
Freeness, Sharing, Linearity
and C o r r e c t n e s s - All at Once*

M. Bruynooghe ** M. Codish ***

Department of Computer Science
K.U. Leuven, Belgium

emaih mauriceOcs.kuleuven.ac.be

A b s t r a c t . The availability of freeness and sharing information for logic pro-
grams has proven useful in a wide variety of applications. However, deriving
correct freeness and sharing information turns out to be a complex task. In a
recent paper, Codish et al. introduce a domain of abstract equation systems
and illustrate the systematic derivation of an abstract unification algorithm
for sharing and freeness. This paper follows the same approach, and using a
more detailed abstraction, develops a more powerful transition system. The
resulting algorithm is more prone to efficient implementation as it computes
a single abstract solved form which exhibits sharing, freeness, groundness
and linearity information.

1 I n t r o d u c t i o n

The a im of possible sharing analysis of a logic program P is to identify independent
variables in a clause of P . A set of variables is said to be independeng if no compu-
t a t ion binds t hem to terms which contain a common variable. Groundness , l inear i ty
and freeness analyses a im to identify program variables which are respectively bound
to ground te rms, linear terms (a term is linear if no variable occurs in it more than
once) and var iable terms by all computa t ions of P . The avai labi l i ty of groundness
and l inear i ty informat ion is useful for improving the precision of sharing analyses.
The ava i lab i l i ty of sharing and freeness information has proven useful in a wide range
of app l ica t ions including paral lel isat ion of programs, compiler op t imisa t ions as well
as for improv ing the precision of other analyses.

We focus here on semant ic based analyses such as those specified within the
f ramework of abs t rac t in terpre ta t ion [5]. In this approach a p rogram analysis is
viewed as a non-s t andard semantics defined over a domain of data-descr ip t ions . Anal-
yses are cons t ruc ted by replacing the basic operat ions on d a t a in a sui table concrete
semant ics wi th corresponding abs t rac t operat ions defined on data-descr ip t ions . For-
real jus t i f ica t ion is reduced to proving condit ions on the re la t ion between d a t a and
da ta -desc r ip t ions and on the e lementary operat ions defined on the data-descr ipt ions .
This approach eases bo th the development and the just i f icat ion of p rogram analyses.
In the case of logic p rogramming languages, proving the correctness of an abs t rac t
unif icat ion funct ion is the ma jo r step in just i fying an analysis .

* Funded in part by the ESPRIT project 5246 PRINCE.
** Supported by the Belgian National Fund for Scientific Research.

*** From Oct. 93 at Dept. of Math. & Comp. Sci., Ben Gurion Univ., Beer-Sheba, Israel.

154

In its short history, the design and formal justification of sharing and freeness
analyses for logic programs has proven to be a surprisingly difficult task. The first
formally justified abstract unification algorithm for the Upalr-sharing" domain pro-
posed by Sendergaard in 1986 [10] w a s not given until 1991 in [2]. Many of the
combined sharing and freeness analyses proposed in the literature have since been
found incorrect in various details. In a recent paper [1], Codish et al. introduce a
novel domain of abstract equation systems and illustrate the derivation of an abstract
unification algorithm for sharing and freeness together with its formal justification.

The basic strategy applied in [1] is to systematically mimic each step in the
Martelli - Montanari unification algorithm [8]. However, since an abstract equation
may describe different concrete equations, to which different concrete rules apply,
the resulting abstract algorithm is non-determinlstic. The abstract equation is re-
duced by different abstract rules to mimic each of the corresponding concrete rules.
Consequently different abstract solved forms may be obtained, all of which must
be considered: a variable is definitely free only if it is free in all solved forms. This
makes it doubtful whether it can be the basis for a very efficient analysis. Moreover,
it should be enhanced to consider linearity information to improve its precision.

In this paper, we take the systematic development of [2] and [1] one step further.
Choosing a different abstraction of equations, which distinguishes between abstract
equations and a sharing component, we formalise a transition system which computes
a single solved form which captures possible sharing and definite freeness informa-
tion together with groundness and linearity. In addition to concrete terms, abstract
equations also involve abstract variables which are no more than symbols from a
designated set. For the sharing component we adopt the domain of :lacobs and Lan-
gen [6] which captures possible sharing as well as covering information and provides
a good propagation of groundness information. Abstract variables are annotated to
capture additional freeness and linearlty information.

