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INTRODUCTION

Spinal diseases such as spinal degeneration and scol-
iosis might require pedicle screw placement (PSP) as a
crucial step during surgical interventions, depending on
the severity. This procedure requires the drilling of a hole
for placing the screw. Thanks to imaging modalities such
as computed tomography and intraoperative fluoroscopy,
moving from an open approach to minimally invasive
surgery (MIS) has been possible and has reduced patient
complications after surgery. Still, it suffers from a lack of
visual feedback for the surgeon, whereas robotic-assisted
spine surgery combined with such imaging modalities can
improve surgical outcomes for PSP. Yet, in such MIS
procedures, physical motion, such as breathing motion,
can induce shifts and deformations in the spine, leading
to operation errors of approximately 2-3 mm [1]. In order
to correctly identify the entry point, breathing motion
needs to be compensated for. External sensors, such as an
optical tracking system or range imaging, can be used to
measure the motion of the skin or neighboring vertebrae,
close to the entry point [2], [3]. However, Saghbiny et al.
showed that the amplitude of breathing motion changes
over vertebrae and has a variation of 68% from the lumbar
to thoracic vertebrae [4]. Therefore, this work develops
an approach for estimating the motion of each entry point,
enhancing the accuracy. The proposed method uses a long
short-term memory network (LSTM) on top of the inner
control loop to estimate breathing motion parameters for
each pedicle drilling individually, and its output is utilized
to update the motion model for motion compensation
during robot-assisted drilling for MIS-PSP.

MATERIALS AND METHODS

The experimental setup consists of a robotic drill sys-
tem with a robot arm (KUKA Robot Med7, Augsburg,
Germany) and a custom-designed drilling system with a
force/torque sensor (Nano25, ATI). An optical tracking
system (FusionTrack 500, Atracsys, Switzerland) is used
to track poses. An ex vivo pig spine is placed on a
breathing platform, shown in Fig. 1 (a), which generates
a one-degree-of-freedom breathing motion. During MIS-
PSP, an optical marker is pinned to the spinous process
of a vertebra, which is close to the interested drilling
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Fig. 1: (a) Illustration of the robotic drilling system for
MIS-PSP. (b) Control block diagram of the proposed
LSTM-based breathing motion compensation.

vertebrae. Two challenges are identified. First, in an in
vivo procedure, moving from vertebrae L5 to L1, the
breathing amplitude changes from 2.2 mm to 3.7 mm,
corresponding to a rise of 68% in amplitude [4]. Thus,
the optical marker can not measure the local information
for each vertebra correctly. Second, since the vertebrae
levels change during drilling and the soft/hard tissues have
an unknown stiffness, the robotic response time delay
also changes for each pedicle drilling. These two chal-
lenges are addressed in this study: identifying the variable
breathing amplitude through a scaling variable 𝛼 and the
variable time delay 𝜏0 for each pedicle drilling. Because
of the complex environment, a data-driven approach, such
as LSTM, helps tackle this complicated problem. The
LSTM ability to learn historical information and use prior
knowledge to predict system behavior at future times has
formed a key motivation for using this network for this
application. The control block diagram of the proposed
system is illustrated in Fig. 1 (b). An inner control loop
is used to maintain the constant desired force 𝑓𝑑 during
the pedicle drilling; on top of it, an LSTM-based motion
compensation generates the corresponding motion profile
for the controller. Each vertebrae motion 𝐵̂(𝑡) can be
modeled as 𝐵̂(𝑡) = 𝛼𝐵(𝑡 − 𝜏0) . 𝐵(𝑡) is the periodic



Fig. 2: The LSTM-based deep learning network and the
simulation environment.

breathing motion that is estimated with

𝐵(𝑡) = 𝑎0 +
3∑︁

𝑛=1
𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sin(𝑛𝜔0𝑡) , (1)

where 𝑎0, 𝑎𝑛, and 𝑏𝑛 are the estimated coefficients, 𝜔0
is breathing frequency, and 𝑡 is time. To estimate the
coefficients from the measured breathing motion 𝐵̃(𝑡), the
following cost function is optimized:

𝐽 =

∫ 𝑡

𝑡−𝑇0

(
𝐵̃(𝑡) − 𝐵(𝑡)

