
Fifty Years of Maintenance Optimization:

Reflections and Perspectives∗

Joachim Arts 1, Robert N Boute†2,3,4, Stijn Loeys2, and Heletjé E van Staden5
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Abstract

On the occasion of the 50th anniversary of the Association of European Operational Research Societies

(EURO), we share our perspectives and reflections on maintenance research. We review the main

methods and techniques for optimizing when and what to maintain, providing concrete examples as

illustrations. We also discuss the optimization of the logistics support system surrounding the act

of maintenance. In doing so, we highlight the multidisciplinary nature of maintenance research and

its interface with other domains, such as spare parts inventory management, production scheduling,

and transportation planning. We support our reflections with basic text-mining analyses of the

archive of the European Journal of Operational Research, the journal published in collaboration with

EURO. With this paper, we introduce interested researchers to maintenance optimization and share

opportunities to close the gaps between the current state of research and real-world needs.
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1. Introduction

On the occasion of the 50th anniversary of EURO, the Association of European Operational Re-

search Societies, in 2025, we share our reflections on maintenance research. Maintenance is an

essential part of industrial applications. Especially for expensive assets, it is more cost-effective to

maintain and repair than to purchase new assets when they fail or break down. Examples of such

“capital goods” are heavy machinery, material handling equipment, windmills, or vehicles such

as ships, trains, or airplanes. Maintenance planning aims to maximize asset availability (reduce

downtime) while controlling or minimizing maintenance expenses. An unforeseen breakdown due

to a failure can result in expensive downtime. Downtime can be prevented with timely preventive

maintenance. These preventive maintenance interventions also come at a cost for the techni-

cian/repair crew and the spare parts used. The total costs of maintenance and unavailability of

a capital asset over its lifetime (typically one to several decades) can elevate to a multiple of the

acquisition price. The question is thus: when and what to maintain preventively.

Maintenance optimization is studied within operational research as well as in several engineer-

ing disciplines. Operational research focuses on optimizing processes to prevent and deal with

failure, while engineering focuses on understanding the physics of failure to predict its occur-

rence. Each community has its respective strengths. The engineering community understands

the physics of failure, and the operational research community understands the stochastic pro-

cesses induced by different maintenance policies. These two perspectives are complementary: One

must understand failure mechanisms to prevent and deal with failures. As data on failures, by

nature, is scarce in maintenance environments (an abundance of failure data indicates overly poor

decision-making in the past), knowledge of physical failure mechanisms is crucial in selecting and

calibrating proper degradation models and time to failure distributions. Strong contributions in

the field often include collaboration across these communities, e.g., Elwany et al. (2011).

The European perspective on maintenance research differs slightly from the American one. Eu-

ropean “Operational” Research is traditionally more oriented toward decision support to real-life

problems (Bertrand et al., 2023). This approach intends to include all relevant aspects to explain

processes’ behavior and actual performance. In the European Journal of Operational Research

(EJOR), for instance, Poppe et al. (2018) proposes a hybrid policy that combines corrective,

periodic, and condition-based maintenance, offering a smooth transition towards implementing

condition-based maintenance in practice. Olde Keizer et al. (2016) studies condition-based main-

tenance for complex multi-unit systems with both redundancy and economic dependencies. In
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Figure 1: Left panel: Fraction of EJOR papers devoted to maintenance per year. Right panel: Distribution of

the yearly number of citations for (non-)maintenance papers published in EJOR (p-value: 0.011768).

contrast, American “Operations” Research tends to work on more stylized problems and uses

these to build scientific knowledge and insights useful for knowledge transfer. Only those aspects

of the problems that are assumed relevant from the perspective of the method and technique dealt

with are included so that essential trade-offs become very explicit. For instance, the classical paper

of Eckles (1968), published in Operations Research, uses a stylized partially observable Markov

decision process to find the optimal maintenance policy where the system’s state is not exactly

known. Another example is the study of Maillart (2006) in IIE Transactions, which derives struc-

tural properties of optimal maintenance policies for systems with perfect information, which are

used to motivate heuristic policies when information is imperfect.

Both the European and American perspectives on maintenance research have merit. Stylized

models may serve as a stepping stone to more practical-oriented applications. As a European

journal, EJOR has the “applicability” of EU research at its heart. American OR journals have

more tradition in deriving structural results of a stylized model that may not necessarily have

immediate applicability to decision support. However, this is changing, with several American

journal editors stressing the importance of applied research. This change leads to more analytical

papers that are empirically grounded or applied to company data.

We browsed through the archive of EJOR, the journal published in collaboration with EURO,

and performed basic text-mining inspired by Song et al. (2019).1 The fraction of EJOR publica-

1We explain our text-mining analysis in Appendix A, as we believe it may also serve future reviews. We also
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tions devoted to maintenance is around 2.4%. There is no clear trend over the years, although there

is a slight peak around the end of the nineties (see Fig. 1, left panel). Interestingly, maintenance-

related publications are significantly (with a p-value of 0.011768) more frequently cited (on average,

3.76 citations per year since publication) than other non-maintenance publications in EJOR (on

average, 3.03 citations per year since publication); see Fig. 1, right panel. We provide the top 15

most cited maintenance publications in Appendix B.

We do not intend to provide an exhaustive review or classification of papers related to main-

tenance and reliability. We refer the interested reader to existing reviews, such as, for instance,

Olde Keizer et al. (2017) and De Jonge and Scarf (2020). Instead, we highlight the main methods

and techniques for maintenance optimization and illustrate them with concrete examples. We

then discuss the optimization of the maintenance logistics support system, such as spare parts

inventory management or resource planning required to perform maintenance. We conclude by

reflecting on the gaps between the current state of research and real-world needs.

2. Maintenance Optimization: Data and Methods

Maintenance operations consist mainly of upgrading or replacing parts of an asset. The opti-

mization thereof focuses on two decisions: When and what to maintain. These two decisions are

subject to two major sources of uncertainty. The first uncertainty concerns the timing of the

failure, which the act of maintenance is intended to prevent. This uncertainty depends on the life-

time of the asset or component, which is stochastic by nature. Preventive maintenance at known,

pre-determined moments can prevent the high cost of unplanned corrective maintenance associ-

ated with breakdown. The second uncertainty concerns what will be maintained. Sometimes, this

uncertainty may only become known during the asset inspection. This latter uncertainty is often

overlooked, but it distinguishes maintenance environments from production: When a production

job starts, the materials and processes required to produce the product are known in advance.

Frequently, neither is known when a maintenance job starts.

Table 1 classifies maintenance strategies based on these two uncertainty dimensions. Preventive

maintenance replaces worn components before they fail to preserve and restore system reliability.

When such preventive maintenance is scheduled at fixed maintenance intervals based on, for

instance, time (age) or production volume (usage), the timing and content of the maintenance

share our sources and source code on https://github.com/LoeysS/50yEJORMaintenance.
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Table 1: Maintenance strategies organized by timing and type uncertainty (Stoneham, 1998; Arts, 2019).

Type

Timing
Known Unknown

Known
Periodic, Age/Usage-based, Condition-based with

modificative maintenance real-time condition monitoring

Unknown
Condition-based Breakdown corrective

with periodic inspections maintenance

intervention are both known. When preventive maintenance is scheduled based on tracking a

system’s condition, the exact timing depends on the stochastic degradation behavior. When the

condition is periodically monitored upon inspection, the timing is known, but not the content.

These maintenance strategies require accurate failure estimations to determine when to op-

timally intervene. Several approaches exist, depending on the data and the domain expertise

available. We propose a maintenance maturity framework in Figure 2 that captures the relation-

ship between the methods applied in maintenance decision-making and the (abundance of) data

used. We define maturity in terms of the volume of data that is available and the maintenance

interpretation thereof using customized feedback controls. Here, we refer to the use of customized

feedback controls as smart execution (Boute and Van Mieghem, 2021).

