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Abstract

Knowledge on the scale economies drives the incentives of regulators, governments and in-

dividual utilities to scale-up or scale-down the scale of operations. This paper considers the

returns to scale (RTS) in non-convex frontier models. In particular, we evaluate RTS assump-

tions in a Free Disposal Hull model, which accounts for uncertainty and heterogeneity in the

sample. Additionally, we provide a three-step framework to empirically analyze the existence

and extent of RTS in real world applications. In a �rst step, the presence of scale (and scope)

economies is veri�ed. Secondly, RTS for individual observations are examined while in a third

step we derive the optimal scale for a sector as a whole. The framework is applied to the Por-

tuguese drinking water sector where we �nd the optimal scale to be situated around 7 to 10

million m3.
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1 Introduction

Both academics and practitioners are interested in the optimal scale of operations. From the view-

point of scholars, the scale of operations touches the debate on returns to scale (RTS) of the

production frontier. RTS denotes the relation between a proportional change in inputs and the

corresponding (proportional) change in outputs. Especially the introduction of di¤erent scale as-

sumptions in non-convex frontier models (e.g. the Free Disposal Hull model, Deprins et al., 1984)

recently attracted a signi�cant amount of attention (e.g. Kerstens and Vanden Eeckaut, 1999; Podi-

novski, 2004a and 2004c; Soleimani-damaneh and Reshadi, 2007). On the other hand, practitioners

are interested in insights on the optimal scale of operations as (1) they guide the individual utilities

in their strategic decisions, (2) give direction to the government�s incentives, or (3) inspire merger

commissions and regulators. This paper explores the concepts of RTS in non-convex models and

provides a framework to employ them in real world applications where uncertainty and hetero-

geneity is accounted for in the data by using the robust and conditional e¢ ciency estimates of,

respectively, Cazals et al. (2002) and Daraio and Simar (2005, 2007).

The non-parametric literature has extensively discussed the use and existence of scale economies

in convex frontier models as Data Envelopment Analysis (DEA) (e.g. Banker et al., 2004 and

reference therein). However, the convexity assumption where DEA relies on is often di¢ cult to

argue in real world applications as it implies additivity and divisibility (Cherchye et al., 2000; Briec

et al., 2004). Therefore, its non-convex generalization, the Free Disposal Hull (FDH) model (Deprins

et al., 1984), seems more attractive. Nevertheless, in the traditional FDH models scale economies

are neglected as only variable returns to scale (VRS) are assumed. Only recently, Kerstens and

Vanden Eeckaut (1999) integrated RTS assumptions in this non-convex model without invoking

convexity (and thus without assuming convex combinations of utilities). Besides the opportunity

to test the direction of the RTS, the inclusion of the relaxed convexity assumptions allows for an

increased discrimination among the evaluated entities (Destefanis and Storti, 2002). Indeed, in the

traditional FDH formulation many observations are �e¢ cient by default� as frequently only few

reference partners exist in a particular section of the production function. The RTS model accounts

for this by enlarging the reference set to proportional replicas of observed variables (i.e. by imposing

additional structure).

After having described the traditional non-convex FDH model, we outline how to include RTS

assumptions in FDH. This model, as developed by Kerstens and Vanden Eeckaut (1999), is further

described in Briec et al. (2004) and linearized to mixed integer linear programming models by

Podinovski (2004a and 2004c). Recently, less computationally intensive alternatives for the mixed

integer linear programming models were proposed by Soleimani-damaneh and Reshadi (2007). This

article contributes to this literature by extending the model of Podinovski (2004a) in order to avoid
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two intricate issues in deterministic frontier models. On the one hand, we allow for noise in the

data (arising from, e.g. outliers, a-typical observations and measurement errors) by considering the

robust e¢ ciency estimates of Cazals et al. (2002). On the other hand, we include heterogeneity in

the sample by employing the conditional e¢ ciency estimates of Daraio and Simar (2005, 2007).

In extending the non-convex RTS models, we develop three additional contributions. Firstly,

we introduce a fully non-parametric and continuous presentation of the Most Productive Scale Size

(MPSS) concept (Banker, 1984). In particular, we suggest a graphical presentation of the minimal

cost per unit of production in order to derive the optimal scale size for a sector as a whole. As such,

this representation creates a convenient tool for practitioners. Secondly, we provide a comprehensive

and easy implementable framework to measure the existence and extent of scale economies. In this

framework, which consists of three steps, we �rst interpret the conditional e¢ ciency measures of

Daraio and Simar (2005, 2007) to detect the existence of scale economies. This �rst step is also useful

to detect scope economies. The latter are present if the simultaneous production of goods is less

costly than the separate production. As scope economies are interrelated with the scale of operations

(indeed, as argued by Baumol et al. (1988) a larger scope of operations induces a larger scale of the

company as well), we disentangle the two e¤ects in order to obtain the �pure�scale economies. When

examining RTS, the literature frequently ignores this �rst step and simply assumes the existence

of RTS. We argue that one should �rst test for the presence of RTS before analyzing its direction.

A second step derives the RTS for every individual observation. Following Podinovski (2004b), we

distinguish local and global economies of scale such that the traditional constant, increasing and

decreasing RTS are contrasted to sub-constant RTS (SCRS) (which indicates that an observation

could obtain its MPSS by both scaling-up or scaling-down its operations).1 The third step of the

framework examines the optimal scale of operations of the sector. The continuous version of the

MPSS delivers rapid policy insights as it presents a visual representation of the minimal cost level.

A �nal contribution of the paper lies in its empirical application which considers the Portuguese

drinking water utilities. Inspired by the current debate in the Portuguese water sector, in which both

the regulator and the water utilities are doubting on the optimal scale of operations, we examine

the economies of scale in the sector. In addition, this application suits the branch of the literature

which detects economies of scale in drinking water utilities (e.g. Sabbioni, 2007 for Brazil; Renzetti,

1999 for Canada; Ashton, 2000; Cubbin and Tzanidakis, 1998 for England and Wales; Antonioli

and Filippini, 2001 for Italy; Garcia et al., 2004 for USA; Garcia and Thomas, 2001 for France).

