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Abstract
Background Patient heterogeneity poses significant challenges for managing individuals and designing clinical 
trials, especially in complex diseases. Existing classifications rely on outcome-predicting scores, potentially 
overlooking crucial elements contributing to heterogeneity without necessarily impacting prognosis.

Methods To address patient heterogeneity, we developed ClustALL, a computational pipeline that simultaneously 
faces diverse clinical data challenges like mixed types, missing values, and collinearity. ClustALL enables the 
unsupervised identification of patient stratifications while filtering for stratifications that are robust against minor 
variations in the population (population-based) and against limited adjustments in the algorithm’s parameters 
(parameter-based).

Results Applied to a European cohort of patients with acutely decompensated cirrhosis (n = 766), ClustALL identified 
five robust stratifications, using only data at hospital admission. All stratifications included markers of impaired liver 
function and number of organ dysfunction or failure, and most included precipitating events. When focusing on one 
of these stratifications, patients were categorized into three clusters characterized by typical clinical features; notably, 
the 3-cluster stratification showed a prognostic value. Re-assessment of patient stratification during follow-up 
delineated patients’ outcomes, with further improvement of the prognostic value of the stratification. We validated 
these findings in an independent prospective multicentre cohort of patients from Latin America (n = 580).
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Background
Heterogeneity is a prevalent phenomenon observed in 
numerous diseases, including various types of cancer 
[1], autoimmune conditions like multiple sclerosis [2], 
and diabetes [3]. Substantial interindividual changes in 
phenotype and pathophysiology within a disease often 
limit the effectiveness of traditional “one-size-fits-all” 
medicine approaches. This becomes especially critical in 
diseases where environmental and lifestyle factors also 
play a significant role. Acutely decompensated cirrhosis, 
which refers to the rapid development of overt ascites, 
overt hepatic encephalopathy, variceal haemorrhage, or 
any combination of these disorders, which often leads 
to nonelective admission to the hospital of patients who 
were previously stable, exemplifies significant inter-indi-
vidual variability [4, 5]. Acutely decompensated cirrho-
sis encompasses a range of causes of cirrhosis, including 
alcohol consumption, metabolic dysfunction, viral hepa-
titis, genetic disorders, or autoimmune biliary diseases. 
It is often accompanied by comorbidities, which are 
neither causes nor consequences of cirrhosis, but they 
increase mortality [5, 6]. Heterogeneity of cirrhosis can 
also include various precipitating events such as infection 
or alcoholic-related hepatitis, diverse clinical presenta-
tions like ascites, gastrointestinal bleeding, and hepatic 
encephalopathy, and multiple possible outcomes such as 
cancer, liver failure, or death. This clinical heterogeneity 
poses a considerable challenge as it likely accounts for the 
diverse responses to treatment and outcomes observed in 
these patients [7]. Therefore, we reasoned that analysing 
a large population of patients with acutely decompen-
sated cirrhosis should allow us to develop stratification 
tools.

A major tool for the characterization of patient het-
erogeneity is the identification of patient subtypes, also 
defined as patient stratification. Importantly, the World 
Health Organization (WHO) has acknowledged patient 
stratification as a valuable approach for enhancing popu-
lation health management and providing better-tailored 
services [8]. In conceptual terms, patient stratification 
can be described as the process of grouping or cluster-
ing patients based on specific characteristics or pat-
terns without relying on labelled data or information 
about future outcomes [9]. Therefore, contrary to scores 
developed using classical statistical approaches based 
on the clinical course, stratification can capture features 

explaining patients’ heterogeneity independently of their 
association with patient outcomes.

Numerous attempts have been made to identify sub-
groups within clinical datasets [9–11]. However, the lack 
of a universally applicable approach poses a significant 
challenge in the field of clustering analysis. Although 
there have been advancements beyond the classical 
k-means and hierarchical clustering methods, no gen-
eral framework still allows the organization and classifi-
cation of clustering methodologies in the clinical setting 
[12]. Instead, many ad-hoc applications have been devel-
oped for specific scenarios, but their generalizability is 
often limited. Horne et al.‘s review highlights how certain 
disease labels, such as asthma, can encompass diverse 
symptoms and causes [10]. They illustrate this lack of 
generalization by noting that they found 63 studies utiliz-
ing cluster analysis to identify different asthma subtypes 
based on various clinical data. While there is no global 
classification, these applications can be grouped based on 
specific characteristics such as managing missing values, 
collinearity, or mixed data [11]. For instance, when han-
dling missing data, some methods exclude samples from 
the analysis, potentially resulting in a loss of statistical 
power, while others rely on a single imputation, overlook-
ing the potential bias that can be introduced [13]. Highly 
correlated variables represent a challenge. Some meth-
ods exclude them, while others employ dimensionality 
reduction techniques such as Principal Component (PC) 
reduction to capture underlying lower-dimensional data 
patterns [14, 15]. However, both decisions may affect 
the outcome of the clustering, as sensitivity analyses are 
rarely conducted. Moreover, indiscriminate feature selec-
tion can inadvertently remove informative features along 
with noisy ones, potentially biasing the results [16]. Fur-
thermore, most clustering methodologies assume the 
existence of a single stratification, disregarding the pos-
sibility of having none or multiple valid alternatives for 
subgrouping the population [17]. Interestingly, trace-
based clustering methodologies have recently emerged 
to aid in the interpretation and validation of the identi-
fied subgroups, often requiring domain knowledge and 
expert input [18]. Within this technique, the proposal 
involves tracking elements across clusters generated by 
different runs of the clustering algorithm to identify sta-
ble and informative patterns in the data set.