Here we do not require the abstract unification algorithm to mimic all possible
steps in the concrete algorithm. Instead, we exploit the confluence of concrete uni-
fication to mimic a particular strategy on the concrete level which is determined
by the structure of the equations on the abstract level. Each abstract rewrite rule
is associated with an equivalence preserving transformation on concrete equations.
Correctness follows by showing that each abstract transition mimics the correspond-
ing transformation. The abstract unification algorithm is deterministic in the sense
that at most one rule applies to a given abstract equation in a system. While not
confluent, correctness holds for any sequence of selected equations.

We assume the reader is familiar with the basic concepts of abstract interpreta-
tion of logic programs and understands that abstract unification is the key step in
developing a semantic based analysis of logic programs.

2 P r e l i m i n a r i e s

Let ~ and Vat denote respectively a fixed set of function symbols and an enumerable
set of variables. The term algebra over E and Vat is denoted Term. We reserve the
symbols T and S to denote elements of Term. Variables are typically denoted U, V,
W, X, Y, Z. The predicates nonvar(T), ~ar(T), ground(T) and linear(T) denote

155

respectively that T is non-variable, variable, ground and linear. Note that a free
variable and a ground term are always linear. The power set of S is denoted p$.

A (concrete) equation system is a set of equations of the form Tz -- T2. Given
an equation system Eqs and an equation e, we let e :: Eqs denote the set {e} U Eqs.
We fix a partial function mgu which maps an equation system Eqs to a solved form
mgu(Eqs). A reference to mgu(Eqs) implicitly implies that Eqs is satisfiable. We
do not distinguish between equations in solved form and idempotent substitutions
as the correspondence between them is well known (see for example [7]). We often
view mgu(Eqs) as an idempotent substitution and write eq(0) to denote the set of
equations corresponding to an idempotent substitution 0. Equation systems Eqs z
and Eqs 2 are said to be equivalent with respect to a set of ~ariables V, denoted
Eqsz ~ v Eqs2, if there exist most general unifiers Oz and 02 of Eqs z and Eqs 2 such
that Oz~V : o~rv.

E x a m p l e 1 Let Eqs: = {X = I(Y)}, Eqs~ = {X = f(Z), Y = Z} and Eq% = {X =
/ (Y) ,Z = Y}. Then Eqs z ~ v Eqs2 where V = { X , Y}. Indeed ozr V = o2r V for 0t =
{ x / / (Y) } and 02 = { X / / (Y) , Z / Y } which are most general unifiers of Eqs z and Eqs 2.
Also Eqs z ~V Eqss because 02 is also a most general unifier of Eqs s.

In addition to concrete terms and variables, we assume a disjoint and enumer-
able set AVar of abstract variables. Intuitively an abstract variable represents a term
from Term. We reserve the symbol A to denote abstract variables. The term algebras
over ~ and AVar and over ,U and Par U AVar are denoted respectively ATerm (ab-
stract terms) and MTerm (mixed terms). The sets of variables and abstract variables
occurring in a syntactic object s are respectively denoted vars(s) and avars(s).

Def in i t ion 2 (abs t r ac t equa t ion sys tem) An abstract equation system consists
of a pair (AEqs, A) where AEqs is a set of abstract equations of the form Tz : T~
or of the form T = A and z3 E pp avars(AEqs) is a sharing component with an
associated annotation mapping anna: a ars(a) { i f , t), {t), }.

Notice that for the time being we avoid abstract equations of the forms Az = A2,
A ---- T and abstract equations involving mixed terms. While these extensions can
easily be given a meaning, they complicate the abstract unification algorithm.

We follow Jacobs and Langen [6] in the representation of the sharing component.
Each set {Az,... An} indicates that the terms represented by the abstract variables
Az,..., A,, can share one or more variables. Moreover, the annotations on abstract
variables enrich the domain with linearity information as captured by the sharing
domain of Sendergaard [10] and with freeness information. Let AS : (AEqs, A) be
an abstract equation system. We define the following predicates on the abstract vari-
ables occurring in AS:
- gro nda(A) A r a ars(ZX); - eea(A) ann (A) : {f,t);
- linearA(A) r anna(A) = {t}; - share,a(Az, A2) r qS e A. {A1, A2} C S.