Frequently, scale economies are found for small utilities (where the optimal scale obviously depends

on the characteristic of a country) while diseconomies of scale are detected for larger companies

(e.g. Ohira and Shirota, 2005 for Brazil; Saal and Parker, 2005 for England and Wales; Mizutani

1Remark that, stricktly speaking, local RTS do not exist in the FDH framework as the frontier is not di¤erentiable.
In the remainder of the paper, we use �local RTS�to refer to the possibility to detect SCRS.
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and Urakami, 2001 for Japan, De Witte and Dijkgraaf, 2007 for the Netherlands).

The remainder of the paper unfolds as follows. In Section 2, we present the robust and con-

ditional FDH model. Section 3 introduces the scaling of operations in non-convex technologies.

Section 4 provides a three step framework to analyze the existence and extent of scale economies.

In Section 5, we show by an empirical application the merits of our framework. Finally, we conclude.

2 Conditional FDH estimates

Prior to de�ning the economies of scale in frontier models, we explain the traditional non-convex

Free Disposal Hull model (Deprins et al., 1984). This approach is a generalization of the more

popular Data Envelopment Analysis (DEA) model (Charnes et al., 1978). However, the advantage

of the FDH approach lies in its minimal assumptions as, in contrast to DEA, it does not assume

convexity but only free disposability of the production set. The latter indicates that a particular

input-output combination should also be producible by using more inputs, or alternatively, by

producing less outputs. This minimal set of assumptions is convenient as it is often very di¢ cult to

argue a priori the convexity hypothesis. A convex combination (i.e. a linear combination in which

the coe¢ cients are nonnegative) implicates that a linear combination of two feasible observations

should also be feasible. This in turn implies additivity and divisibility of inputs and outputs. An

additional advantage of FDH lies in its consistency (nevertheless with a lower rate of convergence),

as the FDH estimator is shown to be consistent for both convex and non-convex production sets

(whereas DEA is only consistent when the true production set is convex) (see, e.g., Cherchye et

al., 2000; Daraio and Simar, 2007). Algebraically, the production frontier set 	 is de�ned as the

set of all feasible input (x 2 Rp+) and output (y 2 R
q
+) combinations of the n observations in the

sample: 	 = f(x; y) : x can produce yg : The non-convex technology FDH relies only on the free

disposability assumption (i.e. if (x; y) 2 	 then (x0; y0) 2 	 for x0 � x and y0 � y). As such, the
FDH estimator of the technology set 	 is characterized by:

	FDH =
�
(x; y) 2 Rp+q+ jx � xi; y � yi; i = 1; :::; n

	
: (1)

This technology set is graphically represented by a step-wise function. Relative to this best practice

technology set, the e¢ ciency of an observation can be measured horizontally (i.e. input-oriented)

by deducing the minimal input combination which is required to produce the given output set y.

Alternatively, e¢ ciency can be measured vertically (i.e. output-oriented) by searching the maximal

feasible output production for a given input combination. In the remainder of this article, we

focus on the input-orientation (as this is the most natural for our particular application). In its

mixed integer linear programming formulation, the FDH input-oriented ine¢ ciency estimate can

be computed as:
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�(x; y) = min

�
�j�x �

nP
i=1

�ixi; y �
nP
i=1

�iyi;
nP
i=1

�i = 1;�i 2 f0; 1g ; i = 1; :::; n
�
: (2)

The binary value of the intensity vector �, combined with the condition that
Pn

i=1 �i = 1 ensures

that the e¢ ciency evaluation is only e¤ected from actually observed entities (in contrast to a convex

combination of entities in DEA). In an input-oriented model, the target inputs (i.e. the e¢ cient

quantity of inputs) can be radially (i.e. without considering slacks or input excesses) computed as

x� = x � �(x; y). The e¢ ciency score �(x; y) varies between 0 and 1, where a value of 1 denotes an
e¢ cient observation. The latter is a necessary, although not a su¢ cient, condition for Koopmans

(1951) e¢ ciency (i.e. an increase in any output requires a decrease in at least one other output,

while a decrease in any input demands an increase in at least one other input). A su¢ cient condition

for Koopmans e¢ ciency is the absence of (nonradial) slacks (see infra).

As the evaluation of e¢ ciency is a relative concept, it is extremely sensitive to outliers (caused

by, e.g. measurement errors, a-typical observations or exogenous factors). Therefore, we adapt the

traditional FDH model to the robust order-m estimates as suggested by Cazals et al. (2002). This

approach, which mitigates the impact of outlying observations, evaluates the e¢ ciency relative to

a partial reference set Dr (with the size of jDrj = m < n observations) rather than to the full

reference set (where jDj = n). By drawing with replacement the partial reference set of size m

(among those xi such that y � yi) for every observation i R times, and by averaging these R

e¢ ciency evaluations, we obtain an e¢ ciency estimate �m(x; y) which mitigates the impact of a-

typical observations. Following Daraio and Simar (2007), we select m as the value from which on

the number of super-e¢ cient observations (i.e. �m(x; y) > 1) decreases only marginally with m. By

setting R large, we obtain more stable results and a lower standard deviation around the estimates

(which is important for the second step of the framework, see infra). The standard deviation can

be used to, e.g., compute con�dence intervals or signi�cance levels.

As an extension to the robust order-m procedure, Daraio and Simar (2005, 2007) introduced

a methodology to incorporate heterogeneity in the e¢ ciency evaluation. As such, the e¢ ciency

estimates are corrected for the in�uence of an exogenous factor z. These so-called conditional

e¢ ciency estimates �m(x; yjz) boil down to evaluating the FDH e¢ ciency relative to the reference
set Dr;z: In turn, Dr;z adapts the reference set Dr (of size m) by drawing with replacement only (1)

among the xi where y � yi and (2) such that the probability of drawing an observation corresponds
to K((z � zi)=h)=

nP
j=1

K((z � zj)=h), where K(:) denotes a Kernel function and h an appropriate

bandwidth as estimated by the cross-validation principle. In its mixed integer linear programming

formulation, the traditional FDH e¢ ciency score is adapted to its robust and conditional variant

as follows:
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Figure 1: The robust FDH model

�m(x; yjz) = 1

R

RX
r=1

�
min

�
�j�x �

nP
i=1

�ixi; y �
nP
i=1

�iyi;
nP
i=1

�i = 1;�i 2 f0; 1g ; (xi; yi) 2 Dr;z

��
:

(3)

The traditional step-wise FDH frontier is represented graphically in the two-dimensional Figure

1, with one input x on the horizontal and one output y on the vertical axis. The various input-output

combinations, represented by the black dots, are observed and allow to estimate the true production

technology set. The observations outside the technology frontier are outlying observations (e.g. due

to measurement errors).