Additionally, the evaluation of clustering outcomes 
is an open problem that is based on the quality of the 

Conclusions By applying ClustALL to patients with acutely decompensated cirrhosis, we identified three patient 
clusters. Following these clusters over time offers insights that could guide future clinical trial design. ClustALL is a 
novel and robust stratification method capable of addressing the multiple challenges of patient stratification in most 
complex diseases.
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produced clusters. In the case of unsupervised clustering, 
where no preliminary classification exists, evaluations 
are typically referenced against theoretical benchmarks. 
For instance, when addressing the optimal number of 
clusters, various quality metrics are available, such as 
the clustering coefficient [19] or the silhouette index 
[20], among many others. Importantly, while there is no 
universal methodology that excels across all scenarios 
for all data sets, as dictated by the “no free lunch” theo-
rem [21], there exist strategies that yield high-quality 
results [22–24]. Another essential measure—referred 
to as robustness—lacks a precise definition. Robust-
ness, in general terms, signifies the capacity of a system 
to withstand changes [25]. In our context, we investigate 
whether a clustering remains stable when subjected to 
perturbations. In this work, we considered two types of 
perturbations: those derived from changes in the popu-
lation and those arising from changes in the algorithm’s 
parameters. In the case of population-based perturba-
tions, we quantify how a given clustering is influenced by 
variations in the underlying population. Bootstrapping 
is one approach to address this scenario [26]. In the case 
of parameter-based perturbations, we assess the impact 
of parameter adjustments in the clustering algorithm on 
the identified clustering [27]. Consider a scenario where 
a parameter “x” defines our clustering strategy. How dif-
ferent is the resulting clustering when using “x = 1” versus 
“x = 1.1”? Here, robustness translates to clusterings that 
maintain stability even when parameter values shift. For 
the reader’s clarity, we will name the two different robust-
ness criteria: population-based robustness and parame-
ter-based robustness.

Importantly, there is currently no methodology capa-
ble of addressing all the aforementioned scenarios while 
ensuring both definitions of robustness. To address these 
challenges comprehensively, we developed ClustALL, 
a novel framework that robustly identifies patient sub-
groups by addressing all the previously mentioned chal-
lenges and limitations of existing methodologies. We 
applied ClustALL -as a proof-of-concept- to a large pro-
spective cohort of patients non-electively admitted to the 
hospital for acutely decompensated cirrhosis.

In this study, ClustALL addressed the stratifica-
tion challenge within a dataset of patients with acutely 
decompensated cirrhosis [28], characterized by the pres-
ence of missing data, mixed data types, and correlated 
features. It revealed multiple stratification solutions, with 
one exhibiting special interest in the clinical context and 
showing prognostic value. We then validated the repro-
ducibility of this stratification using a separate prospec-
tive cohort of patients, affirming ClustALL’s robustness 
and reliability. One further aim of the study was to dem-
onstrate the usability of stratification over the disease 
course, showcasing its prognostic value. Looking beyond 

cirrhosis, ClustALL holds promise for broader applica-
tions in diverse clinical settings, suggesting its poten-
tial to revolutionize patient subgroup identification and 
improve healthcare management.

Methods
ClustALL framework
Given a set of patients affected by a complex disease with 
clinical data available, the goal of ClustALL is to iden-
tify all the possible alternatives to stratify them that are 
robust and consistent, even when different parameters 
or settings are used to generate the stratifications (dis-
tance metric, clustering algorithm, and the number of 
imputations).

The Supplementary Methods include a glossary of 
technical terms with explanations to elucidate technical 
terminology.

Input data
ClustALL accepts binary, categorical, and numerical 
clinical variables as input (e.g., biochemical markers, 
demographics, clinical scores). Categorical features are 
transformed internally using a one-hot encoder method, 
avoiding the assumption of ordinal relationships between 
categories, which is essential for many clustering algo-
rithms to operate efficiently. A minimum of two fea-
tures is required, but including more features would lead 
to more precise clustering. It is important to note that 
increasing the number of features may also increase the 
computation time.

Step 1. Data complexity reduction
In this step, highly correlated features are replaced by a 
reduced set of variables that account for their variability. 
To that end:

Step 1.1. Dendrogram Hierarchical clustering is 
applied to the complete dataset, resulting in a dendro-
gram where variables are grouped based on similarity or 
collinearity [29]. The depth of each branch represents the 
distance between the groups of variables. All the possible 
depths of the dendrogram are extracted, and the sets of 
variables beneath each depth are stored as Depth (see 
Glossary of Technical Terms, Supplementary Methods).

Step 1.2. Preprocessing Principal Component Analy-
sis (PCA) is computed for each set of variables corre-
sponding to each Depth, and the first three principal 
components are stored in a new matrix (Embedding) (see 
Glossary of Technical Terms, Supplementary Methods) 
[30]. For sets that contain only one variable, the variable 
itself is stored to generate the replacement matrix. This 
results in a complexity-reduced data set (Embedding) for 
each considered Depth. A subset of depths can be consid-
ered when the number of variables is too large.
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Step 2. Stratification process
In this step, ClustALL calculates and pre-evaluates strati-
fications for each Embedding. For each Embedding, the 
dissimilarity between patients’ pairs is computed using 
correlation-based distance and Gower dissimilarity met-
ric, resulting in two distance matrices [31, 32]. Cluster-
ing algorithms are then applied [33–35] depending on 
the distance used: k-means and hierarchical clustering 
for correlation distance matrices, and k-medoids and 
hierarchical clustering for the Gower distance matrix. 
Throughout all experiments, five different cluster num-
bers are evaluated k? {2, 3, 4, 5, 6} . The optimal number 
of clusters for each strategy is determined based on the 
consensus from three different measures of clustering 
internal validation: the sum-of-squares based index or 
WB-ratio, the Dunn index, and the average silhouette 
width [36, 37]. The objective is to group patients with 
comparable data while ensuring that patients in sepa-
rate clusters are as dissimilar as possible from those in 
other clusters. As the output for this step, a stratifica-
tion is derived for each combination denoted as “embed-
ding + distance metric + clustering method”.

Step 3. Consensus-based stratifications
Step 3.1. Population-based robustness A data-driven 
threshold is used to define population-based robust sub-
groups or clusters. For each resulting stratification from 
the previous step, cluster-wise stability is computed by 
bootstrapping the dataset 1,000 times and calculating the 
Jaccard similarity index to the originally defined clusters 
(see Glossary of Technical Terms, Supplementary Meth-
ods) [38, 39]. Based on data distribution, stratifications 
with less than 85% stability (Fig. S4) are excluded. The 
remaining stratifications are denoted as Stratfilt.

Step 3.2. Jaccard distance is applied to compute dis-
tances between the population-based robust stratifica-
tions [38]. Then, to identify parameter-based robust 
clusters (where a minor modification in parameter selec-
tion provides a similar result), ClustALL considers those 
combinations that are part of a group of stratifications 
(green squares in Consensus-based stratifications step 
in Fig.  1). Then, as initial criteria, that can be modified 
by the user, centroids from each “combination group” 
are selected as parameter-based robust stratifications 
(coloured green squares in Consensus-based stratifica-
tions step in Fig.  1). The outcome can be none, one, or 
multiple ways to stratify the population robustly. In the 
current analysis, we considered parameter-based robust 
representatives: centroids of a combination group that 
includes at least 5 population-based robust stratifications.

