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µDistriNAS: Multi-objective Neural Architecture Search for Distributed Neural Networks on Constrained Devices

Problem statement

Machine learning on the edge has several advantages over the 
traditional cloud-centric approach. Edge computing reduces the 
pressure on the network, decreases communication latency and takes 
away the possible privacy issues.

The distributed edge environment and constraints of individual 
devices, however, make the design and deployment of machine 
learning models, especially deep learning models, more challenging. 

Our framework, µDistriNAS, addresses this challenge by automating 
the neural architecture design process while considering the 
constraints of the distributed edge devices and leveraging the 
collective computational resources available.

Methodology
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µDistriNAS uses evolutionary search to explore the search space and keep a population of possible neural network architectures. In 
addition to the model performance, it uses multiple search objectives that are related to the constraints of the distributed edge 
environment to guide the search. Rather than combining these different objectives into one search objective, a diverse set of 
non-dominated solutions is maintained that ideally approximates the Pareto front. 
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Search Space

- Insert conv block
- Remove conv block
- Enable / disable batch normalization
- Alter number of filters
- Alter kernel size
- Alter pooling factor of input or 

aggregation branch
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Solutions

Multiple search objectives are utilized to optimize with respect to the 
resource constraints for the individual edge devices, as well as the 
constraints from the edge network and the application itself.

Search objectives

Per-device constraints 
• FLASH memory 
• SRAM memory 
• Energy consumption

Network constraints 
• Limited bandwidth 
 
 
  

Application constraints 
• Minimal model performance 
• Minimal application latency 
  = inference + communication latency 
 

Constraints

• Model performance ➜ validation loss on prediction task 

• FLASH usage ➜ model size   
• SRAM usage ➜ peak activations size   
• Energy consumption ➜ number of multiply-accumulate (MAC) operations    
• Inference latency ➜ number of multiply-accumulate (MAC) operations 
• Communication latency ➜ number of hops  
• Bandwidth usage ➜ size of exchanged deep features  

       

    
 Search objectives

Per-device objectives
(evaluated for 

each model partition)

General objectives
(evaluated for 

the entire model)

Future work

Experimentation and ablation study

Exploration of other neural architectural elements 

Integration of extisting models

Further experimentation on multivariate time series 
and image datasets from literature

Include architectural elements from state-of-te-art 
and mobile neural nets (such as skip connections, 
different convolution types, ... ) in the search space 
to achieve a higher model performance and a 
lower footprint.

Explore how to integrate pre-trained models to 
optimize the execution time of the NAS.

Example:
Given solutions N(1), N(2) & N(3) and objectives f1, f2 & f3 
f1(N(1)) = 1  f1(N(2)) = 2  f1(N(3)) = 3
f2(N(1)) = 4  f2(N(2)) = 4  f2(N(3)) = 1 ➜ N(1) is dominated by N(2) 

N(2) and N(3) are both non-dominant

Convolutional block