3 Measuring scale economies

Within di¤erent intervals in the production set, di¤erent scaling of the operations could be present

(Färe et al., 1994). The scaling represents the relation between a proportional change in the inputs

and the resulting proportional change in the outputs. As these RTS are a characteristic of the

shape of the frontier, di¤erent e¢ ciency evaluation models can be deduced. By adding additional

restrictions to the traditional FDH model, we are able to estimate the e¢ ciency relative to di¤erent

technologies (and thus di¤erent shapes) of the best practice frontier. We start by exploring the

RTS concepts, and subsequently demonstrate how to adapt the traditional FDH model to di¤erent

RTS technologies.
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The RTS concepts

The identi�cation of the direction of RTS (see next section) requires the de�nition of three technolo-

gies (or assumptions on the shape of the best practice frontier). Firstly, in a Constant RTS (CRS)

setting, a proportional increase in the inputs x delivers a proportional increase in the outputs y.

Algebraically, the production set 	 displays CRS if �	 = 	 for all � > 0: A convenient characteris-

tic of the CRS technology is that along the CRS frontier the average productivity (= y=x) remains

constant. The observation with the highest average productivity is denoted as the Most Productive

Scale Size (MPSS) (after Banker, 1984). If e¢ ciency is evaluated against the CRS frontier, the

MPSS corresponds to the CRS-e¢ cient observation. It is possible that several observations operate

at the same average productivity such that each of them is an image of the MPSS (Banker and

Thrall, 1992). Secondly, the curvature of the frontier could exhibit Non Increasing RTS (NIRS)

when a proportional increase in the inputs results in a less than proportional increase in the outputs.

Formally, 	 has NIRS if �	 � 	 for all 0 < � � 1: Thirdly, Non Decreasing RTS (NDRS) occurs if
a proportional increase in the inputs creates a more than proportional increase in the outputs. 	

displays NDRS if �	 � 	 for all 1 � �. The three technologies are interlinked as CRS is the union
of the NIRS and NDRS: CRS = NIRS [NDRS. Whereas in convex technologies (e.g. DEA) the
Variable RTS (VRS) denotes the intersection between NIRS and NDRS (V RS = NIRS \NDRS),
in non-convex technologies VRS is only a subset of this intersection (V RS � NIRS \NDRS).

RTS in non-convex technologies

As in the traditional FDH model no particular assumptions are imposed on the intensity vector

� (besides summing to one), the traditional FDH model corresponds to VRS scenario. Under the

VRS technology, no particular assumption on scaling is made so that VRS satis�es NDRS and

NIRS in di¤erent intervals (see supra). Only recently, other assumptions on the frontier were pro-

posed by Kerstens and Vanden Eeckaut (1999). Following the FDH principle of referring only to

observed variables, their proposal adds additional structure to the step-wise frontier such that also

proportional replicas of observed entities are included in the reference set. As such, it is possible

to estimate FDH e¢ ciency under CRS, NIRS and NDRS. As Kerstens and Vanden Eeckaut (1999)

propose non-linear programming problems, Podinovski (2004a and 2004c) suggests equivalent mixed

integer linear programming problems. These in turn are further simpli�ed (in terms of computa-

tional burden) by Soleimani-damaneh and Reshadi (2007). The dual representation is presented in

Leleu (2006). We adapt the mixed integer linear programming formulation of Podinovski (2004a) to

the conditional and robust e¢ ciency estimates for, respectively, the CRS, the NIRS and the NDRS

FDH frontier as follows:

�CRS;m(x; yjz) = min
�
�j�x �

nP
i=1

�ixi; y �
nP
i=1

�iyi; 0 � � �Mb;
nP
i=1

bi = 1; bi 2 f0; 1g ; (xi; yi) 2 Dr;z

�
;
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�NIRS;m(x; yjz) = min
�
�j�x �

nP
i=1

�ixi; y �
nP
i=1

�iyi; 0 � � � b;
nP
i=1

bi = 1; bi 2 f0; 1g ; (xi; yi) 2 Dr;z

�
;

�NDRS;m(x; yjz) = min
�
�j�x �

nP
i=1

�ixi; y �
nP
i=1

�iyi; b � � �Mb;
nP
i=1

bi = 1; bi 2 f0; 1g ; (xi; yi) 2 Dr;z

�
where M denotes the ratio of the largest element to the smallest (positive) element of x.2

In comparison to the traditional VRS-FDH model, the RTS assumption is imposed by adding a

constraint, in particular a binary vector b which sums to one. Similar to the traditional VRS-FDH

approach, this implies that every observation is evaluated against a single reference observation (x; y)

although it could be rescaled by �, which, by construction, can only be positive. In the CRS scenario,

the scaling parameter � is free (or more precisely, it is positive) such that every observation is

evaluated against a proportional rescaling of the other observations. This is graphically represented

in Figure 2. Note that in the two-dimensional graph, the CRS-FDH frontier corresponds with the

CRS-DEA frontier. In the CRS-FDH model, the ine¢ cient observation Z1 is evaluated against

a proportional decrease in activities of observation D, which is at MPSS. Observation Z1 could

reach the same (maximal) average productivity as observation D if it could reduce its inputs to

point ZCRS1 . Assuming NIRS implies that the scaling parameter � is constrained to non-larger

proportional rescaling (i.e. 0 � �i � 1) of a particular reference unit. Graphically, this corresponds
for observation Z2 to a proportional decrease of reference observation G such that Z2 is evaluated

in ZNIRS2 . Similarly, for the NDRS, every ine¢ cient observation is evaluated against non-smaller

proportional rescaling (i.e. 1 � �i) of reference units. In the graphical example, observation Z1 is
evaluated against a proportional increase of observation C in ZNDRS1 . Remark that for observations

which lie between two CRS e¢ cient points (e.g. observation Z3) the CRS, NIRS and NDRS e¢ ciency

scores are equal (as the respective best practice frontiers overlap). Following Podinovski (2004b),

we will label these observations in the next section as subconstant returns to scale.