ClustALL enables input data with missing values
ClustALL can be adapted to work with missing data (Fig. 
S1). To that end, the ClustALL method is modified as 
follows:

Step 1 Adaptation
First, a dendrogram and its associated depths are com-
puted considering the original dataset with missing val-
ues. The original dataset is then imputed 1,000 times 
using the Multivariate Imputation by Chained Equations 
(MICE) algorithm [40]. MICE is chosen for its capa-
bility to manage complex data structures and capture 
relationships between variables more effectively than 
other imputation methods [40]. Moreover, MICE offers 
the flexibility to specify relationships between variables 
through the predictorMatrix parameter within the mice 
function. This parameter allows us to handle interde-
pendencies among input variables by specifying predic-
tors for each target feature, thereby facilitating robust 
imputation.

Additionally, we employ the most suitable imputation 
method included in the mice function based on the data 
type. Specifically, predictive mean matching (pmm) is uti-
lized for numeric variables, logistic regression (logreg) for 
factor variables with two levels, multinomial logit model 
(polyreg) for factor variables with more than two levels, 
and ordered logit model (polr) for ordered variables with 
multiple levels. Note that, by implementing imputation 
iteratively, we mitigate bias by capturing the inherent 
uncertainty and variability in the process. Subsequently, 
for each previously calculated Depth and each imputed 
dataset, the Data Complexity Reduction step is applied.

Step 2 Adaptation
Step 2.1 is computed for each combination of depth, 
distance metric, clustering algorithm and each Embed-
ding derived from an imputed dataset. The selection of 
the optimal number of clusters is based on the consen-
sus from cluster internal validation and the mode of the 
imputed datasets for each corresponding embedding. 
Afterwards, a distance matrix (Dmat) between individu-
als is obtained by computing how often two individuals 
are assigned to the same cluster in each imputation (Fig. 
S1). Then, Dmat calculates a final stratification score using 
correlation-based distance and hierarchical clustering. 
In our experience, limited optimization is required here 
because summarizing the stratification over all imputa-
tions separately strengthens what is observed in each 
imputed dataset. Extra care will be required only in cases 
where imputations may differ significantly. After this 
modification, the method follows as previously described 
(Fig. S1).
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Data source
The data utilized in this study were obtained from two 
independent multicentre studies: the European PRE-
DICT cohort and the Latin-American ACLARA cohort, 
conducted as part of the European Project DECISION 
[28, 41]. Both cohorts collected various measures, includ-
ing clinical, pharmacological, biomarker, and outcome 
data from patients with acute decompensation of cir-
rhosis upon hospital admission and during follow-up vis-
its. The follow-up period was 90 days for the PREDICT 
cohort and 28 days for the ACLARA cohort. To be eli-
gible for the present study, patients were required to have 
acute decompensation of cirrhosis upon hospital admis-
sion, with available information on short-term outcomes, 
drug intake, and available biological samples. Ultimately, 
766 patients from the PREDICT cohort and 580 patients 
from the ACLARA cohort and 74 features (continu-
ous and categorical) were included in the analysis. The 

features included demographic information, clinical and 
laboratory data, medical history, risk factors, and cir-
rhosis scores at hospital admission, with missing values 
accounting for less than 30% (Table 1). To avoid bias from 
missing data, imputation was performed with 1,000 itera-
tions using the MICE method [40].

ClustALL comparison to different clustering methodologies
A comparison was conducted between the ClustALL 
framework and classical clustering algorithms. Stratifi-
cation was performed on 1,000 imputed datasets using 
classical k-means and hierarchical methodologies with 
k values of 2 and 3, considering that ClustALL robust 
stratifications comprised two or three patient subgroups. 
Bootstrapping was performed for the classical clusters 
to evaluate cluster-wise stability [42]. The resulting sta-
bility was compared to ClustALL stability through the 
Kolmogorov-Smirnov test. Moreover, the clinical utility 

Fig. 1 Schematic overview of the different steps of ClustALL approach (best viewed in colour). ClustALL takes clinical variables as input. First, data com-
plexity is reduced by grouping the features into a dendrogram, assessing the resulting depths, and using Principal Component Analysis (PCA) (green 
panel). The output is an embedding for each possible depth. Then, stratification is computed considering the combination of different distance measures, 
clustering techniques, and cluster numbers (K) (purple panel). In the final step, non-robust stratifications are filtered, and the centroids derived from 
computing Jaccard (coloured green squares) similarity among the robust stratifications (green squares) are considered the final representatives of the 
stratifications (red panel)
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of the various stratifications was assessed by examining 
the clinical insights obtained from the different clusters.

Statistical methods
All analyses were performed in the R Computing Envi-
ronment version 4.0.3 [43].

Descriptive statistics
Descriptive characteristics of the PREDICT and 
ACLARA study populations were reported as means 
with standard deviations for continuous variables and 
proportions of patients for categorical variables.

Feature analysis
The identification of the minimal-size predictive signa-
tures with maximal predictive power leading to each 
stratification was performed using the fbed.reg function 
with default hyperparameters from the MXM R package 
[44, 45].

Parametric tests
Differences between clusters in the PREDICT and the 
ACLARA cohorts were assessed using one-way ANOVA 
for continuous variables, while binary variables were 
tested with the chi-square test. The association between 
the PREDICT clusters identified with ClustALL –exclu-
sively using data obtained at admission– with the groups 
of patients based on their clinical course [28], was tested 
with the Fisher test.

Stratification model reproducibility
AD-strat model was validated in a separate cohort of 
patients with acute decompensation of cirrhosis from the 
ACLARA cohort and in the PREDICT follow-up time 
points. For this purpose, the k-nearest neighbours (kNN) 
model was trained on the PREDICT AD-strat cluster 
labels based on the signatures previously defined as most 
predictive in the feature analysis [46]. The K parameter 
was selected based on different measures that assessed 
the overall model performance over different K’s [47], 
including accuracy, the area under the curve (AUC), 
error rate (ER), false positives (FP), and false negatives 
(FN) (Table S7). After applying the kNN algorithm, the 
target data (ACLARA cohort and PREDICT follow-up) 
was labelled based on the majority votes from the kNN 
and imputed datasets. Deeper details on the kNN model 
and its performance evaluation are included in the Glos-
sary in the Supplementary Methods.