Basically, AS describes a concrete equation system Eqs if it is possible to map each
of the abstract variables in AEqs to a concrete term and obtain Eqs. However, the
mapping is required to preserve the information specified by z3. We say that a
mappinga : avars(AS) --, Term is z3 preserving if: (1) grounda(A) =:~ ground(c~(A));
(2) l ineara(A) =~ linear(a(A)); (3) freea(A) ::~ free(a(A)); and (4) for every X E

156

Vat. {A E avars(~) IX E a(A)} E ~. A mapping a : A V s r ---, Term is extended into
a mapping a / : MTerm --* Term as follows:

M if M E Far
a/ (M) = a (M) if M e AVar

J(a ' (M1) , . . . , a/(M~)) if M = . f (M ~ , . . . , M~).

Further extending a to apply to abstract equation systems is similar.

D e f i n i t i o n 3 (de s c r i p t i on) An abstrac~ equation system AS = (AEqs, z~) describes
a concrete system Eqs via a, denoted AS oc~ Eqs, if there is a ZI preserving map-
ping a : avare(AS) --* Term such that a(AEqs) = Eqs and for every A E AVar,
v a r s (a (A)) n vars(AEqs) = e. We ~ t e AS oc Eqs to denote that there ezists a
mapping a such that AS ~.. Eqs.

Let AS - (AEqs, A) be an abstract equation system with associated annotation
mapping anna and let A be an abstract variable occurring in A. We annotate the
occurrences of A in A to indicate the value of artna(A): A 1, A z and A denote
respectively that annA(A) is {.f,/}, { / } and 0. We denote A(A) : {S E A I A E S}
a n d / t (A) = {S E A J A ~ S}. Likewise A(Ax, A2) : {S E A J AI ~ S, A2 ~ S}.

E x a m p l e 4. ({X = At, Y = A=, U =](V)},{{A{,A=}}) describes {X = ZI, Y =
Z=, U = I (V) } as well as { X = ZI, Y = Jf(g(Zl, Zl)), U = . f (V) } but not { X = V, Y =
Jr(V, V), U =] (V) } . Denoting A = { { A { , A , } } , armA(A~) = { j r , l } and anna(A,) = (~.
In addition, z~(A,) = Z~(A=) = Zi and Z~(A=) = / i (A ,) = A(A~,A=) = $.

3 A b s t r a c t un i f i ca t i on

A call pattern is a pair (p(~);AS) where p(~) is an atom and AS = (AEqs, A) is
an abstract equation system such that AEqs consists of an equation of the form
X = A for each variable X in p(~). Using abstract equation systems is well suited to
describe definite freeness and possible sharing information. A variable X is definitely
free if there is an equation X = A and ~eeA(A). Variables X and Y possibly share
if X = Y or if X = A1 and Y = A~ and sharea(A1, Ag). Given a call pattern
(p(~);/AEqs, A)) and a renamed clause of the form p(~) ~ body we wish to reduce
the abstract equation system (~ = ~ :: AEqs, A) to a solved form which describes the
result of a corresponding concrete unification. More generally:

D e f i n i t i o n 5 (p r o b l e m spec i f ica t ion) Given an abstract equation system AS, de-
rive an abstract equation system AS ~ in solved form such that AS oc Eqs :~ AS / oc
Eqs / and Eqs I ~=r,(AS) mgu(Eqs)"

An algorithm which satisfies the above problem specification is called an abstract
unification algorithm. We present an abstract unification algorithm consisting of
two parts. The first part is a transition system which is applied to rewrite a given
abstract system into a pseudo solved form of the form ({Xi = As}i= 1 :: Eqs, A)
where { X I , . . . , X,,,} and { A I , . . . , Am} are sets of variables and abstract varlables
respectively, Eqs is a set of concrete equations in solved form, and the left side of

157

an equation in Eqs is not equal to a variable Xi (1 < i < m). The difference with a
standard solved form is that the Xi can occur in the right side of an equation in Eqs.
The second part of the algorithm derives from the pseudo solved form a solved form
which expresses definite freeness, linearity and groundness information together with
possible sharing information.