As Destefanis and Storti (2002) mention, the additional structure in terms of convexity which is

imposed on the production set allows for a better discrimination among the observations. Indeed,

frequently the VRS-FDH assumption was considered as too weak, as by construction many observa-

tions are considered as relatively e¢ cient. The procedures of Kerstens and Vanden Eeckaut (1999)

and Podinovski (2004a and 2004c) allow to �su¢ ciently�relax the convexity assumption. Having

de�ned the theoretical model on how to estimate RTS in a non-convex frontier model, we proceed

by developing a three step framework.

4 A framework for empirical applications

In empirical applications, it is worthwhile to examine the economies of scale in three consecutive

steps. In a �rst step, it is interesting to analyze whether the evaluated sector actually exhibits scale

2The right-hand bound on � is necessary to relate b and �.
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Figure 2: RTS in the robust FDH model

economies. As scale economies are often related to scope, we have to disentangle the two e¤ects. In

a second step, the direction of RTS has to be evaluated for each individual observation. Whereas

the second step is an analysis on the micro level (the individual observation), the third step analyzes

the macro level (the sector) by deriving the optimal scale of the operations for the sector as a whole.

Step 1. The existence of scale (and scope) economies

In a �rst step, we evaluate the very existence of scale economies. As shown by Baumol et al.

(1988), the economies of scale are closely related to the economies of scope. Intuitively, if an

observation produces several products (i.e. scope economies), this scope measure a¤ects the scale of

the operations as well. Therefore, in an analysis of scale economies, it could be useful to eliminate

the interaction e¤ect between scale and scope economies.

The existence of scale (and scope) economies is veri�ed by an exploratory graphical tool, as

introduced by Daraio and Simar (2005, 2007). The procedure requires a single scale (=z1) and

scope (=z2) variable. Daraio and Simar suggest to compare the unconditioned robust VRS esti-

mate �m(x; y) and conditioned �m(x; yjz) estimate by non-parametrically regressing (e.g. by the
Nadaraya-Watson regression) the ratio �m(x; yjz)=�m(x; y) against the conditioning variable z: In
the obtained graph, an increasing regression line indicates a favorable e¤ect to e¢ ciency of the

conditioned variable, while a decreasing regression denotes an unfavorable e¤ect to e¢ ciency from

9



z: The absence of a graphical �rst order impact points to the absence of in�uence of z. Indeed,

for a favorable variable (which can be considered as an unintended output) the conditional e¢ -

ciency will be much lower than the unconditional e¢ ciency for large values of z (implicating an

increasing ratio between conditional and unconditional estimates with z). On the other hand, for

an unfavorable variable (acts as an undesired input) the conditional e¢ ciency will be signi�cantly

larger than the unconditioned estimates for larger values of z. In the multivariate framework, we

non-parametrically regress the ratio of the partially conditioned e¢ ciency scores (conditioned on

only one environmental variable, say z1) to the fully conditioned e¢ ciency scores (conditioned on

both environmental variables, say z1 and z2) against the values of the conditioned variable (i.e. z2).

This exploratory tool has several advantages. Firstly, we can infer the e¤ect of the �pure�scale

and scope economies. To evaluate the e¤ect of scale economies while accounting for economies of

scope; and vice versa, evaluating the �pure�e¤ect of scope economies (i.e. without scale economies),

we decorrelate the scale and scope variables (e.g. by the use of a Mahalanobis transformation).

Secondly, in contrast to many other studies in the literature, we measure the existence of scope

economies without assuming a framework of di¤erent frontiers which are compared against each

other (as, e.g. Färe et al., 1994; Kittelsen and Magnussen, 2003; Arocena, 2005), nor by requiring

fully specialized units. These procedures are inconvenient as they introduce sample size bias (it is

unlikely that the group of specialized units has the same size as diversi�ed units) and require the

existence of specialized units (which is rarely observed in reality). Finally, our approach does not

involve the extrapolation and creation of hypothetical observations.

Step 2. RTS for individual observations

Several procedures to measure the direction of economies of scale have been proposed (although

these are generally developed for the convex DEA model, the procedures apply for the non-convex

FDH model as well) (for an overview see, e.g. Kerstens and Vanden Eeckaut, 1999). The three most

frequently used methodologies include the inspection of the sum of the intensity vector � in a CRS

model (Banker, 1984), analyzing the convexity constraints in a VRS model (Banker et al., 1984;

Banker and Thrall, 1992) and comparing e¢ ciency estimates for di¤erent scale assumptions (Färe

et al., 1983). The equivalence of these basic procedures has been proved for DEA models by Banker

et al. (1996) and Seiford and Zhu (1999). Among the many extensions for these methodologies, for

the remainder of this article, we focus on a particular extension of the Färe et al. (1983) approach

as introduced by Podinovski (2004b).