Survival analysis
Cumulative incidences of ACLF development and liver-
related death were estimated using the cumulative 
incidence function of the survival R Package. Liver trans-
plantation was considered a competing event. A p-value 
lower than 0.05 with Benjamini and Hochberg (BH) 
adjustment was considered statistically significant.

Longitudinal analysis and model evaluation
All PREDICT patients with ≥ 1 post-baseline assess-
ment (n = 688) were included in longitudinal outcomes 
analyses for a period of 90 days after hospital admission. 
Sankey diagrams were generated to show the patients’ 
transfers among the AD-strat clustering, liver transplant, 
ACLF development, death, and survival status. The pre-
dictive power of the stratification models at follow-up 
time points versus at baseline in the PREDICT cohort 
was evaluated using the Bayesian Information Crite-
rion (BIC), the Akaike information criterion (AIC), the 
concordance, and the Likelihood ratio goodness-of-fit 
parameters [48, 49].

Table 1 Complete list of input features. Patient characteristics 
included in the analysis: demographics, cause of cirrhosis, main 
reason for hospitalization, manifestations at admission, cirrhosis 
severity scores, medical history, lifestyle and laboratory variables
Demographics Age, sex, height+, weight+, BMI, ethnicity (Black 

or African American, Asian, White, other)
Cause of cirrhosis Alcohol, viral, alcohol + viral, NASH, crypto-

genic, other
Main reason for 
hospitalization

Ascites, hepatic encephalopathy, gastrointesti-
nal bleeding, spontaneous bacterial peritonitis, 
other infection

Manifestations at 
admission

Clinical Events (ascites, hepatic encephalopa-
thy, gastrointestinal bleeding, acute kidney 
injury, bacterial infection, acute alcoholic-
steatohepatitis, acute viral hepatitis, hepatocel-
lular carcinoma), number of clinical events (the 
sum of clinical events), number of precipitating 
events (the sum of precipitating events: proven 
bacterial infection, acute alcoholic-steatohep-
atitis, CLIF-C AD > 50), organ dysfunction (liver, 
renal, cerebral, coagulation, cardiac, respira-
tory), number of organ dysfunctions (the sum 
of organ dysfunctions), organ failure (liver, cere-
bral, coagulation, cardiac, respiratory), number 
of organ failures (the sum of organ failures)

Cirrhosis Severity 
Scores

Child-Pugh, CLIF-C AD, CLIF-C OF, MELD, 
MELDNA

Medical history History of diabetes, history of hypertension, 
history of previous decompensations

Lifestyle Alcohol, active alcohol consumption+, tobacco
Laboratory variables 
(measured in serum)

Alanine transaminase, aspartate aminotrans-
ferase, albumin, bilirubin (total), gamma-GT, C-
reactive protein, sodium, potassium, glucose+, 
hemoglobin, hematocrit, creatinine, white 
blood cell count, lymphocytes, monocytes, 
neutrophils, INR (International Normalized 
Ratio), platelet, SpO2 (%), SpO2/FiO2 Ratio

+Variables not included in ACLARA cohort
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Results
ClustALL, a robust data-driven framework for patient 
stratification in complex diseases
We developed a specialized stratification framework, 
referred to as ClustALL, specifically designed to accu-
rately identify all potential alternatives for stratifying a 
population using clinical multimodal data at hospital 
admission as input. The ClustALL methodology con-
sists of three main steps illustrated in Fig. 1 and detailed 
in the Methods section: 1) Data Complexity Reduction 
(depicted in the Green Panel of Fig.  1) aims to simplify 
the original dataset by mitigating the impact of redun-
dant information (highly correlated variables). As a 
result, we obtain a set of embeddings, each one derived 
from different groupings of clinical variables. 2) Strati-
fication Process (depicted in the Purple Panel of Fig. 1), 
where, for each embedding, multiple stratification 
analyses are performed using different combinations of 
among the most widely used distance metrics and clus-
tering methodologies (REF). From each combination, 
denoted as “embedding + distance metric + clustering 
method”, a stratification is derived. 3) Consensus-based 
Stratifications step (depicted in the Red Panel of Fig. 1) 
aims to identify robust stratifications that, in addition, 
exhibit minimal variation when combination param-
eters (“embedding + distance metric + clustering method”) 
are slightly modified. ClustALL performs a population-
based robustness analysis for each stratification using 
bootstrapping. This analysis ensures that combinations 
associated with non-robust stratifications are excluded. 
The resulting stratifications are then compared using the 
Jaccard distance. As a result, a heatmap is generated to 
visually identify groups of representative stratifications 
(green squared lines). The selection of representative 
stratifications enables the preservation of those stratifi-
cations that demonstrate parameter-based robustness: 
consistency even when various parameters, like distance 
metrics or clustering methods, are altered. For each 
group of stratifications, the centroid is selected as the 
final stratification (green squares).

Combining these three steps allows ClustALL to 
identify none, one, or multiple robust stratifications 
in a given population of patients with complex diseases. 
Importantly, a specific implementation of ClustALL is 
designed to effectively handle datasets with missing 
data effectively, ensuring that incomplete information 
does not hinder the stratification process.

ClustALL uncovers stratification in a cohort of patients with 
acutely decompensated cirrhosis: a proof-of-concept
Study population
The ClustALL approach was applied to a subset of indi-
viduals from the European PREDICT cohort [28], which 
included 766 patients with acute decompensation of 

cirrhosis and 74 clinical features collected at hospital 
admission, with less than 30% missing values. Complete 
information on patient characteristics and short-term 
outcomes, including acute-on-chronic liver failure 
(ACLF), liver transplant, and death, can be found in Sup-
plemental Table 1.

ClustALL identified five different alternatives to stratify the 
population
The ClustALL workflow was utilized to discover poten-
tial new sub-phenotypes of patients with acute decom-
pensation of cirrhosis within the PREDICT cohort upon 
hospital admission (Fig.  2). To handle missing values 
in the dataset, we employed the ClustALL framework, 
which incorporates imputations using 1,000 iterations, as 
described in the Methods section. The Data Complexity 
Reduction Step resulted in 72,000 embeddings (Fig.  2). 
The Stratification Process generated 288 stratifications 
based on the different combinations of “embedding + dis-
tance metric + clustering method” (Fig.  2). Among these, 
144 population-based robust stratifications were identi-
fied through the Consensus-based Stratifications step, 
resulting in five groups of parameter-based representa-
tive stratifications. The centroid was selected for each 
group of stratifications (Fig. 2).

