied under the restriction that  
A does not occur elsewhere in the abstract system. If  A does occur elsewhere, then 
a transition which better exploits the structural information in T is applied (see 
below). We distinguish the following cases: 
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1. X = X :: Eqs rem.~ve Eqs. 

2. f ( T 1 , . . . ,  T , t )  = X :: Eqs ,wi.~tch X = f ( T l , . . . ,  T= )  :: Eqs. 

3. f (Tz . . . . .  T a )  = g (Sx , . . . ,Sm) : :  Eqs p~el f { T i  = Si}~=z :: Eqs if f in  -- g/m 
( fail otherwise. 

r ,ab,t ~ X = T : : E q s [ X / T ]  i f X e e a r s ( T )  
4. X = T :: eqs --* t fail otherwise. 

5. �9 :: Eqs .o~e eq(O) :: Eqs 0 where 0 = mguCe). 
= Eqs , h ~ e  6. Tx = T,  Ta T : :  T l  = Ta ,Tz  = T :: Eqs. 

restrict 7. X = T :: cqs --+v Eqs where X ~ eara(Eqs) and V C_ eara(Eqs). 
fresh 8. �9 :: Eqs --*v e[X/Z],X = Z :: Eqs where X E ~ara(e), Z is a fresh variable, and 

V C ears(e :: Eqs). 

Fig. 1. Equivalence preserving transformations for equation systems 

5. ( T  = A :: AEqs, A)  fre,h.,ol,e&re,trlct --* (X1 = A I , . . . ,  X~ = A ~  :: AEqs, /V)  
where A 1 , . . . , A e  are fresh abstract variables, and 

(a) I f  g rounds(A)  then A ' =  A (note tha t  this implies tha t  grounda,(Ai) (1 <_ 
i _< n)) and for A' ,nna.CA') = ,nna(A');  

(b) Else if~eeA(A) then 
* A'=z3(A) U{(S\{A})U{A~}ISeA(A),  1 < i < n } ;  
. anna,(A') = i f  A ~ G { A x , . . . , A ~ }  t h e n  { f , l }  

else  i f  8harea(A,A ~) t h e n  
i f  linear(T) t h e n  anna(A') \ {f} 
else anna (A') \ (f, l) 

e l se  anna(A') 
(c) Else (annA(A) C {l}) 

* A l =  i f  linear(T) t h e n  
,~(A) U {(S\{A})US'IsEA(A), S'GSS'} 

else 

Z~(A) U ( U S S \ ~ A } ) U S  t S S S C - S ~ ! A ) ' S S  ~ } 
G r 

where S$' = i f  linear(A) t h e n  { { A i } l l  < i < n }.  
e l se  { S C_ { A x , . . . , A , } ] S  ~ 0 }  

* anna,(A') = i f  A '  E { A x , . . . , A ~ }  t h e n  
i f  linear(A) t h e n  { /}e l se  r 

e l se  
i f  shares(A, A I) t h e n  

i f  linear(T) t h e n  anna(A') \ {f} 
else anna (A') \ {l, f} 

else  anna(A') 
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E x a m p l e  6 

1. T is ground 

- ' ' ( I  a=A;'X=A='Y=AS}') {. Zz,X /(ZI),Y ZI} 
{A,, A=, As}, {A/} } ~ = = = 

({ X = A=. Y = A, }. { {A~Z} }) oc { X  = ] ( . ) ,  Y =  a }  

2. A is free, T is non-]ineex 

/{](X.X)=A,.Y=A,.ff=Aa}.}I z 1 ~ {/(X.X)=Z.Y=g(Z).U=Z)} 
\ { { A , , A = , A , , }  } 

{ {A~,t ,A=,A,} } oc U /(gz. Z:) j 

3. A is linear, T is non-linear (observe that the new abstract variables are ]ineax snd both 
linearity and freeness are lost in all abstract vexiables which possibly share with Ax) 