Level 0 in our framework refers to failure-based maintenance, where no data is collected, and

corrective maintenance is performed when a breakdown is observed. In Level 1, age- or usage-

based maintenance, historical failure data are used periodically to optimize the decision-making

parameters, such as maintenance intervals. Levels 2 and 3 refer to condition-based maintenance

(CBM), where information on the component’s condition is collected to estimate the component’s

degradation level. Monitoring a system’s condition is becoming increasingly accessible due to

decreasing sensor and related data monitoring costs. Research, therefore, increasingly incorporates

such data into the methods used to estimate the failure process of a deteriorating system. Such

estimates can determine when to optimally intervene based on degradation thresholds and up-to-

date information measurements. Online learning methods circumvent the sequential approach of

predicting and optimizing by jointly estimating the failure process and optimizing maintenance

decisions. Accordingly, the main difference between Levels 2 (offline CBM) and 3 (online CBM) is

that the thresholds used at Level 3 are updated using the current condition information, whereas,

in Level 2, the thresholds rely on historical data only. Level 4 refers to using data from various

sources, including multiple machines and external environmental factors, to learn and predict
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Figure 2: We position the evolution of maintenance in terms of data availability and the type of methods used to

process the data to inform decision-making.

system failures. When a company finds itself in the lower right triangle, it possesses sufficient

smart(er) maintenance expertise but lacks the amount and/or quality of data to improve its

maintenance decision-making. Similarly, when a company finds itself in the upper left triangle, it

has the infrastructure to collect high-quality data but fails to use them to improve its maintenance

decision-making.

Advances in data collection and algorithmic capabilities (moving towards the top right corner of

Figure 2), as enabled by digital technologies such as the Internet of Things (IoT), cloud computing

and data analytics, collectively termed Industry 4.0, have resulted in renewed potential to optimize

maintenance decision-making. For example, vast amounts of asset condition data can be captured

by remotely monitoring complex assets via sensors and the IoT. Digital asset AI profiles, often

called digital twins, can be developed using this data to model asset conditions and expected

deterioration behavior. Such a digital duplicate of the physical asset can be used to simulate and

evaluate the impact of maintenance decisions in a risk-free environment.

However, data from sensor observations used as input to maintenance optimization models

may suffer from inherent sensor quality limitations or outside interference. In such cases, human

input may complement sensor observations for a more complete and reliable digital profile of the

monitored asset. In fact, humans are not only the end users of the IoT systems and services but

are becoming active elements of the Internet through mobile devices, a term coined as the Internet
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of People (IoP). Specifically, IoP can (1) confirm or reject IoT data, upon which digital profiles

may learn from the IoP action, (2) augment IoT data by providing an additional view with regards

to the asset being monitored and (3) provide data where IoT data is unavailable.

Integration of data collection, maintenance decisions, and human input requires a central

and holistic overview of the monitored assets to successfully coordinate operations. Digital con-

trol towers make this feasible. A digital control tower is a central information platform that

collects real-time data from relevant entities to provide full visibility of the asset network. More

extensive data overviews in the control tower translate into more efficient and effective operations

coordination.

We believe that maintenance optimization models should be informed by understanding the

physical process governing the systems under consideration. Such an approach requires a com-

bination of engineering and operations expertise. Accordingly, we review the main techniques to

optimize the maintenance strategies based on the available data in this section. We distinguish

between estimating the failure process of a deteriorating system (Section 2.1) from the methods

that use these estimates to determine when to intervene optimally (Section 2.2), concluding with

online failure estimation and maintenance optimization (Section 2.3). The distinctions allow us

to discuss the merits and demerits of treating failure estimation and maintenance optimization

separately. We illustrate the different approaches through two examples, focusing on age- and

condition-based replacement. We build upon each example in the subsequent sections to illustrate

the increasing complexity of failure estimation and maintenance decision-making.2

Example 1. (Age-based Replacement) Interventional X-ray (IXR) machines make images of

patients during medical procedures. A critical component is the filament that generates the X-rays.

The filament is preventively replaced every 25 weeks unless it fails before that. The hospital has

data on the age of different filaments at the time of their replacement (see Table 2).

Table 2: Replacement age data of filaments, measured in weeks since their installation.

time to replacement 15 25 25 25 25 25 22 20 22 14 20 25 25 20 25 25 25

censored 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1

The price to replace a filament preventively is Cp = e500. The replacement cost upon failure

includes rescheduling medical procedures and other adverse events, estimated at Cc = e6000. The

2Programmed solutions per example are provided on https://github.com/LoeysS/50yEJORMaintenance



8 Arts et al.: Fifty Years of Maintenance Optimization: Reflections and Perspectives

Table 3: Data of the filaments’ age (in weeks since their installation) when their impedance has increased by 1Ω.

Filament 1
age 0.1 0.5 3.7 8.5 13.9 18.8 19.3 20.5 22.3 24.8

excess impedance 1 2 3 4 5 6 7 8 9 10

Filament 2
age 0.3 0.9 6.4 10.3 10.4 11.5 14.8 22.1 24.7 27.2

excess impedance 1 2 3 4 5 6 7 8 9 10

Filament 3
age 4.8 14.7 18.9 23.2 30.6 31.2 33.0 39.0 39.9 44.2

excess impedance 1 2 3 4 5 6 7 8 9 10

hospital would like to know whether the policy of replacing preventively at 25 weeks can be improved

by lowering or raising the replacement age threshold.

Example 2. (Condition-based Replacement) The condition of a filament is given by its

impedance, measured every time a current is run through the filament. The filament fails when

its impedance is 10 Ω higher relative to its impedance when it is new. The hospital has data of

moments when impedance increases by a whole Ohm for three filaments that were used until failure

(see Table 3). The cost of a preventive and corrective replacement is identical to Example 1. The

hospital would like to know after which impedance increase they should replace a filament.

2.1 Failure Process Estimation

Several approaches exist to predict when failures will occur if maintenance is not performed.

The time until failure can be predicted based on historical failure data, or one can understand

how assets degrade based on their condition. We discuss estimating time-to-failure models in

Section 2.1.1 and degradation models in Section 2.1.2. These models correspond to Levels 1 and 2

of our maturity framework in Figure 2.

2.1.1 Time-to-Failure Models

Predictions of the time to failure are usually framed as the probability that a system is still

operational after a time t. This probability is called the reliability at time t and denoted R(t).

The field of reliability engineering studies the estimation and computation of reliability functions

for complex engineering systems and is at the intersection of probability theory and engineering.

An important concept in reliability engineering is the instantaneous failure probability of a system

at age t, also called the hazard rate. If the random variable T with density f(·) and distribution
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F (·) denotes the lifetime of a component, then the hazard rate h(t) is given by:

h(t) = lim
ϵ→0

P(T ≤ t+ ϵ | T ≥ t)/ϵ = f(t)/R(t).

Rather than estimating R(t) directly, reliability engineers often estimate h(t), given that the relia-

bility is easily recovered from the hazard rate via simple integration as R(t) = exp
(
−
∫ t

0
h(x)dx

)
.

The hazard rate can be estimated through non-parametric and parametric approaches; see, e.g.,

Lewis (1996) and Ebeling (2001).

An important concern in estimating time-to-failure distributions is that relatively few data

are available, and such data are often censored as a result of failure avoidance from preventive

maintenance interventions. Parametric estimations can deal with censored data, and the distri-

butional family choice can be informed by engineering knowledge. For example, the family of

Weibull distributions is often used to model time-to-failure because it arises naturally as the lim-

iting distribution of the minimum of a set of random variables. Such a minimum is important

as the lifetime of an engineering system is given by the minimum lifetime of all its constituent

components, the so-called weakest link.

The data to estimate the time-to-failure distribution is often given in the form of Example 1.

That is, only data of the time to replacement of n components, denoted x1, · · · , xn, and replace-

ment data for each component i, be it preventive (censored, ci = 1) or corrective replacement (un-

censored ci = 0), is available. Maximum Likelihood Estimation (MLE) can estimate the parameter

θ of a given family of distributions as follows. Let f(· | θ), F (· | θ) and R(· | θ) = 1− F (· | θ) re-
spectively be the density, distribution, and reliability function for the family under consideration.

The log-likelihood L(θ | x, c) of a given sample x = (x1, · · · , xn) c = (c1, · · · , cn) is then

L(θ | x, c) =
∑n

i=1 ln (1ci=1R(xi | θ) + 1ci=0f(xi | θ)) , (1)

where 1x is the indicator function which is 1 if x is true and 0 otherwise. The maximum likelihood

estimator is then θ̂ := argmaxθ L(θ | x, c). Good parametric choices should generally be made

based on comprehension of the physics of failure. Tinga (2013) can provide relevant guidance.

Example 3. (Age-based Replacement cont. from Example 1) We let the random variable

T denote the lifetime of an IXR filament. Suppose we assume that T follows a gamma distribu-

tion, i.e., P(T > t) = R(t | α, β) =
∫∞
t

f(x | α, β)dx, where f(x | α, β) = βαxα−1 exp(−βx)
Γ(α)

is the

probability density function of T and Γ(z) =
∫∞
0

xz−1 exp(−x)dx is the gamma function. The log-

likelihood in Eq. (1) now becomes L(α, β | x, c) =
∑n

i=1 ln (1ci=1R(xi | α, β) + 1ci=0f(xi | α, β)).
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A standard non-linear programming solver will show that L(α, β | x, c) is maximized in (α̂, β̂) =

(9.5331, 0.3471) where the log-likelihood is L(α̂, β̂ | x, c) = −12.8814. Thus (α̂, β̂) = (9.5331, 0.3471)

are the maximum likelihood estimates of the parameters of a gamma distribution to model the cen-

sored lifetime data in Table 2. This time-to-failure distribution will be used to determine the

optimal maintenance interval in Section 2.2.