ClustALL provides better resolution than classical 
clustering tools
We conducted an analysis to assess the added value 
of ClustALL when compared with classical clustering 
methodologies such as k-means or hierarchical cluster-
ing. Regarding the classical methodologies, our findings 
revealed that when using correlation as a distance met-
ric, 90% of patients were consistently assigned to a single 
cluster, regardless of the number of clusters considered; 
when Gower distance was utilized, the distribution of 
patients across clusters presented a more balanced dis-
tribution (Table S2). Notably, the population-based 
robustness of the stratifications generated by ClustALL 
was significantly higher (p-value < 0.01) compared to the 
results obtained using k-means and hierarchical cluster-
ing (Fig. S3). In summary, our observations demonstrate 
that ClustALL significantly outperforms classical meth-
odologies regarding population-based robustness.

Characterization of the five robust stratifications within the 
PREDICT population
After identifying the robust stratifications, we aimed to 
explore and characterize the distinct clusters observed 
in each of the five alternative stratifications. These strati-
fications divided the patients into two clusters, except 
for stratification 1, which had three clusters. We visu-
ally investigated the separation by representing each 
stratification in a low-dimensional space using the 
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corresponding embeddings derived from the dendro-
gram depths (Fig.  3A-E) and the complete dataset (Fig. 
S2). Further exploration revealed that stratification 1 was 
a subdivision of stratification 2 (Fig. 3F). We then deter-
mined the minimal sets of variables (excluding the cir-
rhosis severity scores (Table S1 variables 44 to 48)) with 
the highest predictive performance in differentiating the 
clusters for each stratification (Tables S3–S7) [44, 45]. 
The different classification approaches were described by 
25 variables from a total of 74 (Table S1 variables 1 to 74), 
with 8 to 12 variables per stratification (Fig. 4A). Notably, 
all stratifications included 3 common features: (i) serum 
bilirubin concentration (either as a continuous variable 
or categorized under the term “liver dysfunction” [50]); 
(ii) INR (either as a continuous variable or categorized 
under the term “coagulation dysfunction” [50]; (iii) the 
number of organ dysfunction or failure. Precipitating 
events were present in all but one stratification (stratifi-
cation 3) either as a sum or individually (gastrointestinal 

bleeding, alcohol-related hepatitis, acute viral hepatitis). 
Diabetes mellitus was included in two stratifications. 
Conversely, age, sex, BMI, cause of cirrhosis, and lifestyle 
were present in no or one stratification. Interestingly, 
stratification 1 and 2 shared almost the same minimal 
set of variables. Both stratifications identified a group of 
patients with a severe phenotype attested by low serum 
sodium, low serum albumin, high serum bilirubin, high 
INR, high C-Reactive Protein (CRP) and leucocytes, and 
the number of precipitating events (Fig.  4B). Hepatic 
encephalopathy was present in stratification 1 but not 
in 2 [51]. A complete statistical characterization of the 
stratifications is provided in Tables S3 to S7. Consider-
ing the clinical implications of the features and the finer 
classification of the patients, we identified stratification 1 
as the most insightful for further exploration in patients 
with acute decompensation of cirrhosis. Henceforth, in 
our discussions, we will refer to this specific stratification 
as ‘AD-strat’.

Fig. 2 Summary of the outputs from the different steps of the ClustALL framework when applied to the PREDICT cohort (N = 766). Input data comprised 
74 clinical features with less than 30% missing values. The analysis utilized 1,000 imputed datasets. The Data Complexity Reduction step (green) was 
applied to 72 depths of the 1,000 imputed datasets. The Stratification Process step (purple) considered various clustering combinations resulting in 288 
stratifications. After bootstrapping, 144 robust stratifications remained. Finally, in the Consensus-based Stratification step (red), five groups of robust strati-
fications (red squares) were identified, and the centroid was selected from each group as the final stratifications (red coloured squares)
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AD-strat provides prognosis value
The AD-strat stratification is defined by three subgroups 
(clusters) of patients with acutely decompensated cir-
rhosis, revealing different clinical characteristics and 
disease progression. Cluster 1 included 306 patients 
(39.95%) who exhibited the most clinically critical sce-
nario (Fig.  5A, B and Table S3). These individuals had 
the highest rates of organ dysfunction, clinical events, 
and precipitating events (Table S3). They had a marked 
acute inflammatory profile (high white blood cell count 
and CRP level), poor liver function (low levels of albumin 
and high levels of INR and serum bilirubin), and more 
hepatocyte injury (higher levels of serum aspartate ami-
notransferase). Conversely, Cluster 2 (n = 118; 15.4%) and 
Cluster 3 (n = 342; 44.6%) had a less severe presentation. 
The main difference between Cluster 2 and 3 was hepatic 
encephalopathy, found in 89% of the patients in Cluster 2 
and almost no patients in Cluster 3 (Fig. 5A, B and Table 

S3). Importantly, a significant prognostic value of AD-
strat was revealed by exploring the cumulative incidence 
of ACLF and death over 90-day follow-up (Fig. 5C).

Liver transplantation was considered a competing 
event as it represents a definitive intervention that dra-
matically changes the course of the disease, offering a 
potential cure for end-stage liver disease, similarly as 
in other studies [28, 52, 53]. Patients in Cluster 1 had 
poor short-term outcomes, with a cumulative incidence 
of ACLF and death, both by 90 days of 24.1 and 21.5, 
respectively. While Clusters 2 and 3 had similar risks of 
ACLF by 90 days (8.6% and 10.2%, respecively), the risk 
of death by 90 days was lower for Cluster 2 than Cluster 
3 (4.3% vs. 10.7%). When we compared the clusters iden-
tified with ClustALL - exclusively using data obtained at 
admission - with the groups of patients based on their 
clinical course [28], we found a statistically significant 
association (Fisher test, p-value < 0.01) (see Table S8). 

Fig. 3 Principal Component projection of the ClustALL robust stratifications based on the embedding associated with each stratification. (A-E). Low-
dimension representation of the robust stratifications after applying the ClustALL framework to the PREDICT cohort. For each one of the 5 robust strati-
fications identified by ClustALL, the Principal Component Analysis of the Embeddings corresponding to the specific dendrogram depth associated with 
the stratification is shown. The x (Dim1) and y (Dim2) axes represent the first and second principal components respectively, which are linear combina-
tions of the original variables. (F). The overlap between the clusters in stratifications 1 and 2 shows that stratification 1 is a subdivision of stratification 2
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We observed that 61% of patients with pre-ACLF were in 
Cluster 1, and 48% of patients with stable decompensated 
were in Cluster 3.