In the following we introduce a set of rewrite rules which are applied to reduce
an abstract equation system to a solved form. Correctness follows because each tran-
sition AS ---, AS I is shown to mimic a corresponding equivalence preserving trans-
formation on concrete equation systems. Namely, if AS oc Eqs and Eqs is satisfiable,
then there is a corresponding sequence of concrete transformations Eqs ---,* Eqs ~
such that Eqs "~var,(AS) Eq sl and AS I oc Eqs'. We illustrate the intuition of each rule

AS --4 AS I by examples of the form

AS oc Eqs

AS' oc Eqs'

indicating that AS oc Eqs and that there is a transformation (sequence) of the form
Eqs --,* Eqs' such that AS' oc Eqs ~ and Eqs ~ar , (AS) Eqsl" As a convention, the equa-
tions chosen for reduction are underlined. Figure 1 illustrates the concrete transfor-
mations needed to justify our abstract algorithm. A transformation from Eqs to Eqs'
is denoted Eqs --4v Eqs ~ where the V indicates that the transformation preserves
equivalence with respect to the variables in V C Vat. Clearly, if Eqs --, v Eqs ~ then
also Eqs --~ v, Eqs I for any V I C_ V. When V = ~ars(Eqs) the subscript V is omitted.
Rules 1-4 consist of the rules of the Martelli - Montanari algorithm. Rule 5 takes an
equation, solres it and applies the result to the rest of the equations. Rule 6 8huff/e~

the terms in two equations with a common right side. Rule 7 removes an equation
of the form X : T if X does not occur in Eqs. This rule preserves equivalence with
respect to the variables in Eqs. Rule 8 gives a fresh name Z to a variable X in an
equation e and introduces a new equation X -- Z.

R e d u c i n g e q u a t i o n s of t he f o r m T1 = T~

These rules are basically the same as for concrete unification [8].

I. (X = X :: AEqs, A) re~__?,e (AEqs, z~).

2. (X = T :: AEqs, z~) ,ubsti.__tute (X = T :: AEqs[X/T] , z~) i f X ~ vats(T).

3. I f (T 1 , . . . , T ,) = X :: AEqs, z~) ,wi_~tch IX = f (T 1 , . . . , T~) :: AEqs, z~).

4. (f (T 1 , . . . , T,,) = f (S 1 , . . . , S ,) :: AEqs, z~) p_~l ({T~ i}~=1 :: = S ~ AEqs, z~).

R e d u c i n g e q u a t i o n s o f t he f o r m T = A such t h a t n o n v a ~ (T)

Let T be a non-variable term such that vats(T) = {X1, . . . , X,~} (if n --- 0 then T
is ground). The following set of transitions are applied under the restriction that
A does not occur elsewhere in the abstract system. If A does occur elsewhere, then
a transition which better exploits the structural information in T is applied (see
below). We distinguish the following cases:

158

1. X = X :: Eqs rem.~ve Eqs.

2. f (T 1 , . . . , T , t) = X :: Eqs ,wi.~tch X = f (T l , . . . , T=) :: Eqs.

3. f (Tz T a) = g (Sx , . . . ,Sm) : : Eqs p~el f { T i = Si}~=z :: Eqs if f in -- g/m
(fail otherwise.

r ,ab,t ~ X = T : : E q s [X / T] i f X e e a r s (T)
4. X = T :: eqs --* t fail otherwise.

5. �9 :: Eqs .o~e eq(O) :: Eqs 0 where 0 = mguCe).
= Eqs , h ~ e 6. Tx = T, Ta T : : T l = Ta ,Tz = T :: Eqs.

restrict 7. X = T :: cqs --+v Eqs where X ~ eara(Eqs) and V C_ eara(Eqs).
fresh 8. �9 :: Eqs --*v e[X/Z],X = Z :: Eqs where X E ~ara(e), Z is a fresh variable, and

V C ears(e :: Eqs).

