
Project number: 1SH9Y24N

ing. Gregory De Ruyter
gregory.deruyter@kuleuven.be
Supervisor
Co-supervisors

prof. Hans Hallez
prof. Bart Vanrumste
prof. Mathias Verbeke

µDistriNAS: Multi-objective Neural Architecture Search for Distributed Neural Networks on Constrained Devices

Problem statement

Machine learning on the edge has several advantages over the
traditional cloud-centric approach. Edge computing reduces the
pressure on the network, decreases communication latency and takes
away the possible privacy issues.

The distributed edge environment and constraints of individual
devices, however, make the design and deployment of machine
learning models, especially deep learning models, more challenging.

Our framework, µDistriNAS, addresses this challenge by automating
the neural architecture design process while considering the
constraints of the distributed edge devices and leveraging the
collective computational resources available.

Methodology

X1

f1
f2

f3

X2 y

X3

M1

M3

M2 M4

?

?

?

? X1

X2

X3

Ŷ

µDistriNAS uses evolutionary search to explore the search space and keep a population of possible neural network architectures. In
addition to the model performance, it uses multiple search objectives that are related to the constraints of the distributed edge
environment to guide the search. Rather than combining these different objectives into one search objective, a diverse set of
non-dominated solutions is maintained that ideally approximates the Pareto front.

Select a set of parents
based on the kernel

density estimation on
the (cheap) search

objectives
Termination condition

(e.g., number of iterations met)

Initialize (divers) set
of solutions

Create offspring by
mutating the parent's

models

Select non-dominated
solutions

Select a set of offspring
based on the kernel

density estimation on
the (cheap) search

objectives

Domination criterion

Mutations

conv1d

batch norm

pool1d

relu

time series images

conv2d

batch norm

pool2d

relu

Search Space

- Insert conv block
- Remove conv block
- Enable / disable batch normalization
- Alter number of filters
- Alter kernel size
- Alter pooling factor of input or

aggregation branch

M2

M1

M4

M3

Solution S3

M2

M1

M4

M3

Solution S2

...
M2

M1

M4

M3

Solution S1Returns a set of
non-dominated

solutions
optimized on the

different search
objectives

Solutions

Multiple search objectives are utilized to optimize with respect to the
resource constraints for the individual edge devices, as well as the
constraints from the edge network and the application itself.

Search objectives

Per-device constraints
• FLASH memory
• SRAM memory
• Energy consumption

Network constraints
• Limited bandwidth

Application constraints
• Minimal model performance
• Minimal application latency
 = inference + communication latency

Constraints

• Model performance ➜ validation loss on prediction task

• FLASH usage ➜ model size
• SRAM usage ➜ peak activations size
• Energy consumption ➜ number of multiply-accumulate (MAC) operations
• Inference latency ➜ number of multiply-accumulate (MAC) operations
• Communication latency ➜ number of hops
• Bandwidth usage ➜ size of exchanged deep features

 Search objectives

Per-device objectives
(evaluated for

each model partition)

General objectives
(evaluated for

the entire model)

Future work

Experimentation and ablation study

Exploration of other neural architectural elements

Integration of extisting models

Further experimentation on multivariate time series
and image datasets from literature

Include architectural elements from state-of-te-art
and mobile neural nets (such as skip connections,
different convolution types, ...) in the search space
to achieve a higher model performance and a
lower footprint.

Explore how to integrate pre-trained models to
optimize the execution time of the NAS.

Example:
Given solutions N(1), N(2) & N(3) and objectives f1, f2 & f3
f1(N(1)) = 1 f1(N(2)) = 2 f1(N(3)) = 3
f2(N(1)) = 4 f2(N(2)) = 4 f2(N(3)) = 1 ➜ N(1) is dominated by N(2)

N(2) and N(3) are both non-dominant

Convolutional block