In practical settings, it is often useful to update the distribution of the Remaining Useful

Life (RUL) based on recent data, including multi-dimensional sensor readings. Depending on the

nature of the equipment, there is much engineering literature on these topics; see Lei et al. (2018)

for a recent overview. Methods from machine learning and AI such as Neural Networks (of many

different architectures) are recently gaining traction; see e.g. De Pater and Mitici (2023) and Liu

and Gryllias (2020). Such methods are used to transform multidimensional sensor data into a

one- or low-dimensional health indicator of RUL prediction. A major challenge is that there is

much data on healthy equipment, but still very little data on equipment that has run to failure.

These methods generate online RUL predictions, but the literature on how to incorporate changing

estimates in decision-making is sparse.

2.1.2 Degradation Models

Rather than only observing the asset/component’s age, one can also improve the failure prediction

by understanding how assets/components degrade based on their condition. What and how you

measure the component’s condition or degradation level depends heavily on the asset technology.

The condition of a brake pad, for example, a component of disc brakes used in automotive and

other applications, is its thickness. The thickness of brake pads can be measured periodically

when a vehicle enters the maintenance shop. With modern sensing technology, however, it is also

possible to continuously monitor such wear over time. In either case, we need to model the way

the thickness of the brake pad evolves over time and use data to fit degradation models. With

the installation of sensors in most modern high-tech equipment, it is possible to monitor changes

in vibration amplitude, temperature, light intensity, concentration of contaminants in lubrication

fluids, deformation, and position of parts relative to each other, generating numerous data points.

A degradation process is a stochastic process X(t). We will assume for convenience and with-

out loss of generality that X(0) = 0. There is a threshold L such that a component fails at time

T = inf{t | X(t) ≥ L}; see Figure 3. We assume that limt→∞ X(t) ≥ L so that a component fails

almost surely during its usage. A common model of degradation occurs when X(t) has stationary
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Figure 3: A sample degradation path of a ball bearing.

independent increments. That is when, for any a > 0 and b ≥ 0, X(a + b) −X(a) has the same

distribution independent of X(t) for all t ≤ a. The stationary independent increments assumption

also implies that degradation grows linearly in the sense that E[X(t)] = at for some a > 0. Many

real degradation processes may not grow linearly but grow linearly after an appropriate transfor-

mation. An example of such a transformation is the logarithmic transformation for degradation

that grows exponentially (e.g. Elwany et al., 2011)). It is convenient to assume that a degradation

increment comes from a distributional family in the class of linear exponential distributions. As

such, X(t) will be in this distributional family for all t. Examples include the normal/Gaussian

(Elwany et al., 2011), (compound) Poisson (Drent et al., 2023), inverse Gaussian (Ye and Chen,

2014; Chen et al., 2015), gamma (Van Noortwijk, 2009; Bautista et al., 2022), and other distribu-

tions. Some of these references also discuss the physical interpretation of processes (e.g., Ye and

Chen (2014) and Drent et al. (2023)).

Estimation of a degradation process using maximum likelihood estimation generally proceeds

as follows. The parameters of X(t) in a distribution family from the linear exponential class can

generally be written as θt, where θ may be a vector. Data is often given as a degradation level

at certain ages, as in Example 2. For our estimation, it is convenient to transform this data into

degradation increments and the time between them. Let x = (x1, . . . , xn) be those increments

and t = (t1, . . . , tn) be the time associated with each increment. That is, xi is the degradation

accumulated during ti time. Then, by hypothesis, xi is a draw from a distribution family with

parameter θti. Let us denote this distribution’s probability mass or density function by f(· | θ).
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Then, the log-likelihood L(θ | x, t) of the sample (x, t) is given by

L(θ | x, t) =
n∑

i=1

ln (f(xi | θti)) . (2)

The maximum likelihood estimate of the parameter θ is now given by θ̂ = argmaxθ L(θ | x, t). It
can usually be obtained using either a standard non-linear programming solver or by numerically

solving the Karush Kuhn Tucker conditions associated with the optimization problem maxθ L(θ |
x, t). An application of this estimation procedure is given in the example below.

Example 4. (Condition-based Replacement cont. from Example 2) First, we transform

the data in Table 3, which is given as total degradation and ages. The same data in terms of

increments (we have xi = 1 for all i) and time of increments t, as shown in Table 4 for the

condition data of filament 1.

Table 4: Increment times data (in weeks) for the first 21 measurements of filament 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 . . .

ti 0.1 0.4 3.2 4.8 5.4 4.9 0.5 1.2 1.8 2.5 0.3 0.6 5.5 3.9 0.1 1.1 3.3 7.3 2.6 2.5 4.8 . . .

If we assume degradation is a Poisson process with intensity λ, then the likelihood of sample i

is given by f(xi, ti | λ) = (λti)
xi

xi!
exp(−λti) = λti exp(−λti) since xi = 1 for all i. The log-likelihood

function now becomes L(λ | x, t) =
∑n

i=1 ln(f(xi, ti | λ)) which is maximized in λ̂ = 0.31185 Ω per

time unit with maximized log-likelihood L(λ̂ | x, t) = −44.9996. This degradation process can then

be used to determine when (and what) to maintain, which is discussed in the following section.

2.2 Maintenance Optimization

Given failure process estimates, models used to optimize the timing of maintenance actions can be

separated into two main paradigms: renewal reward theory and Markov decision processes. The

renewal reward approach identifies repeating cycles in a stochastic system for which a decision

rule has been established. In Markov decision processes (MDPs), there is, a priori, neither an

established decision rule nor a repeating cycle, only possible system states and decision options.

MDPs can be used to prove that a certain type of decision rule is optimal, whereas renewal reward

processes can be used to find the optimal parameters of a given decision rule. We discuss each

approach separately. Note that these approaches correspond to Levels 1 and 2 of Figure 2.
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2.2.1 Renewal Reward Theory

A renewal process is a counting process with two i.i.d. sequences of random variables, namely

a sequence of rewards or costs (e.g., the cost of a maintenance intervention), Wi, and the time

between the occurrence of each successive reward (e.g., the time between maintenance visits), Xi,

with common distribution P(Xi ≤ x) = F (x). Each sequence is i.i.d., but Xi and Wi may be

correlated. It is usual to interpret E[Xi] as the expected cycle length (ECL) and E[Wi] as the

expected cycle costs (ECC). Let Si =
∑i

k=1Xk denote the time that the i-th renewal occurs with

S0 = 0 by convention. The number of cycles (or renewals) up to time t is given by N(t) = max{k ∈
N | Sk ≤ t}. Then the total reward (cost) up to time t > 0 is denoted by Y (t) and satisfies

Y (t) =

N(t)∑
i=1

Wi.

Here, Y (t) is a renewal reward process. The renewal reward theorem (e.g., Ross, 1996) states that

lim
t→∞

Y (t)

t
= lim

t→∞

E[Y (t)]

t
=

E[Wi]

E[Xi]
=

ECC

ECL
. (3)

Given that the conditions for a renewal process hold, the optimal replacement age and ex-

pected maintenance cost per time unit for both failure- and age-based replacement policies can be

determined using such a renewal reward process. In a failure-based policy, Xi represents the time

to failure of a component. The maintenance cycle is then the time between two successive failures

and corresponding corrective maintenance actions. The maintenance cycle has associated with it

the expected cycle cost (ECC) and the expected cycle length (ECL), expressed in time units.

An age-replacement policy replaces a component when it reaches some age τ . Suppose that the

lifetimes of each component i are Ti and {Ti}∞i=1 is i.i.d. We can conceive of the cost under such a

policy as a renewal reward process. The time between two successive maintenance interventions is

now denoted as Xi = min(τ, Ti) and {Xi}∞i=1 is an i.i.d. sequence. If the component fails before it

is preventively replaced at age τ , a cost Cc > Cp is incurred for unplanned corrective maintenance

while Cp is incurred for planned replacement at age τ . With probability 1−FT (τ) = P(Ti > τ), the

cost in a given maintenance cycle is Cp, whereas the cost is Cc with probability FT (τ) = P(Ti ≤ τ):

Wi =

Cp with probability 1− FT (τ),

Cc with probability FT (τ).