Fig. 1. Equivalence preserving transformations for equation systems

5. (T = A :: AEqs, A) fre,h.,ol,e&re,trlct --* (X1 = A I , . . . , X~ = A ~ :: AEqs, /V)
where A 1 , . . . , A e are fresh abstract variables, and

(a) I f g rounds(A) then A ' = A (note tha t this implies tha t grounda,(Ai) (1 <_
i _< n)) and for A' ,nna.CA') = ,nna(A');

(b) Else if~eeA(A) then
* A'=z3(A) U{(S\{A})U{A~}ISeA(A), 1 < i < n } ;
. anna,(A') = i f A ~ G { A x , . . . , A ~ } t h e n { f , l }

else i f 8harea(A,A ~) t h e n
i f linear(T) t h e n anna(A') \ {f}
else anna (A') \ (f, l)

e l se anna(A')
(c) Else (annA(A) C {l})

* A l = i f linear(T) t h e n
,~(A) U {(S\{A})US'IsEA(A), S'GSS'}

else

Z~(A) U (U S S \ ~ A }) U S t S S S C - S ~ ! A) ' S S ~ }
G r

where S$' = i f linear(A) t h e n { { A i } l l < i < n }.
e l se { S C_ { A x , . . . , A , }] S ~ 0 }

* anna,(A') = i f A ' E { A x , . . . , A ~ } t h e n
i f linear(A) t h e n { /}e l se r

e l se
i f shares(A, A I) t h e n

i f linear(T) t h e n anna(A') \ {f}
else anna (A') \ {l, f}

else anna(A')

159

E x a m p l e 6

1. T is ground

- ' ' (I a=A;'X=A='Y=AS}') {. Zz,X /(ZI),Y ZI}
{A,, A=, As}, {A/} } ~ = = =

({ X = A=. Y = A, }. { {A~Z} }) oc { X =] (.) , Y = a }

2. A is free, T is non-]ineex

/{](X.X)=A,.Y=A,.ff=Aa}.}I z 1 ~ {/(X.X)=Z.Y=g(Z).U=Z)}
\ { { A , , A = , A , , } }

{ {A~,t ,A=,A,} } oc U /(gz. Z:) j

3. A is linear, T is non-linear (observe that the new abstract variables are]ineax snd both
linearity and freeness are lost in all abstract vexiables which possibly share with Ax)

(IX=A,.,.V=A,.:=A,}. = h(F,.j), V = : ,

4. A is 'any'. T is non-linear

(}/(X.X):A/.U={A:.A]2}.{Ax.A:.}}A..V: A, }.) oc {~U(:'X)]__(~.)h(Z=.Z.)).}
1

{A:,,, A:.}. {A,,,, A3}, {A,,,, A,, As} } I oc

5. A is 'any', T is linear

(A,, A{ t }

t~

u = h (z , , z~) , v = z~

/(x, Y) =/(gCZ),gCZ)),} U=Z

II X=Ax'I'Y=AI'2'U=A2}' I
' ' A A A' ~ { X = ~ (Z) , Y = g (Z) , U = Z } {A,.:.A.}.{A..,.A.}.{ :.,. ,.2. ,}}

R e d u c i n g e q u a t i o n s o f t h e f o r m X : A

Equations of the form X : A are maintained in the pseudo solved form as long as X
does not appear elsewhere as a left hand side. The following rule is applied to reduce
the number of occurrences of a variable X occurring in the left side of an equation.
The abstract variables participating in the reduction must have single occurrences
in the equations of the system.

160

6. (X = A1, X -- A2 :: AEqs, A) shuffie,so~.~&restriet (X ~-~ A 1 :: AEqs, A') where
�9 A ' = if gro~ndA(Ax) VgroundA(A2) then .~(Ax,A2)

else

i , j 6 {1,2}, i~] ,
if line~ra(Ai)^

-~harea(A;, Ai)
/%(Ax, A2) U (SA, U S A =) \ (A 2 } then A 6 A (A j)

else SAj = U SS where

ss c_ ~(A~), SS #
�9 for A' 6 g~ra(A'):