First consider the di¤erence between local and global RTS. On the one hand, local economies of

scale measure within a small neighborhood of the evaluated observation the change in outputs by

a change of the inputs. As such, local RTS estimate the immediate gains in productivity of a small

resizing in operation. It can be measured by looking at the ratio of marginal to average change
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in productivity. If this ratio, also called the scale elasticity (SE), is larger than one (i.e. marginal

productivity is larger than average) the observation exhibits Increasing RTS. As such, a proportional

increase in the inputs results for this particular observation in a larger percentage increase of the

outputs. An observation with a SE smaller than one (i.e. larger average than marginal productivity)

displays Decreasing RTS (DRS). Obviously, SE of 1 indicates CRS.3

On the other hand, the global RTS estimate the global (and long run) improvements in pro-

ductivity. Therefore, the global RTS indicate the optimal productivity of an observation. As

Podinovski (2004b) argues, in a convex setting the local and global RTS coincide (e.g. in the con-

vex DEA model). However, if the assumption of convexity of the production set is relaxed (e.g. in

FDH), di¤erent outcomes between local and global estimations are obtained. To account for this,

Podinovski (2004b) introduced in addition to the traditional CRS, IRS and DRS, the sub-constant

RTS (SCRS) which indicate that an observation can move towards its most productive scale (i.e.

its long run CRS benchmark) by either reducing or increasing its scale. This becomes in particular

relevant when several observations have the same maximal average productivity (= y=x) and hence,

when multiple observations are at the MPSS. In this sense, the SCRS are an extension of the work

of Banker and Thrall (1992) who considered the existence of multiple MPSS.

An observation exposes

� CRS () �V RS(x; y) = �NIRS(x; y) = �NDRS(x; y);

� IRS () �V RS(x; y) � �NIRS(x; y) > �NDRS(x; y);

� DRS () �V RS(x; y) � �NDRS(x; y) > �NIRS(x; y);

� SCRS () �V RS(x; y) > �NIRS(x; y) = �NDRS(x; y):

Where CRS corresponds to the MPSS, IRS (DRS) occur if the observation is smaller (larger)

than all MPSS. SCRS corresponds to the observations which produce between two MPSS sizes. In

the outlined RTS detection procedure, we did not account for uncertainty and heterogeneity in the

sample by the robust and conditional e¢ ciency estimates. In examining robust e¢ ciency, we use

the same reference sets for each of the VRS, CRS, NIRS and NDRS e¢ ciency evaluations (which

is redone R times). Observations where �NIRS;m(x; yjz) = �CRS;m(x; yjz) > �NDRS;m(x; yjz) un-
doubtly display IRS, observations where �NDRS;m(x; yjz) = �CRS;m(x; yjz) > (=) �NIRS;m(x; yjz)
undoubtly exhibit DRS (CRS). However, due to the resampling, it is possible that the CRS estimate

di¤ers from both NIRS and NDRS estimate. To account for this deviation, we employ the Monte-

Carlo con�dence intervals around the CRS estimate (although the analysis would work around the

NDRS and NIRS estimates as well). Denote ~�
CRS;m

(x; yjz) as the con�dence interval of one standard
3Remark that, strictly speaking, local RTS are not available in a discontinuous function as FDH.
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deviation around �CRS;m(x; yjz) (i.e. if normality is assumed, �CRS;m(x; yjz)� st.dev. of the esti-

mate corresponds to the 68.3% con�dence interval). An observation exhibits IRS if �NIRS;m(x; yjz)
falls inside the ~�

CRS;m
(x; yjz) interval while �NDRS;m(x; yjz) does not (speci�cally, the NDRS score

is lower than the CRS lower bound). Contrarily, DRS are observed if �NDRS;m(x; yjz) is part of
the interval around the CRS estimate (denoted by �NDRS;m(x; yjz) = ~�

CRS;m
(x; yjz)) while the

NIRS score is larger than the CRS upper bound (denoted by �NIRS;m(x; yjz) > ~�
CRS;m

(x; yjz)).
SCRS occurs if both the NIRS and NDRS estimate belong to the ~�

CRS;m
(x; yjz). Summarizing, in

a robust and conditional framework, we say that an observation exhibits:

� CRS () �V RS;m(x; yjz) = �NIRS;m(x; yjz) = �NDRS;m(x; yjz) = ~�CRS;m(x; yjz);

� IRS () �V RS;m(x; yjz) � �NIRS;m(x; yjz) = ~�CRS;m(x; yjz) > �NDRS;m(x; yjz);

� DRS () �V RS;m(x; yjz) � �NDRS;m(x; yjz) = ~�CRS;m(x; yjz) > �NIRS;m(x; yjz);

� SCRS () �V RS;m(x; yjz) > �NIRS;m(x; yjz) = �NDRS;m(x; yjz) = ~�CRS;m(x; yjz):

Observations exhibiting SCRS could obtain the MPSS by both increasing or decreasing the scale

of operations. In the traditional (non-robust) model, no statement could be made on the optimal

direction. In the robust framework, we exploit the di¤erence, arising from redrawing, between the

CRS, NIRS and NDRS e¢ ciency estimates. An observation with SCRS should optimally increase

(decrease) its scale of operations if the NIRS (NDRS) estimate is closer to the CRS estimate than

the NDRS (NIRS) estimate. Formally, an observation satisfying SCRS exhibits:

� SCRS-IRS () j�NIRS;m(x; yjz)� �CRS;m(x; yjz)j < j�NDRS;m(x; yjz)� �CRS;m(x; yjz)j;

� SCRS-DRS () j�NIRS;m(x; yjz)� �CRS;m(x; yjz)j > j�NDRS;m(x; yjz)� �CRS;m(x; yjz)j.

Step 3. Deriving the optimal scale size

In an empirical analysis, it is interesting for both the individual observation and the policy makers

to verify the optimal scale of the operations. If cost (or price) variables are available, we can make

a simple graphical analysis which exploits the idea of MPSS (i.e. the highest average productivity)

and link it to the lowest cost per unit of production (the cost variables are needed to make a sensible

aggregation of the heterogeneous inputs). In particular, we propose a continuous representation of

the MPSS-concept. We suggest two assessments of the optimal scale, an �overall�and a �speci�c�

optimum which, respectively, do and do not account for slacks in the inputs. Allowing for slacks

could yield additional insights.