)2
𝑑𝑡 , (2)

where 𝑇0 is the optimization horizon. Within this work, a
2-layer stacked LSTM with 50 neurons was used Fig. 2.
Two fully connected layers, input and output of dimension
50, were added before and after the LSTM. The LSTM is
trained with the following input and output vectors:

𝑋 (𝑡) = [𝐵(𝑡), 𝑑𝐵(𝑡)
𝑑𝑡

, 𝑓𝑒 (𝑡),
∫
𝑓𝑒 (𝑡)𝑑𝑡]𝑇 , 𝑌 (𝑡) = [𝛼, 𝜏0]𝑇 ,

(3)
where 𝑑𝐵(𝑡 )

𝑑𝑡
and 𝑓𝑒 (𝑡) are the derivative of modeled

breathing motion and drill tip force error. To train the deep
learning network, a simulation-based dataset is generated,
the robotic drilling system is modeled within Matlab Sim-
scape Multibody, where the environment is modeled with
constant stiffness 𝐾𝑒 ∈ [2, 3.5] N/mm for one simulation,
and a pig breathing profile is utilized to simulate breathing
motion [4]. 600 combinations of 𝛼 ∈ [0.3, 1.7], 𝜏0 ∈
[−1.5, 1.5] s and 𝐾𝑒 are generated with uniform distribu-
tion. For each combination, the corresponding breathing
motion 𝐵̂(𝑡) = 𝛼𝐵(𝑡 − 𝜏0) is simulated to generate the
input 𝑋 (𝑡) and output 𝑌 (𝑡) vectors of the LSTM. 70% of
this matched info is used to train the network, and the
remaining 30% are considered ground truth test data to
infer the original 𝛼 and 𝜏0 that were used to simulate the
system.

RESULTS
The performance of the trained network is evaluated on

180 configurations of ground truth test data; an example
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Fig. 3: An example of the time delay 𝜏0 and breathing
amplitude scale 𝛼 estimation overtime.

TABLE I: Deep learning-based estimation error

Mean Std Max-abs Mean-abs
Amplitude scale
𝛼 − 𝛼𝐿𝑆𝑇𝑀

-0.0140
(99.0%)

0.0382
(2.72%)

0.149
(89.3 %)

0.0732
(94.8 %)

Time delay [𝑚𝑠]
𝜏0 − 𝜏𝐿𝑆𝑇𝑀

6.20
(99.6 %)

25.6
(0.850%)

75.8
(97.5%)

35.7
(98.8%)

is depicted in Fig. 3. The error between ground truth and
estimated values from LSTM 𝛼𝐿𝑆𝑇𝑀 , 𝜏𝐿𝑆𝑇𝑀 is used for
evaluation; the mean error, standard deviation, maximum
absolute error, and mean absolute error, are summarized in
table I, The value below for each criterion shows the im-
provement percentage. The proposed system demonstrates
a 35.7 ms time delay error and reduces the amplitude scale
error to 0.0732.
CONCLUSIONS AND DISCUSSION

This study presents a deep learning-based method for
mitigating environmental and system uncertainty during
breathing motion compensation for MIS-PSP. The pro-
posed framework uses an LSTM-based method to individ-
ually identify the amplitude scale and time delay error for
each pedicle drilling. Validation of the proposed system
in simulation shows that it can reduce the error in time
shift to 35.7 ms, and the amplitude scale error can be
compensated 94.8%. This approach embeds intelligence in
the robotic PSP system, making it robust to environmental
changes. However, further validation through ex vivo or
in vivo trials is essential to assess the performance of the
method.
REFERENCES

[1] Y. Liu et al., “Assessment of respiration-induced vertebral motion in
prone-positioned patients during general anaesthesia,” The Interna-
tional Journal of Medical Robotics and Computer Assisted Surgery,
vol. 12, no. 2, pp. 214–218, 2016.

[2] B. Li, et al., “Respiratory motion estimation of tumor using point
clouds of skin surface,” IEEE Transactions on Instrumentation and
Measurement, 2023.

[3] R. Dürichen et al., “Evaluation of the potential of multi-modal
sensors for respiratory motion prediction and correlation,” in 2013
35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2013, pp. 5678–
5681.

[4] E. Saghbiny et al., “Design of an ex-vivo experimental setup for
spine surgery based on in-vivo identification of respiration-induced
spine movement,” in HSMR2023: The 15th Hamlyn Symposium on
Medical Robotics, 2023.