The average cost per time unit for a given τ is then given by g(τ) = ECC/ECL, where

ECC = E[Wi] = FT (τ)Cc + (1− FT (τ))Cp and ECL = E[Xi] = E[min(T, τ)].
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The value for τ can be optimized by setting dg(τ)/dτ = 0 and solving for τ or numerically

minimizing g(τ) directly.

Examples in literature include the seminal work by Barlow and Hunter (1960) on optimal

age-based policies. Recent advances include extending the use of the renewal reward process in

age-based maintenance to multi-components (Arts and Basten, 2018), unpunctual maintenance

(Sanoubar et al., 2021), and population heterogeneity (Dursun et al., 2022).

The time between renewals must be i.i.d. for renewal theory to apply. In the age-replacement

policy, renewals correspond to replacements, but this will not always be the case. For example,

replacements for block policies are not renewal points; see Barlow and Proschan (1996) Section 3.3.

It is common to define cycles that are not i.i.d. and use a renewal reward approximation based

on the false assumption that cycles are independent. Relevant examples include opportunistic

maintenance in a multi-component setting (e.g. Poppe et al., 2018; Zhu et al., 2017) and for joint

maintenance of multi-components (e.g. Peng and Zhu, 2017; Zhu et al., 2015).

Renewal reward processes are also applied to CBM policies in redundant multi-component

systems (Zhang et al., 2020) and partially observable systems (Kim and Makis, 2013; Van Staden

and Boute, 2021). Examples of industrial applications of renewal theory are found in Poppe et al.

(2018) and Jardine and Tsang (2005).

Example 5. (Age-based replacement cont. from Examples 1 and 3) For an age replace-

ment policy for an IXR filament with threshold τ we have ECC = 6000 ·F (τ | α, β)+500(1−F (τ |
α, β)), with α = 9.5331 and β = 2.8808 obtained in Example 3. The expected cycle length is

ECL =

∫ τ

0

xf(x | α, β)dx+ τ(1− F (τ | α, β))

=

∫ τ

0

αβf(x | α + 1, β)dx+ τ(1− F (τ | α, β)) = αβF (τ | α + 1, β) + τ(1− F (τ | α, β)).

The weekly cost for a given replacement threshold τ is g(τ) = ECC/ECL. Numerically minimizing

for τ gives the optimal τ ∗ = 12.2 weeks and g(τ ∗) =e49.29 per week. The current policy of

replacing every 25 weeks has cost g(25) =e126.30 per week. Optimization of the age replacement

parameter saves (g(25)− g(τ ∗))/g(25) = 61% relative to the current solution with τ = 25 weeks.

2.2.2 Markov Decision Processes

Markov decision processes (MDPs) deal with decision-making over time under uncertainty that is

sequentially revealed to a decision-maker. The elements of an MDP are the state space in which
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the decision maker finds herself, such as, e.g., the machine’s age or condition, the action space

of possible actions the decision maker can take, such as performing maintenance or not, and a

stochastic mechanism by which the decision-maker finds herself in a new state after one time

period, dependent on the current state and action taken. The decision-maker incurs a cost based

on the state and action taken in each period. These elements can be arranged in a tuple (S,A, P, c)

where S is the state space, A is the action space, P is the transition law, and c : S × A → R is

the cost function that determines the cost incurred in state x ∈ S when decision a ∈ A is taken.

The decision-maker may have different objectives and/or time horizons. For instance, she

may want to minimize maintenance costs or maximize machine uptime. Here, we will focus on a

decision-maker who seeks to minimize the average cost incurred per period over an infinite horizon.

The decision maker then seeks a policy π : S → A, informing the decision maker of what to do in

each possible state to achieve the objective. Such a policy will usually satisfy a set of equations

known as the Bellman optimality equations.

We illustrate this with a condition-based maintenance example. Suppose the condition of a

component at age t ∈ R+ is given by X(t) and X(t) is a process with independent stationary

increments as described in Section 2.1.2. X(t) takes values in the state-space S. By convention,

we will let 0 denote the good as new state and L > 0 denote the failed state. Suppose further that

the component can only be replaced on weekends. Then, the decision-maker observes X(t) each

weekend and must decide whether to replace the component. Let Xt denote the degradation level

of the component at the end of week t ∈ N. Then if the decision-maker decides not to replace, she

will find the component the week after in state Xt+1 = min(Xt + Zt, L), where {Zt}∞t=1 is an i.i.d.

sequence of non-negative random variables. If the component is replaced, the decision-maker will

find the component next week in a state Xt+1 = min(0 + Z1, L) = min(Z1, L). Thus, the action

space is given by A = {1, 0} where 1 denotes the decision to replace and 0 denotes the decision

not to replace. We assume that the decision-maker has to replace the component when it is in the

failed state L, i.e., AL = {1} where Ax denote the decision possible in state x ∈ S.

For illustration purposes, we will assume that Zi is distributed on the integers such that
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S = {0, 1, 2, . . . , L}. Let At denote the decision taken in weekend t. Then,

paij = P(Xt+1 = j | At = a,Xt = i) =



P(Z = j − i) if a = 0, j < L

P(Z ≥ j − i) if a = 0, j = L

P(Z = j) if a = 1, j < L

P(Z ≥ j) if a = 1, j = L.

(4)

P denotes the collection of all these transition probabilities and is called the transition law. The

cost function associated with taking decision a ∈ A in state x ∈ S is given by

c(x, a) =


0 if a = 0 x < L

Cp if a = 1 x < L

Cc if a = 0 x = L,

(5)

where Cp and Cc > Cp denote the cost of preventive and corrective replacement, respectively.

The average cost over an infinite horizon of a given policy π is defined as

gπ = lim sup
T→∞

1

T
Eπ

[∑T
t=1 c(Xt, At)

]
,

where Eπ denotes the expectation taken with respect to the two discrete-time stochastic processes,

Xt and At, induced by the policy π. The decision-maker seeks the optimal policy π∗ = argminπ g
π.

The optimal cost rate, g∗ = gπ
∗
with policy π∗ satisfy the Bellman optimality equations

V (x) + g∗ = c(x, π∗(x)) + E[V (Xt+1) | Xt = x, At = π∗(x)]

= min
a∈Ax

{c(x, a) + E[V (Xt+1) | Xt = x, At = a]}

= min
a∈Ax

{
c(x, a) +

∑
j∈S p

a
x,jV (j)

}
(6)

which hold for all x ∈ S. The function V (x) is called the (relative) value function and can

be determined algorithmically through value iteration, policy iteration, or linear programming

(Puterman, 1994). The value iteration solves the Bellman equations iteratively by computing the

successive approximations V1, V2, . . . through the recursion

Vn(x) = min
a∈Ax

{
c(x, a) +

∑
j∈S p

a
x,jVn−1(j)

}
, (7)

with the initial condition V0(x) ≡ 0 for all x ∈ S. Let the policy πn be defined by πn(x) =

argmina∈Ax{c(x, a) +
∑

j∈S p
a
x,jVn−1(j),

∑
j∈S p

a
x,jVn−1(j)} for x ∈ S. Then the policy πn has a
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cost-rate within ϵ > 0 of g∗ if maxx∈S(Vn(x) − Vn−1(x)) − minx∈S(Vn(x) − Vn−1(x)) < ϵ and g∗

equals (maxx∈S(Vn(x)− Vn−1(x)) + minx∈S(Vn(x)− Vn−1(x)))/2 within a precision of ϵ. Thus for

a given ϵ > 0 one can iterate equation (7) until the criterion above is satisfied. At that point, the

Bellman equations (6) are also satisfied within ϵ tolerance.

The MDP approach has also been used to model imperfect repairs (Kurt and Kharoufeh, 2010)

and multiple component systems with redundancy (Andersen et al., 2022; Olde Keizer et al., 2016).

Semi-MDPs can be used to model the maintenance decision in continuous-time, as in Huang and

Guo (2011); Drent et al. (2019). MDPs can also be applied to periodic age-based maintenance

policies. Bayesian learning through MDPs can be used to advance the age-based maintenance

decision given unplanned corrective maintenance actions (Van Staden et al., 2022).