�9 nn,~,(A') =
if A I = A x then

i f / ~ , , ~ (A I) ^ / , , e~ (A2) then (I, ~}
else if linearA(A1) ̂ linearA(A2) ̂ -.shareA(Ax, A2) then {l}
else 0

else if
(~shareACAx, A') ^ "~,harezx (A2, A'))V

(~ , , (A ') v -~,h.,'e.,(A~, A') v -~,h.,.~,, CA2, A')))V
(/,',~.,(A~) ^ -~,h.,'~.,(A~, A')) V (/,'e~,,(A1) ^ -~,h.,'~.,(A~, A'))

then ~nnA (A')
else if

(line-ra(A2) ^ -~ah-reA(A2, A')) v (line-rA(Ax)A -~share~(Ax, A'))V

(free^CA1) ^ linearA(A2))) then annA(A') \ (f}
else

Exa mpl e 7
X = l(g(Z~, Z4, Z~), }

YI=Aa, Y==A4, , l ! , ~ oc Y x = 7 ~ , I " 2 = h (Z x) ,
~, = A,. v~ = A, {A,. A,}. {A~. A,} f v, = z,. u, = h(z,)

) {At,AI,As,Ae}, X =/(g(Z,, Z,), h(Z4)), l
~ Yt = An, Y= = At,' | {Ax,AI,A,}, oc YI=h(Z4),Y,=h(ZI),
I, U, = As, U, = Ae [{A~,AI,Ae}, Ut=g(Z~,Z~),U,=h(Z~))

({A,. M. A,. A, }
While llnearity is preserved for As and At, it is lost for As and As. Taking/(g(Z,, 7-.2), Z,)
for A, in the original concrete equation illustrates the need for {Ax,At~,As,Ae} in the
transformed sharing component.

R e d u c i n g equat ions of t he fo rm T = A (mul t ip le occurrences of A)

The previous set of rules did not apply to the case in which the abstract variable
occurring in an abstract equation system has multiple occurrences. The following
rule reduces the number of occurrences of an abstract variable:

161

7. (Tt = A, Tl = A :: AEqs, A) ,h~_me (Ti = Tl , T1 = A :: AEqs, A).

E x a m p l e 8 (<,<,.*',.))
t/(Y,b) At, i t A, j' {At,As #} oc (#(Y,b) /(Z,, 7_,2), V 7,2

i it

(f ,(a,X)=l(Y,,) ,V:A,,) { {At,A/=}, {At,A~} }) ~ 1 6 2 S l(',x)=l(Y,b),U= Z,, I , /(. , x) = A, , V = A, ' { 1(. , X) = / (Z~, Z.), V = Z. }

P s u e d o solved form

Repeated application of rules 1 - 7 provides an abstract equation system of the
form ({Xi = A~}~= 1 :: Eqs, A) where { X h . . . , X=} and { A x , . . . , AM} are sets of
variables and abstract variables respectively, Eqs is a set of concrete equations in
solved form, and the left side of an equation in Eqs is not equal to a variable Xi
(1 < i < m). An abstract equation system of this form is said to be in pseudo aolved
form.

R e d u c i n g t h e p seudo solved fo rm

The following rule is applied to reduce an abstract system in pseudo solved form to
an abstract system in solved form. Namely, an abstract system which describes only
concrete systems which are in solved form.

�9 "* --, ({ X l = A,}~"= 1 :: Eqs or, Zl) 8. ({Z~ = A ,) , = I :: Eqs, A) abstract-subst

where a = {X1/AI,..., X,~/Am}
Strictly speaking, the result of this transition is not an abstract equation system as
it may potentially involve equations with mixed terms. However, the definition of
description is applicable. Moreover the following rules remove mixed terms.

Example 9
<{X=At, Y=g(X,U,X)},{{A~}}) c~ {X=/(Zt),Y=g(X,U,X)}

({ x = A, , Y = g(A,, V ,A,) } , { {At) }) ~, { X = / (Z ,) , Y = g(S(Z,), V,/(Z,)) }

Abstracting the solved form

Recall that a mixed term is a term which involves variables as well as abstract
variables. The following transition is applied to remove variables occurring in mixed
terms.

9. (AEqs, A) --, ,at (X = A :: AEqs[X/A], -4 U {{A/}})

if X occurs in a mixed term (which is not a term) in some equation of AEqs and
A is a fresh abstract variable.

Repeated application of Rule 9 replaces all variables in mixed terms by abstract
variables hence transforming mixed terms to abstract terms. From here on, we as-
sume without loss of generality that mixed terms do not occur in abstract equation
systems.