(IX=A,.,.V=A,.:=A,}. = h(F,.j), V = : ,  

4. A is 'any'. T is non-linear 

(}/(X.X):A/.U={A:.A]2}.{Ax.A:.}}A..V: A, }.) oc {~U(:'X) ]__(~.)h(Z=.Z.)).} 
1 

{A:,,, A:.}. {A,,,, A3}, {A,,,, A,, As} } I oc 

5. A is 'any', T is linear 

(A,, A{ t } 

t~ 

u = h ( z , ,  z~) ,  v = z~ 

/( x, Y) =/(gCZ),gCZ)),} U=Z 

II X=Ax'I'Y=AI'2'U=A2}' I 
' ' A A A' ~ { X = ~ ( Z ) , Y = g ( Z ) , U = Z }  {A,.:.A.}.{A..,.A.}.{ :.,. ,.2. ,}} 

R e d u c i n g  e q u a t i o n s  o f  t h e  f o r m  X : A 

Equations of the form X : A are maintained in the pseudo solved form as long as X 
does not appear  elsewhere as a left hand side. The following rule is applied to reduce 
the number  of occurrences of  a variable X occurring in the left side of an equation. 
The abstract  variables participating in the reduction must  have single occurrences 
in the equations of the system. 
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6. (X = A1, X -- A2 :: AEqs, A) shuffie,so~.~&restriet (X ~-~ A 1 :: AEqs, A') where 
�9 A ' =  if gro~ndA(Ax) VgroundA(A2) then .~(Ax,A2) 

else 

i , j  6 {1,2}, i~ ] ,  
if line~ra(Ai)^ 

-~harea(A;, Ai) 
/%(Ax, A2) U (SA, U S A = ) \ ( A 2 }  then $A$ 6 A ( A j )  

else SAj = U SS where 

ss c_ ~(A~), SS # 
�9 for A' 6 g~ra(A'):  

�9 nn,~,(A') = 
if A I = A x  then 

i f / ~ , , ~ ( A I )  ^ / , , e~ (A2)  then (I, ~} 
else if linearA(A1) ̂  linearA(A2) ̂  -.shareA(Ax, A2) then {l} 
else 0 

else if 
(~shareACAx, A') ^ "~,harezx (A2, A'))V 

( ~ , , ( A ' )  v -~,h.,'e.,(A~, A') v -~,h.,.~,, CA2, A')))V 
(/,',~.,(A~) ^ -~,h.,'~.,(A~, A')) V (/,'e~,,(A1) ^ -~,h.,'~.,(A~, A')) 

then ~nnA (A') 
else if 

(line-ra(A2) ^ -~ah-reA(A2, A')) v (line-rA(Ax)A -~share~(Ax, A'))V 

(free^CA1) ^ linearA(A2))) then annA(A') \ (f} 
else 

Exa mpl e  7 
X = l(g(Z~, Z4, Z~), } 

YI=Aa, Y==A4, , l ! , ~ oc Y x = 7 ~ , I " 2 = h ( Z x ) ,  
~, = A,. v~ = A, {A,. A,}. {A~. A,} f v, = z,. u, = h(z,) 

) {At,AI,As,Ae}, X =/(g(Z,, Z,), h(Z4)), l 
~ Yt = An, Y= = At,' | {Ax,AI,A,}, oc YI=h(Z4),Y,=h(ZI), 
I, U, = As, U, = Ae [ {A~,AI,Ae}, Ut=g(Z~,Z~),U,=h(Z~)) 

( {A,. M. A,. A, } 
While llnearity is preserved for As and At, it is lost for As and As. Taking/(g(Z,, 7-.2), Z,) 
for A, in the original concrete equation illustrates the need for {Ax,At~,As,Ae} in the 
transformed sharing component. 

R e d u c i n g  equat ions  of  t he  fo rm T = A (mul t ip le  occurrences  of  A) 

The previous set of rules did not apply to the case in which the abstract variable 
occurring in an abstract equation system has multiple occurrences. The following 
rule reduces the number of occurrences of an abstract variable: 
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7. (Tt = A, Tl  = A :: AEqs, A) ,h~_me (Ti  = Tl ,  T1 = A :: AEqs, A). 