In both scenarios, we start from the observation that the MPSS corresponds to the CRS opti-

mum (Banker, 1984). In an input-oriented framework, when multiplying the input variables by the
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e¢ ciency score �CRS;m(x; yjz) we obtain the minimum required inputs to produce the given amount
of outputs (see supra). In the �rst scenario, the �overall�optimum, we �rst assess the e¢ ciency by

considering all inputs x (2 Rp+) and all outputs y (2 R
q
+) (i.e. compute �

CRS;m(x; yjz)) and, sec-
ond, multiply each of the inputs by this CRS e¢ ciency score to obtain the e¢ cient input quantity:

x� = x��CRS;m(x; yjz). Thirdly, to obtain a minimal cost interpretation, the inputs are multiplied
by their respective price vectors: mincost = x� � p. As in this scenario slacks are neglected, the
obtained cost corresponds to the minimal overall cost to produce the given output (i.e. particular

inputs will still contain some ine¢ ciency). Finally, to infer the optimal scale, we divide the minimal

cost by a one-dimensional proxy for the production and non-parametrically regress this ratio against

the production proxy. In the obtained graph, the minimal overall cost can easily be recovered as

the value with the lowest horizontal tangent.

In the second scenario, the �speci�c�optimum, we account for slacks by individually considering

every input. The approach only di¤ers from the �overall� scenario by the computation of the

e¢ ciency scores. Instead of computing the e¢ ciency relative to all inputs and outputs, in an input-

oriented model we assess the e¢ ciency for every input x
P
separately (P = 1; :::; p) against the

outputs y (2 Rq+) and obtain, as such, for each input �
CRS;m
P (x

P
; yjz): This approach allows us

to account for slacks in the FDH model and consequently satis�es the necessary and su¢ cient

condition for Koopmans e¢ ciency. The minimal cost of this input is computed by multiplying

�CRS;mP (x
P
; yjz)�x

P
� p

P
. Aggregating the minimal cost levels of the di¤erent inputs, we obtain a

minimal speci�c cost which, once divided by a unit of production, delivers the minimal cost level.

The use of this graphical presentation provides a convenient tool for policy assessment. Remark

that this optimal scale determination, although using input prices, still assesses technical e¢ ciency

and is not concerned with the allocative e¢ ciency.

5 Empirical application

Drinking water provision in Portugal is performed by 300 small companies. Typically, a drinking

water utility delivers water to 36,000 inhabitants (compare with, e.g. 1.5 million in the Netherlands,

2.6 million in England and Wales, 95,000 in Australia or 5,000 in Spain). The literature frequently

indicates the presence of economies of scale for small utilities and the absence of scale economies for

larger utilities (cfr. introduction). The current discussion in the Portuguese drinking water sector

focuses on the extent and potential to obtain scale economies. Both the sector regulator (IRAR,

Institute for the Regulation of Water and Waste) and the government are discussing the appropriate

long term (i.e. global) scale of operations. To analyze the presence of scale and scope economies

(about 80% of the companies provide both water and sewerage services, while about 20% of the

utilities have also other revenues (mainly in transportation and solid waste)) and to determine the
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optimal scale, we apply the above sketched framework.

We obtained data from the annual accounts for the 63 largest drinking water utilities (corre-

sponding to 60% of the total Portuguese drinking water sector). All data concern 2005 elements.

We selected three consensual input variables: cost of labor, cost of capital and other costs (all ex-

pressed in euro). The sum of these input variables delivers the total expenditures (TOPEX). Also

the output variables are consensual in the literature: the volume of delivered water (m3), the num-

ber of water customers and the number of sewerage customers. As exogenous environmental factor

we selected the monthly peak factor. The latter denotes in a time span of a year the maximal ratio

of monthly consumption to the yearly average. Therefore, higher deviations from one are extremely

expensive for the utilities as large investments for water consumption are required during only a

short peak period (e.g. utilities delivering water to holiday resorts have high peak factors). The

proxy for scale economies (which is required in the �rst step of the framework) is computed as the

sum of total revenues from water and sewerage. The scope proxy is determined as the share of the

revenues of non-drinking water delivery services (mainly sewerage, solid waste and transportation)

in total revenues. We present the summary statistics in Table 1.

Table 1: Summary statistics
Average Median Maximum Minimum St. Dev

Labor cost 3,009,840 1,513,860 16,297,786 88,213 3,567,711
Capital cost 2,530,821 1,439,201 19,313,913 108,101 3,237,336
Other costs 389,046 122,815 3,700,680 260 713,582

Water volume 6,456,699 3,708,324 62,297,940 334,774 9,099,984
Water customers 47,976 30,087 341,764 4,364 56,677

Sewerage customers 30,495 16,694 156,549 0 39,390
Scale proxy 11,856,873 6,637,524 72,030,955 495,916 14,668,671
Scope proxy 1.267 1.233 1.679 1.049 0.135
Peak factor 0.231 0.238 0.567 0.000 0.158

Step 1. The existence of scale and scope economies. After decorrelating the scale and

scope variables, the robust (m = 30; R = 200) and conditional (on peak factor, scale and scope)

e¢ ciency estimates are explored.4 We present the graphical analysis in Figures 3 and 4. First

consider Figure 3 where the e¤ect of the conditioning variable (the decorrelated scale variable which

varies between -0.75 and 4.25) is drawn against the ratio of conditioned to unconditioned estimates.

The graph reveals an upward slope with respect to the scale economies. As outlined before, the

increasing regression line indicates the existence of scale economies for small utilities (note that

we obtained very similar results for undecorrelated scale and scope estimates). This indicates

that our results strengthen the literature on the existence of scale economies for small utilities. An

4Following Daraio and Simar (2005, 2007), we selected m and R as the levels from which on the proportion of
super-e¢ cient observations remains robust.
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Figure 3: The existence of scale economies

intuitive reasoning for the absence of scale economies for large utilities can be found in the increasing

complexity of the network and the subsequent di¢ culties in managing the complex network. From

Figure 4, we can derive the absence of scope economies (similar results for undecorrelated scale

and scope proxies are obtained). These results are not in line with the literature which frequently

�nds economies of scope (e.g. Garcia et al., 2004; Torres and Morrison, 2006 for USA; Garcia and

Thomas, 2001 for France; Ashton, 2000 for England and Wales). Intuitively, scope economies are

unobserved because (similar to scale economies) they increase the complexity of organization which

induces a larger bureaucratic burden. As we do not �nd scope economies, in the remainder of this

empirical application we will neglect the scope economies and concentrate on the scale.