162

E x a m p l e 10

I { x = A . Y = g(A,, ~, A,)
= 0U(z0, ~ , f (z ,))

{TAf} , ,CA{}} ~ Y = oO'(zo, z~,sCZO) J

Let T be an abstract term occurring in an abstract equation system (AEqs, L3}.
We denote: f~ee~(T), i f T -- A and ~eeA(A); and linear~(T), ifVA, A' E avars(T),
(i) lineara(A), (ii) if A occurs more than once in T then 9round.~(A), and (iii)
-~sharezx(A, An). An abstract system involving abstract terms is abstracted using
the following rule

10. (AEqs, LI) a, bat,~,a,c* (AEqs', a ')
where {T I , . . . , Tn} is the se..~t of non variable abstract terms occurring (on the
right sides of the equations) in AEqs A I , . . . , A~ are fresh abstract variables and

�9 AEqs ~ is obtained by replacing each ~ in AEqs by the corresponding A~;
�9 ~'-{ su{ A~I,,,.K~)ns#0. l < i < - } l S E Z X } ; a n d
�9 , nna , (A) = i f A E { A x , . . . , A , } then

if freeA(7~) t h e n { f , l }
else if line~r~(~) t h e n {~}
else

else ~nna(A)

Example 11

{ { A f } , { * { } } = r=gC~CZ,),z,,~CZ,))j
zz

{{Af,A,},{A{,A,}} = Y = ~(/(zl),zs,f(z,))

4 Examples

The following examples are adapted from [9].

Example 12

~ X, = A,,X. = A.,Xs = A3,X. = A,,X. = As, Xs = YI, } ,)
I t I (X~,X,) = V~,X, = . ,X. = V~, .X, = Ys,Xo Y ,) -,*

{ {A{, As), {k,}, {A{}, {A{}, {A{} }

[rules 1-4; the sharing component is not effected.]

(X ,=a,X .=a,X .=Xs ,X .=, (] (a , Xs),Ys),Xe=Y(](a, Xs),Y3), } i
/ ~ Yt =y(a , Xs), Y2 =](y(a, Xs), Ya),a =AI , a=As ,X2 =A. ,Xs =As , , __,.

t/(/(a, x2), Ys)= As,Y(/(a,X~), Ya)= As
{ {,,.t,, As}, {A,}, {A{}, (A~,}, {A{} }

[rule 5; AI and As become ground.]

163

[Xx=a, Xs=a,X*=X=,Xs=I(/(a,X=),Ys),Xe=/(I(a,X*),Ya),i >
r~ = / (a , x ,) , I', = t (/ (, , x ,) , r ,) , x , = A , , X , = . . ,

Lt(/(a,X,), r .) = As,y(y(a , X~), r .) = A , -*

[rule 61 A, becomes ground.]

[XI=a)Xa=a,X,=X.,X.=I(I(a,X=),Ya),Xe=/(/(a,X=),Y,))I i
r , = / (a , x .) , r . = / (/ (. , x ,) , r ,) , , .

I, x . = * , J (/ (a , X,), rs) = . , , / (/ (a , x.), r ,) = As
{{A{ }, {AeY}-}

[rules 5 and 6; As,x and Ae,t remain free.]

i x , = a.Xs = a . x , = x , . x , = scsco.x,), r,). x , = SCYCa.X,). r ,) . . \
{ I . r , = , (a , x =) , . = / (, (a , x~), .) , x= = * . , x ~ = A . , , , . = * . , . } / { f*{.,), fA{.,) }

[rule 6; As,x becomes ground.]

I y' = l (a . x ,) . r , = l (/ (a . x .) . r ,) . x , = A , . Y, =A, . , ' _4.

[pseudo solved form.] [rule 8.]

< f Xx = a, Xs = a, Xt = A,,Xs = /(/(a,A,),As.,),Xs = Y(I(a, At,),.As.*), ~ 1
I Y' =/(a, A,), Y, = . f (/ (a - ~ ~ , ' X ; = ~ f f L-'A-=~,~ J' -.4
{r

[solved form (mixed terms).] [rule 10.]

{{ X] = a,X, = a ,X, = A, ,Xs = A, ,Xs = A,, Y] = As, Y, = A7,)(2 = A,, Y, = As., } ,
! l { (A.,., A,) })

[solved form (no mixed terms).]