E x a m p l e  8 (<,<,.*',.)) 
t/(Y,b) At, i t A, j' {At,As #} oc (#(Y,b) /( Z,, 7_,2), V 7,2 

i it 

(f ,(a,X)=l(Y,,) ,V:A,,) { {At,A/=}, {At,A~} } ) ~ 1 6 2  S l(',x)=l(Y,b),U= Z,, I , /( . ,  x )  = A, ,  V = A,  ' { 1(. ,  X)  = / (Z~,  Z.), V = Z. } 

P s u e d o  solved form 

Repeated application of rules 1 - 7 provides an abstract equation system of the 
form ({Xi = A~}~= 1 :: Eqs, A) where { X h . . . ,  X=}  and { A x , . . . ,  AM} are sets of 
variables and abstract variables respectively, Eqs is a set of concrete equations in 
solved form, and the left side of an equation in Eqs is not equal to a variable Xi 
(1 < i < m). An abstract equation system of this form is said to be in pseudo aolved 
form. 

R e d u c i n g  t h e  p seudo  solved fo rm  

The following rule is applied to reduce an abstract system in pseudo solved form to 
an abstract system in solved form. Namely, an abstract system which describes only 
concrete systems which are in solved form. 

�9 "* --, ( { X l  = A,}~"= 1 :: Eqs or, Zl) 8. ( {Z~ = A , ) , = I  :: Eqs, A)  abstract-subst 

where a = {X1/AI,..., X,~/Am} 
Strictly speaking, the result of this transition is not an abstract equation system as 
it may potentially involve equations with mixed terms. However, the definition of 
description is applicable. Moreover the following rules remove mixed terms. 

Example 9 
<{X=At, Y=g(X,U,X)},{{A~}}) c~ {X=/(Zt),Y=g(X,U,X)} 

( { x = A, ,  Y = g(A,,  V ,A, )  } ,  { {At)  } ) ~, { X = / ( Z , ) ,  Y = g(S(Z,), V,/(Z,)) } 

Abstracting the solved form 

Recall that a mixed term is a term which involves variables as well as abstract 
variables. The following transition is applied to remove variables occurring in mixed 
terms. 

9. (AEqs, A) ....... --, ,at (X = A :: AEqs[X/A], -4 U {{A/}}) 

if X occurs in a mixed term (which is not a term) in some equation of AEqs and 
A is a fresh abstract variable. 

Repeated application of Rule 9 replaces all variables in mixed terms by abstract 
variables hence transforming mixed terms to abstract terms. From here on, we as- 
sume without loss of generality that mixed terms do not occur in abstract equation 
systems. 
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E x a m p l e  10 

I { x = A .  Y = g(A,, ~, A,) 
= 0U(z0,  ~ , f (z , ) )  

{TAf} , ,CA{}}  ~ Y = oO'(zo, z~,sCZO) J 

Let T be an abstract term occurring in an abstract equation system (AEqs, L3}. 
We denote: f~ee~(T), i f T  -- A and ~eeA(A); and linear~(T), ifVA, A' E avars(T), 
(i) lineara(A), (ii) if A occurs more than once in T then 9round.~(A), and (iii) 
-~sharezx(A, An). An abstract system involving abstract terms is abstracted using 
the following rule 

10. (AEqs, LI) a, bat,~,a,c* (AEqs', a ' )  
where {T I , . . . ,  Tn} is the se..~t of non variable abstract terms occurring (on the 
right sides of the equations) in AEqs A I , . . . ,  A~ are fresh abstract variables and 

�9 AEqs ~ is obtained by replacing each ~ in AEqs by the corresponding A~; 
�9 ~'-{  su{ A~I,,,.K~)ns#0. l < i < - } l S E Z X } ; a n d  
�9 , nna , (A )  = i f  A E { A x , . . . , A , }  then 

if  freeA(7~) t h e n  { f , l }  
else if line~r~(~) t h e n  {~} 
else 

else ~nna(A) 

Example  11 

{ { A f } , { * { } }  = r=gC~CZ,),z,,~CZ,))j 
zz 

{{Af,A,},{A{,A,}} = Y =  ~(/(zl),zs,f(z,)) 

4 Examples 

The following examples are adapted from [9]. 

Example  12 

~ X, = A,,X. = A.,Xs = A3,X. = A,,X. = As, Xs = YI, } , ) 
I t I (X~,X,)  = V~,X, = . ,X. = V~, .X, = Ys,Xo Y , )  -,* 

{ {A{, As), {k,},  {A{}, {A{}, {A{} } 

[rules 1-4; the sharing component is not effected.] 

