Development of Smart Low-cost Ball-tip Feeler for Automatic
Breach Detection in Pedicle Screw Placement

Ruixuan Li, Jeroen Berendsen, Nicolaas Ooms, Ayoob Davoodi,
Yuyu Cai and Emmanuel Vander Poorten

Robot-Assisted Surgery Group, Department of Mechanical Engineering, KU Leuven, Belgium

ruixuan.li@kuleuven.be

INTRODUCTION

Pedicle screw placement (PSP) is crucial for managing
symptomatic spinal disorders, but its success hinges
on accurate placement to avoid pedicle breaches and
nerve damage. These breaches can occur in a concerning
range of 1.1% to 29.0% of procedures [1]. The ball-tip
technique is initially introduced by using a ball-shaped
metal tip with a metal semi-flexible shaft. The use of
a ball-tip feeler at various checkpoints could assist the
surgeon in confirming pedicle wall integrity and re-
planing the screw trajectory. While the smart ball-tip
feeler improves surgical time and accuracy, it remains
heavily reliant on surgeon experience.

To tackle this problem, recent studies have explored
various sensors to automatically detect the breach during
the drilling procedure, such as drilling force or electri-
cal impedance [2]. Preliminary results show promising
potential but are limited by cost and complexity. An
affordable, user-friendly, and highly accurate breach
detection solution would be preferential. Inertial mea-
surement units (IMUs) and load cells are cost-effective
options. However, traditional data processing methods
can be unreliable. Deep learning, with its ability to
identify patterns in complex data, presents a promising
alternative for robust breach detection in PSP.

This paper proposes a low-cost, deep learning-based
technique using the ball-tip feeler to provide breach
alerts via audible beeps. The developed system evaluated
its performance on synthetic phantoms.

MATERIALS AND METHODS

The prototype is comprised of a handle, a load cell,
a IMU (MPU-9250, InvenSense) and a steel rod, as
seen in Fig.1 A. The diameter of the ball-tip adheres
to the standard at 2.3 mm, and the length of the shaft
measures 100 mm. The load cell is capable of handling
a normal capacity range of 500g and is connected to
Sparkfun HX711, which features a built-in Wheatstone
bridge. The IMU provides 6 measurements including 3-
axis accelerates (Acc) from the accelerometer and 3-axis
angular velocities from the gyroscope (Gyr). The IMU
and load cell communicate through an Arduino UNO via
12C protocol around 90 Hz.
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Fig. 1 (A) The CAD model and prototype of the customer-
designed ball-tip feeler. The synthetic phantom with (B)
a 2.9mm medial breach and (C) a desired pedicle screw
trajectory (green) without breach.

The 3D-printed phantoms are designed to mimic the
actual vertebrae pedicle, consisting of breached and non-
breached pedicle models. For training, one phantom is
fully closed with a desired screw trajectory as shown in
Fig.1 C, while two breached phantoms are half open with
1.5 mm and 2.0 mm holes. For validation, three phantoms
are designed with breaches of 2.0 mm, 2.5 mm, and 2.9
mm, respectively.

The measurements from IMU and load cell are syn-
chronized during recording. Trial ID and timestamp are
automatically assigned to each data pair. The data is
then normalized and segmented into windows of 180
samples. For breach detection, a neural network has
been implemented to identify patterns and correlations
between the data and detect breaches. The proposed
approach utilizes a combination of a 1D Convolutional
Neural Network (CNN) and a Long Short-Term Memory
(LSTM) Neural Network. The LSTM follows the original
architecture with a forget gate, an output gate and an input
gate [3]. The values of these gates control the flow of
information to determine how much information is re-
tained from the current input and output. The convolution
layers possess feature mapping capabilities that enhance
the performance of this network for our application.
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Fig. 2 The block diagram of proposed framework.

The network utilizes a max-pooling layer to output the
maximum value in a moving window. Additionally, a
time-distributed layer is employed to enable the same
layer to be applied to different time slices of input. The
input sample first gets cut up into several slices and fed
into a CNN layer. The program defines a breach when
the breach probability exceeds the target threshold at 0.8.
Upon detecting a breach, the program generates a beep
to alert the surgeon. This allows the surgeon to adjust the
screw placement and prevent potential spinal cord injury.
The training data were collected from a breached and a
non-breached phantom. The data were recorded by the
operator palpating the inner wall of the pedicle on all
tracks simultaneously. Then, all the data were manually
labelled as ‘breach’ or ‘non-breach’ by two experienced
users. In total, around 100 trials of samples were acquired
in the training dataset. The recorded data was organized as
a ten-dimensional array, including sample ID, category,
timestamp, and six measurements from the IMU and load
measurement. Zeros were padded at the beginning of the
input sequence. Then, the network was trained with 30
epochs. Finally, experimental validation was conducted
on the 3D-printed spine phantoms. This categorization of
the testing data was compared with the manually labelled
data. Prediction accuracy ACC was calculated as the
correctly detected trials over testing datasets.

RESULTS

In total, the test datasets contain 36 trials manually
collected from various phantoms. The results are demon-
strated in Table I. The accuracy of the proposed program is
86.11%. For breach trials, 21 out of 24 trials are detected
successfully. For non-breach trials, there are 10 trials are
validated correctly while 2 trials are failed.

TABLE I The results on synthetic phantoms

predicted  predicted

model total breach non-breach ACC
breach 24 21 3 87.50%
non-breach 12 2 10 83.33%
DISCUSSION

This work proposes a smart low-cost ball-tip feeler. An
automatic approach for detecting pedicle breaches based
on deep learning was developed. The total material cost
of the prototype is approximately 90 euros.

An accuracy of 93% was achieved on the training dataset
while it dropped to 86% with the testing dataset. These
results are comparable to a study where surgeons using
a standard flexible ball-tip feeler achieved 80% accuracy
while only reporting 2% false negatives [4]. These prelim-
inary results suggest the proposed approach complements
current breach detection approach. This implementation
also holds promise for application in surgical training,
enabling surgeons to identify and prevent breaches during
future procedures.

However, the system still produced 3 false negatives and
2 false positives out of 36 trials. These mis-predictions,
particularly false negatives, could result in spinal cord
injury. Therefore, it is crucial to note that accuracy was
obtained on a simplified setup, highlighting the need for
further validation under more realistic conditions. The
measurements from load cell change significantly pre-
ceded the prediction of a breach. Additionally, gyroscope
readings could introduce false positives due to sideways
movement of the ball-tip feeler. Future research will also
investigate using only accelerometer data.

Despite its promise, the proposed work has limitations. It
is crucial to compare the system accuracy against the state-
of-the-art approaches such as drill force and electrical
impedance measurements. The experiment utilized a
limited dataset derived only from synthetic phantoms.
Further validation is necessary through a pre-clinical user
study with surgeons on clinical datasets.

CONCLUSION

In conclusion, this study describes a smart low-cost ball-
tip feeler for breach detection. This proof-of-concept
design utilizes a combined load cell and IMU, along with
an LSTM-CNN framework, to achieve high accuracy in
breach classification. This system demonstrates promising
potential for future clinical applications as a cost-effective
and user-friendly surgical assistant.
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