Reproducibility of the stratification model in an 
independent cohort
We assessed the validity of the AD-strat model in a 
large independent prospective multicentre cohort that 
included 580 patients with acute decompensation of cir-
rhosis from the Latin-American ACLARA study [41]. 
Using as a reference the PREDICT AD-strat clusters, we 
labelled ACLARA patients using the k-nearest neigh-
bours classification algorithm (Table S10) [46]. The clas-
sification model included the 12 predictive variables 
previously identified in the feature importance analysis 
(Fig.  4B Stratification 1). Importantly, the allocation of 

the patients to the clusters was consistent and indepen-
dent of the imputation in 99% of the cases (Fig. 6A), and 
the distribution of individuals by AD-strat clusters within 
ACLARA closely mirrored that of the PREDICT cohort 
(Fig.  6B). As expected, the clustering of the ACLARA 
cohort exhibited similar clinical feature patterns to the 
PREDICT cohort (Figs. 4B and 6C Stratification 1). Fur-
thermore, the features describing the subgroups dem-
onstrated statistical significance (Table S11). Finally, we 
assessed the clinical relevance of the clustering in terms 
of prognosis, specifically examining the short-term out-
comes available in the ACLARA cohort 28 days after 
hospital admission. Similar to results obtained in the 
PREDICT cohort, Cluster 1 displayed a bad prognosis 
for both ACLF and death, while Cluster 3 showed a bet-
ter prognosis (Fig.  6D). In ACLARA, all patients from 

Fig. 4 Overview of the variables driving the ClustALL stratifications. (A). Heatmap with the minimal set of variables required to describe the 5 different 
stratifications, accounting for 25 out of 74 input variables. (B). Heatmaps of the minimal set of patient characteristics per stratification. The heatmap colour 
scale depends on the data type. In the case of binary variables, the value indicates the percentage of patients with such binary characteristics, e.g., the 
presence of Diabetes Mellitus. For continuous variables, the colour scale represents a scaled value from the highest cluster mean (100.0) to the lowest 
cluster mean (0.0), e.g., Albumin and CRP. Abbreviations: ASH = Acute Alcoholic-Steatohepatitis, AST = Aspartate aminotransferase, CL = Cluster, CRP = C-
Reactive Protein, HE = Hepatic encephalopathy, HCC = Hepatocellular Carcinoma, INR = International normalized ratio, WBC = White blood cell counts
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Fig. 5 Clinical overview of the AD-strat derived clusters in the PREDICT cohort. (A, B). Distribution of the highest predictive performance-related patient 
characteristics among AD-strat clusters; (A) categorical variables, (B) numerical variables. (C) Cumulative incidence of ACLF (left) and death (right) accord-
ing to the AD-strat clustering in PREDICT cohort considering 90 days after hospital admission, with the number of patients at risk per cluster (Transplanta-
tion counted as a competing risk to death). Abbreviations: AST = Aspartate aminotransferase, CRP = C- Reactive Protein, INR = International normalized 
ratio, WBC = White blood cell counts

 



Page 12 of 19Palomino-Echeverria et al. Journal of Translational Medicine          (2024) 22:599 

Cluster 2 were afflicted by hepatic encephalopathy (Table 
S11) and showed a poor prognosis similar to that of Clus-
ter 1. Ethnicity was homogeneously distributed across 
clusters (Table S2). In particular, Native Americans rep-
resented 21% of Cluster 1, 15% of Cluster 2, and 14% of 
Cluster 3. Complete information on patient characteris-
tics and short-term outcomes is reported in Supplemen-
tal Table 9.

AD-strat as a marker for clinical management
Finally, we investigated the clinical value of the stratifica-
tion during the follow-up visits of the PREDICT cohort. 
Based on the PREDICT study design [28], two follow-up 
visit plans were established depending on the reported 
disease severity (CLIF-C AD-score) at hospital admission 
(Fig. 7A). For patients with a CLIF-C AD-score ≥ 50, the 
scheduled visits were performed at hospital admission 

Fig. 6 Reproducibility of the AD-strat model in the ACLARA cohort. (A) Distribution of the labels in the ACLARA cohort after applying the kNN model 
1,000 times. (B) Proportion of patients distributed in the 3 clusters in the PREDICT and the ACLARA cohorts. (C) Heatmap of patient characteristics per 
cluster in the ACLARA cohort. Bars on the right show the colour scale representing the proportion with each binary characteristic, such as diabetes. Con-
tinuous variables, such as bilirubin, represent a scaled value from the highest cluster mean (1.0) to the lowest cluster mean (0.0). (D) Cumulative incidence 
of ACLF (up) and death (down) according to the AD-strat clustering in ACLARA cohort considering 28 days after hospital admission, with the number 
of patients at risk per cluster (Transplantation counted as a competing risk to death). Abbreviations: AST = Aspartate aminotransferase, CRP = C- Reactive 
Protein, INR = International normalized ratio, WBC = White blood cell counts
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Fig. 7 Distribution and transition of the AD-strat derived clusters at different visits in the PREDICT cohort. (A). Schematic representation of PREDICT study 
design. Two follow-up visit plans were defined according to the reported disease severity (CLIF-C AD-score) at hospital admission (red). The information 
about the occurrence of any adverse event (liver transplant, ACLF or death) during the whole visit plan or the absence of events at the end of the study 
was tracked (blue). (B) Sankey plots show the cluster label of each patient over the follow-up visits. The follow-up flows of patients with CLIF-C AD > = 50 
at hospital admission (up) and CLIF-C AD < 50 at hospital admission (down) are shown. The distribution of the patients assessed at each follow-up visit 
per cluster is shown as frequency and proportion on the top of the Sankey representations. The accumulated frequency and proportion of adverse events 
at each follow-up visit respecting the whole cohort (for CLIF-C AD > = 50, n = 486; for CLIF-C AD < 50, n = 280) are shown on the bottom of the Sankey 
representations. Reported event/end of study (EOS), shows the status of a patient at the “end of the study”: patients with a reported event or patients 
with no reported event
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and 1, 4, 8 and, 12 weeks after enrolment. For patients 
with a CLIF-C AD-score < 50, the scheduled visits were 
performed only at hospital admission and 1 and 12 weeks 
after enrolment.