Example 6. (Condition-based maintenance cont. from Example 2 and 4) Suppose that

any replacement of the IXR should happen on the weekend when there are no scheduled patient

procedures. The condition is measured every weekend and the filament fails at L = 10. The

distribution of a degradation increment Z is given by P(Z = x) = exp(−λ)λx/x!, with the estimated

degradation rate λ = 0.31185 Ω per week obtained in Example 4. The transition law can be

computed with Eq. (4) and the cost function using Eq. (5). Appendix C provides the transition

probability matrices of the transition law. The optimal replacement policy can be computed with

value iteration using Eq. (7) with optimality tolerance ϵ = 10−6. This yields g∗ =e22.04 per week,

and the IXR unit should be replaced when the degradation is 7 Ω or higher, i.e., π(x) = 1 if x ≥ 7

and π(x) = 0 otherwise. This is also called a threshold policy with threshold 7. The lifetime and

condition data in Examples 1 and 2 come from the same process. Thus, we find that condition-

based maintenance saves (49.29-22.04)/49.29=55% relative to the filament’s optimal age-based

maintenance policy derived in Example 5.

2.3 Online Failure Estimation and Maintenance Optimization

The aforementioned approaches work well, provided sufficient data is available for failure estima-

tion. To increase the data pool, an implicit assumption often used is that the degradation process

parameters of all components are identical. An alternative approach recently gaining momen-

tum is learning and updating each individual component’s degradation process parameters over

time through cumulative signal observations obtained via condition monitoring of a heterogeneous

pool of components. The most current understanding of the degradation process is then used to

customize the maintenance planning for each individual component. We explain how to update
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one’s understanding of the degradation process of an individual component in a Bayesian man-

ner in Section 2.3.1. We use this updating procedure to formulate a partially observable Markov

decision process (POMDP) that integrates failure estimation and maintenance optimization in

Section 2.3.2. Such a learning and decision model approach corresponds to Levels 3 and 4 of

Figure 2.

2.3.1 Bayesian Degradation Process Learning

Consider a heterogeneous population of components that degrades with independent increments

from the linear exponential family of distributions. The degradation process parameters differ for

each individual component but, across the population, they can be fitted to some exogenously

given distribution. (We will illustrate later how to estimate such a distribution.) Specifically,

assume that degradation follows a Poisson process and the degradation rates of the individual

components can be fitted to a gamma distribution with shape α0 and inverse scale β0. The

choice of these distributions is not arbitrary. To obtain a tractable model, the distribution of the

degradation increments must come from the linear exponential family (Morris, 1982). Only then

does a tractable conjugate distribution exist to model the population heterogeneity. A Poisson

process where the rates follow a gamma distribution is just one such choice that we will use to

illustrate the approach.

Let Xt denote the component’s degradation level at age t. This monitored condition can

be observed, but the Poisson rate Λ of this component’s degradation process is unknown. All

we initially assume is that Λ follows a gamma distribution with shape α0 and inverse scale β0

(notation Λ ∼ Γ(α0, β0)), so that P(Λ ≤ z) =
∫ z

0

β
α0
0 yα0−1 exp(−β0y)

Γ(α0)
dy. By observing a component’s

degradation over time, Xt = (X0, X1, . . . , Xt), we want to increase our knowledge of Λ as expressed

by its distribution P (Λ ≤ z|Xt)

Suppose we observe the degradation level every week. After the first week, we know the

realization x1 of X1. Now we can update the belief of the distribution of the Poisson parameter Λ,

knowing that x1 is the realization of X1: P(Λ ≤ z | X1 = x1). Applying Bayes’ theorem, we find:

P(Λ ≤ z | X1 = x1) =

∫ z

0

(β0 + x1)
α0+1yα0−1+1 exp(−(β0 + x1)y)

Γ(α0 + 1)
dy,

that is {Λ|X1 = x1} ∼ Γ(α0 + 1, β0 + x1). After observing Xt = xt, the same argument can be

repeated to find {Λ|Xt = xt} ∼ Γ(α0 + t, β0 + xt). Alternatively, {Λ|Xt = xt} ∼ Γ(αt, βt) with

αt = α0+ t and βt = β0+xt. The coefficient of variation of {Λ|Xt = xt} decreases over time and is
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given by 1√
α0+t

, i.e., an observer becomes more certain about the actual degradation parameter Λ

of an individual component by observing its degradation process over time.

In Bayesian statistics, Γ(α0, β0) is called the prior distribution of Λ, and Γ(αt, βt) its posterior

distribution. The initial parameters α0 and β0 are hyperparameters and model how the degradation

rate varies from one component to another. We illustrate a possible way of estimating α0 and β0

in Example 7 below. By contrast, αt and βt encode our knowledge of the degradation rate of an

individual component after observing its degradation for t time units.

The distribution of a degradation increment of an individual component given the past degra-

dation of this component, i.e., P(Xt+1 − Xt ≤ x | Xt = xt), is called the posterior predictive

distribution. It can be found using the law of total probability. The posterior distribution for the

case of Poisson degradation with a gamma prior is known to be a negative binomial distribution

with shape parameter rt = αt and success probability pt = 1/(βt + 1).

Example 7. (Estimation of hyperparameters cont. from Example 2) Consider the case

where the failure data of two additional filaments is collected during operation (see Table 5).

Table 5: Condition data of two additional filaments.

Filament 4
age 0.5 2.1 3.8 3.9 4.8 9.2 9.4 11.9 13 13.5

impedance excess 1 2 3 4 5 6 7 8 9 10

Filament 5
age 0.3 2.4 19.3 29.8 31.9 33.7 35.8 46.0 57.8 58.0

impedance excess 1 2 3 4 5 6 7 8 9 10

Suppose we assume that the degradation process of the five filaments (whose monitored degra-

dation paths are shown in Tables 3 and 5) follows five Poisson processes whose random rate Λ

across the components follows a Γ(α0, β0) distribution. Let tmax,i and xmax,i denote the maximum

age and degradation level observed for filament i. The number of times the impedance excess of

component i increased in tmax,i time units has a Poisson distribution with mean Λtmax,i. By the

scaling property of the gamma distribution, xmax,i will be a draw from a Poisson distribution with

a gamma prior on the rate given by Γ(α0, β0/tmax,i), which as indicated above, has a negative bi-

nomial distribution with shape r = α0 and success probability p =
tmax,i

β0+tmax,i
. Thus the log-likelihood

can be expressed as

L(xmax, tmax | α0, β0) =
5∑

i=1

ln

[(
xmax,i + α0 − 1

xmax,i

)(
tmax,i

β0 + tmax,i

)xmax,i
(

β0

β0 + tmax,i

)α0
]
,
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which is maximized in the MLE estimates α̂0 = 7.4097 and β̂0 = 21.6919. These are the initial

estimates of the prior distribution Λ. By observing the component’s degradation over time, these

parameters are updated by applying Bayes’ theorem.

2.3.2 Partially Observable Markov Decision Processes

The most recent Bayesian degradation estimates can be integrated into maintenance optimization

in real-time. Partially Observable Markov Decision Processes (POMDP) provide a framework for

this integration. In contrast to the conventional MDPs described in Section 2.2.2, a POMDP has

parts of the state space that cannot be directly observed. The component’s degradation process

parameters are part of the current state but are not directly observable by the decision maker.

The only two parts of the state space that the decision-maker can observe are the degradation level

and age of the current component. Knowledge about the unobservable degradation parameter is

encoded in the most recent belief distribution, i.e., in P(Λ ≤ z | Xt = xt).

Consider the same problem setting described in Section 2.2.2, except that the Poisson process

degradation rate of each component is unknown and can be fitted to a gamma distribution across

all components with shape α0 and inverse scale β0. It is convenient to define the random variable

Z(x, t) as the distribution of a degradation increment over a week, conditional on the current

component having degraded to level x in t weeks, i.e.

P(Z(x, t) ≤ z) := P(Xt+1 −Xt ≤ z | Xt = x).

We saw in Section 2.3.1 that Z(x, t) has a negative binomial distribution with shape αt = α0 + t

and success probability pt = 1/(βt + 1) = 1/(β0 + x+ 1). The same approach in Section 2.2.2 can

now be followed to find that the Bellman equations are given by

V (x, t)+g∗ =

min {E[V (max(L, x+ Z(x, t), t+ 1))], Cp + E[V (max(L,Z(0, 0)), 1)]} , if x < L

Cc + E[V (max(L,Z(0, 0)), 1)], if x = L.

As before, the Bellman optimality equations can be solved by value or policy iteration or linear

programming after truncating the age dimension of the state space to a sufficiently high value.

Example 8. (Solution of POMDP, cont. from Examples 2, 4, and 6) From Example 7,

we know that the hyperparameters are estimated to be α0 = 7.4097 and β0 = 21.6919. Solving the

POMDP now gives g∗ =e20.49 per week, and the optimal replacement policy is a threshold policy

given by π(x, t) = 1 if x ≥ T (t) and π(x, t) = 0 if x < T (t), where the age-dependent thresholds
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are given by T (t) = 7 for t ∈ {1, . . . 25}, T (t) = 8 for t ∈ {26, . . . , 146} and T (t) = 9 for t > 146.