Step 2. Measuring scale economies. In this second step, we compute for every particular

observation the RTS (i.e. CRS, DRS, IRS or SCRS). The main conclusions are summarized in

Table 2. All model speci�cations are robust and conditional (with the peak factor as an exogenous

variable). Without accounting for slacks, in the �overall�model (with three inputs and three outputs)

we count more than half of the observations which are, overall, producing at their MPSS. This can

be attributed to the FDH model speci�cation which allows for specialization in a particular input

or output variable. However, the picture changes if slacks are considered (i.e. the �speci�c�model).

On the one hand, the speci�c model with labor cost as input suggests that about half of the utilities

have excessive labor costs as they exhibit DRS in that variable. Also from the utilities operating

under SCRS, the majority of the entities is advised to scale-down. On the other hand, the utilities

could increase their average productivity by investing in capital as about a third of the utilities
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Figure 4: The existence of scope economies

display IRS in that variable. Remark that about half of the utilities work under SCRS. Finally, also

other costs are too high as a third of the utilities exhibits DRS in the cost variable. The di¤erence

between the overall and the speci�c model indicates the added value of analyzing more in detail

the RTS.

Table 2: RTS for individual observations
Model Inputs CRS DRS IRS SCRS SCRS - IRS SCRS - DRS
Overall All inputs 37 18 6 2 2 0
Speci�c Labor cost 6 29 7 21 9 12
Speci�c Capital cost 8 6 19 30 13 17
Speci�c Other cost 7 22 17 17 8 9

Step 3. Deriving the optimal scale. In a �nal step, we try to provide some arguments in the

discussion on the optimal scale in the Portuguese drinking water sector. Applying the previously

outlined procedure, we derive the optimal scale in Figure 5 for robust and conditional (on peak

factor) estimates. We proxy production one-dimensionally by the volume of delivered drinking water

(experiments with other production proxies (e.g. number of customers, total revenues) delivered

very similar results). First consider the �overall� optimal scale (without accounting for slacks in

the input variables). According to the non-parametric regression, the lowest cost per customer

corresponds to the largest observation (about 62 million m3 of water). However, this result is

somewhat biased by the a-typical characteristics of Lisbon. Ignoring this largest observation, the

overall optimum reveals about 10 million m3 of water delivery as an optimum. This minimal cost
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Figure 5: Optimal scale - Overall scenario

of production follows after a decreasing cost per m3 for the many small utilities in the sample

and is proceeded by increasing costs per m3 for the larger (with exception for Lisbon). Secondly,

consider in Figure 6 the �speci�c�scenario where each input variable is performing on its absolute

minimal cost (i.e. even accounted for slacks). The optimal scale remains robust to the inclusion of

slacks. The speci�c minimal cost is situated between 7 and 10 million m3 of water if the a-typical

observation of Lisbon is neglected. Despite the similarity between the overall and speci�c optimal

scale, we consider the speci�c optimum as superior. Indeed, the cost per m3 in the overall scenario

hides the DRS for labor costs and the IRS for capital costs (see step 2). By considering the optimal

input use for both labor, capital and other inputs, the speci�c optimal scale measure seems to be

more reliable. This is in line with previous research for Portugal in particular (e.g. Martins et al.,

2006) and the scale economies literature in general, as the results strengthen the natural monopoly

idea.

6 Conclusion

In this paper, we analyzed the scale economies for non-convex frontier models, in particular the

Free Disposal Hull (FDH) model. We adapted the model of Podinovski (2004a and 2004c), which

is a linearization of the model of Kerstens and Vanden Eeckaut (1999), to robust (i.e. allowing for

uncertainty) and conditional (i.e. allowing for heterogeneity) e¢ ciency estimates. Subsequently, we

provided a framework to empirically analyze the economies of scale. After testing the existence

of scale (and scope) economies, we derived, for both individual observations and the sector as

a whole, the optimal scale. The framework is applied to the Portuguese drinking water sector.
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Figure 6: Optimal scale - Speci�c scenario

Our results indicate the existence of scale economies and the absence of scope economies. Further

analyzing the RTS, we observe that, if all inputs are considered simultaneously, most utilities are

performing at their MPSS. However, these results hide the ine¢ cient scale for each of the input

variables separately as, optimally, the utilities should decrease the labor and increase the capital

expenditures. Examining the optimal scale, we �nd, for the sector as a whole, that the minimal

costs are situated around 7 to 10 million m3. This denotes that Portugal optimally counts about

60 utilities (in contrast to the 300 utilities now).

References

[1] Antonioli B. and M. Filippini (2001), The use of a variable cost function in the regulation of

the Italian water industry. Utility Policy 10, 181-187.

[2] Arocena, P. (2005), The measurement of scope, scale and diversi�cation economies: how

(in)e¢ cient is electricity restructuring and unbundling? Institut d�Economia de Barcelona,

Document de treball 2005/1, 1-28.

[3] Ashton, J. (2000), Cost E¢ ciency in the UK Water and Sewerage Industry. Applied Economics

Letters 7 (7), 455-458.

[4] Banker, R. (1984), Estimating most productive scale size using data envelopment analysis.

European Journal of Operational Research 17 (1), 35-44.

18



[5] Banker, R., H. Chang and W. Cooper (1996), Equivalence and implementations of alternative

methods for determining returns to scale in data envelopment analysis. European Journal of

Operational Research 89 (3), 473-481.

[6] Banker, R., A. Charnes and W. Cooper (1984), Some models for estimating technical and scale

ine¢ ciencies in data envelopment analysis. Management Science 30 (9), 1078-1092.

[7] Banker, R., W.W. Cooper, L.M. Seiford, R.M. Thrall and J. Zhu (2004), Returns to scale in

di¤erent DEA models. European Journal of Operational Research 154 (2), 345-362.

[8] Banker, R. and R. Thrall (1992), Estimation of returns to scale using Data Envelopment

Analysis. European Journal of Operational Research 62, 74-84.

[9] Baumol, W.J., J.C. Panzar and R.D. Willig (1988), Contestable markets and the theory of

industry structure. Harcourt, Brace and Jovanovich, New York.