Of the 766 patients included in the PREDICT study, 
688 had at least one follow-up visit. For this subset of 
patients with available data, we labelled each of them at 
each follow-up visit using the kNN algorithm (Fig.  7B). 
This approach allowed an overview of the patient strati-
fication over the entire study duration and revealed the 
patient flow over time, highlighting cluster transitions.

Consistent with the previous AD-strat characterization 
at hospital admission (Fig. 5 and Table S3), we identified 
more than 50% of patients with a CLIF-C AD score ≥ 50 
(n = 486) were classified as Cluster 1, while patients with 
CLIF-C AD score < 50 (n = 280) were predominantly clas-
sified as Cluster 3 (66.4%) (Fig.  7B). Changes in cluster 
proportions were observed during the patients’ follow-
up. Stratification changes over time were more pro-
nounced among patients with a CLIF-C AD scores ≥ 50 
at hospital admission, showing a progressive reduction of 
patients classified as Cluster 1 (55.8% at hospital admis-
sion, 38.8% at week 1, 39.2% at week 4, 25% at week 8, 
and 17.1% at week 12) and an increase of those classified 
as Cluster 3 (32.1% at hospital admission, 54.6% at week 
1, 50.9% at week 4, 67.9% at week 8, and 74.3% at week 
12). Additionally, there was a progressive increase in the 
proportion of patients classified as Cluster 3 for those 
patients with a CLIF-C AD-score < 50 at hospital inclu-
sion (66.4% at hospital admission, 83.3% at week 1, and 
82.5% at week 12).

To assess the effectiveness of the AD-strat throughout 
disease progression, we determined its prognostic value 
in two scenarios: (1) using the stratification at hospital 
admission, and (2) using the stratification at the last visit 
reported before the occurrence of any adverse event (we 
considered any visit between week 1 and 12) or at the 
end-of-study (EOS) (week 12 visit). A significant differ-
ence was observed (p < 0.001, Wilcoxon test) when com-
paring the time window between the visit used in each 
scenario and the occurrence of adverse events (Fig. S5), 
indicating that in the second scenario, we evaluated 
patients during a visit much closer to the event.

Ultimately, the cumulative incidence of ACLF and 
death as stratified at the last visit demonstrated a more 
significant separation between clusters compared to 
patient stratification at hospital admission (Fig. 8). There 
was an increase in the incidence for those patients clas-
sified as Cluster 1 (18.46% and 18.45% at baseline and 
28.16% and 26.8% at the last visit for ACLF and death, 
respectively). Accordingly, the goodness-of-fit parame-
ters indicated an improvement in risk prediction with the 
last visit stratification, suggesting an enhanced predictive 
power as the event approached (Table S12).

Discussion
In the current era of personalized medicine, there is a 
growing focus on elucidating the complexities of dis-
ease populations, reflecting an emphasis on understand-
ing their inherent heterogeneity [54–56]. Consequently, 
both academic and clinical efforts have been dedicated to 
characterizing disease subtypes for the purposes of iden-
tification, treatment, and prognosis. Or more general, 
aiming to enhance our understanding and management 
of complex conditions. Furthermore, the WHO has rec-
ognized patient stratification as an invaluable approach 
[8]. It is important to note that patient stratification 
extends beyond mere outcome prediction scores, par-
ticularly in scenarios where a “one-size-fits-all” approach 
to treatment may inadequately address the diverse needs 
and characteristics of individual patients [57].

Patient stratification, as investigated in this study, 
involves the unsupervised grouping of patients based 
on available clinical data. Interestingly, while significant 
progress has been made in classification problems, par-
ticularly in domains like single-cell transcriptomic analy-
sis [58, 59], unsupervised clustering of patients based on 
clinical information is still in the developmental stage [9, 
60]. Notably, the existing challenges in clinical stratifica-
tion, such as handling mixed data types, missing values, 
or highly correlated variables, are often mitigated using 
ad-hoc solutions, given the absence of a comprehensive 
method to address them. To overcome the aforemen-
tioned idiosyncrasies, we have developed a novel compu-
tational framework named ClustALL.

During the development of ClustALL, our focus 
extended beyond simply generating patient groups; we 
were equally invested in ensuring the robustness of the 
identified stratifications. Typically, clustering robust-
ness can be evaluated based on the stability of the clus-
ters when modifications are made to the population 
using methods such as resampling or bootstrapping 
(population-based robustness). Significantly, ClustALL 
incorporates a second, less explored but equally impor-
tant, dimension of robustness: assessing the consistency 
among the resulting stratifications when minor modifi-
cations are applied to the clustering parameter settings. 
This property has already been explored in the context 
of gene expression data as the “propensity of a clustering 
algorithm to maintain output coherence over a range of 
settings” [61]. Another major feature of ClustALL, is its 
capacity to identify more than one robust stratification 
within a given population. Clinical data is complex and 
allows for multiple uses and “multiple interpretations” 
that may result in several valid groupings [62]. Indeed, 
the concept of “multiple interpretations” arises from how 
variables are utilized in the clustering process and has 
been a research subject in the last decades [63]. Tradi-
tional methods such as k-means or hierarchical clustering 
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typically yield a single outcome, which may be influenced 
by random initial conditions at the start of the algorithm. 
We consider that any stratification method should allow 
for the identification of multiple solutions, necessitating 
clinical feedback to ascertain their relevance. In contrast 
to traditional methods, following trace-based clustering 

principle, ClustALL does not rely on a random single 
initialization of the clustering, but, in general, integrates 
the information of multiple clustering efforts and evalu-
ation criteria [18]. In summary and considering all these 
factors, we believe that ClustALL represents a necessary 
step towards practical unsupervised patient stratification; 

Fig. 8 Assessment of the risk of adverse events according to the AD-strat clusters at different time points. (A, B). Cumulative incidence of ACLF (A) and 
death (B) according to the AD-strat clustering in PREDICT cohort at hospital admission (left) versus at last visit (right) considering 90 days after hospital 
admission, with the number of patients at risk per cluster (Transplantation counted as a competing risk to death)
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notably through the incorporation of parameter-based 
robustness and its capacity to identify more than one 
stratification.