Compared to Example 6, the weekly cost is reduced by (22.04-20.49)/20.49=7.55%. However, some

care should be taken in comparing these numbers as they are computed under different assumptions

about reality because (i) more data is available in this example compared to Example 6, and (ii)

this example assumes that components are statistically distinguishable whereas Example 6 assumes

components are statistically indistinguishable.

The approach in Section 2.3.2 works when there are linear sufficient statistics that summarize

the entire degradation path (x and t in our example). Several more sophisticated degradation

processes have been studied this way, e.g., Elwany et al. (2011) for Brownian motion, Chen et al.

(2015) for the Inverse Gaussian processes, and Drent et al. (2023) for compound Poisson processes.

All these authors consider continuous-time deterioration signal updating and determine optimal

control limit policies for component replacement. Van Oosterom et al. (2017b) makes more generic

assumptions on the degradation process, but population heterogeneity is constrained to lie in

a finite set. Other papers that consider situations in which the system state is only partially

observable are Maillart (2006); Kim and Makis (2013); Van Oosterom et al. (2017a); Van Staden

and Boute (2021); Zhang and Zhang (2023); Gamiz et al. (2023), and Deep et al. (2023). Drent

et al. (2023) provide and extensive case study of an interventional X-ray machine from Philips

electronics as well as a real-life degradation data set. Elwany et al. (2011) provide a real case of

ball bearing degradation.

Bayesian updating and POMPDs are also used in age-based maintenance. Dursun et al. (2022)

learn the probability that a component is drawn from either a weak or strong pool. Drent et al.

(2020a) use failure and censored observations to update the time-to-failure distribution of a com-

ponent for an age-based replacement policy.

3. Interfaces with other domains

Maintenance optimization interfaces with several other domains. Besides optimizing the mainte-

nance timing and content, an entire logistics support system is required to perform maintenance,

such as spare parts inventory or resource planning. Maintenance is also increasingly offered as

part of service contracts or warranties, and there is a link between maintenance and sustainability.

These interfaces highlight the multidisciplinary nature of maintenance research. Figure 4 shows

the cumulative number of publications in EJOR devoted to such interfaces, indicating increased
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Figure 4: Cumulative number of EJOR publications on maintenance and its interface with other domains

attention in the last fifteen years. In what follows, we discuss each of these interfaces.

3.1 Spare Parts Inventory Management

Maintenance planning is closely linked to spare parts inventory management. Indeed, maintenance

and component replacement can only be performed when the spare parts necessary to perform

maintenance — also referred to as the “service parts” — are available. The unavailability of a

machine part can jeopardize its maintenance, inducing time delays and, in turn, higher costs. As

a result, the highly stochastic nature of machine breakdowns forces the need for inventory buffers.

However, it is common for companies of moderate size to carry thousands of different spare parts

in inventory. That means considerable capital is tied up if only one extra part is held for each

item. This capital investment requirement has led to specialized spare parts inventory models that

focus on improving the part availability whilst limiting the inventory investment. We acknowledge

that many companies implement vendor-managed inventory and may have negotiating clout that

requires the spare part to be delivered within a specified time window. In those cases, spare parts

inventory management remains critical from the vendor’s perspective. Stein (2010) provides an

industry perspective case study on how ASML, a vendor in the semiconductor industry, does this.

Maintenance parts have specific properties that render their inventory management different
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from many other products. The most prominent characteristic is that demand is intermittent.

Specifically, demand is often zero for several consecutive periods, and it is only positive occasionally

when the corresponding part is replaced. The maintenance policy and breakdowns thus dictate

the spare part consumption and inventory management. Spare part inventory management is

the first successful application of multi-echelon inventory management; the METRIC model is

short for Multi-Echelon Technique for Recoverable Item Control (Sherbrooke, 1968). An extensive

literature on spare parts inventory models has been consolidated in the books by Sherbrooke

(2006), Muckstadt (2004), and Van Houtum and Kranenburg (2015).

Our text-mining analysis reveals 54 EJOR papers with both “maintenance” and either “spare

parts,” “inventory,” or “stocking” in their title, abstract, or keywords. Most papers consider

the benefits of joint optimization of maintenance and inventory control, e.g., Wang (2012), Zohrul

Kabir and Al-Olayan (1996), and Olde Keizer et al. (2017). They show how significant savings can

be obtained by optimizing the maintenance planning and the timing of ordering spare components.

We found some additional EJOR papers on the maintenance-inventory interface that are not

included in our aforementioned 54 papers. Thomas and Osaki (1978), for instance, optimize

the inventory policy for a preventive maintenance policy, but they do not explicitly reference

maintenance in their title, abstract, or keywords. We refer to Hu et al. (2018) for a recent review

of spare parts inventory control models.

A promising research avenue in this field uses maintenance policy information to forecast spare

part demand and improve inventory control (see, e.g., Van der Auweraer et al., 2019, for a review).

Romeijnders et al. (2012), for instance, study a real case at Fokker Services (aerospace spare parts).

They take the additional repair information into account to forecast demand for a spare part. The

rationale is that the ability to recognize what causes a change in the demand for spare parts,

contrary to existing methods, should lead to better demand forecasts. With the growing data

collection and processing opportunities, future research may be devoted to using these data to

‘predict the unpredictable.’

3.2 Production Scheduling

There is also an interface between production and maintenance planning. Machines are unavailable

for production when faced with maintenance. Maintenance can also improve the production rate

or speed (and postponing maintenance may have an adverse effect). The production level also

influences the deterioration rate, so maintenance planning and production decisions must be jointly
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optimized. We found 63 papers in EJOR on the interface between production and maintenance.

Our text-mining analysis initially revealed 107 maintenance papers with the stem product, but

most merely discussed maintenance in a production facility or an environment selling products.

The literature on this interface addresses how production should be modified to incorporate

maintenance. This question can be answered from a scheduling or profit maximization perspective.

Production scheduling aims to complete a set of jobs such that their tardiness is minimized.

A typical assumption is the constant availability of machinery. However, one should integrate

additional maintenance constraints in a scheduling model to incorporate machine downtime due

to maintenance. Geurtsen et al. (2023) reviews the literature on the integration of maintenance

with resource and production scheduling. For instance, the production schedule can be modi-

fied by adding a deterioration factor that is reset by performing maintenance (see, e.g., Wang

et al., 2018; Lalla-Ruiz and Voß, 2016; Gara-Ali et al., 2016). Other papers focus on maintenance

scheduling that needs to be performed in a flexible time window or before the machine age passes

a certain threshold within a given maintenance interval (see, e.g. Topal and Ramazan, 2010), or

by optimizing the maintenance interval as well (see, e.g., Xia et al., 2012).

In environments where the revenue from production is time-dependent, such as wind turbines

or cloud computing, the production rate needs to be determined dynamically over time. The

production rate additionally impacts the machine deterioration. Uit het Broek et al. (2020)

dynamically adjusts the production rate based on the machine condition and the revenue potential.

Drent et al. (2024) extend their model by optimizing the preventive maintenance interval for a

heterogeneous machine population using Bayesian learning.

3.3 Design for Maintenance

The ability to maintain an asset largely depends on its design. Smets et al. (2012) introduce a

“Design for Availability” framework to cost-effectively optimize the availability of capital goods

throughout their entire lifetime and illustrate their framework at a global manufacturer of capital

goods in the food processing industry. We found 9 EJOR papers that study the design of the

equipment for maintenance. Papers studying system design usually focus on system reliability,

e.g., Bei et al. (2019). Redundancy design, which increases system reliability, is, therefore, a

related problem. Our text mining revealed 31 EJOR papers with redundancy and reliability

in the title, abstract, or keywords. It appears that design for maintenance is a young field within

Operational Research without standardized terminology.
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An important question in this domain is the design of so-called line replaceable units (LRUs).

An LRU is a collection of connected parts in a system that is replaced when any part of the

LRU fails. Companies use LRUs as a mechanism to reduce system downtime after a failure. The

design of LRUs determines how fast a replacement is performed, such that a smart design reduces

replacement and downtime costs. A firm must purchase/repair an LRU upon failure, and large

LRUs are more expensive to purchase/repair. Hence, a firm seeks to design LRUs to minimize the

average costs per time unit. Examples of research in this domain include Parada Puig and Basten

(2015), Lambert (2007), and Driessen et al. (2024). Van Geel (2018) and Van Deursen (2020)

provide extensive case studies such as Thales Radar Systems and Canon Printing, respectively.