[10] Briec, W., K. Kerstens and P. Vanden Eeckaut (2004), Non-convex technologies and cost

functions: de�nitions, duality and nonparametric tests of convexity. Journal of Economics 81

(2), 155-192.

[11] Cazals, C., J.P. Florens and L. Simar (2002), Nonparametric frontier estimation: a robust

approach, Journal of econometrics 106 (1), 1-25.

[12] Charnes, A., W.W. Cooper and E. Rhodes (1978), Measuring the e¢ ciency of decision making

units. European Journal of Operational Research 2 (6), 429-444.

[13] Cherchye, L., T. Kuosmanen and T. Post (2000a), What is the economic meaning of FDH? A

reply to Thrall. Journal of Productivity Analysis 13, 263-267.

[14] Cherchye, L., T. Kuosmanen and T. Post (2000b), Why convexify? An assessment of convexity

axioms in DEA. Helsinki school of economics and business administration - Working papers

W-270.

[15] Cubbin, J. and G. Tzanidakis (1998), Regression versus data envelopment analysis for e¢ ciency

measurement: an application to the England and Wales regulated water sector. Utilities Policy

7 (1), 75-85.

[16] Daraio, C. and L. Simar (2005), Introducing environmental variables in nonparametric frontier

models: a probabilistic approach, Journal of productivity analysis 24 (1), 93-121.

[17] Daraio, C. and L. Simar (2007), Advanced robust and nonparametric methods in e¢ ciency

analysis: methodology and applications, Series: Studies in Productivity and E¢ ciency, Springer.

19



[18] Deprins, D., L. Simar and H. Tulkens (1984), Measuring labor-e¢ ciency in post o¢ ces, in:

Marchand, M., P. Pestieau and H. Tulkens (Eds), The performance of public enterprises: con-

cepts and measurement. Elsevier, Amsterdam, 243-267.

[19] Destefanis, S. and G. Storti (2002), Measuring cross-country technological catch-up through

variable-parameter FDH. Statistical Methods and Applications 11, 109-125.

[20] De Witte, K. and E. Dijkgraaf (2007), Mean and bold: on separating merger economies from

structural e¢ ciency gains in the drinking water sector. Tinbergen Discussion Paper 07/092,

Erasmus University Rotterdam.

[21] Färe, R., S. Grosskopf and C.A.K. Lovell (1983), The structure of technical e¢ ciency. Scandi-

navian Journal of Economics 85 (2), 181-190.

[22] Färe, R., S. Grosskopf and C.A.K. Lovell (1994), Production frontiers. Cambridge University

press.

[23] Garcia S., M. Moreaux and A. Reynaud (2004), Measuring Economies of Vertical Integration

in Network Industries: An Application to the Water Sector. International Journal of Industrial

Organization 25 (4), 791-820.

[24] Garcia, S. and A. Thomas (2001), The Structure of Municipal Water Supply Costs: Application

to a Panel of French Local Communities. Journal of Productivity Analysis 16, 5-29.

[25] Kerstens, K. and P. Vanden Eeckaut (1999), Estimating returns to scale using non-parametric

deterministic technologies: a new method based on goodness-of-�t. European Journal of Op-

erational Research 113, 206-214.

[26] Kittelsen, S.A. and J. Magnussen (2003), Economies of scope in Norwegian hospital production

- A DEA analysis. Health Economics Research Programme. Working Paper 2003/8, 1-30.

[27] Koopmans, T. (1951), Analysis of production as an e¢ cient combination of activities. In:

Koopmans, T. (Ed.), Activity Analysis of Production and Allocation. Yale University Press,

New Haven, CT, 33-97.

[28] Leleu, H. (2006), A linear programming framework for free disposal hull technologies and cost

functions: Primal and dual models. European Journal of Operational Research 168, 340-344.

[29] Martins, R., F. Coelho and A. Fortunato (2006), Evaluating cost structure of Portuguese

water utilities: Economies of scale and water losses. In RESER 2006 - XVIth International

Conference of Services Governance and Public Policies, The European Research Network on

Services and Space, Lisbon, 729-748.

20



[30] Mizutani, F. and T. Urakami (2001), Identifying network density and scale economies for

Japanese water supply organizations. Regional Science 80, 211�230.

[31] Ohira, T.H. and R. Shirota (2005), E�ciência econômica: uma aplicação do modelo de fronteira

estocástica em empresas de saneamento. Anais do XXXIII Encontro Nacional de Economia -

ANPEC.

[32] Podinovski, V.V. (2004a), On the linearization of reference technologies for testing returns to

scale in FDH models. European Journal of Operational Research 152, 800-802.

[33] Podinovski, V.V. (2004b), Local and global returns to scale in performance measurement.

Journal of the Operational Research Society 55, 170-178.

[34] Podinovski, V.V. (2004c), E¢ ciency and Global Scale Characteristics on the �No Free Lunch�

Assumption Only. Journal of Productivity Analysis 22 (3), 227-257.

[35] Renzetti, S. (1999), Municipal water supply and sewage treatment: costs, prices and distor-

tions. Canadian Journal of Economics 32 (3), 688-704.

[36] Saal, D. and D. Parker (2005), Assessing the performance of water operations in the English

and Welsh Water industry: A panel input distance function approach. Aston Business School

Working Paper RP0502.

[37] Sabbioni, G. (2007), E¢ ciency in the Brazilian sanitation sector. Utilities Policy 16 (1), 11-20.

[38] Seiford, L.M. and J. Zhu (1999), An investigation of returns to scale in data envelopment

analysis. Omega, International Journal of Management Science 27 (1), 1-11.

[39] Soleimani-damaneh, M. and M. Reshadi (2007), A polynomial-time algorithm to estimate

returns to scale in FDH models. Computers and Operations Research 34 (7), 2168-2176.

[40] Torres, M. and P.C. Morrison (2006), Driving forces for consolidation or fragmentation of the

US water utility industry: a cost function approach with endogenous output. Journal of Urban

Economics 59, 104-120.

21