(X ,=a,X .=a,X .=Xs ,X .=, ( ] (a ,  Xs),Ys),Xe=Y(](a, Xs),Y3), } i 
/ ~  Yt =y(a ,  Xs), Y2 =](y(a,  Xs), Ya),a =AI ,  a=As ,X2 =A. ,Xs  =As ,  , __,. 

t/(/(a, x2), Ys)= As,Y(/(a,X~), Ya)= As 
{ {,,.t,, As}, {A,}, {A{}, (A~,}, {A{} } 

[rule 5; AI and As become ground.] 
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[Xx=a, Xs=a,X*=X=,Xs=I(/(a,X=),Ys),Xe=/(I(a,X*),Ya),i > 
r~ = / ( a , x , ) ,  I', = t ( / ( , , x , ) ,  r , ) ,  x ,  = A , , X ,  = . . ,  

Lt(/(a,X,), r . )  = As,y(y(a ,  X~), r . )  = A ,  -* 

[rule 61 A,  becomes ground.] 

[XI=a)Xa=a,X,=X.,X.=I(I(a,X=),Ya),Xe=/(/(a,X=),Y,))I i 
r ,  = / ( a ,  x . ) ,  r .  = / ( / ( . ,  x , ) ,  r , ) ,  , . 

I, x .  = * , J ( / ( a ,  X,), rs) = . , , / ( / ( a ,  x.), r , )  = As 
{{A{ }, {AeY}-} 

[rules 5 and 6; As,x and Ae,t remain free.] 

i x ,  = a.Xs = a . x ,  = x , . x ,  = scsco.x,), r,). x ,  = SCYCa.X,). r , ) . . \  
{ I .  r ,  = , ( a , x = ) , .  = / ( , (a ,  x~), . ) ,  x= = * . , x ~  = A . , , , .  = * . , .  } / { f*{.,), fA{.,) } 

[ rule 6; As,x becomes ground.] 

I y' = l ( a . x , ) .  r ,  = l ( / ( a . x . ) .  r , ) . x ,  = A , .  Y, =A, . ,  ' _4. 

[pseudo solved form.] [rule 8.] 

< f Xx = a, Xs = a, Xt = A,,Xs = /(/(a,A,),As.,),Xs = Y(I(a, At,),.As.*), ~ 1 
I Y' =/(a, A, ), Y, = . f ( / ( a - ~ ~ , ' X ;  = ~ f f  L-'A-=~,~ J' -.4 
{r 

[solved form (mixed terms).] [rule 10.] 

{{ X] = a,X, = a ,X,  = A, ,Xs  = A, ,Xs = A,,  Y] = As, Y, = A7,)(2 = A,,  Y, = As., } ,  
! l { (A.,., A, )  }) 

[solved form (no mixed terms).] 

This shows that X~ and X3 are ground (and equal), that X2 and X4 are ground (and equal), 
that Yz is ground , that X6, X6 and Y2 are not free (and equal), that Y3 is free and that 
Xs, Xe, and Y2 are linear terms which can share Ys. 

E x a m p l e  13 

Xx = Ax,X2 = A=, X_, = A ~ , I  $ IAI ~ .rAil IA  ! AI ~ 6 
t - -+  ( x ,  A , , X ,  A~,X~ A ,  ~ , , ,~  ~,,~ ,, , . ( A s } , ( * s } } )  

) 

{ X t  = A I ) X . = A . , X s = A s , }  
( X, A , ,X .  Ae ' { {At }' {A/a }' {A{' A{ }' {A*}' {Ae} }} "~6 

({ x~ = A. ,  x .  = . . ,  x ,  = As, x ,  = A ,  } ,  { {A,  }, {A{} ,  {A. ,  A . }  }> 

This correctly shows that only Xs remains free and that X. and X4 can be non-linear. 
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5 C o n c l u s i o n  

We have presented a powerful abstract  unification algori thm for deriving sharing and 
freeness information together with groundness and linearity. The algorithm appears 
to be at  least as precise as other previously proposed algorithms such as [1, 3, 
4, 9, 11]. The algori thm is formalised as s transition system which reduces a set of 
abstract  equations to an abstract solved form. In this approach each transition can be 
analysed and justified seperately. A formal proof of correctness, an implementation 
of the algorithm and an experimental evaluation of its precision are underway. 
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Anne Mulkers and the anonymous referees of s previous version of this paper. We 
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