This shows that X~ and X3 are ground (and equal), that X2 and X4 are ground (and equal),
that Yz is ground , that X6, X6 and Y2 are not free (and equal), that Y3 is free and that
Xs, Xe, and Y2 are linear terms which can share Ys.

E x a m p l e 13

Xx = Ax,X2 = A=, X_, = A ~ , I $ IAI ~ .rAil IA ! AI ~ 6
t - -+ (x , A , , X , A~,X~ A , ~ , , ,~ ~,,~ ,, , . (A s } , (* s } })

)

{ X t = A I) X . = A . , X s = A s , }
(X, A , ,X . Ae ' { {At }' {A/a }' {A{' A{ }' {A*}' {Ae} }} "~6

({ x~ = A. , x . = . . , x , = As, x , = A , } , { {A, }, {A{} , {A. , A . } }>

This correctly shows that only Xs remains free and that X. and X4 can be non-linear.

164

5 C o n c l u s i o n

We have presented a powerful abstract unification algori thm for deriving sharing and
freeness information together with groundness and linearity. The algorithm appears
to be at least as precise as other previously proposed algorithms such as [1, 3,
4, 9, 11]. The algori thm is formalised as s transition system which reduces a set of
abstract equations to an abstract solved form. In this approach each transition can be
analysed and justified seperately. A formal proof of correctness, an implementation
of the algorithm and an experimental evaluation of its precision are underway.

A c k n o w l e d g e m e n t s We acknowledge the comments of M. Garcla de la Banda,
Anne Mulkers and the anonymous referees of s previous version of this paper. We
thank Joost for typing the first draft.

References

I. M. Codish, D. Dams, G. File, M. Bruynooghe. Freeness Analysis for Logic Programs
- And Correctness? Proc. of Tenth Int. Conf. on Logic Programmingj Budapest, 1993.

2. M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract algorithm
for groundness and aliasing analysis. In K. Furukawa, editor, Proc. Eighth Int. Conf.
on Logic Programming, pages 79- 93. MIT Press, 1991.

3. M. Codish, A. Mulkers, M. Bruynooghe, M. Garcfa de Is Banda and M. Hermenegildo.
Improving abstract interpretations by combining domains. In Proc. ACM Symposium
on Partial Evaluation and Semantic4 Baaed Program Manipulation. 1993.

4. A. Cortesi and G. Fi]~. Abstract interpretation of logic programs: an abstract domain
for groundness, sharing, freeness and compoundness analysis. In P. Hudak and N.
Jones, editors, Proc. ACM Sympoaium on Partial E~aluation and Semantica Based
Program Manipulation. SIGPLAN NOTICES vol. 26, n.11, 1991.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. Fourth
A C]ff aymp. on Principlea of Programming Languagea, pages 238-252, Los Angeles,
California, 1977.

6. D. Jacobs and A. Langen. Static analysis of logic programs for independent and-
parallelism. Journal of Logic Programming, 13(2 and 3):291-314, July 1992.

7. J.-L. Lasses, M.J. Maher, and K. Marriott. Unification revisited. In J. Minker, edi-
tor, Foundation: of Deductive Databa6es and Logic Programming. Morgan Kaufmann,
1987.

8. A. Martelfi and U. Montanari. An efficient unification algorithm. ACM Tran:action:
on Programming Languages and Systema, 4(2):258-282, April 1982.

9. K. Muthukumsr and M. Hermenegildo. Combined determination of sharing and free-
hess of program variables through abstract interpretation. In K. Furukawa, editor,
Proc. Eighth International Conference on Logic Programming, pages 49-63. MIT Press,
1991.

10. H. SOndergaard. An application of abstract interpretation of logic programs: occur
check reduction. In B. Robinet and R. Wilhelm, editors, ESOP'86 Proc. European
SympoJium on Programming, LNCS 213, pages 327-338. Springer-Verlag, 1986.

11. R. Sundararajan and J. Conery. An abstract interpretation scheme for groundness,
freeness, and sharing analysis of logic programs. Proc. Twelfth FST ~ TCS Conf.,
New Delhi, Dec. 1992.