The EU Green Deal established the ‘Right to Repair’ to make the European economy circular

and resource-efficient. To prolong product lifecycles, consumers should have the right to repair

their (electronic) devices instead of discarding them. In the past, there has been little incentive

to create repairable products. The marginal cost of repair was often too high, and the marginal

benefit was low. EU’s Right to Repair may inflate product prices. It will force manufacturers to

design their products for repairability. And for each design, they must forecast how many repairs

to expect. Incorporating their cost into the product price can be seen as a warranty or service

contract, where the right to repair is guaranteed during a specific period. One of the consequences

is that a higher-priced product while making repairs cheaper, will indeed incentivize the number

of repairs.

Modular design for maintenance and repair is also gaining broader traction. “Fairphone” is an

interesting example of a manufacturer of modular smartphones that are designed for reuse and

recycling. Fairphone’s mission is to design longer-lasting products that are easier to repair.3 Users

can repair the phone by replacing slot-in modules using a standard screwdriver, and they offer

a recycling program that facilitates and stimulates returns of old devices and their modules to

reduce electronic waste. In line with the servitization trend discussed below in Section 3.6, they

also offer subscription contracts that include an all-inclusive repair & swap service and a lifetime

warranty. Compared to similar smartphones, however, there is a price premium.

3.4 Resource Planning

Maintenance requires resources such as technicians, tools, and spare parts. Such resources may be

scarce relative to the maintenance jobs needed in a given setting, especially for a pool of assets,

3https://www.fairphone.com/en/story/
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each consisting of multiple components. In a simple setting with failure-based maintenance, the

question is how many resources are needed to guarantee a requisite level of asset availability. This

problem is known as the machine repairmen problem and has an extensive literature (see, e.g.,

Haque and Armstrong, 2007, for an overview). Text mining indicates 9 EJOR papers with machine

repair in title, abstract, or keywords, while there are 33 with capacity and maintenance.

Under condition-based maintenance, a maintenance manager must decide how to allocate re-

sources to different maintenance priorities (Olde Keizer et al., 2017). This setting gives rise to a

restless multi-armed bandit problem that is challenging to solve without identifying and exploiting

additional problem-specific structures (see, e.g., Glazebrook et al., 2005; Larrnaaga et al., 2016;

Demirici et al., 2024).

Resource constraints can also pose problems when no stochasticity is involved in the condition

of assets. This happens, for example, in the maintenance of infrastructures where shutting an asset

down may affect whether other assets can operate. An excellent example of resource-constrained

maintenance planning is Urbani et al. (2023).

3.5 Transportation Planning

The resources needed to perform maintenance are often in different locations from the assets that

require maintenance. Either the asset or the resources must be transported for maintenance. This

creates interesting challenges at the interface of transportation and maintenance planning. Their

intersection seems to be a trending field in the least fifteen years, as shown in Figure 4.

In some cases, the assets travel and the maintenance resources are stationary. Examples include

aircraft, rolling stock, and naval vessels maintained in a hangar, maintenance track, or dry dock.

The challenge here is to jointly design a transportation schedule and maintenance locations such

that assets are in the right location when they need maintenance; see, e.g., Tönissen et al. (2019),

Tönissen and Arts (2020), Feo and Bard (1989), and Gopalan (2014).

In most other cases, the assets are stationary (e.g., production equipment), and the mainte-

nance resources (e.g., technicians with tools and spare parts) travel to different sites to perform

maintenance (e.g. Pham and Kiesmüller, 2024). The condition of the asset should inform the

transportation plan of the resource. The natural formulation for such a problem is a Markov

Decision Process that suffers from the curse of dimensionality when solved to optimality using

dynamic programming. Yet, there are some examples where small-scale instances are solved and

used to develop heuristics (e.g., Sanoubar et al., 2023; Drent et al., 2020b; Lagos et al., 2020) or
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where approximate techniques such as reinforcement learning are used to find good policies (e.g.,

Da Costa et al., 2023).

3.6 Service Contracts and Warranties

As the field of maintenance optimization matured, companies discovered the potential of offer-

ing maintenance as a service. This shifted original equipment manufacturers (OEMs) towards a

“servitization” strategy to provide after-sales maintenance during the lifetime of the equipment.

In its extreme form, users do not acquire the equipment. Rather, they only buy the use of it. This

phenomenon is known as ‘power by the hour’, where the OEM controls the uptime and mainte-

nance associated with the equipment’s usage. Such after-sales services generate stable revenues,

enhance customer relations, and establish higher barriers to competition. They can be provided

on-demand or through the implementation of service contracts. Service contracts and warranties

provide some repair or maintenance element for a specified period. Where warranties are usually

included in the purchase price, service contracts cost extra.

Contracts and warranties have been discussed in EJOR since the turn of the century, with an

increase around 2006 (see Fig. 4). To date, 51 EJOR publications (around 10% of the maintenance

publications in EJOR) are devoted to “warranties” (18), “contracts” (30), or both (3). Based

on a review covering 44 journal publications in 2001-2011, Shafiee and Chukova (2013) identifies

EJOR as the journal with the second-highest share of papers on warranty and maintenance.

Service contracts and warranties are characterized by an inverted business cycle. The revenues

generated from the contracts are collected upfront, while the costs attached to the services are

incurred during the contract. To ensure profitability, the key questions relate to (1) reducing the

maintenance and servicing costs during the contract and (2) appropriately pricing the contract.

To minimize the expected total warranty cost for a pre-specified period, Yeh and Lo (2001)

derive the optimal policy, defined by the number of preventive maintenance actions, corresponding

maintenance degrees, and the maintenance schedule. Another example is given by Van Staden

et al. (2022), who use a sequential ‘predict, then optimize approach’ to minimize the expected

maintenance costs of a machine over its maintenance contract period, using readily available

operational intervention data.

Different approaches have been adopted to optimize the price of a warranty or service contract.

Jackson and Pascual (2008) develop a non-cooperative game model to determine the pricing struc-

ture in the contract and the number of customers to service that maximizes profits. Wang et al.
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(2020) studies the design and pricing of warranties with differentiated lengths and prices with a

multinomial logit model to describe customer choice behaviors. They show that a cost-plus-margin

pricing policy, with the same profit margins for all warranty options, optimizes the expected war-

ranty profit. Huber and Spinler (2012, 2014) derive theoretical pricing insights using utility theory.

Finally, Deprez et al. (2021) uses concepts from insurance pricing to predict the number of main-

tenance interventions and their cost to differentiate the price of full-service contracts.

3.7 Maintenance and Sustainability

Sustainability is on the agenda of many European manufacturers to reduce greenhouse gas (GHG)

emissions and combat climate change. The European Union (EU) aims to reduce the continent’s

net GHG emissions by at least 55% by 2030, compared to 1990 levels, and achieve net zero by

2050. Accordingly, the European Commission has adopted the EU Green Deal, a set of proposals

to guide the EU’s climate, energy, transport, and taxation policies towards their climate goals.

Considering climate goals, maintenance, by design, promotes sustainability. Maintenance in-

tends to extend the lifetime of equipment and assets. Therefore, it alleviates the need to produce

new equipment and reduces the emissions of their production. Also, periodically lubricating and

servicing helps with energy conservation. Poorly lubricated machines require more energy due to

the higher power usage. However, being sustainable also means that you expend fewer resources

on replacements and repairs and release fewer environmental emissions. Maintenance requires

materials and travel that harm the environment. Maintenance’s Scope 3 emissions include the

spare part production, their transportation, and the technician’s travel to the maintenance site.

Research that explicitly includes sustainability objectives or GHG emissions is limited to date.

We found only seven EJOR papers on maintenance with “environmental” in their title, abstract,

or keywords, and no EJOR papers with “circularity” or “recycling.” Wu et al. (2023) is

one of the few papers that explicitly include GHG emissions in the optimization of maintenance

policies. They optimize replacement policies acknowledging the GHG emissions produced during

the initial manufacturing stage and the emissions associated with accumulated running hours

during operations.

There are, however, several avenues to make maintenance more sustainable. Predictive main-

tenance using condition-monitored data aims to prevent unnecessary and too early preventive

service interventions. Accurate prediction of what should be maintained and when can reduce the

frequency of maintenance tasks without suffering any notable downturn in performance. Remotely
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monitoring the machines’ operation via sensor technologies can also reduce the travel that comes

with inspection or maintenance. Such a “digital control tower,” in analogy to the airport control

tower, provides (quasi) real-time visibility and can warn of upcoming failures before they happen

(Boute and Van Mieghem, 2021). Through a digital twin of its physical operation, real-time anal-

ysis and optimization can prescribe decision-making where users decide based on what intelligent

agents recommend. Moreover, when the same party monitors multiple factories at nearby sites,

maintenance interventions can be combined in the same travel.