To assess the effectiveness of ClustALL, we applied it 
as a proof-of-concept in a cohort of patients with acutely 
decompensated cirrhosis, considering clinical data col-
lected at hospital admission. Such an attempt to apply a 
data-driven stratification to patients with cirrhosis has 
never been conducted. The stratification we set up differs 
from the scores developed and routinely used in patients 
with cirrhosis (e.g., MELD, MELD-Na, Child-Pugh, 
CLIF-C-AD) both in terms of design and use. Indeed, all 
these scores were built using a follow-up endpoint (usu-
ally death) in patients receiving therapies. These scores 
are helpful in identifying patients at high risk of poor out-
comes. Still, they do not fully capture the heterogeneity 
of the patients at admission for several reasons: (a) some 
features explaining patients’ heterogeneity might not 
have an independent prognostic value, either because the 
prognostic information they carry is contained in other 
variables, or because therapies administered to patients 
during their follow-up blunt their impact; (b) a similar 
survival rate does not imply similar pathophysiological 
mechanisms. For instance, in PREDICT, clusters 2 and 
3 have a similar rate of ACLF, while they strongly differ 
with regard to the prevalence of hepatic encephalopathy.

In the first step of our analysis, we identified five alter-
native stratifications for patients with acute decompensa-
tion of cirrhosis. Interestingly, all stratifications included 
markers of impaired liver function, serum bilirubin and 
INR, and the number of organ dysfunction or failure, and 
all but one included precipitating events. This empha-
sizes that these features are crucial when designing a 
clinical trial, including patients with acute decompensa-
tion of cirrhosis. Our data-driven approaches show that 
serum bilirubin and INR are not only key to predict-
ing the outcome of patients with cirrhosis but also to 
explaining heterogeneity at admission. On the contrary, 
features like age, sex, BMI, cause of cirrhosis, and lifestyle 
were present in no or only one stratification, suggesting 
that these features are not key when designing a clinical 
trial. The stratification we selected (AD-strat) provided a 
more granular resolution by allowing the identification of 
three subgroups of patients.

In this stratification,  diabetes mellitus is taken into 
account. While it is known that diabetes is an indepen-
dent risk factor for cirrhosis decompensation [64, 65], 
the role of diabetes once acute decompensation has hap-
pened has been overlooked so far. This place of diabetes 
is quite unique since causes of cirrhosis, comorbidities, 
or lifestyle were not part of the key features of AD-strat. 
Hepatic encephalopathy strongly impacted the catego-
rization of patients with acutely decompensated cirrho-
sis. Notably, 89% and 100% of the patients in Cluster 2 

from the PREDICT and ACLARA cohorts, respectively, 
presented hepatic encephalopathy at the time of hospi-
tal admission. This may explain the intermediate prog-
nosis observed in patients within Cluster 2, as hepatic 
encephalopathy is recognised by its fluctuating nature 
and potential reversibility [66, 67]. The dynamic nature of 
hepatic encephalopathy may also explain why Cluster 2 
was not a static group over time [68].

The stratification presented here is not intended to 
guide clinical bedside decisions or to create a new prog-
nostic score, but rather to identify more homogeneous 
patient populations upon hospital admission. How-
ever, once we applied ClustALL, we observed that the 
three subgroups of patients identified had a different 
outcome. Moreover, employing AD-strat labelling over 
time facilitated dynamic and enhanced identification of 
high-risk patients in the PREDICT cohort. These find-
ings underscore ClustALL’s ability not only to stratify 
patients based on baseline characteristics, with a prog-
nostic relevance. In this regard, AD-strat might be a use-
ful tool for designing future clinical trials by including 
more homogeneous patient populations. Using ClustALL 
may also offer insights into applying nanomedicine in 
precision-targeted drug delivery systems [69, 70]. Fur-
thermore, we have implemented an online calculator for 
acutely decompensated cirrhosis based on this stratifi-
cation output, available at https://decision-for-liver.eu/
for-scientists/clustall-web-application/.

Although our study showed promising results, it is 
important to acknowledge some limitations. Firstly, con-
cerning our novel stratification framework, we designed 
a method aimed at minimizing user-defined parameters 
by exhaustively exploring all potential clustering solu-
tions across various parameter combinations. However, 
practical decisions were made, such as employing PCA 
to diminish the dimensionality of highly correlated vari-
ables. In future iterations, we intend to explore alterna-
tives such as Independent Component Analysis or PCA 
tailored for ordinal variables. Additionally, the determi-
nation of the number of components included in each 
dimensionality reduction will be guided by data-driven 
criteria. Furthermore, the ClustALL framework offers 
scope for expansion by incorporating additional methods 
and distance metrics, affording users the autonomy to 
select those most suitable for their needs. Secondly, our 
stratification relied solely on routinely available clinical 
data collected at hospital admission, potentially limiting 
the comprehensive understanding of patients’ condi-
tions. Future investigations should integrate biological 
data, preferably derived from multiomic analyses. It is 
also relevant to note that in the ACLARA cohort, predic-
tive power was assessed only at the 28-day mark due to 
study design constraints. Moreover, it is worth highlight-
ing that broader utilization of ClustALL (e.g., in other 
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complex diseases and/or including omic data) may shed 
light on areas necessitating refinement, aligning with the 
No-Free Lunch theorem discussed previously [21].

In summary, this study introduces a novel unsuper-
vised clustering framework, ClustALL, capable of over-
coming the limitations of available stratification methods. 
Expanding beyond cirrhosis, ClustALL shows potential 
for wider implementation across various clinical settings, 
hinting at its ability to transform patient subgroup iden-
tification, expand possibilities of drug repurposing [71], 
and in general, to enhance healthcare management.

Conclusions
ClustALL stands out as a comprehensive and versa-
tile computational framework for unsupervised patient 
stratification that uses multimodal clinical data such as 
biochemical markers, demographics, and clinical scores 
as input. Furthermore, ClustALL ensures the identifica-
tion of robust stratifications—including two concepts 
of robustness—and allows the identification of multiple 
robust stratifications over the same population. In the 
context of acute decompensation of cirrhosis, Clust-
ALL not only successfully navigates the intricacies of 
diverse clinical information but also identifies several 
robust stratifications. Furthermore, validating find-
ings across different time points and in an independent 
cohort underscores the reliability of ClustALL. Over-
all, this work not only contributes to our understanding 
of patient heterogeneity in cirrhosis but also positions 
ClustALL as a powerful stratification tool that could be 
applied to other diseases, thereby advancing precision 
medicine and facilitating the development of more tar-
geted and effective clinical interventions. Future devel-
opments of the tool could expand ClustALL framework 
by incorporating biological data from multiomic analyses 
and offering further customizable user functions.
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