Promoting circular material flow and waste reduction can be achieved via changes in design,

consumption (such as reuse, refurbishment or remanufacturing) or return (such as recycle and

recover) of assets. While Section 3.3 addressed design for maintenance, a final directive for sus-

tainable maintenance is recycling or remanufacturing of the service parts. Several authors and

authorities, including the UN, believe offering product-service systems will launch considerable

savings in material and energy consumption (Colen and Lambrecht, 2013). When OEMs assume

control of after-sales activities, they become responsible for waste disposal, component replace-

ment, and energy use. With the right contractual incentives, OEMs will incorporate after-sales

resource use in their decision-making, effectively reducing the environmental impact during the

entire equipment life cycle. Developing product-service systems will help companies comply with

and surpass increasing environmental obligations. In practice, we observe the launch of energy-

saving services, refurbishment and recycling activities, and efforts to increase equipment reliability

(Colen and Lambrecht, 2013).

4. Closing the gap between research and practice

Although maintenance research has been well-studied in the past fifty years, many open questions

remain to close the gaps between the current state of research and real-world needs. Companies

have an abundance of data at their disposal. In the last few years, OEMs have increasingly been

placing sensors on their machinery, allowing for operational data collection. Such data offers a

potential competitive advantage in the form of, for example, the calibration of a condition-based

maintenance policy. Data analytics and machine learning are also evolving fast to leverage these

data for online learning. As a result, both the timing and the content of maintenance should

no longer be restricted to a predefined plan and can become more flexible and adaptive to the

monitored condition. This approach will increase useful lifetime and reduce costs.
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However, those who have worked with actual maintenance data know this comes with ample

challenges. First, the frustration of cleaning and preparing the data. Operational data are hardly

‘clean:’ they may be intermittent, noisy, or have outliers. Moreover, condition data is typically

multi-dimensional. One machine has a plethora of sensors, generating multiple time series related

to various machine conditions. Standard machine learning techniques may not find meaningful

patterns. To leverage these techniques, it will be mandatory to transform the multi-dimensional

sensor data into low-dimensional data, such as a single health indicator. Mapping or clustering

these multi-dimensional data into useful indicators may require domain knowledge beyond oper-

ational research or data science techniques. As we have advocated earlier, we believe integrating

engineering into operational research could handle that.

The main challenge with maintenance data, however, remains in the lack of sufficient ‘useful’

data that can be used to effectively predict and prevent failure. Machines are designed to last long

and preventive maintenance intends to avoid failures. Therefore, the abundance of condition data

contrasts with the scarcity of effective failure data, needed to learn when a failure will happen.

Data from a few machines may not suffice to learn this failure behavior. The lack of sufficient

data to accurately estimate failures is known as the ‘small data’ problem. One approach to cope

with the small data problem includes smart data pooling across components or machines (e.g.,

Van Staden et al., 2022; Dursun et al., 2022; Deprez et al., 2023). This corresponds to Level 4 in

our maturity framework in Figure 2.

The collection of data from multiple machines and customers is facilitated through service

contracts. These can be offered by the OEM. In those cases, data ownership should be carefully

considered. The customer generates all the data and thus, in a way, owns them, but the OEM

needs them to optimize their contracts. As a result, the after-sales business model is shifted from

the customers’ side to the OEM that offers these service contracts. In doing so, OEMs largely

monopolize the after-sales market and the operational data generated. This shift has adverse

effects on the competitiveness of independent after-sales service providers, who do not have access

to this type of conditional data.

An alternative possible solution to overcome the lack of relevant data is federated learning (Li

et al., 2020). In federated learning, each entity only shares its local model parameters, instead

of its entire dataset, with the developed machine-learning model. This approach can consolidate

parameters from the datasets of various independent service providers, eliminating the economies

of scale effect on the data frontier as enjoyed by the larger OEMs.
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We may draw inspiration from insurance companies with more comprehensive experience—and,

therefore, maybe more maturity—in data collection than manufacturing. After all, a maintenance

contract can be likened to an insurance policy covering the maintenance costs during a specific

period. Insurance companies also offer products that are under-discovered in maintenance, such

as a bonus-malus system that adjusts the price paid by a customer according to their individual

claim history. Its application to maintenance contracts and related maintenance policies is an

untapped research area.

We are optimistic and excited about the next fifty years of maintenance research. The mul-

tidisciplinary nature and the numerous opportunities to leverage data and algorithms into smart

decision-making are expected to make impactful contributions to this important field and the

broad maintenance community.
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A. Basic text-mining to browse through the EJOR archive

We started with a list of DOI numbers of all EJOR publications from 1977-2023 received from

the publisher (19,995 records). This also included information on the title, authors, year of

publication, and number of Scopus citations (per 7 March 2023). We retrieved the abstracts and

author-provided keywords from Scopus using the DOI number via the Scopus API4. The title,

abstract, and keywords were then concatenated in a separate column with basic text cleaning, i.e.,

lower-casing all words and removing punctuation marks. Subsequently, all words were stemmed

using the NLTK-stemming library. For example, the stem of “maintenances” is “mainten”.

To extract the relevant papers on maintenance, we searched for the entries with the stemmed

version of the word “maintenance” (mainten). This resulted in 506 publications. We considered

including reliability-related publications with the stemmed version of “reliable” (reliabl), but

this resulted in papers relying on, for instance, a reliable method.

B. Fifteen most cited EJOR papers on maintenance

Rank Title Authors Year Citations

1 Remaining useful life estimation - A review on

the statistical data-driven approaches

Si, X.-S., Wang, W., Hu, C.-

H., Zhou, D.-H.

2011 1449

2 A survey of maintenance policies of deterio-

rating systems

Wang, H. 2002 1353

3 Imperfect maintenance Pham, H., Wang, H. 1996 826

4 A survey of maintenance models for multi-unit

systems

Cho, D.I., Parlar, M. 1991 558

5 Problem structuring methods in action Mingers, J., Rosenhead, J. 2004 444

4https://dev.elsevier.com/
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6 Degradation data analysis and remaining use-

ful life estimation: A review on Wiener-

process-based methods

Zhang, Z., Si, X., Hu, C., Lei,

Y.

2018 301

7 On the application of mathematical models in

maintenance

Scarf, P.A. 1997 243

8 Maintenance of continuously monitored de-

grading systems

Liao, H., Elsayed, E.A.,

Chan, L.-Y.

2006 243

9 Sequential condition-based maintenance

scheduling for a deteriorating system

Dieulle, L., Bérenguer, C.,

Grall, A., Roussignol, M.

2003 230

10 Condition-based maintenance policies for sys-

tems with multiple dependent components: A

review

Olde Keizer, M.C.A., Flap-

per, S.D.P., Teunter, R.H.

2017 220

11 Best practice analysis of bank branches: An

application of DEA in a large Canadian bank

Schaffnit, C., Rosen, D.,

Paradi, J.C.

1997 211

12 A degradation path-dependent approach for

remaining useful life estimation with an exact

and closed-form solution

Si, X.-S., Wang, W., Chen,

M.-Y., Hu, C.-H., Zhou, D.-

H.

2013 199

13 An integrated production and preventive

maintenance planning model

Aghezzaf, E.H., Jamali,

M.A., Ait-Kadi, D.

2007 184

14 Maintenance management decision making Pintelon, L.M., Gelders, L.F. 1992 181

15 Maintenance models in warranty: A literature

review

Shafiee, M., Chukova, S. 2013 177

Table 6: The fifteen most cited EJOR publications on maintenance

C. Transition Matrices for Example 6

The collection of transition probabilities, P , for Example 6 is calculated using Eq. (4) and the

data provided in the example. The resulting transition probability paij can be organized into two

matrices as
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P 0 =


p000 p001 · · · p00L

p010 p011 · · · p01L
...

...
. . . p02L

p0L0 p0L1 · · · p0LL



=



0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.7321 0.2283 0.0356 0.0037 0.0003 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7321 0.2283 0.0356 0.0037 0.0003

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7321 0.2283 0.0356 0.0040

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7321 0.2283 0.0396

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7321 0.2679

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000


and

P 1 =


p100 p101 · · · p10L

p110 p111 · · · p11L
...

...
. . .

...

p1L0 p1L1 · · · p1LL



=



0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7321 0.2283 0.0356 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



.
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